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Abstract  

The different approaches to noise impact assessment adopted by the individual countries and the scientific 

community have led to the development of a certain amount of indicators, mainly focused on specific 

transport modes. However, in practice, technicians and decision- makers alike may fail to identify the most 

appropriate indicators, if they have not a specific expertise on environmental noise.  

The paper presents a review of the main transport noise indicators, both the general acoustic ones and 

those used for specific transport modes. A critical analysis of the strengths and weaknesses of those 

indicators is provided, as well as a section discussing the framework in which they work, and suggestions 

for their best use, aimed at assisting decision-makers to ascertain their role in the evaluation process of the 

transport systems. To this extent a classification is proposed supplemented by the DPSIR approach (Driving 

forces, Pressures, States, Impacts, Responses), in an effort to assess the cause-effect relationship between 

society and the environment. Decision-makers will also gain insight in prioritising the use of existing 

indicators in accordance to their own needs, as well as advice into the joint use of socio-economic variables 

to fully support their decisions.  
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1. Introduction  

Noise pollution from transport activities is an endemic problem in modern societies and has become a 

critical issue in the assessment of transport system sustainability.  

Noise induces social and behavioural effects, notably annoyance and sleep disturbance; from a medical 

point of view, the effects of noise on human health are also well known: hearing impairment, speech 

intelligibility, physiological dis-functions, mental illness, performance reduction, cardiovascular diseases 

(WHO, 1999; WHO, 2011). Many of these effects are assumed to result from the interaction of a number of 

auditory and non-auditory variables.  

The need to safeguard the quality of life and health of the population calls for more efforts for transport 

noise abatement as regards to the increasing demand of mobility. To reconcile these conflicting needs, the 

EU 6th Action Programme “Environment 2010: Our Future, Our Choice” has set up the target to reduce the 

number of people regularly affected by long-term high levels of noise from an estimated 100 million people 

in the year 2000 to around 10% reduction in the year 2010 and in the order of 20% by 2020. The difficulty 

to attain those targets is that 80% of people live in the urban areas, where transport infrastructures 

represent the most important source of noise. In fact, today 115 million people are exposed to noise levels 

Lden higher than 55 dB(A), and, at night time, 80 million people are exposed to Lnight higher than 50 dB(A) 

(EEA, 2011). All over the world, a total of 2 billion citizens are subject to road traffic Lden of over 55 dB (De 

Vos and Van Beek, 2011).  

The social costs of rail and road noise in Europe was recently estimated to €40 billion a year (90% related to 

passenger cars and goods vehicles) (EC, 2011a). The noise costs, including health care, represent about 

0.4% of total EU GDP (den Boer and Schroten, 2007) and, according to the Commission (EC, 2011a; SEC, 

2011a,b), the noise-related external costs of transport would increase to roughly 20 billion € by 2050 

(+40%).  

Thence, lawmakers are paying growing attention to adopt reliable and homogeneous instruments for 

monitoring and evaluating transport noise emissions. In some cases, the national norms establish rules to 

preserve the sound quality of specific areas (e.g. parks, hospitals, schools, etc.) and to reduce people noise 

exposure, recommending the adoption of noise indicators and setting the thresholds to be complied with.  

In Europe, the need to define guidelines to set common noise legislation led to the Environmental Noise 

Directive 2002/49/EC, also known as the “END”. This Directive urges the monitoring of the main European 

cities and the biggest transport infrastructures, assessing the number of exposed people and mapping 

sound levels, using specific noise indicators.  

The study of transport noise emissions kicked off in the 50’s in the United States to tackle the significant 

problem of the aircraft emissions (Kryter, 1959), and continued over the years with the research of good 

dose-response relationships (FICON, 1992; Miedema and Vos, 1998; Miedema and Oudshoorn, 2001; Fidell, 

2003).  

Various noise indicators have been proposed for different objectives, but, in practice, technicians and 

decision-makers alike may fail to identify the most appropriate ones if they lack a specific expertise on 

environmental noise.  

This paper reviews the main transport noise indicators, proposing a classification of those according to their 

nature, to the transport mode to which they are related, and to their field of application. After the review 

of the general and mode-related noise indicators, a section is devoted to critically analyse their strengths 

and weaknesses. Finally, the framework in which those have to work is discussed, suggesting their best use. 

The ultimate goal is to assist decision-makers to distinguish the role of the different indicators in the 

evaluation process of the transport systems. However, what it is more significant is to highlight what is 

missing today and to propose an operational approach to properly evaluate the impacts of the transport 

systems on the exposed population. 

  

2. General acoustic indicators  

The general acoustic indicators describe noise emissions in terms of the physical characteristics of the 

sound pressure. They represent the physical-mathematical basis on which all the other noise indicators 

were developed and are the simplest tools for acoustic noise analysis. Their use in the assessment of 

transport noise pollution revealed them inadequate or even useless to describe the phenomenon, for 

example when assessing long-term noise impacts. In addition, their relationship with people annoyance has 



indeed been challenged. These indicators include the Equivalent Level, the Maximum and Minimum Level, 

the Statistical Levels, and the Sound Exposure Level. They were defined in the standard ISO 1990/1-2003.  

The best known energy noise indicator is the “Equivalent Level” Leq, used to describe sound fluctuation 

over time. It represents the average noise level varying its pressure level during a period T of observation, 

expressed in dB(A).  

The Maximum and Minimum sound Level, Lmax and Lmin, are, respectively, the highest and the lowest 

time-weighted sound level measured expressed in dB(A). These indicators depend on typology and location 

of the source. They are generally used to describe the source in terms of acoustic power.  

The statistical noise levels Lxx represent the pressure level exceeded the “xx”% of the recording time, 

measured in dB(A). The statistical levels usually considered are L5, L10, L50, L90, L95. L90 and L95 are 

typically used to describe the “background noise”. Some of those levels are used to calculate other 

indicators or in traffic noise models. Well established examples are the models: CSTB (CSTB, 1991), Griffith 

and Langdon (Schultz, 1972), Burgess (Burges, 1977), and C.R.T.N. (Department of Transport and the Welsh 

Office, 1998).  

The “sound exposure level SEL” (or “LAE” or “LAX” or “SENEL”) is used to describe a single noise event in a 

particular context (e.g. a passage of a train or of a single vehicle in an empty street). The evaluation of the 

indicator on a base time period of one second (t0) allows to compare SEL values coming from different 

sources, where t2 – t1 is the interval of the event where the noise level LA(t) > LAmax -10: 
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In Italy, this indicator is typically used for railway noise evaluation (D.M., 1998). During an observation time 

period (TR) the measure of the SEL of each event allows calculating the corresponding Leq generated by the 

source.  

In aircraft noise it is common to speak about SENEL for the evaluation of single airplane operations (take-

off and landing). The formulation of SENEL (EPA, 1971) is the same as SEL, but it is generally preferred for 

the definition of the integration time (t2-t1) (California Department of Aeronautics, 1971). 

  

3. Road traffic noise indicators  

Road traffic is the main responsible for noise in urban areas and is characterized by fluctuations of the 

traffic flow during the day, due to the evolution of its kinematic  

characteristics, notably speed, acceleration, deceleration. For this reason, road traffic is treated like a 

pseudo-casual source, where the energy characteristics of the noise are very important. These noise 

indicators are recorded over a long time period to describe the average condition at source, the most 

important of those being: the “traffic noise index TNI”, the “noise pollution level NPL”, the “CRTN Indicator 

L10,18h”.  

The “traffic noise index TNI” was proposed by Griffiths and Langdon in the 1968 (Schultz, 1972). The index 

was developed in the UK using statistical noise levels Lxx: 
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The indicator takes into account the difference between the noisiest events (L10) and the background noise 

(L90); however changes of the base-line sound are weighted with a similar emphasis as those in the noise 

peaks (Graf et al., 1980). This is the reason why the indicator is not widely used, since it becomes 

representative only when the traffic is flowing, risking to be misinterpreted in a different situation. In fact, 

in some cases, when the traffic flow increases, the TNI decreases (Berglund and Lindvall, 1995). 

Furthermore, when the difference between the L10 and L90 declines, the attenuation loss over distance 

can change significantly (Schultz, 1972).  

The “noise pollution level NPL” was developed by Robinson in the late 60´s (Schultz, 1972). The NPL 

formulation sums k*σ (constant k = 2.56 and standard deviation) to Leq: 

σ⋅+= kLL eqNP  



 

When the distribution of the instantaneous A-weighted sound level is Gaussian, the noise pollution level 

could be expressed in function of some statistical noise levels: 
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Like the TNI, the NPL is made up by two terms: the first one is the “average” noise level, or “energy mean”; 

the second represents the fluctuation of that level during the emission time.  

Moreover, in the first formulation, the parameter σ is influenced by the background noise: for a lower 

background noise, the fluctuation and the variability of the events are higher.  

The above indicator has not been widely used because of the difficulty to define the parameter σ correctly. 

Some examples of its application are presented in Rice (1975) and Langdon (1976, part I and II).  

The “CRTN Indicator L10,18h” is the most common indicator of traffic noise used in the UK and in Ireland, 

named LA10,18h. It comes from the Calculation of Road Traffic Noise (CRTN) prediction method, and it was 

first introduced in the 70’s (Abbott and Nelson, 2002).  

This indicator is the arithmetic average of eighteen LA10,1h values (i.e. the noise level exceeded for 10 % of 

the hourly period) from 06:00 to midnight: 
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It does not take into account the noise emission in the night period. When traffic flow is low, the variation 

of the LA10,1h depends on the individual passing vehicle and not on the global traffic parameters. In some 

cases the indicator shows a high correlation with other statistical indexes and with Leq (Langdon and 

Griffiths, 1982).  

The indicator is used in the UK in the context of National Insulation Regulations; in that case the value of 

noise contains a correction factor of +2.5 dB for the reflection from façades (O’Malley et al., 2009). In 

accordance with the END, it is possible to transform the CRTN indicator into Lden (Abbott and Nelson, 

2002). 

  

4. Railway noise indicators  

There are few examples of “noise indicators” specific for rail transport in the state-of-the-art literature. This 

may be due to the fact that, historically, railway infrastructure has been perceived as less intrusive than 

roads and airports, representing a lower risk and a lower impact on the population.  

From an acoustic point of view, railway noise is easier to study: the sound events are better defined and 

identifiable, the kinematic characteristics of the traffic being less variable than those of road traffic. Of 

course, the individual emissions from each moving train are energetically higher than those from road 

vehicles; this issue is acknowledged, in some national legislation, where noise limits are set higher than 

those adopted for road traffic.  

The best known indicators are the “transit exposure level TEL” and the “railway rating levels Lr”. The TEL is 

used to describe the noise emitted by railway traffic taking into account the “train pass-by” duration (Tp) 

expressed in seconds (train length divided by the train speed). Its formulation is given by the EN ISO 

3095:2005 (EN ISO, 2005): 

  

( )













= ∫

T

A

p
dt

p

tp

T
logTEL

0

2
0

21
10

 
 



The TEL is related to the SEL and to the Leq,T; it is not a pure energy level like SEL, but it adds the equivalent 

level of the pass-by to a correction term. This last is the ratio between the length of the measuring time T 

and the pass-by duration Tp. This implies that a 100 m long train would reach about the same TEL as a train 

200 m long of the same type: 
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The “rating levels Lr” are calculated affecting the average noise level by corrections due to specific noise 

characteristics. When legal limits are applicable to both road and rail traffic, a “rail bonus” is subtracted 

from the average railways noise level. This reduction reflects the lower annoyance caused by rail noise as 

compared to that generated by road traffic (Danneskiold-Samsoe, 2002).  

In Europe there are some examples of “rail bonus”: in Austria and Germany the railways rating level is 

computed as Lr=Leq-5dB, in France Lr=Leq-3dB (I-INCE, 2009). In Switzerland (Swiss Federal act 814.41, 

2010) the rating level is calculated increasing the average noise level with factors taking into account noise 

events related to the infrastructure; in that case the rating level includes noise from trains (Lr1) and 

shunting noise (Lr2): 
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5. Aircraft noise indicators  

The presence in the literature of several indicators and studies related to the aircraft noise shows that 

impact assessment has historically been an important issue in airport design and management. Aircraft 

traffic noise became a big problem when, in the early 50’s, the jet-propelled aircrafts were introduced in 

the civil aviation. The aircraft noise during take-off and landing is characterized by very high peak values 

with different spectrums depending on the operation phases.  

Studies conducted over the years on people exposed to the noise produced both by air traffic and by 

aircraft ground operations, have led to the definition of different noise indicators, geared to describe 

human perception and the impact caused by different noise characteristics: spectrum, impulsiveness and 

high levels. The main indicators reported here are described below.  

The “Composite Noise Rating method CNR” was proposed and developed for the first time in the USA by 

Rosenblith and Stevens in 1952 (Bradley, 1996) and later revisited, as cited by Goodfriends (1977). The 

indicator is based on the principle that people’s perception is different at different frequencies and, for this 

reason, measurements have to record the equivalent sound pressure level in octave bands. The measured 

spectrum and noise levels are superimposed to a set of octave band contours and some corrections are 

subsequently added to the spectrum to take into account the presence of pure tones, impulsive sounds, 

repetition of the sound, background noise levels, time of day, and expected people’s accommodation to 

the noise.  

The adjusted CNR level rank is represented by the highest contour penetrated by the spectrum after the 

corrections. The reaction of annoyed people, resulting from the analysis of eleven different surveys, is 

associated to each CNR rank. People’s reaction was expressed on a six levels scale, from the first degree 

“No annoyance”, to the sixth degree “Vigorous legal action”.  

Following the introduction of jet engines, the CNR method was, initially, modified and adapted by Kryter 

(1959), in order to express the CNR value as a function of the perceived noise level, more akin to this type 

of aircraft. The final version of the CNR value adds a term including the number of day-time (Nd,ij) and 

night-time (Nn,ij) events for the aircraft typology i and flight path j to the PNLij, subtracting a constant 

(Raichel, 2006): 
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The total CNR value was obtained by an energy summation of the single CNR values: 
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This method was used for a short period and replaced by the NEF indicator (see below).  

The “Perceived Noise Level PNL” was developed by Kryter (1959) and adopted by the Federal Aviation 

Administration (1985) for noise certification. It is used to describe the noise emitted by a single overflying 

aircraft, and is based on the “total Noy” index (linear unit of annoyance) of the event Nt: 
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Nt is calculated taking into account the spectrum of the event expressed in third-octave-bands: the 

pressure level of every band is compared to a normalized annoyance curve to get the term Ni for the i-th 

band (Hassall and Zaveri, 1979). The Ni value for that band represents the “Noy curve” expressed in dB. The 

equal noise contours are developed to take into account the high-pitched jet engine noise (Nelson, 1987).  

An evolution of the PNL is the “Effective Perceived Noise Level EPNL” (Schultz,1972). It introduces a penalty 

F, depending on the duration of the highest levels, to take into account the modulation of the noise value 

over time, which creates different annoyance in people. In fact, sounds including distinct whistles and 

whines and/or having longer duration proved to be more annoying in respect to what measured by PNL: 
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Δt = time interval where PNL > PNLmax-10; T0 = 15 seconds.  

EPNL is mainly used in the USA; some specifications about the indicator are reported in the ICAO Annex 16 

(Jones and Cadoux, 2009).  

The “noise number index NNI” was developed in the UK and used for thirty years up until 1990, when it was 

replaced by Leq (Jones, and Cadoux, 2009). The index is based on the PNL and the number of aircraft  

operations (Schultz, 1972; DORA, 1981); it was developed during a social survey in the 1961 in the vicinity 

of London (Heathrow) Airport in order to estimate the total annoyance on people due to airport activities. 

The NNI takes into account only noise levels greater than 80 PNdB during the day-period (I-INCE, 2009), the 

average level of the peak noise (LAPN) and the number of events (N):  
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This indicator was discontinued since it does not take into account night events and because it is not 

effective in describing people’s annoyance related also to aircraft low noise emissions (Brooker et al., 

1985).  

The “Noise Exposure Forecast NEF”, is a global aircraft noise indicator developed by the US Federal Aviation 

Administration for the evaluation of commercial aircraft noise (Schultz, 1972). This indicator was developed 

on the basis of the EPNL and it takes into account the aircraft typologies (i), the different flight paths (j), and 

the exposure period – day (7.00-22.00) or night (22.00-7.00) – through the number of day (nD) and night 

(nN) operations:  
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This indicator, as mentioned in I-INCE, (2009) is used in China, in Greece, and in Canada.  



Australia uses a modified version of NEF, called ANEF, contained in the Australian Standard 2021-2000 (I-

INCE, 2009); it weights the values in the period 19:00-7:00, to better correlate noise and community 

reaction (Australian Dept. of Transport and Regional Services, 2000).  

The “Community Noise Equivalent Level CNEL” was developed in the 70s and it was recommended in the 

California technical law for airport noise impact (California Department of Aeronautics, 1971). The indicator 

takes into account the duration and number of flights and the frequency response of human ear. It is 

expressed in dB(A), to avoid the complex calculation of other indicators like EPNL (EPA, 1971), and it does 

not contain any pure tone correction. The CNEL takes into account the occurrence of the noise events using 

weighting factors. In particular, researchers observed that one flight at night time was equivalent to ten 

equally noisy flights in the day-time or three in the evening.  

The CNEL adds a term considering the total or average number of flights per hour during the day and the 

night period (NC) to SENEL (EPA, 1971): 
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The formulation proves the CNEL is very similar to other noise indicators, namely the Italian LVA (D.M. 

31/10/1997) or the Lden adopted in the END. CNEL is related to the sheer number of noise events and their 

recorded values during three periods of the day. The SENEL is used to calculate CNEL as well as SEL is used 

to calculate LVA, but without weighting the factors, unlike Lden.  

The “weighted noise exposure forecast WECPNL” is an evolution of EPNL, proposed by International Civil 

Aviation Organisation in 1971 (Changwoo et al., 2007). The WECPNL (or LWECPN) represents an index for 

describing the noise emitted during a time period by different numbers of flights, taking into account the 

different annoyance and noise impact in various day periods. The computation involves three steps (Bennet 

and Pearsons, 1981). First of all an index called Total Noise Exposure Level (TNEL or LTNE) is calculated and 

used to normalize every noise event along 10 second time intervals.  

At a second step all the different LTNEs are converted into another index, the Equivalent Continuous 

Perceived Noise Level (ECPNL or LECPN). This conversion is necessary to weight every noise level in function 

of the reference period.  

Finally, at the third step, the WECPNL is calculated through an equation incorporating a weighting for noise 

emitted during evening and night periods, to reflect the significantly different annoyance in respect to the 

day period (as for Lden).  

In some cases, like in Korea, the national Noise and Vibration Regulatory Law 1991 (revised in 2004) 

suggests adopting indicators as a function of the number of flight operations and their distribution 

throughout the day (I-INCE, 2009).  

The WECPNL has been used in Japan, China, and Korea for few years, but it is being gradually replaced with 

other general purpose indicators, such as Lden.  

The “Isopsophic Index I” was developed in France by the “Commission de Bruit of the Secrétariat Général à 

l’Aviation Civile” (ICAO, 1974) to assess the total noise exposure of populations living in the vicinity of 

airports.  

At the outset, the index was calculated separately for day and night periods and, over the years, different 

formulations were developed until the definition of a single noise index for the whole day. The hypotheses 

used during the development of the index are that global people’s annoyance is a function of the number 

of overflying aircrafts of each type (n,p) – but unrelated to the duration of those flights – and the peak 

noise level (LD,LN). Instead, the night flights are considered ten times more annoying than day flights for 

the same type of aircraft (Collet and Delol, 1980): 
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The index was used until 2002 and replaced by Lden.  



The “Time Above Threshold, TAX” represents the time over which a threshold level X is exceeded by aircraft 

noise, during a defined reference time period, and it is expressed in seconds or minutes (ECAC, 2005). The 

indicator was developed by the Federal Aviation Administration (FAA, 2007) like a secondary metric for 

assessing airports impact; the typical threshold value was set up at 60 or 65 dB. While, admittedly, some 

compulsory specific regulations require the use of this indicator, other technical documents simply suggest 

its adoption in certain contexts; for example, Fighter Conveyer (FICON, 1992) suggests to use TA for 

describing communication interference.  

Similar to TA the “Number Above Threshold”, NATX or NAxx, represents the number of events exceeding 

the threshold level X during specific periods (ECAC, 2005). This indicator is barely used; however some 

technical documents refer to it (WHO, 2007), and countries like Germany have adopted it (Isermann, 2008). 

A frequently used NATX is NA70, representing the number of events exceeding 70 dB(A).  

The “Störindex Q” is a German indicator used for aircraft traffic. Its formulation is similar to the Leq, but 

some corrections were introduced to take into account the duration of the noise event and the day period. 

The indicator was discontinued and replaced with the German regulation Air Traffic Noise Act 2007, where 

the equivalent level is evaluated on sixteen hours LAeq,16h (I-INCE, 2009).  

The “Kosten method B” is used in the Netherlands, and specified by the National Aviation Act. It was 

developed by the Kosten Committee in 1963 and described in the document “Adviescommissie 

geluidhinder door vliegtuigen. Geluidhinder door vliegtuigen Delft” by the Netherlands Organisation for 

Applied Scientific Research (TNO) in 1967 (Franssen et al., 2004). The indicator, sometimes referred also as 

“total noise load” (Nelson, 1987), is related to noise emitted during a 24-hour period, taking into account 

the different impact of noise emitted in the night period.  

The “indicator LVA” is used in Italy for aircraft noise description around airports and described in the Italian 

norm D.M. 31/10/1997:  
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This indicator is an energy mean of the representative aircraft noise emission (LVAj) during a year time 

observation: the measurements have to be taken in three periods of the year (1/10 to 31/01; 1/02 to 

31/05; 1/06 to 30/09). For each of those periods the busiest week is considered, up to a total of N=21 days. 

  

6. General environmental noise indicators  

Most of the previous indicators have been developed to formulate a synthetic description of the noise 

emissions produced by the different transport modes; they are often good energy noise indicators. Over 

the years the scientific community has opted to develop the “general environmental noise indicators”. Both 

in project evaluation and environmental assessment, decision makers and technicians need indicators easy-

to-calculate and to deal with, when confronted to the general public. Furthermore, the need to evaluate 

people disturbance has prompted the development of indicators able to describe the noise emissions in 

relation to people annoyance: the “Day-Night equivalent level LDN or DNL”, and the “Day-Evening- Night 

equivalent level Lden or DENL”.  

The “LDN” is used for different noise sources: road, railway and aircraft, proposed by the U.S. 

Environmental Protection Agency (Langdon, 1976, Part II). The LDN is an A-weighted average noise level apt 

to take into consideration the different noise impacts according to the day-time (6:00-22:00) and night-

time (22:00-6:00). The night level, considered a sensitive  

time where people need to be safeguarded, is increased by10 dB(A): 
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The “Lden” and the “Lnight” are the most recently developed general indicators. Lden is an A-weighted 

average level of the noise emitted in three periods – day (7:00-19:00), evening (19:00- 23:00), and night 

(23:00-7:00) – with a penalty of 5 dB(A) and 10 dB(A), respectively, for the evening and the night-time, to 

allow for the different people’s sensitivity to noise exposure. This indicator was proposed in the END, 

where it is recommended that all European countries have to use, for all transport systems, “Lden” to 

assess annoyance, and “Lnight” for sleep disturbance.  

Lden has been used in some studies to assess the relationship between noise and annoyance (Miedema 

and Oudshoorn, 2001; Klæboe et al., 2004). Corrections of the value of Lden have been incorporated 

depending on the typologies of sound, presence of low frequencies and tonal components, in order to 

reduce the scatter on the dose-response relationship (Schomer, 2002).  

In general, for the traffic noise, no corrections are added to the noise levels, but some analyses show that 

the presence of low frequencies are significant in the assessment of annoyance and, in some cases, the use 

of the A-weighted curves could be inappropriate (Nilsson, 2007). 

 

7. Strengths and weaknesses of the current noise indicators  

The noise emitted from transport infrastructures contains several acoustic characteristics, important for 

the impact assessment, and, hence, indicators must properly record this feature, but also give a synthetic 

evaluation of noise. The indicator that better suits this last requirement is Leq; however, special types of 

noise, emitted by diverse sources in various ways (constant or impulsive), can be differently perceived by 

people, even if recording the same Leq. Shortening the time period to a specific time lapse, for example 

each hour (Leq,h), might help to track important noise variations that could be concealed by Leq calculated 

on day-time or night-time basis. In fact, during the night or in low-traffic corridors, the emission of an 

individual vehicle as opposed to overall traffic noise becomes significant. In such situations as well as when 

the traffic is discontinuous, notably near intersections and at traffic lights, the Leq is inappropriate to 

describe the noise variation (Can et al., 2008).  

Conversely, some energy indicators can be applied to the study of certain short-term interventions. For 

example, a public transport operator, or a railway company, could use indicators such as the SEL for 

assessing the noise from new vehicles.  

The L50, computed during a specific period of the day (e.g. day or night or 24h), has been used to assess 

road traffic noise and environmental noise (Omiya et al., 1997), but it is barely used nowadays. In some 

cases the L10 over 24, 18, and 12 hours has been used to predict annoyance in residential locations 

(Langdon, 1976, part I and II), but the results show a low correlation between values of the indicator and 

people disturbance.  

In some cases, such as the evaluation of annoyance from low noise emissions by aircraft, a good correlation 

is observed between the SEL, expressed on dB(C), and the people’s annoyance (Hodgdon et al., 2007).  

The general acoustic indicators are useful when it is just important to quantify the noise produced and, for 

this reason, both road and rail noise indicators stem from Leq, SEL and Lxx. This aspect influences the use of 

mode-related indicators for planning purposes. For example, TNI was used to determine an optimum 

distance between dwellings and the road axis (Langdon and Scholes, 1968). Some examples of its use are 

presented in Langdon (1976, part I and II); a drawback due to its origins from Leq and Lxx is that it becomes 

representative only when the traffic is flowing. Furthermore, both TNI and NPL are not sufficiently sensitive 

to assess the diversity of urban contexts and the different traffic kinematic characteristics, showing a feeble 

correlation with residents’ annoyance (Banerjee et al., 2009). These reasons, as well as the specificity of the 

traffic conditions in which they have been calibrated, make them inadequate for the assessment of the 

infrastructures impact and make it impossible to generalize their usability. Moreover, their computation 

requires a complex data collection, made difficult also by the acoustically complex environments – 

characterised by multiple sources of sound – in which the infrastructures are located. This may cause 

uncertainty in attributing to the infrastructure only the noise levels generated by its own traffic, making the 

building of noise maps more difficult. The same weakness is associated to the railways, notably in the urban 

stretches.  

Another important setback in railway noise assessment is the lack of a technical and normative framework. 

Railway infrastructure is considered to include both track and the train stations. The noise emitted in the 

railway stations stems from sundry activities (rails shunting, manoeuvring, train departure and arrival, and 



communication equipment) that become significant in urban areas where the stations are located; but, for 

most of those, specific noise indicators and related limits are not defined in literature. In general, specialists 

go around this problem by considering railway stations as industrial sites, bridging the normative gap in a 

practical, but not quite scientific way.  

Concerning the ability of indicators to describe the disturbance, an unsatisfactory statistical correlation 

between road and rail indicators and people’s annoyance is observed, unlike for air transport indicators. 

The main difference lies in the weighting system, A or PNL. PNL weighting lies one third octave band sound 

pressure level to better consider the different perception at different frequencies and it suits better the 

annoyance evaluation. As showed in figure 1, most air indicators stem from PNL – except those based on A-

weighting system – that represent high sound energy spectra related to specific sounds. This has implied a 

complexity in their formulation, requiring many specific data, sometimes not easy to find, especially when 

forecasting is needed. However, that complexity allows a detailed description of the phenomenon, as in the 

case of WECPNL.  

Figure 1 depicts the relationships among the indicators, showing how road, rail, and some air indicators 

(CNEL, LVA, Störindex Q, and Kosten method B) stem from general acoustic ones. The aircraft indicators 

derive mostly from event-related noise indicators, both A-weighting and PNL-weighting.  

We can also observe how there are few basic indicators on which all the other have been built: for the A-

weighting, Leq, SEL, and Lmax; while, for PNL-weighting, PNL.  

The difference between road and rail indicators stems also from their origin: the first are based on Leq and 

Lxx, while the second on Leq and SEL. This makes rail and air traffic more similar, being characterised by 

events, while road traffic has pseudo-random variability over time. However, rail traffic has been always 

considered less intrusive than other modes (see Lr). Road and rail transport have been lately considered an 

important source of annoyance in respect to airports, but their sprawl and density over the territory 

rendered their study and control more complicated and expensive to conduct.  

A last aspect to be highlighted, comparing the indicators in figure 1, is that the weighting according the day-

periods has been largely anticipated by the air indicators (NEF, CNEL, WECPNL, Isopsohic Index, Störindex Q, 

Kosten method B, and LVA) that show analogies with Lden, that was selected by the END to assess 

annoyance. Also LDN has been used to describe the annoyance: Martin et al. (2006) reported that it relates 

well to the annoyance when considering the “highly annoyed” people, but they show that also the Lmax 

relates well with the “average annoyed people”.  

The END, according to studies on the subjective characteristics of the response to annoyance, suggested 

considering the dose-response relationship. Some researchers have found a strong dose–response 

relationship between Ldn or Lden and annoyance (Ohrström et al. 2006; Miedema and Oudshoorn, 2001;). 

However, forecasts have often been found inaccurate as large variations in the dose-response relationships 

as well as in individual annoyance reactions to the same noise exposure level were observed (Miedema and 

Oudshoorn, 2001; Ouis, 2001). This stems from the long term nature of Lden: it cannot describe the nature 

of the noise in terms of short term variations, presence of tonal components, etc., but these issues are 

often considered more disturbing and generate more complaints (Murphy and King, 2010).  

In addition, Lden describes the average day–evening–night Leq over a year; the current prediction methods 

used to calculate Lden do not use the same approach to account for meteorological conditions that vary 

along the year, and this affects its calculation. Even though this comes from the lack of models 

standardization, the use of long term indicators accentuates the problem (Murphy and King, 2010). 

Likewise, for specific sources like airports, Lden proves inadequate to describe annoyance, especially in 

terms of sleep disturbance (Vallet, 2008).  

Conversely, Lmax is a useful indicator to evaluate instantaneous effects, notably sleep disturbance (Pirrera, 

et al., 2010), and in some cases a good relationship with annoyance is observed (Sato et al., 1999). 

Furthermore, mainly during the night-time, the number of noisiest events caused by the intermittent traffic 

is related to the quality of sleep (WHO, 2007). The reason is that sleep disturbance is more often related to 

individual events than to average noise levels over the night, and Murphy and King (2010) suggest 

indicators as Lmax or SEL as most appropriate. When the measurement shows high noise levels, Paunovic 

et al. (2009) observed that night-time Leq might be as good as Lden in predicting noise annoyance in noisy 

urban areas. Thus, the general acoustic indicator is accurate enough to take decisions when a high noise is 

recorded; instead, it is not suitable to predict annoyance in the quiet areas (Paunović et al., 2009), where 



the single noise events become relevant in absence of a high background noise, typical of congested 

transport infrastructures.  

Presently, the European Commission (EC, 2000) supports the Lnight indicator arguing that Lmax or SEL do 

not consider the number of events, and a common method to calculate an average long-term Lmax or SEL 

is still missing.  

A synthesis of strengths and weaknesses of the described indicators is provided in tables 1,2,3 as well as 

suggestions about their use. Tables 2,3 allow to observe that the mode-related indicators are hardly able to 

predict annoyance as too many endogenous variables, related to the personal sphere of individuals are 

involved, playing a confounding effect on annoyance.  

The general acoustic indicators reveal a good performance for single event evaluation and in case of noisy 

areas, where they can assist decision-makers in implementing proper interventions, while the Leqshort can 

be used to track important noise variations and shed light on people’s reaction to disturbance in quiet 

areas. Event-related indicators as Lmax, SEL or NATx and TAx should be more used, aside Lden and Lnight, 

to better support decisions when people disturbance is a key aspect.  

 

 

8. Discussion and conclusions  

The definition of common approaches to compare the transport environmental assessment and policy 

formulation in different countries deems necessary. The proposal of common indicators suitable for 

calculation, using national data and harmonized computation methods (Nijland and Van Wee, 2005) has 

been stressed by the END, and the EC decided to prepare Common NOise aSSessment methOdS for road, 

railway, aircraft, and industrial noise in order to improve the reliability and the comparability of results 

across the EU countries (EC, 2012).  

The indicators were at first conceived to assess the effect of noise from an energy point of view, but more 

recent research has progressively addressed people’s perception of noise. In fact, even though some 

characteristics of noise exposure (noise sources, type of traffic, number of events, frequency and time of 

exposure) allow calculating the noise levels, too many issues of people wellbeing are related to the 

soundscape and to the subjective noise sensitivity, expectations and attitudes toward noise, personality 

traits, social status, housing and working conditions. These elements are independent from noise exposure 

and strongly influence annoyance (Paunović et al., 2009).  

Noise levels are, arguably, the objective element to understand the noisiness of an area, and they work well 

to predict annoyance in very noisy urban areas. Instead, the less noisy areas and the quiet zones, where the 

exposure to noise is secondary, should be approached investigating residents in terms of the afore-

mentioned social and psychological aspects. A further element to consider is the background noise level in 

the studied areas: the construction of a new infrastructure will have a stronger impact in quiet zones than 

in noisier areas. The “differential noise” approach can help to better understand the change of disturbance 

in those zones and, actually, neither current indicators nor decisional process take into account this aspect.  

A step forward is the three-dimensional approach – environmental, social, and economic –adopted by the 

research on transport environmental sustainability, even though solutions based also on technical, 

operational, and institutional dimension are still preferred (Janic, 2006). However, policy makers need 

indicators to support their decisions about infrastructures (construction, location, alignment); to this extent 

a four categories classification is proposed (figure 2):  

1. noise Level Indicators, describing noise in terms of energy and physical characteristics;  

2. noise Exposure Indicators, describing the noise effect on the exposed people in terms of 

magnitude and territorial extension;  

3. noise Annoyance Indicators;  

4. noise Strategic Indicators.  

 

If the goal is the simple noise definition, useful, for example, to improve vehicle technology and 

infrastructure, an energy-based indicator should do. Public transport operators or railway companies could 

use indicators such as the SEL: a lower noise level in terms of SEL of the single vehicles means a lower 

overall noise level caused by the infrastructure. The introduction in the vehicle fleet of new electric or 

hybrid vehicles may be characterised through indicators such as Lmax, Lmin, SEL and Leq, even though they 



would be inadequate to describe their noise impact. In fact, their low noise emissions will require a 

different consideration to pedestrian perceptions and, in particular, to some categories as the blind, to 

properly consider the safety issues (Yamauchi et al., 2011). Considering the psycho-acoustic characteristics 

of the noise should allow provide pedestrians with information on the kinematic behaviour of the vehicles.  

The noise Exposure Indicators allow quantifying the impact at territorial level. They can be successfully used 

to understand the number of people exposed to different noise levels. Noise maps are used to this extent 

and general environmental noise indicators, such as Lden are appropriate. Some indicators, as CRTN for 

road traffic, have been converted to Lden to allow the drawing of comparable noise maps. The problem is 

that different countries use time series measured according to indicators other than Lden, or not easily 

convertible to it; the analysis of the relationships between those indicators and Lden is important not to 

waste previous work. Moreover, carrying out measurements is a very expensive exercise and, to meet the 

Directive requirements properly, long time measurements are necessary. The possibility to use short-time 

measures to calculate Lden is critical for a good use of past efforts and to reduce monitoring costs. 

However, the scope of this exercise is purely informative and decision-makers should not use the noise 

maps results to assess people’s annoyance. To this extent the measurement techniques are important to 

distinguish between potential (Lden) and real disturbance. The ongoing studies on environmental 

dosimetry could help (Neitzel et al., 2012). The alternative is an extensive use of simulation models, but 

their accuracy need to be improved, also in terms of a more precise source description, mainly in the case 

of road traffic, more difficult to describe not being event-related. The traffic micro-simulation models, more 

suited to apprehend the kinematic characteristics, can help (Chevallier et al., 2009; Beuving and 

Hemsworth, 2006, but costs are high as regards the potential improvements. Specialised software for 

source recognition and noise directivity would create a good synergy with measurements to better 

understand the annoyance. Of course, simpler methods are welcome and better measured data will allow a 

good trade-off between simplification and precision, also because measurements remain essential to 

calibrate the models (e.g. for the evolution of the vehicle fleets). The HENNAH-project 

(http://www.ennah.eu/home?lang=en) and ongoing COST Actions TU1105 and TD0804 

(http://www.cost.eu/domains_actions/tud/Actions) deal with these issues.  

The lessons learned from the difficulties encountered by the member countries in applying the Noise 

Directive using the available data and considering country specificities should help to understand the most 

suitable approach to follow and find a trade-off between simplification and significance. After a first 

revision of Annex II of the END, the Commission is considering a possible revision of the Annex II in 2012, 

focused on the strategic mapping (EC, 2011b).  

However, the research has showed the risks to compromise the understanding of the people disturbance 

using a long term indicator as Lden. The use of more indicators to better support the understanding of 

disturbance could benefit decision-makers in taking proper actions to reduce noise. But, the need of an 

indicator more able to understand people noise perception and allowing also to give a strategic support in 

decision making seems urgent.  

The noise Annoyance Indicators include those taking into account people perception and disturbance. To 

this extent, several indicators have been developed; some of them were designed for air transport, as 

WECPNEL, but are difficult to compute, while others are more general and simple, as Lden, recommended 

for all the infrastructures. Actually, this category of indicators covers those used to define the noise 

impacts, but as argued above, they should be used to understand the “potential” but not the “real” 

annoyance. The difference between them is explained by several variables, according to the studies of 

numerous researchers:  

• subjective characteristics and personality traits: attitudes towards environmental noise (Lam et al., 2009; 

Miedema, 2007; Van Kamp et al., 2004; Miedema and Vos, 2003); attitude towards traffic, notably heavy 

vehicles and public transport at night-time (Paunović et al., 2009); level of awareness the people get 

about the noise problems (Pronello, 2006); subjective noise sensitivity, showed as the strongest common 

indicator of annoyance in both noisy and quiet urban areas (Paunović et al., 2009); self-reported noise 

annoyance at workplace (Jakovljevic et al., 2009); neuroticism (Ohrström et al., 1998); introversion 

(Belojevic et al., 2001); current mood (Vastfjall, 2002);  

• health status: the physical and psychological status and the presence of some illnesses (Pronello, 2006);  



• social factors: socio-demographic parameters as the social role, family relations, the kind of life (active or 

not) (Paunović et al., 2009; Pronello, 2006);  

• acoustical environment in which people work and live (Pronello, 2006); duration of stay at home during 

the day (Paunović et al., 2009); housing conditions as orientation of living room and bedroom windows 

towards the street (Paunović et al., 2009; Ohrström et al., 2006; Rylander and Björkman, 2002). 

 

Those researchers and, notably, Paunović et al. (2009) proved that noise-related characteristics are less 

relevant in predicting annoyance than personal and social characteristics. This does not render meaningless 

all the described noise indicators, but points out to use them just to understand the magnitude of the 

phenomenon and its objective characteristics.  

The noise Strategic Indicators are proposed to tackle the afore-mentioned remarks and seek to consider 

the cause-effect framework for describing the interactions between the society and the environment and 

quantify the noise damages.  

This category represents a step forward in the classification of noise indicators provided by the authors in 

Folkeson et al. (2010; p,167), where the first three categories defined before were matched with the DPSIR 

(Driving forces, Pressures, States, Impacts, Responses; EEA, 2009) approach (Table 4). This approach allows 

to understand both the nature of indicators in the chain of casualties and how strategic they are in the 

decision making process. This is essential in transport policy and within the Strategic Environmental 

Assessment, where transport plans and sustainable urban mobility plans are analysed in terms of 

sustainability.  

That classification reveals how the current indicators do not allow measuring the impact (I) and how much 

the assessment of annoyance is important, albeit not exhaustive, in assisting decision-makers to develop a 

sustainable transport policy.  

Several researchers have studied these issues and suggested typologies of indicators (Marsden, 2005; 

Litman, 2007; Calderón et al., 2009; Joumard and Gudmundsson, 2010). In fact, even though indicators like 

Lden could meet the needs of strategic planning, considering the percentage of people exposed to different 

noise levels, this impact has to be “filtered” through the subjective noise sensitivity. To this extent, the END 

has stressed the need to ascertain the true correlation between noise emissions and people’s annoyance, 

requiring each country to define its own dose-response relationship. However, the research has showed 

that “dose–response” relationships are still far from being able to determine the acoustic impact of 

transport systems if subjective variables are not included in the analysis. In addition, the building of one 

curve per country would clash with the current research outcomes, averaging the many and different 

characteristics of people. Thence, we propose to build one curve for each category of individuals. Thus, the 

market segmentation, largely used in other branches of transport research, would be the way to 

individuate a number of groups, homogeneous in terms of the subjective, personal, and social 

characteristics as well as health status, acoustical environment in which people live and work, and noise 

exposure.  

What emerges from the above analysis is that there is little margin for the development of new noise 

indicators. We propose the Strategic noise Indicators, formed by the aggregation of the first three classes 

plus the social and economic variables, to allow decision-makers to implement policies guaranteeing the 

health of the population, but also taking into account the real perception and the economic constraints. 

This leads to the definition of a new index, namely the “index of real sustainable development”, to be used 

by decision makers for strategic transport noise evaluation (figure 2). The use of Factor Analysis to define 

latent variables, on which applying the cluster analysis, has been successfully used in transport users 

market segmentation (Redmond, 2000; Anable, 2005; Hunecke et al., 2010; Pronello and Camusso, 2011); 

here it is proposed to segment different categories of population characterised by their own dose-effect 

curve. This curve will allow to monetise the disturbance according to the dose-response method (Pronello, 

2010), and define an index useful to implement policies to attain a real sustainable development.  

While in Europe the use of Lden and Lnight indicators for the economic evaluation of noise effects is now 

common, this paper shows that decision-makers should jointly use noise and socio-economic variables to 

fully support their decisions. 
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Figure 1 Relationships among the noise indicators 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 



 
  

Table 1 Synthesis of strengths and weaknesses and use of general acoustic and general environment noise indicators 

Indicator 
typology 

Indicator name Strengths Weaknesses Possible/typical use Suggestions 

General 
acoustic 

indicators 

Leq 

It is easy to calculate 
It gives a synthetic evaluation of noise 
It is suitable for automatic measures  
It is correlated with long term effect of noise 

It does not evaluate noise variations 
It is influenced by the highest values 
of noise  
It shows low correlation with 
annoyance 

It is useful to generally 
describe the noise when an 
easy and synthetic noise 
event description is needed 

Leq calculated during the night – 
Lnight – is a good indicator of 
annoyance, only in noisy areas 
Leqshort can be used to track 
important noise variations 

Lmax, 
Lmin 

It is easy to calculate 
It evaluates instantaneous effects 

Difficult to assign to a specific source 
if the measurement is not assisted by 
an operator 
It shows low correlation with 
annoyance 

Suitable to analyses on well 
identifiable sources or to 
describe single noise events 

Lmax can evaluate sleep 
disturbance, even if an average 
long term Lmax would be more 
appropriate 

Lxx 
They represent noise distribution 
They give information on soundscape 

It shows low correlation with 
annoyance 

Suitable to describe 
background noise and 
evaluate noise increase due 
to noise source introduction  

Lxx can support in evaluating the 
acoustical climate and the 
background noise  

SEL 

It is easy to calculate 
It allows to calculate Leq summing single 
SELs 
It allows to compare different noise events 
(two trains, buses, etc.) 

In automatic measure it is difficult to 
select the event on which calculate 
the SEL 
It shows low correlation with 
annoyance  
 

Suitable to single events 
evaluation 
Suitable to evaluation of 
noise emitted by vehicle 
fleets (public transport, 
trains, etc.) 

SEL can evaluate sleep 
disturbance, even if an average 
long term SEL would be more 
appropriate 
SEL can evaluate annoyance from 
low noise emissions by aircraft 

General 
environmental 

noise 
indicators 

LDN 

It weighs differently the noise according to 
day and night period 
There is a good correlation between noise 
level and annoyance of very disturbed 
people 
It is quite easy to calculate, also in case of 
automatic measurements 
It can be represented through maps 

It is unable to describe annoyance for 
all the levels of disturbance 
It does not take into account all the 
acoustical differences of the sources 
 

It is used to evaluate the 
acoustical impact of all the 
infrastructures 

It has been substituted by Lden 

Lden 

It weighs differently the noise according to 
three periods: day, evening, and night 
It allows the comparison among different 
infrastructures 
It is easy to understand from general public 
It can be represented through noise maps 

It needs continuous monitoring for 
long periods (even one week) 
It needs average yearly data to take 
into account the meteorological 
conditions 
It is not suitable to describe the 
disturbance during the night-time 

It is used to evaluate noise 
impact on the long term for 
all the infrastructures 

It is the most popular indicator 
used for annoyance description 
and some recent dose-response 
curves are based on it. However, 
it is better to use it only for 
understanding the potential 
impact, not filtered by subjective 
people characteristics 

Lnight 

It is easy to calculate  
It allows a better representation of the impact 
in function of the perceived disturbance 
It can be represented through noise maps 

Some studies show that other 
information as the number of events 
and their noisiness could be used to 
describe night-time disturbance 

It is used to evaluate night-
time noise disturbance for 
all the infrastructures 

It can be used to evaluate night 
annoyance in noisy areas jointly 
with event-related noise 
indicators (SEL and Lmax)  

 



 

 

 

Table 2 Synthesis of strengths and weaknesses and use of road and rail noise indicators 

Indicator 
typology 

Indicator name Strengths Weaknesses Possible/typical use Suggestions 

Road traffic 
noise 

indicators 

TNI 

They take into account traffic 
fluctuations 

It is suitable only to be exported to contexts 
similar to those where they have been 
developed 
It is representative only when the traffic is 
flowing 
It shows low correlation with annoyance  

It is used for planning 
purposes to determine the 
distance between roads 
and dwellings  
 

It can be used to describe the 
acoustical impact of road 
infrastructures when traffic is 
flowing 

NPL 

It is suitable only to be exported to contexts 
similar to those where they have been 
developed 
Some parameters as σ are difficult to 
calculate 
It shows low correlation with annoyance  They are used to describe 

the acoustical impact of 
road infrastructures 

They can be used to describe the 
acoustical impact of road 
infrastructures, but they are too 
difficult to calculate  

CRTN 
It is easy to calculate, based on 
specific Leq values 

It is suitable only to be exported to contexts 
similar to those where they have been 
developed 
It does not take into account night time noise 
When traffic flow is low, the noise levels 
depend on individual passing vehicle  
It shows low correlation with annoyance  

Railway noise 
indicators 

TEL 
It is related to the single noise 
event, described by SEL and to 
Leq,T 

It takes into account only the passing 
vehicles and not station operations  
It doesn’t give any information on the global 
impact of the infrastructure 
It shows low correlation with annoyance 

It is used to describe the 
single passing of trains  

It is useful to compare different 
trains noise 

Lr 

It takes into account both the 
passing vehicles and some specific 
station operations 
It can be represented through maps 

Some parameters used to calculate Lr come 
from a qualitative approach, being the 
corrective terms difficult to define 
It shows low correlation with annoyance 

It is used in some 
countries where the laws 
provide a unique indicator 
for roads and railways 

It is useful to give a global 
evaluation of emissions, but it 
needs a clear definition of the 
station activities  as well as of the 
correction terms (in function of 
the perceived annoyance) 

 



 

Table 3 Synthesis of strengths and weaknesses and use of air noise indicators 

Indicator 
typology Indicator name Strengths Weaknesses Possible/typical use Suggestions 

Aircraft noise 
indicators 

CNR 
It takes into account the different people 
perception of the noise spectrum  
It can be represented through maps 

They are difficult to calculate, they 
need many data and parameters 

They are specific for a 
global evaluation of the 
airport noise 

They can be used to evaluate 
annoyance around airports, but the 
risk is the reliability of the results, as 
they were calibrated mainly using 
data coming from several US 
surveys 

PNL 
It takes into account the different aircraft 
typologies 
It can be represented through maps 

EPNL 
Similar to PNL, it takes into account also 
the duration of the different noise events 
It can be represented through maps 

NNI 
Based on PNL, it has a simpler structure 
It can be represented through maps 

It does not take into account the 
night-time noise 
It only considers the very noisy 
events 
It is not suitable to annoyance 
description 

They can be used to represent the 
emissions in relation to the airport 
service, depending on the number of 
flights. 
However, NNI cannot be used for 
the evaluation of the global impact 
because it does not take into account 
the night-time noise NEF/ANEF 

Based on EPNL, it takes into account the 
aircraft typologies and different paths 
It differently weigh the night time noise  
It can be represented through maps 

It is difficult to calculate 

CNEL 

More simple than EPNL 
It takes into account the duration and 
number of events and the people 
perception of different frequencies 
It can be represented through maps 

It considers only two periods: day 
and night 

It can be used also for the noise 
evaluation of other infrastructures, 
different from airports 
It is similar to LVA or to Lden 

WECPNL 
Based on EPNL, it takes into account the 
noise impact in different day periods 
It can be represented through maps 

It is difficult to calculate, it needs 
many data and parameters 

It is accurate in describing all noise 
characteristics of the infrastructures, 
but it is very difficult to calculate 
and it is not practical for decision 
makers.  
It shows analogies with the simpler 
Lden. 

 



 


