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Abstract: If the attenuation function of strain is expressed as a power law, the formalism of fractional 

calculus may be used to handle Eringen nonlocal elastic model. Aim of the present paper is to provide a 

mechanical interpretation to this nonlocal fractional elastic model by showing that it is equivalent to a 

discrete, point-spring model. A one-dimensional geometry is considered; the static, kinematic and 

constitutive equations are presented and the governing fractional differential equation highlighted. Two 

numerical procedures to solve the fractional equation are finally implemented and applied to study the 

strain field in a finite bar under given edge displacements. 
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1. INTRODUCTION 

One of the most attractive properties of fractional calculus is 

that, by varying the order of derivation, it is possible to 

describe the transition between completely different 

phenomena. In the last decades, many fractional differential 

equations have been proposed, solved and used to interpret 

experimental data that cannot be caught by usual differential 

models. They include relaxation equations, wave equations 

and diffusion equations (see e.g. Carpinteri and Mainardi, 

1997; Mainardi, 2009). 

For what concerns solid mechanics, most of the applications 

refer to rheological models, where the fractional derivative is 

taken with respect to the time variable. More recently, two 

research directions (Carpinteri et al., 2009) have been set that 

make use of fractional derivative with respect to the space 

variable. The former one (Carpinteri and Cornetti, 2002) 

explores the connection between fractal sets and fractional 

calculus and applies the (local) fractional calculus formalism 

to address the problem of deformation and damage in solid 

mechanics. Fractal patterns often arise in heterogeneous 

materials and developing mathematical models able to catch 

the fractality of such phenomena is a matter of primary 

concern. The strength of such approach are the non-integer 

physical dimensions provided by the fractal geometry and 

fractional operators. This property has proven to be very 

effective in the description of the size-scale effects in solid 

mechanics. For a review, see Carpinteri et al. (2006). 

The latter research direction (Di Paola and Zingales, 2008) 

aims to model nonlocal continua, i.e. solids characterized by 

nonlocal interactions (Eringen and Edelen, 1972; Aifantis, 

1994; Polizzotto, 2001). The novelty is that internal forces 

are described by fractional derivatives. One of the most 

remarkable achievements of this approach is that, by 

exploiting the Marchaud definition of fractional derivative, 

the fractional operators have a clear mechanical 

interpretation, i.e. springs connecting non-adjacent points of 

the body. The related stiffness decays along with the distance 

among the material points. However, since only the integral 

part of the Marchaud derivative is retained in the equilibrium 

equation, the model developed by Di Paola and Zingales 

(2008) does not coincide with the corresponding Eringen 

nonlocal fractional elastic model; also the order of fractional 

derivation is different. On the other hand, aim of the present 

paper is to provide a mechanical interpretation to Eringen 

fractional nonlocal model and an efficient algorithm for its 

solution. 

2. FRACTIONAL INTEGRALS AND DERIVATIVES 

There are various definitions of fractional differintegral 

operators, not necessarily equivalent to each other. A 

complete list of these definitions can be found in the 

fractional calculus treatises, e.g. Samko et al. (1993). These 

definitions have different origins. The most frequently used 

definition of fractional integral of order β (β∈ℜ+
) is due to 

Riemann-Liouville and is a straightforward generalization to 

non-integer values of Cauchy formula for repeated 

integrations: 
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The Riemann-Liouville fractional derivative of order β is 

defined as the (integer) derivative of order n (n∈N and n−1 < 

β < n) of the fractional integral of order (n−β). That is: 
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However, it is also possible to define the fractional derivative 

as the fractional integral of order (1−β) of the first derivative. 
In such a case we obtain the Caputo definition of fractional 

derivative, cDa+
β
: 
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It is worth observing that the Riemann-Liouville derivative of 

a constant is not zero, whereas it is null the corresponding 
Caputo derivative. Since Caputo definition generalizes this 

well-known property of the derivatives of integer orders, 

Caputo fractional derivative is usually more practical for 

applications. 

Eqns (1-3) represent the so-called left (or forward) fractional 
integrals and derivatives. Analogously, it is possible to define 

the right (or backward) operators as: 
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A general result in fractional analysis states that the Caputo 

fractional derivatives (either forward or backward) of a 

function f(x) are equal to the Riemann-Liouville derivatives 

provided that the polynomial of order n−1 (evaluated either in 

x = a or x = b) is subtracted from the function itself: 
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By recalling the fractional derivatives of the power functions 

(x−a)
k
 and (b−x)

k
, eqns (7-8) provide: 
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that will be exploited for the numerical implementation in 

Section 5. 

In the case 0 < β < 1, by applying the formula of integration 

by parts to the Caputo’s definition and after some analytical 

manipulations, it is possible to give an alternative form to the 

Riemann-Liouville fractional derivative (Samko et al., 1993):  
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Eqns (11-12) are the so-called Marchaud definitions of 

fractional derivative. Since, for 0 < β < 1, they coincide with 

the Riemann-Liouville definitions for a wide class of 

functions, we will indicate them with the same symbol. 

Finally, it is possible to introduce the Riesz fractional 

integrals and derivatives, defined as the sum of the forward 

and backward fractional operator up to a multiplicative 

factor: 
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Note that the multiplicative constant, here taken simply equal 

to ½ following, e.g., Agrawal (2007), can vary according to 

the different fractional calculus treatises (usually it is 

function of β). 

By exploiting the Marchaud definition of fractional 

derivatives (11-12), for 0 < β < 1, the Riesz fractional 

derivative (14) can be expressed as: 
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While the Marchaud definitions (11) and (12) hold true only 

for 0 < β < 1 (otherwise the integrals at the right-hand side 

diverge), we were able to prove that eqn (15) is valid in the 

whole range 0 < β < 2. This non-trivial result (details will be 

given elsewhere) is of fundamental importance, since it will 

allow us to provide a mechanical interpretation to the Eringen 

non-local fractional model in the next section. For fractional 

operators analogous to (13-14), but defined on infinite 

domains, see, e.g., Mainardi et al. (2002) and Ortigueira 

(2008). 

3. ERINGEN NONLOCAL FRACTIONAL MODEL 

According to Eringen nonlocal elasticity, the stress at a given 

point depends on the strain in a neighbourhood of that point 

by means of a convolution integral. This dependence is 

described by a proper attenuation function g, which decays 

along with the distance. In the case of a one-dimensional 

domain (i.e. a bar): 
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where σ is the stress, x the longitudinal coordinate, x = a and 

x = b the bar extreme coordinates, E the Young’s modulus, ε 

the strain defined as the derivative of the longitudinal 

displacement u and κα is a material constant. The bar length 

is l (l = b−a). Note that the Eringen model (Eringen and 

Edelen, 1972) is sometime referred to as strong (or integral) 

nonlocality, to distinguish it from the weak (or gradient) 

nonlocal elastic model, where the stress depends on the strain 

and its derivatives (Aifantis, 1994). 

Let us now assume the following form for the attenuation 

function g: 
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with 0 < α < 1.With the choice of eqn (17), the constitutive 

relationship becomes: 
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In eqn (18) we recognize the presence of the Riesz integral 

(13). Thus, we may rewrite eqn (18) as: 
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Note that κα has anomalous physical dimensions [L]α−1. Since 

ε = du / dx, it is easy to highlight in eqn (19) the presence of 

the Caputo fractional derivatives of the displacement. 

Therefore, by exploiting eqns (3) and (6), the dependence of 

the stress upon the displacement becomes: 
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In order to get the equilibrium equation in terms of the 

displacement function u(x), we simply need to substitute eqn 

(20) into the static equation dσ/dx + f(x) = 0, where f(x) is the 

longitudinal force per unit volume. By means of eqns (7) and 

(8) and some more analytical manipulations, we get: 
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Eqn (21) is a fractional differential equation. Note that, while 

the left fractional derivative coincides always with its integer 

order counterpart when the order of derivation is an integer 

number, the right fractional derivative coincides with the 

corresponding integer derivative only when the order of 

derivation is even; when the order of derivation is an odd 

number, it is equal to its opposite. Therefore, the term in 

curly brackets is equal to 2 u''(x) when α = 1, and vanishes 

when α = 0. In order to highlight the presence of the Riesz 

fractional derivative, eqn (21) can be set in the following 

form: 
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4. EQUIVALENT POINT-SPRING MODEL 

A useful interpretation of the governing equation (22) for the 

nonlocal elastic bar is sought. To this aim, it is convenient to 

express Riesz fractional derivatives in the Marchaud-like 

form (Di Paola and Zingales (2008)). Note that this is 

possible since we proved that eqn (15) holds true also for 

orders of derivation between 1 and 2, which is exactly the 

case in eqn (22) (while the order of fractional derivation 

considered in Di Paola and Zingales (2008) was less than 

unity). Hence, by letting β = 1 + α in eqn (15), we get: 
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where the gamma function property Γ(1−α) = −α Γ(−α) has 

been used. In this form it is evident that the first term at the 

left-hand side rules the local interactions, whereas the terms 

in the square brackets rule the nonlocal interactions by means 

of linear elastic springs and can be seen as an extra-force per 

unit of volume acting at the point of abscissa x. More in 

detail, the first two terms in the brackets refer to long-range 

interactions between the inner (a < x < b) and outer (x = a, x 

= b) points, whereas the integral term takes into account the 

interaction between two inner generic points. To make the 

concept even clearer, it is useful to write eqn (23) in discrete 

form. To this purpose, let us introduce a partition of the 

interval [a, b] on the x axis made of n (n ∈ N) intervals of 

length ∆x = l/n. The generic point of the partition has the 

abscissa xi, with i = 1, …, n+1 and x1 = a, xn+1 = b; that is, xi = 

a + (i−1)∆x. Hence, for the inner points of the domain (i = 

2,…, n), the discrete form of eqn (23) reads: 
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where ui ≡ u(xi) and fi ≡ f(xi). Multiplying both the sides of 

eqn (24) by EA ∆x, eqn (24) may be rewritten as: 
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It is evident how the nonlocal fractional model is equivalent 

to a point-spring model where three kinds of springs appear: 

the local springs, ruling the local interactions, whose stiffness 

is k
l
; the springs connecting the inner material points with the 

bar edges, ruling the volume-surface long-range interactions, 

with stiffness k
vs

; the springs connecting the inner material 

points each other, describing the nonlocal interactions 

between non-adjacent volumes, whose stiffness is k
vv

. 

Provided that the indexes are never equal one to the other, the 

following expressions for the stiffnesses hold (i = 1,…, n+1): 
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Furthermore, by exploiting the Principle of Virtual Work to 

derive the proper either kinematic or static boundary 

conditions, it is possible to show that a fourth set of springs 

has to be introduced: it is composed by a unique spring 

connecting the two bar extremes with stiffness: 
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The superscript “ss” for the stiffness (30) is used since the 

spring connecting the bar edges can be seen as modeling the 

interactions between material points lying on the surface, 

which, in the simple one-dimensional model under 

examination, reduce to the two points x = a,b. Note that the 

presence of such a spring was implicitly embedded in the 

constitutive equation (19). However, since it provides a 

constant stress contribution throughout the bar length, its 

presence was lost by derivation when inserting the 

constitutive relationship into the differential equilibrium 

equation, i.e. when passing from eqn (20) to eqn (21). 
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Fig. 1. Pont-spring model equivalent to the nonlocal 

fractional elastic bar (n = 4). 

To summarize, the constitutive fractional relationship (19) is 

equivalent to a point-spring model with four sets of springs, 

one local (eqn (26)) and three nonlocal (27-30). Note that 

their stiffnesses all decay with the distance, although the 

decaying velocity differs from one kind to the other. The 

equivalent point-spring model is drawn in fig.1. Each internal 

point is connected to the adjacent points by two local springs, 

to the bar extremes by two volume-surface nonlocal springs 

and to all the other material points by the volume-volume 

nonlocal springs. Finally a surface-surface nonlocal spring 

connects the bar edges. Turning the attention to the whole 

bar, the number of the local springs is n, the number of the 

volume-surface springs is 2n−1, the number of the volume-

volume springs is n(n+1)/2. 

For what concerns the limit cases, if α = 0, the volume-

volume and the volume-surface spring interactions ruled by 

eqns (27-29) vanish, and only the contribution (30) remains 

(together with the local springs (26)): the nonlocal model 

corresponds to a classical (local) elastic bar in parallel with a 

spring of stiffness EAκα/2. The governing equation reverts to 

the classical case: u′′ = f / E. On the other hand, in the limit 

case α = 1, since Γ(0) = ∞, the surface-surface (eqn (30)) and 

the volume-surface (eqns (27-28)) contributions disappear. 

For what concerns the interactions between inner material 

points (eqn (29)), only the interactions between adjacent 

material points are retained (the Gamma function tends to 

infinity, but the integral in eqn (23) diverges). 

Correspondingly, the additive term in eqn (19) has the same 

form as the classical (local) one, the model representing a bar 

with a stiffened (by a factor of (1+κα)) Young’s modulus, 

while the governing equation (23) becomes u′′ = f / [E 

(1+κα)]. 

5. NUMERICAL ANALYSIS 

Based on eqn (15), the equivalence between the fractional 

model and the point-spring model proved in the previous 

section provide also a straightforward numerical algorithm to 

implement the fractional governing equation (22-23). In fact, 

by using the same partition previously introduced, eqn (23) 

can be discretized as: 
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where the right hand side Fi is equal to fi A ∆x for the inner 

points (i = 2,…, n) and to the external forces Fa and Fb acting 

at the bar edges for i = 1 and i = n+1, respectively; ki,j is the 

generic element of the stiffness (square) matrix K, which is 

the sum of four stiffness matrices: 

K = K
l
 + K

vv
 + K
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 (32) 

whose non-diagonal terms are provided by the opposite of the 

corresponding stiffnesses (26-30). Furthermore, the diagonal 

terms ki,i of each matrix is provided by the relationship: 
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Note that all the four matrices are symmetrical, with positive 

elements on the diagonal and negative outside. More in 

detail, the local matrix K
l
 is tridiagonal; the nonlocal matrix 

K
vv ruling the long-range interactions between inner points is 

fully populated; the nonlocal matrix related to the inner-outer 

interactions K
vs

 has only border and diagonal elements 

different from zero; finally, the nonlocal matrix K
ss

 

describing the interaction between the bar edges is empty 

except for the four corner elements. 

Despite the clear physical-mechanical meaning, however, the 

discretization (31) is not the most efficient way to solve the 

fractional differential equation (22). Particularly, it is not able 

to catch the solution for α approaching unity, when the 

weight function in the integral in eqn (23) behaves as a Dirac 

function. Since the order of fractional derivation is comprised 

between 1 and 2 (i.e. 0 ≤ α < 1), we chose to implement the 

so-called L2 algorithm firstly proposed by Oldham and 

Spanier (1974) and later applied to discretize the Riesz 

derivative by Yang et al. (2010). The L2 algorithm is based 

on the formulae (9) and (10), which now read: 
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By approximating the second order derivatives by means of 

the usual finite differences and evaluating analytically the 

remaining part of the integrals in eqns (34-35), we get the 

following approximate discrete expressions of the fractional 

derivatives in the internal points of the interval [a,b], i.e. for i 

= 2,…, n: 
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Developing the sums in eqns (36-37), the Riesz fractional 

derivative can hence be approximated as: 
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where the terms ri,j of the matrix R are provided in Appendix 

A. By exploiting eqn (38), we may discretize the fractional 

differential equation (22) in a form alternative to eqn (24) 

(i.e. (31)) as: 
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 (39) 

holding for i = 2,…, n. 

We applied the developed fractional nonlocal model to 

analyze the strain field in a finite bar with given edge 

displacement: ua = u0 = 0 m and ub = un+1 = 10
−3

 m. The bar 

length l is 1 m and the material constant κα is assumed equal 

to 1 m
1−α

. Note that, since no external force is present, the 

Young’s modulus E does not affect the result. 

We solved the governing equation (22) in the case α = 0.5 

both with the physically-based algorithm (31), i.e. the point-

spring model, and with the mathematically-based algorithm 

(39). The strain fields corresponding to the two numerical 

procedures are plotted in fig. 2a. From a mathematical point 

of view, the almost perfect coincidence between the two 

solutions is an important result since it can be seen as an 

indirect proof that eqn (15) holds true also for order of 

fractional derivation comprised between 1 and 2, as we 

claimed in Section 2. On the other hand, from a physical 

point of view, it is interesting to observe that, with respect to 

the classical case represented by a uniform strain field, the 

strain localizes near the bar ends. This effect can be explained 

observing that the zones close to the borders are less stiff 

because of lower presence of the long-range interactions. 

Finally, it is interesting to note that the same behaviour is 

provided also by gradient elasticity (Vardoulakis et al., 1996). 

 

 

Fig. 2. Strain field for a bar under given edge displacements: 

(a) comparison between the spring algorithm (continuous 

line) and the L2 algorithm (dotted line) for α = 0.5; (b) strain 

fields for different α values obtained by the L2 algorithm. 

As already observed, algorithm (31) is much less efficient 

than algorithm (39) for any α, becoming completely 

unreliable as α→1−. Therefore, in fig. 2b, we used algorithm 

(39) to solve the same geometry considered in fig.2a but for 

different α values. Note that the area beneath each curve is 

constant, being equal to the assigned relative displacement 

between the bar extremes (i.e. 10
−3

 m). As α→1
−
, the 

solution tend to the homogeneous one since the nonlocal term 
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in the constitutive equation (19) acquires the same form as 

the local one. On the other hand, up to some extent, the strain 

localization increases as α decreases. 

6. CONCLUSIONS 

As is well-known, in solid mechanics, temporal fractional 

derivatives can be used to develop improved visco-elastic 

models. On the other hand, in the present paper we showed 

that spatial fractional derivative (namely the Riesz fractional 

derivative) can be used to take into account nonlocal effects 

in the constitutive material behaviour. It has been shown that, 

in the one-dimensional case, the nonlocal fractional bar is 

equivalent to a point-spring model with four sets of springs. 

It is argued that these springs may describe the long-range 

interactions between volume and surface elements of the 

solid, that, as is well-known, play an important role at the 

smaller scales. A key role in deriving the present model is 

played by the proof of a suitable formula expressing the 

Riesz fractional derivative of order comprised between 1 and 

2 in a Marchaud-like form. 
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Appendix A. APPROXIMATION OF THE RIESZ 

DERIVATIVE 

In this appendix we provide the explicit expressions of the 

terms ri,j (i = 2,…, n and j = 1,…, n+1) of the square 

(n+1)×(n+1) matrix R (see eqn (38)). The terms on the first 

and last row depend on the assigned boundary conditions and 

are not given here. We have: 

2
12 1 α+=,r  (A.1) 

n,n, rr =α−−= α− 421
22  (A.2) 

α+α+α++−= 12
13 2)/2(1,r  (A.3) 

αα+−= 2/)3(423,r  (A.4) 

The remaining diagonal terms are (i = 3,…, n−1): 

)2(32 1 α−−−=i,ir  (A.5) 

while the terms on the first and second columns are, 

respectively (i = 4,…, n): 
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ii
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 (A.7) 

The elements on the diagonal close to the main one have the 

following values (i = 4,…, n): 

α−α−
− ⋅−+= 11

1 2334i,ir  (A.8) 

All the other terms beneath the main diagonal are equal to (i 

= 5,…, n; j = 3,…, i−2): 

α−α−

α−α−

−−−−+

++−−+−=

11

11

)1()(3

)1(3)2(

jiji

jijir j,i
 (A.9) 

The remaining elements, i.e. those placed above, are 

immediately obtained by observing that the matrix R fulfils a 

sort of polar symmetry, i.e. (i = 2,…, n;  j = i+1,…, n+1): 

jn,inj,i rr −+−+= 22  (A.10) 

and the matrix R is completely defined. 


