
04 October 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Online maximum k-coverage / G., Ausiello; Boria, Nicolas; A., Giannakos; G., Lucarelli; V. T., Paschos. - In: DISCRETE
APPLIED MATHEMATICS. - ISSN 0166-218X. - 160:(2012), pp. 1901-1913. [10.1016/j.dam.2012.04.005]

Original

Online maximum k-coverage

Publisher:

Published
DOI:10.1016/j.dam.2012.04.005

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2500169 since:

Elsevier



Online maximum k-coverage∗

Giorgio Ausiello† Nicolas Boria‡ Aristotelis Giannakos‡

Giorgio Lucarelli‡ Vangelis Th. Paschos‡§

Abstract

We study an online model for the maximum k-vertex-coverage prob-
lem, where given a graph G = (V,E) and an integer k, we ask for a subset
A ⊆ V , such that |A| = k and the number of edges covered by A is maxi-
mized. In our model, at each step i, a new vertex vi is revealed, and we
have to decide whether we will keep it or discard it. At any time of the
process, only k vertices can be kept in memory; if at some point the cur-
rent solution already contains k vertices, any inclusion of any new vertex
in the solution must entail the irremediable deletion of one vertex of the
current solution (a vertex not kept when revealed is irremediably deleted).
We propose algorithms for several natural classes of graphs (mainly reg-
ular and bipartite), improving on an easy 1

2
-competitive ratio. We next

settle a set-version of the problem, called maximum k-(set)-coverage prob-
lem. For this problem we present an algorithm that improves upon former
results for the same model for small and moderate values of k.

1 Introduction

In the maximum k-vertex-coverage (mkvc) problem we are given a graph G =
(V,E) (|V | = n, |E| = m) and an integer k, we ask for a subset A ⊆ V , such
that |A| = k and the number of edges covered by A is maximized. The mkvc
problem is NP-hard, since otherwise the optimal solution for the vertex cover
problem could be found in polynomial time: for each k, 1 ≤ k ≤ n, run the
algorithm for the mkvc problem and stop when all elements are covered.

In this paper we consider the following online model for this problem: at
each step i, a new vertex vi with its adjacent edges is revealed, and we have
to decide whether we will include vi in the solution or discard it. At any time
of the process, only k vertices can be kept in memory, so if at some point the

∗Research supported by the French Agency for Research under the DEFIS program TODO,
ANR-09-EMER-010

†ausiello@dis.uniroma1.it, Dipartimento di Informatica e Sistemistica, Università degli
Studi di Roma “La Sapienza”

‡{boria,giannako,lucarelli,paschos}@lamsade.dauphine.fr, LAMSADE, CNRS UMR
7243 and Université Paris-Dauphine

§Institut Universitaire de France

1



current solution already contains k vertices, any inclusion of any new vertex in
the solution must be compensated with the irremediable deletion of one vertex
of the current solution. Of course, a vertex that is not kept when it is revealed
is also irremediably deleted. To our knowledge, no online model for the mkvc
problem has been studied until now.

A generalization of the mkvc problem is the maximum k-(set)-coverage
(mkc) problem, where given a universe of elements E = {e1, e2, . . . , em}, a
collection of subsets of E, S = {S1, S2, . . . , Sn}, and an integer k ≤ n, we ask
for a subcollection A = {A1, A2, . . . , A|A|} ⊆ S, such that |A| = k and the
number of elements of E covered by A is maximized. The online model for the
mkc problem is the same as for the mkvc.

Clearly, the mkvc problem is a special case of the mkc problem where: (i)
each element belongs to exactly two sets and (ii) the intersection of any two sets
of S has size at most one, since multiple edges are not permitted.

The weighted generalization of the mkc problem, denoted by weighted
mkc, has been also studied in the literature. In this problem, each element
ei ∈ E has a non-negative weight w(ei), and the goal is to maximize the total
weight of the elements covered by k sets.

The analogous online model for weighted mkc problem, where at each
step i a set Si ∈ S together with its elements is revealed and only k such
sets can be kept in memory, has been studied in [7], where an algorithm of
competitive ratio 1

4 is given. The authors in their so called set-streaming model
assume that the set of elements is known a priori. Nevertheless, they do not use
this information in the proposed algorithm.

In the classical offline setting, the mkc problem is known to be non approx-
imable within a factor 1− 1

e [2]. On the other hand, even for the weighted version

of the problem, an approximation algorithm of ratio 1−
(
1− 1

k

)k
is known [5].

This ratio tends to 1− 1
e as k increases, closing in this way the approximability

question for the problem.
In [1] the inverse problem (i.e., the hitting set version of mkc), also called

maximum coverage problem, has been studied: given a universe of elements
E = {e1, e2, . . . , em}, a collection of subsets of E, S = {S1, S2, . . . , Sn}, a
non-negative weight w(Si) for each Si ∈ S, and an integer k, a set B ⊆ E is
sought, such that |B| = k and the total weight of the sets in S that intersect
with B is maximized. It is easy to see that this version is equivalent to the
weighted mkc modulo the interchange of the roles between set-system and

ground set. An algorithm of approximation ratio 1 −
(
1− 1

p

)p

is presented

in [1] for this problem, where p is the cardinality of the largest set in S. In the
case where each set has cardinality equal to two then this problem coincides with
the mkvc problem; hence a 3

4 approximation ratio is implied by the algorithm
in [1]. Several improvements for some restricted cases of the mkvc problem are
presented in [3, 4].

In this paper we study the online model described above for both the mkvc
and the mkc problems. In Section 2, we prove several negative results on the
competitiveness of any algorithm for the model handled for both problems. In

2



Section 3, we present algorithms for regular graphs, regular bipartite graphs,
trees and chains, achieving non-trivial competitive ratios, improving upon an
easy 1

2 competitiveness result holding for any graph. Finally, in Section 4 the
k-(set)-coverage problem is handled. For this problem, we present an algorithm
that improves upon former results for the same model for small and moderate
values of k.

The following notations will be used in the sequel. They are based upon the
definition of the mkvc problem and are easily extendable to the mkc problem.

For any A ⊆ V , we denote by E(A) the set of edges covered by A and
by m(A) = |E(A)| the number of these edges. Let SOL = m(A) be the number
of edges covered by our algorithms. Moreover, we denote by A∗ ⊆ V an optimal
subset of vertices and by OPT = m(A∗) the number of edges covered by an
optimal solution. The maximum degree (or the degree when it is regular) of
the input-graph G = (V,E) is denoted by ∆. Dealing with mkc, ∆ denotes
the cardinality of a set that contains a maximum number of elements, that is,
∆ = max{|Si| : 1 ≤ i ≤ n}. For a subset A ⊆ V and a vertex vi ∈ A, we call
public the edges of vi that are shared by another vertex in A and private the
edges of vi that are covered just by vi in A. Finally, as it is common in the
online setting, the quality of an algorithm is measured by means of the so-called
competitive ratio representing the ratio of the value of the solution computed
by the algorithm over the optimal value of the whole instance, i.e., the value of
an optimal (offline) solution of the final instance.

In what follows, for reasons of papers length, some proofs are omitted. They
can be found in appendix.

2 Negative results

In this section we give negative results for the online maximum k-vertex-coverage
problem and their corresponding adaptations for the maximum k-coverage prob-
lem. We start with a negative result for the restrictive case where swaps are not
allowed (replacement of a vertex or set that belongs to the current solution by
the newly revealed vertex or set is not permitted).

Proposition 1. Any deterministic online algorithm that does not allow swaps
cannot achieve a competitive ratio better than:

• O
(

1
(n−1)1/(k+1)

)
for the mkvc problem;

• O
(

1
m1/(k+1)

)
for the mkc problem.

The next negative result for the mkvc problem fits the model addressed in
the paper (swaps are allowed).

Proposition 2. Any deterministic online algorithm cannot achieve a competi-
tive ratio better than 2k

3k−2 ≃ 2
3 for the mkvc problem.

3



Proof. Assume that 2k − 1 vertices, v11 , v
1
2 , . . . , v

1
2k−1, of degree one and 2k − 1

vertices, v21 , v
2
2 , . . . , v

2
2k−1, of degree two are released, such that (v1i , v

2
i ) ∈ E,

1 ≤ i ≤ 2k − 1, and that the algorithm selects k′ ≤ k of them. Wlog, let
v21 , v

2
2 , . . . , v

2
k′ be the vertices selected by the algorithm. Next the vertex v3

of degree k′ is released, where (v2i , v3) ∈ E, 1 ≤ i ≤ k′. The solution of the
algorithm at this time is 2k′, while the inclusion or not of v3 does not play any
role for this value. Finally, 2k−1−k′ vertices, v3k′+1, v

3
k′+2, . . . , v

3
2k−1, of degree

one are released, such that (v2i , v
3
i ) ∈ E, k′ + 1 ≤ i ≤ 2k − 1. In this last phase,

the algorithm can increase its solution by at most k−k′ more edges. Hence, the
final solution of the algorithm is at most k+ k′. The optimum solution consists
of the vertices v2k+1, v

2
k+2, . . . , v

2
2k−1, v3, and hence is of cardinality 2(k−1)+k′.

In all, SOL
OPT = k+k′

2(k−1)+k′ ≤ 2k
3k−2 .

An analogous result can be proved for the mkc problem. Recall that for the
offline version of the mkc problem an 1 − 1

e ≃ 0.63-inapproximability result is
known [2].

Proposition 3. Any deterministic online algorithm cannot achieve a competi-

tive ratio better than k+2
√
k+1

2k+2
√
k+1

≃ 1
2 for the mkc problem even in the case where

all sets have the same cardinality.

3 Maximum k-vertex-coverage

In this section we deal with the online maximum k-vertex-coverage problem.
Note, first, that there exists an easy 1

2 -competitive ratio for this problem. In
fact, consider selecting k vertices of largest degrees. In an optimum solution
all the edges are, at best, covered once, while in the solution created by this
greedy algorithm, all the edges are, at worst, covered twice. Since the algorithm
selects the largest degrees of the graph, the 1

2 -competitive ratio is immediately
concluded.

Proposition 4. There is a 1
2 -competitive ratio for the online mkvc problem.

In the next sections we improve the 1
2 -competitive ratio for several classes

of graphs. But first, we give an easy upper bound for the number of elements
covered by any solution that will be used later. Its proof is straightforward.

Proposition 5. OPT ≤ k∆.

3.1 Regular graphs

The following preliminary result that will be used later holds for any algorithm
for the mkvc problem in regular graphs.

Proposition 6. Any deterministic online algorithm achieves a k
n -competitive

ratio for the mkvc problem on regular graphs.

4



Let us note that the result of Proposition 6 for the mkvc problem also holds
for general graphs in the offline setting [4].

We now present an algorithm for the mkvc problem in regular graphs. Our
algorithm depends on a parameter x which indicates the improvement on the
current solution that a new vertex should entail, in order to be selected for
inclusion in the solution. In other words, we replace a vertex of the current
solution by the released one, only if the solution increases by at least

⌈
∆
x

⌉
edges.

Algorithm mkvc-R(x)

1: A = ∅; B = ∅;
2: for each released vertex v do
3: if |A| < k then
4: A = A ∪ {v};
5: if v increases the edges in B by at least

⌈
∆
x

⌉
then

6: B = B ∪ {v};
7: else if |B| < k and v increases the edges in B by at least

⌈
∆
x

⌉
then

8: Select a vertex u ∈ A \B;
9: A = A ∪ {v} \ {u}; B = B ∪ {v};

10: return A;

As we will see in what follows, the best value for x is x = n+2k+
√
4k2+n2

2n ,
leading to the following theorem.

Theorem 1. Algorithm mkvc-R achieves 0.55-competitive ratio.

Proof. Note that B ⊆ A consists of the vertices that improve the solution by
at least

⌈
∆
x

⌉
; b denotes the number of these vertices, i.e., b = |B|. We denote

by y1 the number of edges with one endpoint in B and the other in V \B, and
by y2 the number of edges with both endpoints in B. By definition,

SOL ≥ y1 + y2 = b∆− y2 =
b∆− y1

2
+ y1 =

b∆+ y1
2

(1)

We shall handle two cases, depending on the value of b with respect to k.
If b < k then each vertex v ∈ V \B is not selected by Algorithm mkvc-R(x)

to be in B because it is adjacent to at most
⌈
∆
x

⌉
− 1 vertices of V \ B. Thus,

there are at least ∆−
⌈
∆
x

⌉
+1 edges that connect v with vertices in B. Summing

up for all the vertices in V \ B, it holds that y1 ≥ (n − b)
(
∆−

⌈
∆
x

⌉
+ 1

)
, and

considering also (1) we get:

SOL ≥ (n− b)

(
∆−

⌈
∆

x

⌉
+ 1

)
+ y2 (2)

SOL ≥
b∆+ (n− b)

(
∆−

⌈
∆
x

⌉
+ 1

)
2

(3)

5



Using the upper bound for the optimum provided by Proposition 5 and expres-
sions (2) and (3), respectively, we get the following ratios:

SOL

OPT
≥

(n− b)
(
∆−

⌈
∆
x

⌉
+ 1

)
+ y2

k∆

≥ (n− b)(x− 1)

kx
=

n(x− 1)− b(x− 1)

kx
(4)

SOL

OPT
≥

b∆+(n−b)(∆−⌈∆
x ⌉+1)

2

k∆

≥ bx+ (n− b)(x− 1)

2kx
≥ n(x− 1) + b

2kx
(5)

Observe that the righthand side of (4) decreases with b while that of (5) in-
creases; thus, the worst case occurs when righthand sides of them are equal,

that is n(x−1)−b(x−1)
kx = n(x−1)+b

2kx ⇔ b = n(x−1)
2x−1 and hence:

SOL

OPT
≥

n(x− 1) + n(x−1)
2x−1

2kx
=

n(x− 1)

k(2x− 1)
(6)

If b = k, then trivially holds that:

SOL

OPT
≥

k
⌈
∆
x

⌉
k∆

≥ 1

x
(7)

Note that (6) increases with x while (7) decreases; therefore, for the worst case

we have n(x−1)
k(2x−1) =

1
x ⇔ x = n+2k+

√
4k2+n2

2n . In all, it holds that:

SOL

OPT
≥ 2n

n+ 2k +
√
4k2 + n2

(8)

If k < 0.55n, the ratio of (8) leads to:

SOL
OPT ≥ 2n

n+2(0.55n)+
√

4(0.55n)2+n2
= 2

2.11+
√
2.21

= 0.55

On the other hand, the ratio provided in Proposition 6 that holds for any algo-
rithm, for k > 0.55n, gives SOL

OPT ≥ k
n ≥ 0.55n

n = 0.55.

Let us note that, as it can be easily derived from (8), when k = o(n) the
competitive ratio of Algorithm mkvc-R is asymptotical to 1.

3.2 Regular bipartite graphs

A better ratio can be achieved if we further restrict in regular bipartite graphs.
A key-point of such improvement is that the maximum independent set can be
found in polynomial time in bipartite graphs (see for example [6]). In what
follows in this section, we consider that the number of vertices, n, is known a
priori.

6



Our Algorithm mkvc-B initializes its solution with the first k released ver-
tices. At this point, a maximum independent set B, of size b ≤ k, in the graph
induced by these k vertices is found. The vertices of this independent set will
surely appear in the final solution. For the remaining k − b vertices we check if

they cover at least
n∆
2 −b∆

⌈n−b
k−b ⌉

edges different from those covered by the independent

set B. If yes, we return the solution consisting of the b vertices of the indepen-
dent set and these k− b vertices. Otherwise, we wait for the next k− b vertices
and we repeat the check. In Algorithm mkvc-B, G[A] denotes the subgraph
of G induced by the vertex-subset A.

Algorithm mkvc-B

1: A = {the first k released vertices};
2: Find a maximum independent set B ⊆ A in G[A]; b = |B|;
3: for each released vertex v do
4: if |A| = k then

5: if m(A) ≥ b∆+
n∆
2 −b∆

⌈n−b
k−b ⌉

then

6: return A;
7: else
8: A = B;
9: else

10: A = A ∪ {v}
11: return A;

Theorem 2. Algorithm mkvc-B achieves a 0.6075-competitive ratio.

Proof. Let us call batch the set of the k − b vertices of A \ B in Lines 5–10 of
Algorithm mkvc-B.

The solution obtained by this algorithm contains a maximum independent
set of size b. Since the input graph is bipartite, it holds that b ≥ k

2 .
The number of edges of the graph uncovered by the vertices of the maximum

independent set is in total n∆
2 − b∆. Any of these edges is covered by vertices

belonging to at least one of the
⌈
n−b
k−b

⌉
batches. Hence, in average, each batch

covers
n∆
2 −b∆

⌈n−b
k−b ⌉

of those edges; so there exists a batch that covers at least
n∆
2 −b∆

⌈n−b
k−b ⌉

of them. Therefore, the algorithm covers in total at least b∆ +
n∆
2 −b∆

⌈n−b
k−b ⌉

edges.

Using Proposition 5, we get SOL
OPT ≥

b∆+
n∆
2

−b∆

⌈n−b
k−b ⌉

k∆ =
b+

n
2

−b

⌈n−b
k−b ⌉
k and since this

quantity increases with b it holds that:

SOL

OPT
≥

k
2 +

n
2 − k

2⌈
n− k

2

k− k
2

⌉
k

=
k + n−k

⌈ 2n−k
k ⌉

2k
(9)

7



If k ≤ 0.6075n, then (9) leads to SOL
OPT ≥ 0.6075. Otherwise, using Proposition 6

we get the same ratio and the theorem is concluded.

Note that by (9), Algorithm mkvc-B achieves a competitive ratio asymptot-
ical to 3

4 when k = o(n).

3.3 Trees and chains

In this section we give algorithms that further improve the competitive ratios
for the mkvc problem in trees and chains. Dealing with trees the following
result holds.

Proposition 7. The mkvc problem can be solved within
(
1− k−1

∆∗

)
-competitive

ratio in trees, where ∆∗ is the sum of the k largest degrees in the tree. The ratio
is tight.

Note that, if the number of vertices of degree greater than 1 is r < k then
our algorithm finds an optimum solution using just r vertices, since the edges
that are adjacent to the leaves are covered by their other endpoints.

Furthermore, in the case where all the internal vertices of the tree have the
same degree ∆, the ratio provided by Proposition 7 becomes

(
1− k−1

k∆

)
. This

ratio is better than the ratio proved for regular bipartite graphs in Theorem 2
for any ∆ ≥ 3, but it is worse for ∆ = 2, i.e., in the case where the input graph
is a chain.

An improvement for the mkvc problem in chains follows. The main idea of
the algorithm is to partition the solution, A, into two disjoint parts, whose size
is dynamically adjusted: the set B of vertices that contribute two edges in E(A)
and the set C of vertices that contribute one edge in E(A). Thus, A = B ∪ C
and B ∩ C = ∅.

Algorithm mkvc-C

1: A = ∅; B = ∅; C = ∅; In any step A ≡ B ∪ C;
2: for each released vertex v do
3: if |B| ≤ k and v adds two new edges to the solution then
4: if |A| = k then
5: Delete an arbitrary vertex from C;
6: B = B ∪ {v};
7: else if |A| < k and v adds one new edge to the solution then
8: C = C ∪ {v};
9: if the inclusion of v in A has as a result three consecutive vertices to

appear in A then
10: Move v from C to B; Remove the middle vertex from A;
11: return A;

Proposition 8. For the mkvc problem in chains, Algorithm mkvc-C returns
the (offline) optimum, if k <

⌈
n
3

⌉
or k ≥

⌈
2n
3

⌉
, and achieves a 0.75-competitive

ratio, if
⌈
n
3

⌉
≤ k <

⌈
2n
3

⌉
.

8



4 Maximum k-(set)-coverage

In this section we present Algorithm mkc for the online maximum k-(set)-
coverage problem. It initializes by selecting the first k released sets. Then,
considering that the current solution Aj covers m(Aj) elements, the algorithm
replaces a set Q ∈ Aj by the new released set P , only if the number of elements

covered is increased by at least
m(Aj)

k . We prove that Algorithm mkc achieves
competitive ratio strictly greater than 1

4 but that tends to 1
4 as k increases.

Recall that the algorithm presented in [7] achieves also an 1
4 -competitive ra-

tio. However, our analysis is tight and gives better results for moderately large
values of k.

Algorithm mkc

1: j = 1; Aj = {the first k released sets};
2: for each released set P do
3: Find the set Q ∈ Aj that covers privately the smallest number of elements

in Aj ;

4: if m(Aj \ {Q} ∪ {P}) > m(Aj) +
m(Aj)

k then
5: j = j + 1; Aj = Aj−1 \ {Q} ∪ {P};

To analyze Algorithm mkc, let Az be the final solution obtained, i.e., SOL =
m(Az). Fix, also, an optimum solution A∗.

We consider the following two types of events that may happen during the
execution of the algorithm upon arrival of a set P : (a) P ∈ A∗ and Algorithm

mkc does not select it, and (b) P ̸∈ A∗ and Algorithm mkc discards Q ∈ A∗ in
order to insert P into its current solution. Clearly, at most k such events may
happen in total. However, not all events happen in a different current solution;
let ℓ ≤ k be the number of the different current solutions when events happen.
Let Aji , 1 ≤ i ≤ ℓ, 1 ≤ ji ≤ z, be the i-th of these current solutions, and ki,
1 ≤ i ≤ ℓ, be the number of events occurred in Aji .

We will now provide an upper bound to the value OPT = m(A∗) as function
of the states Aji , 1 ≤ i ≤ ℓ. Consider that the s-th, 1 ≤ s ≤ k, event happens
in ji. Let Ps be the new set that arrives at ji and Qs ∈ Aji be the set that

covers privately the smallest number of elements in Aji . Let, also, Q̃s ⊆ Qs be
the set of private elements of Qs in Aji .

If the event is of type (a) then Ps ∈ A∗ is not selected and it covers a

subset of the elements in E(Aji \ {Qs}) plus its private elements, P̃s ⊆ Ps, in

E(Aji \ {Qs} ∪ {Ps}). Note that it is m(P̃s) ≤ m(Q̃s) +
m(Aji

)

k , otherwise Ps

should be selected by the algorithm. Moreover, m(Q̃s) ≤
m(Aji

)

k , since Qs has

the smallest private part in Aji , and hence m(P̃s) ≤
2m(Aji

)

k . If the event is of
type (b) then Qs ∈ A∗ is removed and the elements covered by Qs are a subset
of E(Aji). In all, in the worst case we have:

E(A∗) ⊆
∪ℓ

i=1 E(Aji)∪
∪k

s=1 P̃s ⊆ E(Ajℓ)∪
∪ℓ

i=2

[
E(Aji−1) \ E(Aji)

]
∪
∪k

s=1 P̃s

9



Therefore, for the value of the optimum solution A∗ we have:

OPT ≤ m(Ajℓ) +
∑ℓ

i=2 m(E(Aji−1) \ E(Aji)) +
∑ℓ

i=1

(
ki

2m(Aji
)

k

)
Claim 1. m(E(Aji−1

) \ E(Aji)) ≤
|Aji−1

\Aji
|

k m(Aji−1
), 2 ≤ i ≤ ℓ.

Using Claim 1 and since m(Ajℓ) > m(Aji), 1 ≤ i ≤ ℓ− 1, and
∑ℓ

i=1 ki = k we
get:

OPT ≤ m(Ajℓ)+
∑ℓ

i=2

|Aji−1
\Aji

|
k m(Aji−1)+

∑ℓ−1
i=1

2m(Aji
)

k +(k− ℓ+1)
2m(Ajℓ

)

k

By definition, it holds that jℓ ≤ z and hence m(Ajℓ) ≤ m(Az) = SOL. More-

over, by Algorithm mkc, m(Ajℓ) ≥
(
1 + 1

k

)jℓ−ji
m(Aji). Thus, we have:

SOL

OPT
≥ 1

1 + 1
k

∑ℓ
i=2

ji−ji−1+2

(1+ 1
k )

jℓ−ji−1
+ 2(k−ℓ+1)

k

=
1

3 + 1
k

∑ℓ
i=2

ji−ji−1+2

(1+ 1
k )

jℓ−ji−1
− 2(ℓ−1)

k

(10)

Claim 2. For any ℓ ≥ 2, it holds that
∑ℓ

i=2
ji−ji−1+2

(1+ 1
k )

jℓ−ji−1
≤ g(ℓ)

ln(1+ 1
k )

, where

g(ℓ) =
(1+ 1

k )
2

e · eg(l−1) and g(2) =
(1+ 1

k )
2

e .

Using Claim 2 and (10), we get SOL
OPT ≥ 1

3+ 1
k

[
g(ℓ)

ln(1+ 1
k )

−2(ℓ−1)

] , where g(ℓ) =

(1+ 1
k )

2

e · eg(l−1) and g(2) =
(1+ 1

k )
2

e . This quantity is minimized for an ℓ = o(k).
The ratio r achieved by Algorithm mkc for different values of k is shown in
Table 1.

k 2 3 5 10 30 50 100 300 500 1000
r 0.333 0.324 0.314 0.300 0.282 0.275 0.268 0.261 0.258 0.256

Table 1: Approximation ratio of Algorithm mkc

To see that the ratio achieved by Algorithm mkc is always greater than 1
4 ,

consider the following expression for the ratio, slightly less fine than (10):

SOL
OPT ≥ 1

3+ 1
k

∑ℓ
i=2

ji−ji−1

(1+ 1
k )

jℓ−ji−1
+ 1

k

∑ℓ
i=2

(
2

(1+ 1
k )

jℓ−ji−1
−2

)

Note first that if ℓ = 1 then both sums on the denominator are zero and hence we
have a 1

3 -competitive ratio. If ℓ ≥ 2 we have the following analysis. For the first

sum, by a similar analysis as in Claim 2 we can prove that
∑ℓ

i=2
ji−ji−1

(1+ 1
k )

jℓ−ji−1
≤

g(ℓ)

ln(1+ 1
k )

, where g(ℓ) = 1
e · eg(l−1) and g(2) = 1

e . It is easy to see by a simple

10



induction that g(ℓ) ≤ 1 for any ℓ ≥ 2 and hence
∑ℓ

i=2
ji−ji−1

(1+ 1
k )

jℓ−ji−1
≤ 1

ln(1+ 1
k )

≤
k. For the second sum, we have:∑ℓ

i=2

(
2

(1+ 1
k )

jℓ−ji−1
− 2

)
≤

∑2
i=2

(
2

(1+ 1
k )

− 2

)
= 2k

k+1 − 2 = − 2
k+1

Therefore, using these bounds to the ratio we get:

SOL
OPT ≥ 1

4− 2
k(k+1)

= 1
4 + 1

4
1

2k(k+1)−1

It is hopefully clear from the previous discussion, that the analysis of Algo-
rithm mkc works also for the weighted mkc problem, up to the assumption
that m(·) in Algorithm mkc is the total weight of the elements and not their
number.

We conclude this section by providing a tight example for the ratio achieved
by Algorithm mkc. The idea of the example is strongly based upon the proof
given above, which indicates the “critical” values of ℓ and ji, 1 ≤ i ≤ ℓ. For
simplicity, we will consider the case where k = 3, but it is easy to extend our
example for any k, by appropriately choosing the values of ℓ and ji.

For k = 3, one can see that the ratio of Algorithm mkc is minimized when
ℓ = 2 and j2 − j1 = 1. Hence, consider the scenario shown in Figure 1. Let

S1 S2 S3

Aj1 = A1
S4

S2 S3 S5

Aj2 = A2

S6

S7

Figure 1: A tight example for Algorithm mkc when k = 3.

A1 = {S1, S2, S3} be the solution after the first three sets have been released.
These sets are disjoint and each one covers c elements. Next, the set S4 appears,
which covers 2c− ϵ new elements plus all elements in S2 and S3. The algorithm
does not select S4, since it may choose S1 as a candidate for swapping; in this
case the new solution would cover m({S2, S3, S4}) = 4c − ϵ elements which is

smaller than m(A1) +
m(A1)

k = 4c. Then, the set S5 is released, that is disjoint
with the previous sets and covers 2c elements. Thus, the algorithm replaces S1

by S5, and the new solution is A2 = {S2, S3, S5}. Finally, S6 and S7 are released,
each covering the elements in S5 plus 8c

3 −ϵ new elements. Algorithm mkc does
not select none of them, since they do not satisfy the algorithm’s criterion.

So, the final solution, A2, covers m(S2)+m(S3)+m(S5) = 4c elements. The
optimal solution consists of sets S4, S6 and S7 and covers OPT = (4c − ϵ) +

11



(2c + 8c
3 − ϵ) + ( 8c3 − ϵ) = 34c

3 − ϵ elements. Therefore, the ratio achieved by

Algorithm mkc is SOL
OPT = 4c

34c
3 −ϵ

≃ 12
34 = 0.353.

Note that the gap between this ratio and the ratio 0.324 given in Table 1 is
due to the fact that the elements of S1 do not appear to the optimal solution.
Indeed, if S1 was included to the optimal, then OPT = 37c

3 − ϵ and SOL
OPT =

4c
37c
3 −ϵ

≃ 12
37 = 0.324. This gap decreases as k → ∞.

5 Conclusions

There exist several interesting questions arising from the results presented in this
paper. The first of them is to improve the easy 1

2 -competitive ratio for mkvc in
general graphs and the (less easy) worst-case 1

4 -competitive ratio in set systems.
Another open question is to provide tighter upper bounds for the on-line model
handled in regular graphs. We still do not see how one can improve the analysis
of Algorithm mkc in the case of equal cardinalities, or how to tighten the upper
bound of Proposition 3 in Section 2, in order to match (or to get closer to) the
competitive ratio of Algorithm mkc. Let us note that an algorithm in the spirit
of Algorithm mkvc-R of Section 3.1 for the case of equal-cardinality sets, only
achieves ratio 1√

k
.

References

[1] A. Ageev and M. Sviridenko. Approximation algorithms for maximum
coverage and max cut with given sizes of parts. In 7th Integer Programming
and Combinatorial Optimization (IPCO’99), volume 1610 of LNCS, pages
17–30. Springer, 1999.

[2] U. Feige. A threshold of lnn for approximating set cover. J. of the ACM,
45:634–652, 1998.

[3] U. Feige and M. Langberg. Approximation algorithms for maximization
problems arising in graph partitioning. J. of Algorithms, 41:174–211, 2001.

[4] Q. Han, Y. Ye, H. Zhang, and J. Zhang. On approximation of max-vertex-
cover. European Journal of Operational Research, 143:342–355, 2002.

[5] D. S. Hochbaum and A. Pathria. Analysis of the greedy approach in prob-
lems of maximum k-coverage. Naval Research Logistics, 45:615–627, 1998.

[6] V. Th. Paschos. A survey of approximately optimal solutions to some
covering and packing problems. ACM Comp. Surveys, 29:171–209, 1997.

[7] B. Saha and L. Getoor. On maximum coverage in the streaming model &
application to multi-topic blog-watch. In 9th SIAM International Confer-
ence on Data Mining (DM’09), pages 697–708. SIAM, 2009.

12



A Appendix

A.1 Proof of Proposition 1

Proposition 1. Any deterministic online algorithm that does not allow swaps
cannot achieve a competitive ratio better than

– O
(

1
(n−1)1/(k+1)

)
for the mkvc problem

– O
(

1
m1/(k+1)

)
for the mkc problem.

Proof. For the mkvc problem, let k ≪ n and consider the following scenario.
In step i, 1 ≤ i ≤ k, the central vertex vi of a star with d(vi) = (n − 1)i/(k+1)

is released. If the algorithm rejects vi, then the remaining
∑i

j=1(n − 1)j/(k+1)

vertices of the i stars plus n − i −
∑i

j=1(n − 1)j/(k+1) singleton vertices are
released. If the algorithm selects vi, then vertex vi+1, with d(vi+1) = (n −
1)(i+1)/(k+1) is released. If after the k-th vertex the algorithm has selected all
the k released vertices then a new vertex vk+1 with degree d(vk+1) = n − 1 is

released; finally the remaining vertices of the stars and n−k−
∑k

j=1(n−1)j/(k+1)

singleton vertices are released.
If after the step i the algorithm has rejected vi, then only vertices of degree at

most one are released. Hence, the algorithm covers k−(i−1)+
∑i−1

j=1(n−1)j/(k+1)

edges, while the optimum solution covers k−i+
∑i

j=1(n−1)j/(k+1) edges. Thus:

SOL

OPT
=

k − (i− 1) +
∑i−1

j=1(n− 1)j/(k+1)

k − i+
∑i

j=1(n− 1)j/(k+1)

=
k − (i− 1) + (n−1)i/(k+1)−(n−1)1/(k+1)

(n−1)1/(k+1)−1

k − i+ (n−1)(i+1)/(k+1)−(n−1)1/(k+1)

(n−1)1/(k+1)−1

= O

(
1

(n− 1)1/(k+1)

)
If the algorithm has selected all the k first released vertices, then it covers exactly∑k

j=1(n − 1)j/(k+1) elements, while the optimum solution (that includes vk+1

which is never selected by the online algorithm) covers n− 1 elements. Hence:

SOL

OPT
=

∑k
j=1(n− 1)j/(k+1)

n− 1
=

(n−1)(k+1)/(k+1)−(n−1)1/(k+1)

(n−1)1/(k+1)−1

n− 1

= O

(
1

(n− 1)1/(k+1)

)
that concludes the proof.

For the mkc problem the proof is similar. In this case, in phase i, if all
previously released sets are selected by the algorithm then a set of cardinality
mi/(k+1) is released.

A.2 Proof of Proposition 3

Proposition 3. Any deterministic online algorithm cannot achieve a competi-

tive ratio better than k+2
√
k+1

2k+2
√
k+1

≃ 1
2 for the mkc problem even in the case where

13



all sets have the same cardinality.

Proof. A r-sunflower is a set system of regular sets of size ∆ with a common
intersection of size r; the sets of a sunflower are called petals.

Consider the following scenario. The adversary starts by sending ∆(p−1)
p -

sunflower petals where ∆
p ∈ N, while the algorithm keeps k′ of them; it continues

so until the first time τ where there are k−
⌊
k′

p

⌋
rejected sets. Notice that this

will be always the case for some τ ≤
⌈
k(2p−1)

p

⌉
.

Then the adversary starts sending disjoint sets, each one matching private
parts of p petals in the solution, until the maximum number of private parts
have been matched.

The solution of the algorithm will cover at most (k′+p−1)
p ∆ elements, while

the optimum will cover at least
⌊
k′

p

⌋
∆ elements by the matching sets plus⌈

k− k′
p +p−1

p

⌉
∆ elements by rejected petals. Thus, the ratio is bounded above

by k′+p−1

k+(p−1) k′
p +p−1

where 0 ≤ k′ ≤ k, which is less than or equal to the simplified

expression pk+p(p−1)
(2p−1)k+p(p−1) . This expression is minimized when p =

√
k + 1,

that is (
√
k+1)k+(

√
k+1)

√
k

(2(
√
k+1)−1)k+(

√
k+1)

√
k

= k+2
√
k+1

2k+2
√
k+1

, which for k large enough tends

asymptotically to 1
2 .

A.3 Proof of Proposition 6

Proposition 6. Any deterministic online algorithm achieves a k
n -competitive

ratio for the mkvc problem on regular graphs.

Proof. An optimum solution covers at most all the edges of the graph (recall
that |E| = m), that is OPT ≤ m = n∆

2 . On the other hand, any solution

covers k∆ edges, some of them possibly twice, i.e., at least k∆
2 edges, that is

SOL ≥ k∆
2 . We so get SOL

OPT ≥ k
n .

A.4 Proof of Proposition 7

Proposition 7. The mkvc problem can be solved within
(
1− k−1

∆∗

)
-competitive

ratio in trees, where ∆∗ is the sum of the k largest degrees in the tree. The ratio
is tight.

Proof. An upper bound for the optimum solution is OPT ≤ ∆∗, that is the case
where k non-adjacent vertices of the largest degree are selected.

Consider the algorithm that selects the k vertices of the largest degrees.
These k vertices cover ∆∗ edges, some of them possibly twice. It is easy to see
that the number of such edges is maximized when the subgraph induced by the k
selected vertices is connected. In this case, there are k − 1 edges covered twice.

14



Hence, the total number of covered edges is ∆∗ − (k − 1), while at most ∆∗

edges can be covered by any solution.

A.5 Proof of Proposition 8

Proposition 8. For the mkvc problem in chains, Algorithm mkvc-C returns
the (offline) optimum, if k <

⌈
n
3

⌉
or k ≥

⌈
2n
3

⌉
, and achieves a 0.75-competitive

ratio, if
⌈
n
3

⌉
≤ k <

⌈
2n
3

⌉
.

Proof. Since there do not exist three consecutive vertices in the solution ob-
tained by the algorithm, each vertex in B has at most one adjacent vertex in C,
and hence |B| ≥ |C|.

If k <
⌈
n
3

⌉
then assume, for contradiction, that in the final solution it holds

that C ̸= ∅ and let v ∈ C. Then, SOL = 2|B| + |C| ≤ 2(k − 1) + 1 =
2k− 1 < 2

⌈
n
3

⌉
− 1. Thus, the non-covered edges of the input graph are at least

n− 2
⌈
n
3

⌉
+2. Since the number of connected components in the solution of the

algorithm is at most k − 1 <
⌈
n
3

⌉
− 1, there are two adjacent edges not covered

by the algorithm; let u the common vertex of these edges. But the algorithm in
Lines 3–6 should have removed v and add u in A, a contradiction. Thus, C = ∅
which means that all the k vertices of the solution cover privately exactly two
edges, as in the optimum.

If k ≥
⌈
2n
3

⌉
, then the algorithm returns a solution containing all the vertices

of the graph. Indeed, since |B| ≥ |C| we have SOL = 2|B|+|C| ≥ 2
⌈
n
3

⌉
+
⌊
n
3

⌋
=

n. Hence, the optimum solution is obtained by the algorithm.
If

⌈
n
3

⌉
≤ k <

⌈
2n
3

⌉
, then for the solution created by the algorithm we have

SOL = 2|B|+ |C|, while OPT ≤ 2k = 2|B|+ 2|C|. Since |B| ≥ |C|, we get:

SOL
OPT ≥ 2|B|+|C|

2|B|+2|C| ≥
2|B|+|B|
2|B|+2|B| =

3
4 = 0.75

that completes the proof.

A.6 Proof of Claim 1

Claim 1. m(E(Aji−1) \ E(Aji)) ≤
|Aji−1

\Aji
|

k m(Aji−1), 2 ≤ i ≤ ℓ.

Proof. Let Qr, 1 ≤ r ≤ |Aji−1 \Aji |, be the r-th set that is removed from Aji−1

between the events i − 1 and i, considering only the sets that exist in Aji−1 .

Let, also, Q̃r be the private part of Qr just before it is removed. We will show
that, for any p, 1 ≤ p ≤ |Aji−1 \ Aji |, it holds that

∑p
r=1 qr ≤ p

km(Aji−1), and
thus:

m(E(Aji−1) \ E(Aji)) =

|Aji−1
\Aji |∑

r=1

qr ≤
∣∣Aji−1 \Aji

∣∣
k

m
(
Aji−1

)
Assume for a contradiction that for the first time after the removal of the set Qp

it holds that
∑p

r=1 qr > p
km(Aji−1), hence,

∑p−1
r=1 qr ≤ p−1

k m(Aji−1). Clearly,

15



qp >
m(Aji−1

)

k . Moreover, following Algorithm mkc Qp has the smallest private
part between the sets belonging in the solution when Qp is selected to be re-
moved. Thus, the k− p sets of Aji−1 which are still in the solution have private

parts of size greater than (k − p)
m(Aji−1

)

k in total. Consequently:

m(Aji−1) >

p∑
r=1

qr + (k − p)
m(Aji−1)

k

>
p

k
m(Aji−1) + (k − p)

m(Aji−1
)

k
= m(Aji−1)

a contradiction. Therefore, there is no p such that
∑p

r=1 qr > p
km(Aji−1), and

the claim is proved.

A.7 Proof of Claim 2

Claim 2. For any ℓ ≥ 2, it holds that
∑ℓ

i=2
ji−ji−1+2

(1+ 1
k )

jℓ−ji−1
≤ g(ℓ)

ln(1+ 1
k )

, where

g(ℓ) =
(1+ 1

k )
2

e · eg(l−1) and g(2) =
(1+ 1

k )
2

e .

Proof. Set di = ji− ji−1. Consider the function fℓ(d) =
∑ℓ

i=2
di+2

(1+ 1
k )
∑ℓ

j=i
dj
. We

will prove the claim by induction to ℓ.

For ℓ = 2 we have f2(d) =
∑2

i=2
di+2

(1+ 1
k )
∑2

j=i
dj

= d2+2

(1+ 1
k )

d2
, where ∂f2(d)

∂d2
=

1−(d2+2) ln(1+ 1
k )

(1+ 1
k )

d2
. The global maximum is attained for d2 + 2 = 1

ln(1+ 1
k )

. Thus:

f2(d) ≤ 1

ln(1+ 1
k )

· 1

(1+ 1
k )

1

ln(1+ 1
k )

−2
= 1

ln(1+ 1
k )

· (1+
1
k )

2

e .

Assume that the statement is true for ℓ− 1.
For ℓ, we have:

fℓ(d) =
ℓ∑

i=2

di + 2(
1 + 1

k

)∑ℓ
j=i dj

=
dℓ + 2(
1 + 1

k

)dℓ
+

ℓ−1∑
i=2

di + 2(
1 + 1

k

)∑ℓ
j=i dj

=
dℓ + 2(
1 + 1

k

)dℓ
+

1(
1 + 1

k

)dℓ
· fℓ−1(d)

where ∂fℓ(d)
∂dℓ

=
1−(dℓ+2+fℓ−1(d)) ln(1+ 1

k )
(1+ 1

k )
dℓ

. The global maximum is attained for

16



dℓ + 2 + fℓ−1(d) =
1

ln(1+ 1
k )

. Thus:

fℓ(d) ≤ 1

ln
(
1 + 1

k

) · 1(
1 + 1

k

) 1

ln(1+ 1
k )

−2−fℓ−1(d)

≤ 1

ln
(
1 + 1

k

) ·
(
1 + 1

k

)2
e

·
(
1 +

1

k

) g(ℓ−1)

ln(1+ 1
k )

=
1

ln
(
1 + 1

k

) ·
(
1 + 1

k

)2
e

· eg(ℓ−1)

and the claim follows.

17


