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1. Introduction

It was shown in [23] that the different twisting of the asymptotic stable bundles at plus and minus infinity of

a family of discrete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle, leads to the

appearance of homoclinic trajectories bifurcating from the trivial branch of stationary solutions.

In [23], only small homoclinic trajectories close to the stationary branch were found. Here we will improve our

previous results for the problem. It turns out that the same topological condition supplemented with other listed

below, which ensure the properness of the nonlinear operator naturally associated to the problem, allows us to

establish the existence of homoclinic trajectories of arbitrarelly large norm.

What is more, using the global bifurcation theory of [18], we show the existence of connected branches of nontrivial

homoclinics going from the stationary branch to infinity.

Much as in our previous paper we will translate the appearance of homoclinic trajectories into a problem of

∗ E-mail: jacobo.pejsachowicz@polito.it
† E-mail: robo@mat.umk.pl
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bifurcation of zeros of a parametrized family of C1-Fredholm maps G : S1×X → X, where X is a function space

naturally associated to the problem. Our approach uses a peculiarity of the topological degree for proper Fredholm

maps of index zero. Namely, that it is preserved only up to sign under homotopies of Fredholm maps ([12, 18]).

As a matter of fact, that the degree can change sign along a homotopy will be central to our arguments. To say

it shortly, we turn the lack of homotopy invariance of the degree of Fredholm maps into an useful instrument for

the analysis of bifurcation phenomena.

We refer to [24, 25, 27, 28] for other bifurcation results for bounded solutions of difference equations, however to

our best knowledge both the results and the methods of this paper are novel. The relation between the topological

properties of the asymptotic bundles and bifurcation of homoclinics is far more subtle than the classical spectral

analysis at the potential bifurcation points. Even for the simplest topologically nontrivial parameters space S1 it

requires topological instruments which at a first glance may appear unfamiliar to many. However we believe that

the interest of the result and the generality of the method in proof provides enough reasons for its introduction.

The paper is organized as follows. In Section 2 we introduce the problem and the basic invariant measuring

the topological nontriviality of the asymptotic bundles. Then we state our main theorem about the existence of

a connected branch of nontrivial homoclinic solutions which connects the stationary branch to infinity through

homoclinics of arbitrarily large norm.

In Section 3 we state and prove an index theorem for families of linear Fredholm operators which will be used

in order to show that the twisting of asymptotic bundles forces the appearance of homoclinic trajectories. The

proof is similar to the one given in [23] except for the fact that (in order to ensure properness of the relevant

map) we have to work in a different function space. Section 4 is devoted to show that G is a continuous family

of C1-Fredholm maps. The continuity and smoothness of G involves only standard arguments, many of them

taken from [26, 27]. The Fredholm property is derived from the asymptotic hyperbolicity of the linearization at

the stationary solution. In order to apply the global bifurcation theory for C1-Fredholm maps the map G has to

be proper on closed bounded sets. Using ideas from [30] we will prove properness of G in Section 5. In Section

6 we discuss the generalized homotopy property of the topological degree constructed in [18] and we prove our

main theorem using the computation of the index bundle from Section 3. Section 7 contains a nontrivial example

illustrating our result.

2. The main theorem

All considered topological spaces are metric and all single-valued maps between spaces are continuous. Given

a normed space (E, ‖ · ‖), B̄(x, r), and B(x, r), will denote the closed and open disk centered at x of radius r

respectively. The Euclidean norm in Rd is denoted by | · |; B̄d(x, r) (resp. Bd(x, r)) is the closed (resp. open)

disk centered at x ∈ Rd; d ≥ 1, of radius r. Additionally, throughout the article, a norm of a matrix M will be

denoted by |M |.
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A nonautonomous discrete dynamical system on Rd is defined by a doubly infinite sequence of maps

f = {fn : Rd → Rd | n ∈ Z}. (1)

A trajectory of the system f : Z× Rd → Rd is a sequence x = (xn) such that

xn+1 = fn(xn). (2)

A constant trajectory of f is called stationary. In the terminology of [24] (2) is a nonautonomous difference

equation whose solutions are trajectories of the corresponding dynamical system.

Let us assume that each fn is C1 and that fn(0) = 0. Hence, the sequence 0 = (0n) is a stationary trajectory

of f. A trajectory x = (xn) of f is called homoclinic to 0, or simply a homoclinic trajectory, if lim
n→±∞

xn = 0.

Any stationary trajectory is trivially homoclinic to itself. Here we will be interested in nontrivial trajectories

homoclinic to 0. Observe that a homoclinic trajectory of f is naturally an element of

c(Rd) :=

{
x : Z→ Rd

∣∣∣ lim
|n|→∞

xn = 0

}

equipped with the norm ‖x‖∞ := sup
k∈Z
|xn| (see [23]). However in this paper we restrict yourself to the following

space

l2 : =

x : Z→ Rd
∣∣∣ ‖x‖ :=

(∑
n∈Z

|xn|2
)1/2

<∞

 ⊂ c(Rd).

The value x(n) = xn of an element x ∈ l2 in n ∈ Z will be denoted also by pn(x) according to the convenience.

We will show below that, under appropriate assumptions on the dynamical system f, the Nemytskii (substitution)

operator F : l2 → l2 given by

F (x) = (fn(xn)) (3)

is a well defined C1-map verifying F (0) = 0. In this way nontrivial homoclinic trajectories become the nontrivial

solutions of the equation Sx− F (x) = 0, where S : l2 → l2 is the shift operator given by

Sx = (xn+1). (4)

It should be noted that we have considered the space l2 here because on this space we are able to provide simple

conditions which are necessary and sufficient for S − F to be proper on closed bounded subsets of l2.

The linearization of the system f at the stationary solution 0 is the nonautonomous linear dynamical system

a : Z × Rd → Rd defined by the sequence of matrices (an) ∈ Rd×d, with an = Dfn(0). The corresponding linear

difference equation is defined by

xn+1 = anxn. (5)
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We will deal only with discrete nonautonomous dynamical systems whose linearization at 0 is asymptotic for

n→ ±∞ to an autonomous linear hyperbolic dynamical system a (i.e., verifying an = a for all n ∈ Z, where a is

a hyperbolic matrix). We will call systems with the above property asymptotically hyperbolic.

Let us recall that an invertible matrix a is called hyperbolic if a has no eigenvalues of norm one, i.e., σ(a)∩{|z| =

1} = ∅. The spectrum σ(a) of a hyperbolic matrix a consists of two disjoint closed subsets σ(a) ∩ {|z| < 1} and

σ(a)∩{|z| > 1}, so Rd has the a-invariant spectral decomposition Rd = Es(a)⊕Eu(a), where Es(a) (respectively

Eu(a)) is the direct sum real parts of the generalized eigenspaces corresponding to eigenvalues of a inside of the

unit disk (respectively outside of the unit disk).

It is easy to see that ζ ∈ Es(a) if and only if lim
n→∞

anζ = 0. The unstable subspace Eu(a) has a similar

characterization, i.e., ζ ∈ Eu(a) if and only if lim
n→∞

a−nζ = 0. Let us describe precisely our setting and assumptions.

A C1-family of dynamical systems parametrized by the unit circle S1 is defined by a sequence of maps

f =
{
fn : S1 × Rd → Rd | n ∈ Z

}
(6)

such that fn is C1, for all n ∈ Z.

In what follows we will also assume everywhere that fn(λ, 0) = 0, for all λ ∈ S1 and n ∈ Z.

We will use fλ to denote the dynamical system corresponding to the parameter value λ. We will use fλ to denote

the dynamical system corresponding to the parameter value λ.

Alternatively one can think of f as a double infinite sequence of C1-maps fn : [a, b]×Rd → Rd such that fn(a,−)

coincides with fn(b,−) up to the first order.

We will say that (λ,x) is a homoclinic solution for the family f if (λ,x) solves the parameter-dependent difference

equation:

xn+1 = fn(λ, xn), for all n ∈ Z, (7)

or equivalently, if x = (xn) is a homoclinic trajectory of the dynamical system fλ. Homoclinic solutions of (7) of

the form (λ,0) are called trivial and the set S1 × {0} is called the trivial or stationary branch.

Our aim is to show how the topology of the simplest topologically nontrivial parameter space S1 on which

our dynamical system depends forces the appearance of branches of homoclinic trajectories connecting small

homoclinic trajectories to the arbitrarily large ones. For this we will apply the global bifurcation theory for

families of C1-Fredholm maps established in [18] to the family defined by

G(λ,x) = Sx− F (λ,x), (8)

where F : S1 × l2 → l2 is the parametrized substitution (Nemytskii) operator F (λ,x) := (fn(λ, xn)).

We will assume that the family of discrete dynamical systems f : Z×S1×Rd → Rd satisfies the following conditions:
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(A1) For any M > 0 and ε > 0 there exists 0 < δ < M such that for all (λ1, x1), (λ2, x2) ∈ S1 × B̄d(0,M) with

d
(
(λ1, x1), (λ2, x2)

)
< δ one has

sup
n∈Z

∣∣∣∣∂fn(λ1, x1)

∂x
− ∂fn(λ2, x2)

∂x

∣∣∣∣ < ε and sup
n∈Z

∣∣∣∣∂fn(λ1, x1)

∂λ
− ∂fn(λ2, x2)

∂λ

∣∣∣∣ < ε,

where d is the product distance in the metric space S1 × Rd ⊂ R2 × Rd.

(A2) The family of matrices

an(λ) :=
∂fn(λ, 0)

∂x
−−−−−→
n→±∞

a(λ,±∞)

(uniformly with respect to λ ∈ S1), where a(λ,±∞) is a hyperbolic matrix. Moreover, we assume that for

some (and hence for all) (λ, 0) ∈ S1 × Rd, the limits a(λ0,+∞) and a(λ0,−∞) have the same number of

eigenvalues (counting algebraic multiplicities) inside of the unit disk.

(A3) There exists λ0 ∈ S1 (say λ0 = 1) such that the following two difference equations

xn+1 = fn(1, xn) and xn+1 = an(1)xn

admit only the trivial solution (xn = 0)n∈Z. Equivalently, f(1) and a(1) have no nontrivial homoclinic

trajectories.

(A4) For any x ∈ Rd and λ ∈ S1,

fn(λ, x) −−−−−→
n→±∞

f∞± (λ, x)

(uniformly with respect to any bounded set B ⊂ Rd) and the following two difference equations

xn+1 = f∞+ (λ, xn) and xn+1 = f∞− (λ, xn)

admit, for any λ ∈ S1, only the trivial solution (xn = 0)n∈Z.

By (A2) the map λ→ a(λ,±∞) is a continuous family of hyperbolic matrices. Since there are no eigenvalues of

a(λ,±∞) on the unit circle, the projectors to the spectral subspaces corresponding to the spectrum inside and

outside the unit disk depend continuously on the parameter λ (see [15]). It is well known that the images of a

continuous family of projectors form a vector bundle over the parameter space [11]. Therefore, the vector spaces

Es(λ,±∞) and Eu(λ,±∞) whose elements are the generalized real eigenvectors of a(λ,±∞) corresponding to

the eigenvalues with absolute value smaller (respectively greater) than 1 are fibers of a pair of vector bundles

Es(±∞) and Eu(±∞) over S1 which decompose the trivial bundle Θ(Rd) with fiber Rd into a direct sum:

Es(±∞)⊕ Eu(±∞) = Θ(Rd). (9)
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In what follows Es(±∞) and Eu(±∞) will be called stable and unstable asymptotic bundles at ±∞. Our main

theorem relates the appearance of homoclinic solutions to the topology of the asymptotic stable bundles Es(±∞).

Due to relation (9) the consideration of the unstable bundles would give the same result. In what follows, for

notational reasons, it will be convenient for us to work with the multiplicative group Z2 = {1,−1} instead of the

standard additive Z2 = {0, 1}. A vector bundle over S1 is orientable if and only if it is trivial, i.e., isomorphic

to a product S1 × Rk. Moreover, whether a given vector bundle E over S1 is trivial or is not is determined by a

topological invariant w1(E) ∈ Z2.

In order to define w1(E) let us identify S1 with the quotient of an interval I = [a, b] by its boundary ∂I = {a, b}.

If p : [a, b] → S1 = I/∂I is the projection, the pullback bundle p∗E = E′ is the vector bundle over I with fibers

E′t = Ep(t). Since I is contractible to a point, E′ is trivial and the choice of an isomorphism between E′ and the

product bundle provides E′ with a frame, i.e., a basis {e1(t), ..., ek(t)} of E′t continuously depending on t. Since

E′a = Ep(a) = Ep(b) = E′b, {ei(a) | 1 ≤ i ≤ k} and {ei(b) | 1 ≤ i ≤ k} are two bases of the same vector space. We

define w1(E) ∈ Z2 by

w1(E) := sign detC, (10)

where C is the matrix expressing the basis {ei(b) | 1 ≤ i ≤ k} in terms of the basis {ei(a) | 1 ≤ i ≤ k}. It is

easy to see that w1(E) is independent from the choice of the frame. Clearly w1(E) = 1 if and only if E is trivial.

Indeed, if E is a trivial bundle, then by definition, w1(E) = 1. On the other hand, if w1(E) = 1, detC > 0, and

there exists a path C(t) with C(a) = C and C(b) = Id . Then fi(t) = C(t)ei(t) is a frame such that fi(a) = fi(b)

and hence Φ(t, x1, . . . , xk) = (t,
∑
xifi(t)) is an isomorphism between S1 × Rk and E.

Remark 2.1.
Under the isomorphism H1(S1;Z2) ∼= Z2, w1(E) can be identified with the first Stiefel-Whitney class of E.

Let us recall from [23] that a point λ∗ ∈ S1 is a bifurcation point for homoclinic solutions of (7) from the trivial

branch of stationary solutions T0 = {(λ,0) | λ0 ∈ S1} if in every neighborhood of (λ∗,0) there is a point (λ,x)

such that x is a nontrivial homoclinic solution of xn+1 = fn(λ, xn).

Bifurcation points from infinity are defined in a similar way. Namely, λ∗ ∈ S1 is a bifurcation point from infinity

for homoclinic solutions of (7) if there is a sequence (λn,xn) of homoclinic solutions of (7) with λn −−−−→
n→∞

λ∗ and

‖xn‖ −−−−→
n→∞

∞. Due to the compactness of S1, any unbounded sequence of solutions contains as subsequence

(λn,xn) such that λn converges to a bifurcation point from infinity. By B0 (resp. B∞) we will denote the set of

all bifurcation points of (7) from the trivial branch of stationary solutions (resp. the set of all bifurcation points

of (7) from infinity).

In order to state our result in a more symmetric form we will introduce the trivial branch at infinity. The one

point boundification of a normed space E is the topological space E+ := E ∪ {∞} with a base of neighborhoods

of {∞} given by D ∪ {∞}, where D is a complement of a closed bounded subset of E. Notice that if A ⊂ E is

a closed and locally compact subset of E, then its closure Ā = A ∪ {∞} in E+ is the one-point compactification
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A+ of A. A sequence in xn ∈ E such that ‖xn‖ −−−−→
n→∞

∞ converges to the point {∞} in E+. By definition the

subset T∞ = {(λ,∞) | λ ∈ S1} of S1 × l2
+

is the trivial branch at {∞}.

The main result of this paper reads as follows:

Theorem 2.1.
If the system (6) verifies (A1)–(A4) and if

w1(Es(+∞)) 6= w1(Es(−∞)), (11)

then:

[i] The connected component C0 of T0 in the set S ⊂ S1 × l2 of all homoclinic solutions of (7) is unbounded.
In particular, both B0 and B∞ are nonempty.

[ii] The set S0 = S−T0 of all nontrivial homoclinic solutions of (7) contains a continuum (i.e., closed connected

subset C) whose closure C̄ in S1 × l2
+

intersects both T0 and T∞.

Therefore, not only B0 and B∞ are not empty but there is a connected branch of nontrivial homoclinic solutions

of (7) connecting B0 = B0 × {0} to B∞ = B∞ × {∞}. The theorem will be proved in Section 6. The main

ingredients of the proof are the computation of the index bundle of the family of linearized equations at the trivial

branch in terms of the asymptotic stable bundles at ±∞ and the generalized homotopy property of the base point

degree of the family of induced Fredholm maps. The next section is entirely devoted to the first of the above

mentioned tools.

3. The index bundle

Our goal here is to establish the Fredholm property of operators induced on functional spaces by a linear asymp-

totically hyperbolic systems and to compute the index bundle of a parametrized family of such operators.

Firstly, let us shortly recall the concept of the index bundle of a family of Fredholm operators. For a more complete

presentation see [23]. A bounded operator T ∈ L(X,Y ) (1) is Fredholm if it has finite dimensional kernel and

cokernel. The index of a Fredholm operator is by definition indT := dim KerT − dim CokerT. The space of all

Fredholm operators will be denoted by Φ(X,Y ) and those of index k by Φk(X,Y ). For each k, Φk(X,Y ) is an

open subset of L(X,Y ).

The index bundle generalizes to the case of families of Fredholm operators the concept of index of a single Fredholm

operator. If a family Lλ of Fredholm operators depends continuously on a parameter λ belonging to some compact

topological space Λ and if the kernels KerLλ and cokernels CokerLλ form two vector bundles KerL and CokerL

over Λ, then, roughly speaking, the index bundle is the difference KerL − CokerL, where one gives a meaning

1 By L(X,Y ) (resp. L(X)) we will denote the space of bounded linear operators between two Banach spaces X
and Y (resp. from X into itself).
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to the difference by working in the Grothendieck group KO(Λ), which by definition is the group completion of

the abelian semigroup Vect(Λ) of all isomorphisms classes of real vector bundles over Λ. The elements of KO(Λ)

are called virtual bundles. Each virtual bundle is a difference [E] − [F ], where E,F are vector bundles over Λ

and [E] denotes the corresponding element of KO(Λ). One can show that [E] − [F ] = 0 in KO(Λ) if and only

if the two vector bundles become isomorphic after the addition of a trivial vector bundle to both sides. Taking

complex vector bundles instead of the real ones leads to the complex Grothendieck group denoted by K(Λ). In

what follows the trivial bundle with fiber Λ× V will be denoted by Θ(V ) and Θ(Rd) will be simplified to Θd.

Let X, Y be real Banach spaces and let L : Λ → Φ(X,Y ) be a continuous family of Fredholm operators. Lλ ∈

Φ(X,Y ) will denote the value of L at the point λ ∈ Λ. In general neither the kernels nor cokernels of Lλ will

form a vector bundle. However, since CokerLλ is finite dimensional, using compactness of Λ, one can find a finite

dimensional subspace V of Y such that

ImLλ + V = Y for all λ ∈ Λ. (12)

Because of the transversality condition (12) the family of finite dimensional subspaces Eλ = L−1
λ (V ) defines a

vector bundle over Λ (see [23]) with total space

E =
⋃
λ∈Λ

{λ} × Eλ.

By definition, the index bundle is the virtual bundle:

IndL = [E]− [Θ(V )] ∈ KO(Λ). (13)

The index bundle enjoys the same nice properties of the ordinary index. Namely, homotopy invariance, additivity

with respect to directs sums, logarithmic property under composition of operators. Clearly it vanishes if L is a

family of isomorphisms. We will mainly use in the sequel:

(i) Homotopy invariance: Let H : [0, 1] × Λ → Φ(X,Y ) be a homotopy, then IndH0 = IndH1. In particular,

Ind (L+K) = IndL, if K is a family of compact operators.

(ii) Logarithmic property: Ind
(
LM

)
= IndL+ IndM.

We will mostly work with families of Fredholm operators of index 0. The index bundle of a family of Fredholm

operators of index 0 belongs to the reduced Grothendieck group K̃O(Λ), i.e., the subgroup generated by elements

[E]− [F ] such that dimEλ = dimFλ. It can be shown that any element η ∈ K̃O(Λ) can be written as [E]− [ΘN ].

Moreover, [E] − [ΘN ] = [E′] − [ΘM ] in K̃O(Λ) if and only if there exist two trivial bundles Θ and Θ′ such that

E ⊕Θ is isomorphic to E′ ⊕Θ′, (see [14, Theorem 3.8]).

Now let us compute the index bundle of the family of operators associated to a family of linear asymptotically

hyperbolic systems. Denoting with GL(d) the set of all invertible matrices in Rd×d, let a : Z× S1 → GL(d) be a

family of linear asymptotically hyperbolic systems. This means:

8
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(a) As n→ ±∞ the sequence a(λ) = (an(λ)) converges uniformly with respect to λ ∈ S1 to a family of matrices

a(λ,±∞).

(b) a(λ,±∞) ∈ GL(d) is hyperbolic for all λ ∈ S1.

It is easy to see that (a) implies that a± : S1 → GL(d) given by a±(λ) := a(λ,±∞) are continuous functions of

λ. We associate to the family a : Z× S1 → GL(d) the family of linear operators

L =
{
Lλ : l2 → l2 | λ ∈ S1}

defined by Lλ = S − Aλ, where S is the shift operator and Aλ : l2 → l2 is the substitution operator Aλx :=

(an(λ)xn). Since the sequence (an(λ)) converges, it is bounded, from which follows immediately that Aλ and Lλ

are well defined bounded operators.

Lemma 3.1.
The map A : S1 → L

(
l2
)

defined by A(λ) := Aλ is continuous with respect to the norm topology of L
(
l2
)
. Hence

the same holds for the family L.

Proof. Fix x = (xn) ∈ l2. Then

‖(A(λ)−A(µ))x‖2 =
∑
n∈Z

|(an(λ)− an(µ))xn|2 ≤
∑
n∈Z

|an(λ)− an(µ)|2 |xn|2.

Furthermore, |an(λ)−an(µ)| ≤ |an(λ)−a±(λ)|+ |an(µ)−a±(µ)|+ |a±(λ)−a±(µ)|. Fix ε > 0. Then Assumption

(a) implies that there exists n0 > 0 such that

|an(λ)− a+(λ)| < ε/3 for all n ≥ n0 and for all λ ∈ S1,

|an(λ)− a−(λ)| < ε/3 for all n ≤ −n0 and for all λ ∈ S1.

Moreover, there exists δ > 0 such that if d((λ, 0), (µ, 0)) < δ, λ, µ ∈ S1, then

|a±(λ)− a±(µ)| ≤ ε/3 and |ak(λ)− ak(µ)| ≤ ε/3 for all −n0 < k < n0.

Finally, taking into account the above considerations, one obtains that

‖(A(λ)−A(µ))x‖2 ≤
∑
n∈Z

|an(λ)− an(µ)|2 |xn|2 ≤
∑
n∈Z

ε2|xn|2 = ε2‖x‖2

provided d((λ, 0), (µ, 0)) < δ, which implies that A is continuous with respect to the norm topology of L(l2).

Clearly, x = (xn) ∈ l2 verifies a linear difference equation xn+1 = an(λ)xn if and only if Lλx = 0. By the

discussion in the previous section the families a(λ,±∞) ∈ GL(d) define two vector bundles Es(±∞) over S1. The

next theorem relates the index bundle of the family L to Es(±∞).
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Theorem 3.1.
Let a : Z× S1 → GL(d) be a continuous map verifying (a) and (b). Then the family L : S1 → L

(
l2
)

verifies:

(i) Lλ is a Fredholm operator for all λ ∈ S1.

(ii) IndL = [Es(+∞)]− [Es(−∞)] ∈ KO(S1).

In particular, applying to IndL the rank homomorphism rk : KO(S1)→ Z, rk([E]− [F ]) = dimEλ − dimFλ, we

obtain

indLλ = dimEs(+∞)− dimEs(−∞). (14)

Proof. The proof is similar to the proof of Theorem 4.1 in [23]. However, since here we are working on a

proper subspace l2 of c(Rd) we have to check carefully that all constructed elements belong to this subspace. Let

ā : Z× S1 → GL(d) be defined by

ā(n, λ) = (ān(λ)) =


a(λ,+∞) if n ≥ 0,

a(λ,−∞) if n < 0.

(15)

Fix λ ∈ S1 and denote by Āλ ∈ L(X) the operator associated to āλ, where X := l2. We claim that the operator

Kλ = Aλ−Āλ is a compact operator. To this end, we will show that Kλ is the limit (in the norm topology of L(X))

of a sequence of operators K̃m
λ with finite dimensional range. We observe that Kλ is defined by Kλx = (kn(λ)xn),

where kn(λ) = an(λ)− ān(λ) and define

K̃m
λ x =


kn(λ)xn if |n| ≤ m,

0 if |n| > m.

(16)

Clearly Im K̃m
λ is finite dimensional. We are to prove that

sup
‖x‖=1

‖(Kλ − K̃m
λ )x‖ −−−−→

m→∞
0, (17)

for x ∈ X. Observe that

‖(Kλ − K̃m
λ )x‖ =

∑
|n|>m

|kn(λ)xn|2 ≥
∑

|n|>m+1

|kn(λ)xn|2 = ‖(Kλ − K̃m+1
λ )x‖, (18)

for all m ∈ N. Since lim
|n|→∞

kn(λ) = 0, we infer that for all ε > 0 there exists n0 > 0 such that for all |n| > n0 and

‖x‖ = 1 one has |kn(λ)xn| < ε. Consequently, for all ε > 0 there exists n0 > 0 such that

sup
‖x‖=1

‖(Kλ − K̃n0
λ )x‖ ≤ ε. (19)

10
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Now taking into account (18) and (19), we deduce that for all ε > 0 there exists n0 > 0 such that for all m ≥ n0

one has

sup
‖x‖=1

‖(Kλ − K̃m
λ )x‖ ≤ ε, (20)

which proves (17) and the compactness of the operator Kλ. Let L̄λ = S− Āλ. Then Lλ− L̄λ = Kλ and hence the

family L differs from the family L̄ by a family of compact operators. Therefore Lλ is Fredholm if and only if L̄λ is

Fredholm and moreover the homotopy invariance of the index bundle applied to the homotopy H(λ, t) = L̄λ+tKλ

shows that Ind L̄ = IndL. Hence in order to prove the theorem we can assume without loss of generality that a

has already the special form of (15), which we will do from now on. Let

l+k := {x ∈ l2 | xn = 0 for n < k}, l−k := {x ∈ l2 | xn = 0 for n > k}.

Both l±k are closed subspaces of l2. Put X+ = Y + = l+0 and X− = l−0 , Y
− = l−−1. Let us consider four linear

operators I : Y − ⊕ Y + → X, J : X → X− ⊕X+, L+
λ : X+ → Y + and L−λ : X− → Y − defined respectively by

I(x,y) = x + y,

J(x)(n) =


(x0, x0) if n = 0,

(xn, 0) if n < 0,

(0, xn) if n > 0,

(L+
λ x)(n) =


xn+1 − a(λ,+∞)xn if n ≥ 0,

0 if n < 0,

(L−λ x)(n) =


0 if n > −1,

xn+1 − a(λ,−∞)xn if n ≤ −1.

We decompose Lλ : X → X via the following commutative diagram:

X− ⊕X+
L−
λ
⊕L+

λ// Y − ⊕ Y +

I

��
X

J

OO

Lλ //X.

(21)

The commutativity of diagram (21) is easy to check. Indeed, one has

I(L−λ ⊕ L
+
λ )Jx(n) = L−λ Jx(n) + L+

λ Jx(n) =


(L+

λ x)(n) if n ≥ 0,

(L−λ x)(n) if n < 0,

11
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which is the same as

(Lλx)(n) =


xn+1 − a(λ,+∞)xn if n ≥ 0,

xn+1 − a(λ,−∞)xn if n < 0.

(22)

Next, we will show that L±λ : X± → Y ± are Fredholm and we will compute the index bundles of L±. For L+
λ this

is the content of the following Lemma:

Lemma 3.2.
Let a ∈ GL(d) be a hyperbolic matrix. Then the operator S −A : l+0 → l+0 defined by

((S −A)x)(n) =

{
xn+1 − axn if n ≥ 0,

0 if n < 0,

is surjective with ker(S −A) = {x ∈ l+0 | xn+1 = anx0 for all n ≥ 0 and x0 ∈ Es(a)}.

This lemma was proved in [2, Lemma 2.1] for the operator induced in c+
0 := {x ∈ c(Rd) | xi = 0 for i < 0} by

constructing an explicit right inverse R to the operator S − A : c+
0 → c+

0 , via the convolution with the matrix

function g(n) = an−1(1Z+(n)Id Rd−Pu), where Pu is the projector on the unstable subspace and Z+ = {1, 2, ...}.

They prove that function g belongs to l1(Z,Rd×d). But the convolution with a matrix function in l1(Z,Rd×d)

sends l2 into itself. Hence the assertion of this lemma is also true for S−A : l+0 → l+0 . For the assertion regarding

the kernel is enough to observe that if x = (xn) ∈ c+
0 and xn+1 = anx0 for all n ≥ 0 and x0 ∈ Es(a), then the

spectral radius theorem guarantees that x ∈ l+0 .

By Lemma 3.2

KerL+
λ = {x ∈ X+ | xn = a(λ,+∞)nx0 and x0 ∈ Es(λ,+∞)}. (23)

Hence the transformation x 7→ x0 defines an isomorphism between KerL+ and Es(λ,+∞), which is finite di-

mensional. Being CokerLλ = {0}, L+
λ is Fredholm with indL+

λ = dimEs(λ,+∞). Clearly the index bundle

IndL+ = [Es(+∞)]. We will reduce the calculation of IndL− to Lemma 3.2 as follows. Put Y − := l−−1 and

X− := l−0 and consider the family of isomorphisms B = {Bλ : Y − → Y − | λ ∈ S1} defined by

(Bλx)(n) =


0 if n > −1,

−a−1(λ,−∞)xn if n ≤ −1.

We compose L−λ : X− → Y − on the right with the isomorphism Bλ : Y − → Y − followed by the negative shift S−1

viewed as an operator from Y − to X−. Since both operators are isomorphisms, the composition does not affect

the Fredholm property. On the other hand, considering S−1 as a constant family of isomorphisms, by logarithmic

property of the index bundle, IndS−1BL− = IndL−. Hence the index bundle of L− coincides with the index

bundle of the family D = S−1BL−. Observe now that if x ∈ Y −, then

(BλL
−
λ )x)(n) =


0 if n > −1,

xn − a−1(λ,−∞)xn+1 if n ≤ −1.

12
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But since S−1x = (xn−1), one obtains

(Dλx)(n) =


0 if n > 0,

xn−1 − a−1(λ,−∞)xn if n ≤ 0.

Thus Dλ : X− → X− is the same type of operator as L+
λ but with n going from 0 to −∞. By Lemma 3.2, each

Dλ is surjective. Moreover,

KerDλ = KerL−λ = {x ∈ X− | xn = a(λ,−∞)nx0 and x0 ∈ Eu(λ,−∞))} (24)

is isomorphic to Eu(λ,−∞). Summing up, we have obtained that Ind L+ = [Es(+∞)] and IndL− = [Eu(−∞)].

In particular we have

indL+
λ = dimEs(λ,+∞) and indL−λ = dimEu(λ,−∞). (25)

With this at hand we can compute the index bundle of L completing the proof of the theorem. Let us notice

firstly that I and J are Fredholm operators. Indeed, I : Y − ⊕ Y + → X is clearly an isomorphism, and the map

J : X → X− ⊕X+ is a monomorphism whose image is given by Im J = {(a,b) ∈ X− ⊕X+ | a0 = b0}. Putting

P : X− ⊕X+ → Rd by P (a,b) := a0 − b0, for a ∈ X− and b ∈ X+, one obtains that Im J = KerP. But since P

is an epimorphism, we deduce that Coker J = X− ⊕X+/KerP ' Rd and therefore J is Fredholm of index −d.

From the commutativity of diagram (21) and (25) it follows that Lλ = I(L−λ ⊕ L
+
λ )J is Fredholm and

ind(Lλ) = ind(I) + ind(L−λ ⊕ L
+
λ ) + ind(J) = dimEs(λ,+∞) + dimEu(λ,−∞)− d =

dimEs(λ,+∞)− dimEs(λ,−∞).
(26)

As for (ii), considering I and J as constant families of Fredholm operators, Ind I = 0, Ind J = −[Θ(Rd)]. Using

the logarithmic and direct sum properties of the index bundle together with (9), we obtain

IndL = [Eu(−∞)] + [Es(+∞)]− [Θ(Rd)] = [Es(+∞)]− [Es(−∞)],

which proves (ii).

Remark 3.1.
Notice that from (23), (24) and (22) it follows that in the case of systems of the special form (15) elements
of KerLλ are sequences (xn) ∈ X such that x0 ∈ Es(λ,+∞) ∩ Eu(λ,−∞) and xn = a(λ,+∞)nx0, for n ≥
0 and xn = a(λ,−∞)nx0, for n ≤ 0.

The obstruction w1(E) to the triviality of vector bundle E over S1 defined in Section 2 induces a well defined

isomorphism (see [23]) w1 : K̃O(S1)→ Z2 by putting

w1([E]− [F ]) = w1(E)w1(F ). (27)

From this and Theorem 3.1 we obtain:

13
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Corollary 3.1.

w1(IndL) = w1(Es(+∞)w1(Es(−∞)). (28)

4. The continuity smoothness and the Fredholm property of
the family G(λ,x) = Sx− F (λ, x)

In this section we will study the differentiable properties of a nonlinear operator G induced by a discrete nonau-

tonomous system (7) parametrized by a parameter space S1 and Fredholmness of an operator DxG. We keep the

notations and assumptions from Section 2. For any x ∈ l2 define

F (λ,x) = (fn(λ, xn)), F∞± (λ,x) = (f∞± (λ, xn)), G(λ,x) = Sx− F (λ,x), G∞± (λ,x) = Sx− F∞± (λ,x). (29)

Proposition 4.1.
Under Assumptions (A1)–(A4), F (λ,x), F∞± (λ,x), G(λ,x) and G∞± (λ,x) belong to l2, for each λ ∈ S1 and
x ∈ l2.

Proof. First of all we will need the following lemma, which will be used repeatedly in what follows. Working

on any coordinate chart of S1 we will denote with λ also the coordinate of the point λ ∈ S1.

Lemma 4.1.
Assumptions (A1)–(A2) imply that

sup
(n,λ,y)∈Z×S1×B̄d(0,M)

∣∣∣∣∂fn(λ, y)

∂x

∣∣∣∣ <∞ and sup
(n,µ,y)∈Z×S1×B̄d(0,M)

∣∣∣∣∂fn(µ, y)

∂λ

∣∣∣∣ <∞
for any M > 0.

Proof. Let us observe that from Assumption (A2) it follows easily that

C0 := sup
(n,λ)∈Z×S1

∣∣∣∣∂fn(λ, 0)

∂x

∣∣∣∣ <∞. (30)

Fix M > 0 and ε > 0. Let δ > 0 be as in Assumption (A1). Take (n, λ, y) ∈ Z × S1 × B̄d(0,M). Then

there exists n0 > 0 such that n0 ≤ M/δ < n0 + 1. Furthermore, there exist 0 < k ≤ n0 + 1 and points

y0 = 0, y1, ..., yk−1, yk = y ∈ B̄d(0,M) such that |yi − yi+1| < δ, for i = 0, ..., k − 1. Thus

∣∣∣∣∂fn(λ, y)

∂x

∣∣∣∣ ≤ ∣∣∣∣∂fn(λ, 0)

∂x

∣∣∣∣+

∣∣∣∣∂fn(λ, y1)

∂x
− ∂fn(λ, 0)

∂x

∣∣∣∣+

∣∣∣∣∂fn(λ, y2)

∂x
− ∂fn(λ, y1)

∂x

∣∣∣∣+ . . .+∣∣∣∣∂fn(λ, yk−1)

∂x
− ∂fn(λ, yk−2)

∂x

∣∣∣∣+

∣∣∣∣∂fn(λ, y)

∂x
− ∂fn(λ, yk−1)

∂x

∣∣∣∣ ≤ C0 + kε ≤ C0 + (n0 + 1)ε,

where C0 is as in (30). Observe that
∂fn(µ, 0)

∂λ
= 0, for all µ ∈ S1 and n ∈ Z. It follows from the fact that

fn(µ, 0) = 0, for all µ ∈ S1 and n ∈ Z. Consequently, by the same reasoning as above, one can conclude the

second part of the assertion of the lemma.

14
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Now fix x ∈ l2 and λ ∈ S1. Let M := sup
n∈Z
|x(n)|. Then Lemma 4.1 implies that

C := sup
(n,y)∈Z×B̄d(0,M)

∣∣∣∣∂fn(λ, y)

∂x

∣∣∣∣ <∞.
Hence, using the mean value theorem, we get

|fn(λ, y)| = |fn(λ, y)− fn(λ, 0)| ≤

(
sup
s∈[0,1]

∣∣∣∣∂fn(λ, sy)

∂x

∣∣∣∣
)
|y| ≤ C|y|. (31)

Consequently,

‖F (λ,x)‖ = ‖(fn(λ,x(n)))‖ ≤ C‖(x(n))‖ = C‖x‖,

which implies that F (λ,x) and hence also G(λ,x) belong to l2.

On the other hand, |fn(λ, y)| −−−−−→
n→±∞

|f∞± (λ, y)|. Thus, after passing to the limit in (31) as n → ±∞, we get

|f∞± (λ, y)| ≤ C|y|, for all y ∈ B̄d(0,M). From which it follows that ‖F∞± (λ,x)‖ ≤ C‖x‖. Therefore, F∞± (λ,x),

and G∞± (λ,x) belong to l2.

Using once again Lemma 4.1, we define two families of linear bounded operators T : S1× l2 → L(l2) and T̃ : S1×

l2 → L(R, l2) by

T (λ,x)y :=

(
∂fn(λ, xn)

∂x
yn

)
and T̃ (λ,x)z :=

(
∂fn(λ, xn)

∂λ
z

)
(32)

for x = (xn),y = (yn) ∈ l2, λ ∈ S1 and z ∈ R.

Proposition 4.2.
The map F : S1 × l2 → l2 defined in (29) is C1. Moreover, DxF (λ,x) = T (λ,x) and DλF (λ,x) = T̃ (λ,x).

Proof. Observe that it is suffices to prove that DxF and DλF exist and are continuous on S1 × l2. Firstly we

prove that DxF exists and DxF (λ,x) = T (λ,x). Fix x ∈ l2 and λ ∈ S1. Then

R(x,h;λ) := ‖F (λ,x + h)− F (λ,x)− T (λ,x)h‖ =(∑
n∈Z

∣∣∣∣fn(λ, xn + hn)− fn(λ, xn)− ∂fn(λ, xn)

∂x
hn

∣∣∣∣2
)1/2

,

(33)

where h ∈ l2 and λ ∈ S1. We are to show that R(x,h;λ)‖h‖−1 → 0 as ‖h‖ → 0. Let

cn(h;λ) := sup
s∈[0,1]

∣∣∣∣∂fn(λ, xn + shn)

∂x
− ∂fn(λ, xn)

∂x

∣∣∣∣ ,

15
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for n ∈ Z. Then Assumption (A1) implies that

sup
n∈Z

cn(h;λ) −−−−→
‖h‖→0

0.

Then

∣∣∣∣fn(λ, xn + hn)− fn(λ, xn)− ∂fn(λ, xn)

∂x
hn

∣∣∣∣ =

∣∣∣∣∫ 1

0

∂fn(λ, xn + shn)

∂x
hnds−

∂fn(λ, xn)

∂x
hn

∣∣∣∣ ≤
|hn|

∫ 1

0

∣∣∣∣∂fn(λ, xn + shn)

∂x
− ∂fn(λ, xn)

∂x

∣∣∣∣ ds ≤ |hn|∫ 1

0

cn(h;λ)ds ≤ |hn| sup
n∈Z

cn(h;λ).

Hence, taking into account (33), we infer that

0 ≤ R(x,h;λ) ≤ ‖h‖ sup
n∈Z

cn(h;λ), (34)

which implies that R(x,h;λ)‖h‖−1 → 0 as ‖h‖ → 0. Now we will show that T : S1 × l2 → L(l2) is continuous.

To this end, observe that

‖(T (λ,x)− T (µ,y))z‖2 =∑
n∈Z

∣∣∣∣(∂fn(λ,x(n))

∂x
− ∂fn(µ,y(n))

∂x

)
z(n)

∣∣∣∣2 ≤∑
n∈Z

∣∣∣∣∂fn(λ,x(n))

∂x
− ∂fn(µ,y(n))

∂x

∣∣∣∣2 |z(n)|2.
(35)

Assumption (A1) implies that for any M > 0 and ε > 0 there exists δ > 0 such for all (λ1, x1), (λ2, x2) ∈ S1 ×Rd

with d
(
(λ1, x1), (λ2, x2)

)
< δ, one has

sup
n∈Z

∣∣∣∣∂fn(λ1, x1)

∂x
− ∂fn(λ2, x2)

∂x

∣∣∣∣ < ε.

Fix x ∈ l2 and ε > 0 and take δ > 0 as above (for M := 2‖x‖). Let d((λ, 0), (µ, 0)) < min{δ/4, ‖x‖} and

‖x− y‖ < min{δ/4, ‖x‖}. Then for any k ∈ Z one has |x(k)− y(k)| ≤ ‖x− y‖ and

∣∣∣∣∂fk(λ,x(k))

∂x
− ∂fk(µ,y(k))

∂x

∣∣∣∣ ≤ sup
n∈Z

∣∣∣∣∂fn(λ,x(k))

∂x
− ∂fn(µ,y(k))

∂x

∣∣∣∣ < ε. (36)

Thus, taking into account (35) and (36), we infer that

‖(T (λ,x)− T (µ,y))z‖2 ≤
∑
n∈Z

ε2|z(n)|2 = ε2‖z‖2

provided d((λ, 0), (µ, 0)) < min{δ/4, ‖x‖} and ‖x − y‖ < min{δ/4, ‖x‖}. Consequently, we deduce that T is

continuous (with respect to the norm topology of L(l2)).

Finally, it is not hard to see that the same reasoning as above implies that DλF (λ,x) = T̃ (λ,x) and that DλF

is continuous on S1 × l2. This completes the proof.
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Now we will show that G is C1 such that DxG(λ,x) is a Fredholm operator of index 0. For this purpose we need

to prove the following lemma.

Lemma 4.2.
Under Assumptions (A1)–(A2), for any x = (xn) ∈ c(Rd), one has

∂fn(λ, xn)

∂x
−−−−−→
n→±∞

a(λ,±∞) (uniformly with respect to λ ∈ S1).

Proof. Fix x ∈ c(Rd) and ε > 0. Then Assumption (A1) implies that there exists δ > 0 (for M := 2‖x‖∞)

such that

∀k∈Z ∀|y|≤δ ∀λ∈S1

∣∣∣∣∂fk(λ, y)

∂x
− ∂fk(λ, 0)

∂x

∣∣∣∣ < ε.

Since xn −−−−−→
n→±∞

0, it follows that there exists n0 > 0 such that |xn| ≤ δ for |n| ≥ n0. Hence

∀|k|≥n0
∀λ∈S1

∣∣∣∣∂fk(λ, xk)

∂x
− ∂fk(λ, 0)

∂x

∣∣∣∣ < ε.

Now the assertion of lemma follows from Assumption (A2).

Theorem 4.1.
Under Assumptions (A1)–(A2), the map G is C1. Moreover, for any λ ∈ S1 the map Gλ : l2 → l2 is a Fredholm
map of index 0.

Proof. From Proposition 4.2 it follows directly that the map G(λ,x) := Sx − F (λ,x) is C1. Fix x ∈ l2 and

λ ∈ S1. Let an(λ, xn) :=
∂fn(λ, xn)

∂x
. From Proposition 4.2 it follows that DxG(λ,x) is the operator Lλ : l2 → l2

defined by

Lλy = (yn+1 − an(λ, xn)yn). (37)

Assumption (A2) and Lemma 4.2 imply that a = (an(λ, xn)) is asymptotically hyperbolic. Consequently by

Theorem 3.1, the operator Lλ is Fredholm with index given by (26). Thus indLλ = 0, since by (A2) the stable

subspaces at ±∞ have the same dimension.

Lemma 4.3.
For any bounded sequence (xn) ⊂ l2 the family of functions {G(·,xn) : S1 → l2}n∈Z is equicontinuous.

Proof. First observe that there exists M > 0 such that |xn(k)| ≤ ‖xn‖ ≤ M for n ∈ N and k ∈ Z. From

Lemmas 4.1 and 4.2 it follows that

LM := sup
(µ,x)∈[a,b]×B̄(0,M)

‖DλG(µ,x)‖ <∞.

Integrating DλG(µ,x) over an arc of the circle joining λ1 with λ2 we get

‖G(λ2,xn)−G(λ1,xn)‖ ≤ Ldist (λ2, λ1)

which implies the equicontinuity of the family
{
G(·,xn) : S1 → l2

}
n∈Z.
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5. Properness

We are going to discuss a properness criterion for the map G adapting to our framework the approach used in

[30].

Definition 5.1 ([30]).
We say that a sequence (xn) in l2 vanishes uniformly at infinity if, for all ε > 0, there exist n0 ∈ N and m0 ∈ N
such that |xn(m)| ≤ ε for all n ≥ n0 and for all |m| ≥ m0

Lemma 5.1.
Let x ∈ l2 and let (xn) ⊂ l2. Then xn −−−−⇀

n→∞
x weakly in l2 if and only if (xn) is norm bounded in l2 and

pk(xn) −−−−→
n→∞

pk(x), for all k ∈ Z, where pk : l2 → R are the canonical projections.

Proof. This is proved in [6, Theorem 14.4].

Lemma 5.2.
Let (hn) ⊂ Z be a sequence such that lim

n→∞
|hn| = ∞ and let x ∈ l2. Define the sequence (x̃n) by x̃n(m) :=

x(m+ hn) for m ∈ Z, then x̃n −−−−⇀
n→∞

0 weakly.

Proof. It is a straightforward from Lemma 5.1.

Lemma 5.3.
Let (xn) be a bounded sequence in l2 and let x ∈ l2. The following statements are equivalent:

(i) ‖xn − x‖∞ −−−−→
n→∞

0.

(ii) xn −−−−⇀
n→∞

x in l2 and (xn) vanishes uniformly at infinity.

Proof. First, observe that the implication (i) =⇒ (ii) is obvious. We are to show that (ii) implies (i). Fix

ε > 0. Then there exist m0 ∈ N and n0 ∈ N such that |xn(m)| < ε and |x(m)| < ε, for all |m| ≥ m0 and n ≥ n0.

Hence |xn(m)− x(m)| < 2ε, for all |m| ≥ m0 and n ≥ n0. Lemma 5.1 implies that there exists n1 ∈ N such that

|xn(m)−x(m)| < ε, for all n ≥ n1 and |m| < m0. Thus we deduce that ‖xn−x‖∞ ≤ 2ε, for all n ≥ max{n0, n1},

which implies that ‖xn − x‖∞ −−−−→
n→∞

0.

The following lemma will play a crucial role in the proof the properness.

Lemma 5.4 (Shifted subsequence lemma).
Let (xn) ⊂ l2 be a bounded sequence. Then at least one of the following properties must hold.

(i) (xn) vanishes uniformly at infinity.

(ii) There is a sequence (lk) ⊂ Z with lim
k→∞

lk =∞ and a subsequence (xnk ) of (xn) such that a sequence (x̃k)

defined by x̃k(m) := xnk (m+ lk), for m ∈ Z, converges weakly in l2 to x̃ 6= 0.

(iii) There is a sequence (lk) ⊂ Z with lim
k→∞

lk = −∞ and a subsequence (xnk ) of (xn) such that a sequence

(x̃k) defined by x̃k(m) := xnk (m+ lk), for m ∈ Z, converges weakly to x̃ 6= 0.
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Proof. Assume that (xn) does not satisfy (i). Then there exists ε > 0 such that for all k ∈ N there exists

mk ∈ Z with |mk| ≥ k and there exists nk ≥ k such that |xnk (mk)| ≥ ε. By passing to a subsequence, if necessary,

we may suppose that (mk) diverges either to ∞ or to −∞. Suppose that lim
k→∞

mk =∞. Let lk ∈ Z be defined by

lk := mk. Let x̃k := (xnk (n+ lk)). It is clear that ‖x̃k‖ = ‖xnk‖. Since (x̃k) is bounded, i.e., there exists K > 0

such that ‖x̃k‖ ≤ K for all k ∈ N, we can assume (x̃k) converges weakly in l2 to some element x̃. We will show

that x̃ 6= 0. Observe that ε ≤ |x̃k(0)| ≤ K. Hence lim
k→∞

x̃k(0) = x̃(0) 6= 0, since x̃k ⇀ x̃ in l2 (see Lemma 5.1).

The same reasoning shows that (iii) holds if lim
k→∞

lk = −∞.

In the remaining part of this section we will study the properties of the maps Fλ(x) = F (λ,x) and Gλ(x) =

Sx − Fλ(x) for a fixed value of parameter λ ∈ S1. We will consider our assumptions (A1)–(A4) to hold for the

constant family f(λ,x) = f(x) and drop λ everywhere from the notations. For example, the derivative of G with

respect to the second variable will be denoted by DG(x) instead of DxG(λ,x)).

Lemma 5.5.
F : l2 → l2, F∞± : l2 → l2, G : l2 → l2 and G∞± : l2 → l2 are weakly continuous.

Proof. Fix x ∈ l2. Let xk −−−−⇀
k→∞

x. We will show that F∞± (xk) −−−−⇀
k→∞

F∞± (x). To this end, by Lemma 5.1 it

suffices to show that (F∞± (xk)) is norm bounded in l2 and pn(F∞± (xk)) −−−−→
k→∞

pn(F∞± (x)), for all n ∈ Z, where

pn : l2 → R are the canonical projections. First observe that there exists M > 0 such that ‖xk‖ < M for all k ∈ N

and hence |xk(n)| < M for k ∈ N and n ∈ Z. From Lemma 4.1 we infer that

C := sup
(n,y)∈Z×B̄d(0,M)

|Dfn(y)| <∞.

Thus, reasoning as in the proof of Proposition 4.1, we get ‖F∞± (xk)‖ ≤ C‖xk‖ < CM, for all k ∈ N. On the

other hand, since fn −−−−−→
n→±∞

f∞± , uniformly on bounded subsets of Rd, it follows that the map f∞± : Rd → Rd is

continuous.

Since xk(n) −−−−→
k→∞

x(n), we deduce that

pn(F∞± (xk)) = f∞± (xk(n)) −−−−→
k→∞

f∞± (x(n)) = pn(F∞± (x)),

which completes the proof that F∞± is weakly continuous. The same proof shows that F is also weakly continuous

which, on its turn implies that both G and G∞± are weakly continuous. This completes the proof.

Lemma 5.6.
If G : l2 → l2 is a Fredholm map, then the following statements are equivalent:

(a) The restricted map G|D is proper for each closed and bounded subset D of l2.

(b) If (xn) is a bounded sequence in l2 such that (G(xn)) is convergent in l2, then (xn) has a convergent
subsequence in c(Rd).
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Proof. A map G is proper on closed bounded subsets if and only if any bounded sequence (xn) such that G(xn)

is convergent has a subsequence convergent to some point of the set.

Hence, that (a) implies (b) follows plainly from the continuity of the embedding l2 ↪→ c(Rd).

In order to show that (b) implies (a), let (xn) be a bounded sequence (i.e., there exists C > 0 such that ‖xn‖ ≤ C

for all n ∈ N) such that

‖G(xn)− y‖ −−−−→
n→∞

0, (38)

where y ∈ l2. Since the ball B̄(0, C) in l2 is weakly-compact we can assume that xn ⇀ x in l2 (and hence

‖x‖ ≤ C). By (b), passing to a subsequence if necessary, we can assume that ‖xn − x‖∞ → 0 as n→∞. Since,

by Lemma 5.5, G is weakly continuous, we have G(xn) −−−−⇀
n→∞

G(x), and consequently y = G(x).

Lemma 5.7.

‖G(xn)−G(x)−DG(x)(xn − x)‖ −−−−→
n→∞

0. (39)

Proof. The assertion (39) is equivalent to

‖F (xn)− F (x)−DF (x)(xn − x)‖ −−−−→
n→∞

0. (40)

Fix ε > 0. Then there exists δ > 0 such that if ‖x̃− x‖∞ < δ, then

sup
k∈Z
|Dfk(x̃(k))−Dfk(x(k))| < ε (see Assumption (A1)). (41)

Let n0 > 0 be such that ‖xn − x‖∞ < δ, for all n ≥ n0. Fix n ≥ n0 and k ∈ Z. Then

fk(xn(k))− fk(x(k))−Dfk(x(k))(xn(k)− x(k)) =∫ 1

0

Dfk
(
xn(k)− s[xn(k)− x(k)]

)(
xn(k)− x(k)

)
ds−

∫ 1

0

Dfk(x(k))(xn(k)− x(k))ds =∫ 1

0

(
Dfk

(
xn(k)− s[xn(k)− x(k)]

)
−Dfk(x(k))

)
(xn(k)− x(k)) ds.

Hence

|fk(xn(k))− fk(x(k))−Dfk(x(k))(xn(k)− x(k))| =∣∣∣∣∫ 1

0

(
Dfk

(
xn(k)− s[xn(k)− x(k)]

)
−Dfk(x(k))

)(
xn(k)− x(k)

)
ds

∣∣∣∣ ≤∫ 1

0

∣∣Dfk(xn(k)− s[xn(k)− x(k)]
)
−Dfk(x(k))

∣∣ |xn(k)− x(k)|ds.

Taking into account (41), we obtain

∫ 1

0

∣∣Dfk(xn(k)− s[xn(k)− x(k)]
)
−Dfk(x(k))

∣∣ |xn(k)− x(k)|ds ≤
∫ 1

0

ε |xn(k)− x(k)| ds = ε |xn(k)− x(k)| .
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Thus, we arrive at

‖F (xn)− F (x)−DF (x)(xn − x)‖2 =
∑
k∈Z

|fk(xn(k))− fk(x(k))−Dfk(x(k))(xn(k)− x(k))|2

≤
∑
k∈Z

ε2 |xn(k)− x(k)|2 = ε2‖xn − x‖2 ≤ ε2(2C)2,

for n ≥ n0. This proves that

‖F (xn)− F (x)−DF (x)(xn − x)‖ −−−−→
n→∞

0 (42)

and the lemma.

By the above lemma and (38) we have ‖DG(x)(xn − x)‖ −−−−→
n→∞

0. By Riesz criterion, Fredholm operators are

invertible modulo compact operators. Therefore, there exist a bounded operator B : l2 → l2 and a compact

operator K : l2 → l2 such that B ◦DG(x) = I +K. In turn this implies that

‖xn − x‖ = ‖(B ◦DG(x)−K)(xn − x)‖ ≤ ‖
(
B ◦DG(x)

)
(xn − x)‖+ ‖K(xn − x)‖ ≤

‖B‖‖DG(x)(xn − x)‖+ ‖K(xn − x)‖.
(43)

Since a compact operator K : l2 → l2 maps weakly convergent sequences onto norm convergent sequences, we

infer that

‖K(xn − x)‖ −−−−→
n→∞

0. (44)

Thus, in view of (42)–(44), one obtains ‖xn − x‖ −−−−→
n→∞

0, which completes the proof.

Given m ∈ Z, by Sm : l2 → l2 we will denote the m-shift operator defined by

Smx := Sm(x) = (xn+m). (45)

Lemma 5.8.
For any x ∈ l2 and m ∈ Z, pm (SkG(x)− SkG∞± (x)) −−−−−→

k→±∞
0 (uniformly with respect to any bounded set B ⊂ l2).

Proof. Let B ⊂ l2 be a bounded subset. Then there exists a constant C such that |x(n)| ≤ C, for all n ∈ Z and

x ∈ B. Assumption (A4) implies that there exists a positive integer ñ0 = n(ε,B) such that |f±k(x)− f∞± (x)| < ε,

for k ≥ ñ0 and x with |x| ≤ C. Consequently,

|f±k(x(±k))− f∞± (x(±k))| < ε, (46)

for k ≥ ñ0 and x ∈ B. Finally, taking into account (46), we deduce that for any k ≥ n0 := ñ0 + |m| one has

|pm±k(G(x)−G∞± (x))| = |pm±k(F (x)− F∞± (x))| = |fm±k(x(m± k))− f∞± (x(m± k))| < ε,
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for all x ∈ B. Finally, it suffices to observe that

|pm (SlG(x)− SlG∞± (x))| = |pm+l(G(x)−G∞± (x))|.

This completes the proof.

Theorem 5.1.
Under Assumptions (A1)–(A2) and (A4), G : l2 → l2 is proper on the closed bounded subsets of l2.

Proof. In view of Lemma 5.3 and Lemma 5.6 it suffices to show that any bounded sequence (xn) in l2 such that

‖G(xn)− y‖ −−−−→
n→∞

0 for some y ∈ l2 has a weakly convergent subsequence which vanishes uniformly at infinity.

Since (xn) is bounded, we may assume without loss of generality that xn −−−−⇀
n→∞

x weakly in l2 for some x ∈ l2.

If the alternative (ii) of Lemma 5.4 holds, (xn) has a subsequence xnk whose translates x̃k(n) := xnk (n + lk)

converge weakly to x̃ 6= 0.

Observe that ‖G(xn)− y‖ = ‖SlkG(xn)− ỹk‖, where ỹk := Slky, and therefore

‖SlkG(xnk )− ỹk‖ ≤ ‖SlkG(xnk )− SlkG(xn)‖+ ‖SlkG(xn)− ỹk‖ = ‖G(xnk )−G(xn)‖+ ‖G(xn)− y‖,

which shows that

‖SlkG(xnk )− ỹk‖ −−−−→
k→∞

0. (47)

Now let us fix m ∈ Z. By Lemma 5.8

|pm (SlkG(xnk )− SlkG
∞
+ (xnk ))| −−−−→

k→∞
0 (48)

and hence |pm(SlkG
∞
+ (xnk )− ỹk)| −−−−→

k→∞
0 as well. Since

Slk (G∞+ (xnk )) = S(xnk (n+ lk))− (f∞+ (xnk (n+ lk))) = S(x̃k(n))− (f∞+ (x̃k(n))) = G∞+ (x̃k),

we deduce that

|pm(G∞+ (x̃k)− ỹk)| −−−−→
k→∞

0.

Since the sequence (G∞+ (x̃k) − ỹk) is bounded in l2, it follows from Lemma 5.1 that G∞+ (x̃k) − ỹk −−−−⇀
k→∞

0 in

l2. But Lemma 5.2 implies that ỹk −−−−⇀
k→∞

0 in l2. Hence we get that G∞+ (x̃k) −−−−⇀
k→∞

0 in l2. However, the

weak sequential continuity of G∞+ : l2 → l2 implies that G∞+ (x̃k) −−−−⇀
k→∞

G∞+ (x̃) weakly in l2, which implies that

G∞+ (x̃) = 0, contradicting Assumption (A4). This shows that the sequence (xn) cannot have the property (ii)

of Lemma 5.4. By a similar arguments we can exclude the property (iii) in Lemma 5.4. This completes the

proof.
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6. Proof of the main theorem

For the proof we will use an extension of Leray-Schauder degree to proper Fredholm maps of index 0 introduced

in [18] under the name of base point degree. What is of interest for us is a very special form of the homotopy

principle for this degree. As a consequence of Kuiper’s theorem about the contractibility of the linear group of

a Hilbert space, only the absolute value of any degree theory for general Fredholm maps extending the Leray-

Schauder degree can be homotopy invariant. The most interesting characteristic of the base point degree consists

in that the change in sign of the degree along a homotopy can be determined using an invariant of paths of linear

Fredholm operators of index zero called parity.

The parity is defined as follows: Let L : [a, b]→ Φ0(X,Y ) be a path of Fredholm operators such that both La and

Lb are invertible. It can be shown [11] that there exists a path of invertible operators P : [a, b]→ GL(Y,X) such

that LtPt = Id Y −Kt, where Kt is a family of operators with ImKt contained in a finite dimensional subspace

V of Y. Such a path P is called a (regular) parametrix. If P is a parametrix, being LaPa and LbPb invertible so

are their restrictions Ca, Cb : V → V to the subspace V containing the images of Ka,Kb. The parity of the path

L is the element σ(L) ∈ Z2 = {1,−1} defined by

σ(L) = sign detC(a) sign detC(b).

The above definition is independent of the choices involved. The parity is multiplicative and invariant under

homotopies of paths with invertible end points. If the path L is closed, i.e., La = Lb, then, via the identification

S1 ' [a, b]/{a, b} we can consider the path L as a map L : S1 → Φ0(X,Y ) and relate the parity of a closed path

with the obstruction to triviality w1 : K̃O(S1)→ Z2.

Lemma 6.1 ([11], Proposition 1.6.4 or [23], Proposition 3.1).
Under the above assumptions,

σ(L) = w1(IndL). (49)

Now let us recall the construction of the degree. A C1-Fredholm map of index 0 is by definition a C1-map

f : O → Y such that the Fréchet derivative Df(x) of f at x is a Fredholm operator of index 0.

Let O ⊂ X be an open simply connected set. An admissible triple (f,Ω, y) is defined by a C1-Fredholm map of

index 0, f : O → Y which is proper on closed bounded subsets of O, an open bounded set Ω whose closure is

contained in O and a point y ∈ Y such that y 6∈ f(∂Ω). The construction of [18] associates to each admissible

triple (f,Ω, y) and each point b ∈ O, called base point, an integral number degb(f,Ω, y) ∈ Z called base point

degree. A regular base point is a point b ∈ O which is a regular point of the map f (i.e., Df(b) is an isomorphism).

If b is a regular base point and y is a regular value of the restriction of f to Ω, then the base point degree is

defined by

degb(f,Ω, 0) =
∑

x∈f−1(0)

σ(Df ◦ γ), (50)
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where γ is any path in O joining b to x.

In order to define the degree for any y ∈ Y it is used an approximation result by regular values (see [18] for

details). If b is a singular point of f , then by definition degb(f,Ω, y) = 0. The degree such defined has the usual

additivity, excision and normalization properties. For C1-maps that are compact perturbations of the identity it

coincides with the Leray-Schauder degree. However the homotopy property requires a different formulation (for

the sake of definiteness we will take y = 0):

Lemma 6.2.
Let h : [0, 1] × O → Y be a continuous map that is proper on closed bounded subsets and such that each ht is a
C1-Fredholm map. Let Ω be an open bounded subset of X such that 0 6∈ h([0, 1] × ∂Ω). If bi ∈ O is a base point
for hi := h(i, ·), i = 0, 1, then

degb0(h0,Ω, 0) = σ(M)degb1(h1,Ω, 0),

where M : [0, 1]→ Φ0(X,Y ) is the path L◦γ, where L(t, x) := Dxh(t, x) and γ is any path joining (0, b0) to (1, b1)
in [0, 1]×O.

Notice that σ(M) is independent of the choice of the path γ because [0, 1] × O is simply connected. The proof

of the lemma 6.2 can be found in ([22, Lemma 2.3.1]). Here we will need a minor generalization of the above

property.

Lemma 6.3 (Generalized Homotopy Property).
Let h : [0, 1] × O → Y be a continuous map that is proper on closed bounded subsets and such that each ht is a
C1-Fredholm map. Let Ω be an open and bounded set whose closure is contained in [0, 1]×O such that 0 6∈ h(∂Ω).
If bi ∈ O is a base point for hi := h(i, ·), i = 0, 1, then

degb0(h0,Ω0, 0) = σ(M)degb1(h1,Ω1, 0), (51)

where M is as above and Ωt := {x ∈ X | (t, x) ∈ Ω}, for t ∈ [0, 1].

Proof. We will prove the lemma assuming that degb0(h0,Ω0, 0) 6= 0, which is the only case that we will need

in the sequel and leave to the reader the completion of the proof in the general case. Since the degree of a map

without regular points vanishes, being the absolute value of the degree a homotopy invariant, it follows from our

assumption that for all τ ∈ [0, 1] there exists a regular base point for hτ . Let C(t) := {x ∈ X | h(t, x) = 0} ∩Ω =

{x ∈ X | h(t, x) = 0}∩ Ω̄. Now we will prove that the map [0, 1] 3 t 7→ C(t) ⊂ Y is upper semicontinuous, i.e., for

any point t0 ∈ [0, 1] and any open neighborhood V ⊂ X such that C(t0) ⊂ V there exists an open neighborhood

Ut0 of t0 in [0, 1] such that C(t) ⊂ V for all t ∈ Ut0 . Indeed, let t0 and V be as above. Assume on the contrary

that for any ε > 0 there exists tε ∈ (t0 − ε, t0 + ε) ∩ [0, 1] such that C(tε) ∩ (X \ V ) 6= ∅. Thus there exists a

sequence (tn, xn) ∈ Ω̄ such that tn −−−−→
n→∞

t0, h(tn, xn) = 0 and xn ∈ X \ V . Since h−1(0) ∩ Ω̄ is compact, we can

assume that xn −−−−→
n→∞

x0 for some x0 ∈ X \V . Furthermore, the continuity of h implies that h(t0, x0) = 0. Since

(t0, x0) ∈ Ω̄, it follows that x0 ∈ C(t0) ⊂ V , which contradicts the fact that x0 ∈ X \ V .

Thus, given any point t ∈ I = [0, 1] and an open neighborhood Vt ⊂ Ωt of C(t) we can find an open neighborhood

Ut of t in I such that C(t′) ⊂ Vt for all t′ ∈ Ut. Let δ > 0 be the Lebesgue number of the covering {Ut | t ∈ I}
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and let 0 = t0 < t1 < · · · < tn = 1 be a partition of I with mesh less than δ. Then any subinterval Ii = [ti−1, ti]

is contained in some element Uτi of the covering and therefore C(Ii) ⊂ Vτi . This means that the graph of C|Ii ,

which, by its very definition, is the set {(t, x) ∈ Ω | t ∈ Ii, h(t, x) = 0}, must be contained in Ii × Vτi .

Since 0 /∈ h(Ω̄ ∩ (Ii ×X) \ (Ii × Vτi)), choosing any regular base point bi of hti , we can apply Lemma 6.2 to the

map h : Ii × V̄τi → Y and use the excision property of the degree in order to obtain

degbi−1
(hti−1 ,Ωti−1 , 0) = degbi−1

(hti−1 , Vτi , 0) = σ(Mi)degbi(hti , Vτi , 0) = σ(Mi)degbi(hti ,Ωti , 0),

where Mi(t) = Dxh(γi(t)) and γi : Ii → [0, 1]×O is any path joining (ti−1, bi−1) to (ti, bi).

Now (51) follows from the above identities, because, by the multiplicative property of the parity,
∏n
i=1 σ(Mi) =

σ(M), where M(t) = Dxh(γ(t)) and γ is the concatenation of all paths γi, 1 ≤ i ≤ n. This completes the

proof.

We will need also the following result. Recall that nonempty subsets A, B of a space X are separated (in X)

if there exists open (and hence closed) neighborhoods UA ⊃ A, UB ⊃ B in X such that UA ∩ UB = ∅ and

UA ∪ UB = X. Two sets are connected (to each other) in X if there is a connected set Y ⊂ X with A ∩ Y 6= ∅

and B ∩ Y 6= ∅. Whyburn’s Lemma (see [3]) says that if A, B are closed subsets of a compact space X that are

not connected to each other, then they are separated in X.

Now let us prove our main Theorem 2.1.

Proof. We first prove [i]. Let X = l2 and let S = G−1(0) ⊂ S1 ×X. S is a locally compact space and in fact

σ-compact, since S =
⋃
k∈N
S ∩

(
S1 × B̄(0, k)

)
. Let C0 be the connected component of T0 in S. Suppose that C0 is

bounded and let W be any bounded closed neighborhood of C0. Since C0 is a maximal connected set, A := S∩∂W

is not connected with C0 in the compact space S ∩W. Therefore there exist two compact subsets K0,K1 of S ∩W

separating the component C0 from A. Let d = dist(K0,K1) > 0, and let Ω := {(λ,x) ∈ S1 ×X | d((λ,x),K0) <

1/2d}. Then Ω is an open bounded neighborhood of C0 in S1 ×X such that G(λ,x) 6= 0 on ∂Ω. For simplicity,

we can assume that λ0 satisfying Assumption (A3) equals 1. Let q : [0, 1]→ S1 be the identification map taking

0, 1 into 1 ∈ S1. Let us consider the homotopy H : [0, 1] ×X → X defined by H(t, x) = G(q(t), x). Clearly H is

a continuous family of C1-Fredholm maps. Put Ω′ := p−1(Ω). By construction Ω′ is an open bounded subset of

[0, 1]×X and H has no zeros on the boundary of Ω′. We will apply the generalized homotopy principle to H on

Ω′ in order to obtain a contradiction. For this we need to show:

Lemma 6.4.
The restriction of H to any closed bounded subset of [0, 1]×X is proper.

Proof. Let K be a compact subset of X and let D be a closed bounded subset of [0, 1]×X. We have to show

that (H|D)−1(K) is compact. To this end, take any sequence (tn,xn) ∈ (H|D)−1(K). Without loss of generality
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we can assume that there exist t0 ∈ S1 and y ∈ X such that

tn −−−−→
n→∞

t0 ∈ [0, 1] and ‖H(tn,xn)− y‖ −−−−→
n→∞

0.

Since, by Lemma 4.3, the family of functions {G(·,xn) : S1 → l2}n∈Z is equicontinuous and H(·,xn) = G(q(·),xn),

we infer that the family {H(·,xn) : S1 → l2}n∈Z is also equicontinuous. Now we will show that

‖H(t0,xn)− y‖ −−−−→
n→∞

0. (52)

For this purpose, fix ε > 0. Then there exists k0 > 0 such that

‖H(tm,xn)−H(t0,xn)‖ < ε/2 for m ≥ k0 and for all n ∈ N,

‖H(tn,xn)− y‖ < ε/2 for n ≥ k0.

Hence

‖H(t0,xn)− y‖ ≤ ‖H(tn,xn)− y‖+ ‖H(tnxn)−H(t0,xn)‖ < ε/2 + ε/2 = ε,

for n ≥ k0, which proves (52).

From Theorem 5.1 it follows that Ht0 : X → X is proper on the closed and bounded subsets of X and therefore

there exists a subsequence (xnk ) of (xn) and x ∈ X such that ‖xnk − x‖ −−−−→
k→∞

0. Therefore, (tnk ,xnk ) −−−−→
k→∞

(t0,x) in D. Thus we conclude that (H|D)−1(K) is compact, which completes the proof of lemma.

By the above lemma H is an admissible homotopy with H0 := H(0, ·) = H(1, ·) =: H1. Furthermore, we can take

b = 0 as the base point for both H0 and H1 since, by (A3), DHi(,0) = DG1(0) is an isomorphism. Now let us

apply Lemma 6.3 choosing as path joining (0,0) with (1,0) the path γ(t) = (t,0). It follows then, that

deg0(H0,Ω
′
0,0) = σ(M)deg0(H1,Ω

′
1,0), (53)

where M is the closed path of Fredholm operators given by M(t) := DxH(t,0) = DHt(0). On the other hand,

Assumption (A3) implies that 0 is the only solution of Hi(x); i = 0, 1 which is a regular point of Hi since DHi(,0)

is an isomorphism. By definition of the base point degree ([18]) and Assumption (A3), one has

deg0(H0,Ω
′
0,0) = deg0(H1,Ω

′
1,0) = 1, (54)

which in turn implies, by (53), that σ(M) = 1. But, by Lemma 6.1 and (28), this contradicts our assumption

(11).

In order to prove [ii] we observe that [i] implies that the closure of S in S1 × X+ is a compact space and the

closure of C0 in this space is a connected set intersecting both B0 and B∞. In order to conclude the proof of [ii]

it is enough to use the following slightly improved version of Whyburn’s lemma:
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Proposition 6.1 ([3], Proposition 5).
Suppose A and B are closed and not separated in a compact space X. Then there exists a connected set D ⊂
X \ (A ∪B) such that D̄ ∩A 6= ∅ and D̄ ∩B 6= ∅.

7. Example

Now we are going to illustrate the content of Theorem 2.1 formulated in Section 2 and the techniques developed

in this paper. Fix 0 < α < 1 and β > 1. For λ = exp(iθ), 0 ≤ θ ≤ 2π, we define a : S1 → GL(2) as follows

a(λ) = a(exp iθ) :=

α+ (β − α) sin2

(
θ

2

)
α− β

2
sin(θ)

α− β
2

sin(θ) α+ (β − α) cos2

(
θ

2

)
 .

Then we can consider the linear nonautonomous system a = (an(λ)) : Z× S1 → GL(2) defined by

an(λ) =


a(λ) if n ≥ 0,

a(1) if n < 0.

(55)

Since independently of λ ∈ S1 the matrix a(λ) has two eigenvalues α ∈ (0, 1) and β ∈ (1,∞), the system

a : Z× S1 → GL(2) is asymptotically hyperbolic. We will apply our results to nonlinear perturbations of a : Z×

S1 → GL(2). We compute the asymptotic stable bundles of a at ±∞ :

Es(+∞) = {(λ, u) ∈ S1 × R2 | u = t(cos(θ/2), sin(θ/2)), λ = exp(iθ), t ∈ R},

Es(−∞) = {(λ, u) ∈ S1 × R2 | u = (t, 0), t ∈ R}.

Thus Es(−∞) is a trivial bundle and hence w1(Es(−∞)) = 1. In order to compute w1(Es(+∞)) we notice that

vθ = (cos(θ/2), sin(θ/2)) is a basis for Esθ(+∞) which is the fiber of the pullback E′ of Es(+∞) by the map

p : [0, 2π] → S1 defined by p(θ) = exp(iθ). Since v0 = (1, 0) and v2π = (−1, 0), the determinant of the matrix C

arising in (10) is −1. Hence w1(Es(+∞)) = −1 6= w1(Es(−∞)).

Let us consider the family L of operators Lλ defined by

Lλ(x)(n) =


xn+1 − a(λ)xn if n ≥ 0,

xn+1 − a(1)xn if n < 0.

Then Remark 3.1 implies that KerLλ is isomorphic to Es(λ,+∞)∩Eu(λ,−∞). But Eu(−∞) = {(λ, u) ∈ S1×R2 |

u = (0, t), t ∈ R} and hence a nontrivial intersection arises only for θ = π, i.e., λ = −1. Thus KerLλ 6= {0}

only if λ = −1. Theorem 3.1 implies that Lλ is a Fredholm operator of index: ind(Lλ) = dimEs(λ,+∞) −
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dimEs(λ,−∞) = 1 − 1 = 0. Hence we infer that Lλ is an isomorphism for λ 6= −1, since KerLλ = {0}, for

λ 6= −1.

Let h : Z× S1 × R2 → R2 be a continuous family of C1-dynamical systems satisfying Assumption (A1) and

(A2′) Dxhn(λ, 0) −−−−−→
n→±∞

0 uniformly with respect to λ ∈ S1;

(A3′) for any x ∈ R2 and λ ∈ S1, hn(λ, x) −−−−−→
n→±∞

h∞± (λ, x) (uniformly with respect to any bounded set B ⊂ R2),

and the following two difference equations xn+1 = a(λ)xn + h∞± (λ, xn) admit only the trivial solution

(xn = 0)n∈Z, for all λ ∈ S1;

(A4′) for some λ0 ∈ S1 \ {−1} we have that Dxhn(λ0, 0) = 0, for all n ∈ Z, and the difference equation

xn+1 = a(λ0)xn + hn(λ0, xn) admits only the trivial solution (xn = 0)n∈Z.

Now it is easily seen that whenever the nonlinear perturbation h verifies (A1) and (A2′)–(A4′) then the family

f = a + h satisfies all the assumptions of Theorem 2.1. Therefore it must have a connected branch of nontrivial

homoclinic solutions joining T0 with T∞.
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