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We present a theoretical investigation of the electronic and optical properties of V- and T-shaped quantum
wires. Valence-band mixing as well as realistic sample geometries are fully included through an accurate and
efficient approach that is described here in detail. We investigate the resulting valence-band structure, which
shows some significant peculiarities, such as an anomalously large spin splitting in the lowest heavy-hole
subband of T-shaped wires. For both classes of wires we obtain good agreement between calculated optical
absorption and recent experimental spectra, and we demonstrate that the analysis of optical anisotropy can be
used as an effective tool to extract information on valence states, which is usually very difficult to obtain
otherwise. @S0163-1829~97!01008-4#
INTRODUCTION

In recent years, one-dimensional ~1D! semiconductor
nanostructures have received increasing attention. The poten-
tial technological application of quantum wires ~QWR’s!,
e.g., in laser devices, has fueled a search for new fabrication
techniques and improved sample quality.1 In this area, recent
investigations have focused on two classes of structures, the
so-called V-shaped2–6 and T-shaped7–14 QWR’s ~V-QWR’s
and T-QWR’s!. Due to high control on growth conditions
and strong confinement of the electron and hole wave func-
tions on the scale of a few nanometers, V-QWR’s and
T-QWR’s share desirable optical properties for device appli-
cations, such as large exciton binding energy and a small
linewidth.

V-QWR’s are obtained from a GaAs substrate grown
along the @001# crystallographic direction, patterned with
@ 1̄10#-oriented V-shaped grooves obtained by chemical etch-
ing. The active region consists of a GaAs layer cladded
between two Al xGa 12xAs regions2 or GaAs/AlAs
superlattices5 ~SL’s! overgrown on the patterned sub-
strate. The confining potential ~see Fig. 1! has a crescent
shape profile. T-QWR’s are obtained by first growing a
GaAs/Al xGa 12xAs SL on a ~001! substrate. After cleavage,
a GaAs quantum well ~QW! is grown over the exposed ~110!
surface, resulting in a T-shaped active region.7 In both cases,
the electron and hole wave functions are confined in the
@001# and @110# crystallographic directions, while the QWR
free axis is parallel to the @ 1̄10# direction.

The optical spectroscopy of QWR’s is more complex
than for QW’s of similar lateral dimension, since in QWR’s
linewidths can be comparable to intersubband splittings. On
the other hand, a remarkable peculiarity of QWR’s with re-
spect to QW’s is that the optical activity is strongly aniso-
550163-1829/97/55~11!/7110~14!/$10.00
tropic when light is linearly polarized, with the electric field
directed parallel or perpendicular to the wire axis. This has
long been recognized to be a band structure effect due to the
quasi-one-dimensional character of electronic state, com-
bined with heavy- and light-hole ~HH and LH! mixing.15 The
anisotropic absorption is therefore used as a simple tool to
reveal the 1D character of electronic states in nanostructured
materials.

In principle, the optical anisotropy can be exploited to
single out detailed information on the electronic states, since,
as we will show, it is very sensitive to specific details of the
band structure. In practice, this approach has been so far
limited by the lack of realistic calculations for complex ge-
ometries, as the present V-QWR’s and T-QWR’s. Indeed,
common theoretical methods, even within semiempirical
schemes as the tight-binding or the envelope-function ap-
proach, require a large scale computational effort. In order to
keep calculations tractable, up to now the optical properties
of QWR’s have been investigated theoretically only for
rather idealized structures,16–21 yielding results that cannot
be directly compared with experimental spectra. Calculations
have been performed for realistic QWR geometries,22 but
they have so far neglected HH-LH mixing.

Recently, we have demonstrated, by a combined
theoretical-experimental study of V-QWR’s,23 that accurate
band structure calculations for realistic structures provide
quantitative predictions of photoluminescence excitation
~PLE! spectra, and that detailed information on the valence-
band states can be singled out of the PLE anisotropy, despite
the dominant role of the light conduction electrons in the
optical spectra. Such calculations were based on a recently
devised method which provides the band structure for
QWR’s of arbitrary geometry at a relatively small computa-
tional cost. The accuracy and the short computer times make
such calculations a practical characterization tool in conjunc-
7110 � 1997 The American Physical Society



55 7111BAND STRUCTURE AND OPTICAL ANISOTROPY IN V- . . .
tion with experimental results, as well as a predictive tool for
new devices.

In this paper, we present a theoretical investigation of the
electronic and optical properties of V-QWR’s and T-QWR’s.
We focus on the relationship between optical anisotropy and
band structure, and we show how the analysis of optical
anisotropy permits a detailed spectroscopy of valence states,
even when the large linewidth of the spectra does not allow
an identification of the valence-to-conduction subband tran-
sitions. For T-QWR’s we also predict a huge spin splitting of
the lowest valence subband, originating from the interaction
between the lowest HH levels of the intersecting QW’s. For
both classes of wires, calculations are performed by the nu-
merical method introduced in Ref. 23—described here in
detail—thereby demonstrating its accuracy and flexibility.

The main approximation that is still present in our ap-

FIG. 1. Confining potential profiles of V-QWR’s and T-QWR’s,
with an indication of relevant crystallographic directions and refer-
ence frame. For V-QWR’s we show two potential profiles, profile A
~solid line! and profile B ~dotted line!, which are characterized by a
different value of the confinement length L ~profile A:
L58.7 nm; profile B: L56.83 nm) and which will be investigated
in Sec. II; the supercell periodicity used in the calculations ~see Sec.
I! is approximately 120 nm along x and 37 nm along y . For the
T-QWR, QW1 is truncated at the left-hand side at x5250 nm; the
supercell periodicity is approximately 55 nm along x and 50 nm
along y .
proach is the neglect of excitonic effects. Indeed, recent cal-
culations which fully include Coulomb interaction in realistic
QWR profiles22 ~but do not include HH-LH mixing! demon-
strate that electron-hole interaction, besides giving rise to
bound excitonic states below the band edge, also modifies
the excitonic continuum above the band edge. However, our
previous investigation in V-QWR’s ~Ref. 23! has shown that
quantitative agreement is obtained between the observed
PLE anisotropy, which probe the excitonic continuum, and
the anisotropy in absorption spectra calculated neglecting ex-
citonic effects. We interpret this result as an indication that
the electron-hole Coulomb interaction, by mixing isotropi-
cally the ~optically anisotropic! electron and hole states, does
not change the average anisotropy as obtained by single par-
ticle band structure calculations. This is of course compatible
with the possibility that the relative intensity of the absorp-
tion peaks for a given polarization may be strongly
affected.17 The above arguments suggest that the approxima-
tion of neglecting electron-hole Coulomb coupling is a rea-
sonable one for our purpose of studying optical anisotropies.
Of course, its accuracy for the present V- and T-QWR’s
must be established a posteriori by comparison with experi-
ments, as we will do later on in this paper.

The theoretical background and the numerical method
used in our calculations are outlined in Sec. I. Sections II and
III report the results of our calculations, focusing on the band
structure and optical anisotropy, for V-QWR’s and
T-QWR’s, respectively.

I. MODELING THE BAND STRUCTURE IN WIRES
OF ARBITRARY GEOMETRY

In this section we describe the theoretical framework of
our calculations. As we are interested in optical transitions
near the direct band gap of GaAs, and because QWR elec-
tronic states are extended over several nanometers, we work
within the envelope function approximation. For the wires of
interest in this paper, we choose the following Cartesian ref-
erence frame ~see also Fig. 1!: x along the @110# direction,
y along the @001# direction, and z along the @110# direction.
Therefore, for both classes of wires, the QWR section ex-
tends in the x2y plane, while its free axis is parallel to the
z direction. Due to translational invariance, along this direc-
tion it is possible to define a 1D wave vector kz . In the x and
y directions we assume a supercell periodicity, i.e., we de-
scribe arrays of QWR’s. The size of the supercell can be
taken large enough to describe effectively isolated wires
when needed.

Electron and hole states will be described separately by
different effective mass equations. For conduction electrons,
we assume a single-band approximation, which implies a
parabolic energy dispersion in the free direction; the wave
functions of the electron subbands are

Cn
e~r!5Fn

e~r!us ,s&, ~1!

where us ,s& is the atomic s state with spin sP$" ,#%, n is
the subband index, and Fn

e(r) is the nth solution of the
envelope-function equation. Since we deal with a two-
dimensional confinement potential V(x ,y), we can factorize
Fn

e(r)5eikzzcn
e(x ,y), where cn

e is the nth solution of
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Ĥecn
e~x ,y !5En ,kz

e cn
e~x ,y !, ~2!

with the electron effective mass Hamiltonian

Ĥe5F \2

2me
~ k̂ x

21 k̂ y
21kz

2!1V~x ,y !G ; ~3!

here me is the electron effective mass, and k̂ x52i]/]x ,
k̂ y52i]/]y . Of course, in this one-band description, the
electron subbands En ,kz

e depend quadratically on kz :

En ,kz

e 5en
e1

\2kz
2

2me
, ~4!

where the en
e’s are the confinement energies ~i.e., the sub-

band edges!. The subbands En ,kz

e are spin degenerate, and the

cn
e’s are kz independent.

Conduction-band states do not directly contribute to opti-
cal anisotropy, being mainly of isotropic s-type character,
and in this case the above one-band description is sufficient.
Conversely, it is essential to give an accurate account of
p-type valence states by a multiband description, in order to
investigate optical anisotropy. Due to mixing between HH
and LH subbands, both eigenvalues and envelope functions
depend nontrivially on the wave vector kz and the hole sub-
band index m . Using the compact notation a5(kz ,m), we
write the hole wave functions

Ca
h ~r!5(

Jm

FJm ,a
h ~r!u3/2,Jm&, ~5!

where u3/2,Jm& are the four atomic states with total angu-
lar momentum J53/2 and projection Jm513/2,
11/2, 21/2, 23/2 of J along a quantization axis. Again,
each envelope function FJm ,a

h (r) can be factorized as

FJm ,a
h (r)5eikzzcJm ,a

h (x ,y), and the four-component vector

ca
h (x ,y)5(c13/2,a

h ,c21/2,a
h ,c11/2,a

h ,c23/2,a
h ) is the mth so-

lution at point kz of the multiband effective mass equation,24

ĤL ca
h 5Ea

h ca
h , ~6!

where ĤL is the Luttinger Hamiltonian.25 With the above
choice of coordinate axes and the quantization axis of J
along the @110# direction, following Ref. 26 the Luttinger
Hamiltonian reads
ĤL5
\2

2m0 S P̂11V~x ,y ! R̂ Q̂ 0

R̂† P̂21V~x ,y ! 0 2Q̂

Q̂† 0 P̂21V~x ,y ! R̂

0 2Q̂† R̂† P̂11V~x ,y !

D u3/2,13/2&
u3/2,21/2&
u3/2,11/2&
u3/2,23/2&

, ~7!
where

P̂15S g12
g213g3

2 D k̂ x
21~g11g2!k̂ y

21S g12
g223g3

2 D kz
2 ,

~8a!

P̂25S g11
g213g3

2 D k̂ x
21~g12g2!k̂ y

21S g11
g223g3

2 D kz
2 ,

~8b!

R̂52A3F2
g22g3

2
k̂ x

21~g2k̂ y22ig3kz!k̂ y2
g21g3

2
kz

2G ,

~8c!

Q̂522A3~g3k̂ y2ig2kz!k̂ x . ~8d!

This Hamiltonian provides the ~positive definite! hole sub-
bands, referred to the bulk valence-band edge, as a function
of the in-wire wave vector kz , including HH-LH mixing.
The hole Hamiltonian for structures grown along crystallo-
graphic directions different from the present ones can be ob-
tained along the lines of Ref. 26. In the above electron and
hole effective mass Hamiltonians we neglect the material
dependence of the electron effective mass me and the Lut-
tinger parameters g1, g2, and g3, and we always use the bulk
GaAs values listed in Table I. Although our approach can be
extended to account for the material dependence, this would
be a small effect in our calculations.

One possible approach to solve the multiband equation ~6!
is to split the problem in two parts: the first step is to solve
the two Schrödinger-like equations arising from the diagonal
terms of ~7!,

@ P̂11V~x ,y !#f i
1~x ,y !5e i

1f i
1~x ,y !, ~9!

@ P̂21V~x ,y !#f i
2~x ,y !5e i

2f i
2~x ,y !. ~10!

The second step is to use the set f i
1 as a basis to expand the

components 63/2 of the vector ca
h , and the set f i

2 as a
basis for the components 61/2. In this representation, the
diagonal matrix elements of the HL are given by the two sets
of scalar numbers e i

1 , e i
2 , and matrix elements need only to

be calculated for off-diagonal terms, using the functions
f i

1 , f i
2 . This approach has the following drawback: since

TABLE I. Bulk GaAs band parameters used in the calculations.

me g1 g2 g3 Eg ~eV!

0.067 6.85 2.1 2.9 1.519
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the effective masses appearing in P̂1, P̂2 ~the so-called HH
and LH effective masses! are very different, the two sets of
eigenvalues e i

1 , e i
2 span different energy ranges. The set

e i
2, being the spectrum of a light particle, will have larger

gaps, and the ground state will be higher in energy than for
the set e i

1. Since we are mainly interested in the low-lying
hole subbands near e1

1, this representation, although exact in
principle, is poorly convergent with respect to the number of
states f i

1 , f i
2 included in the basis, and it is not practical in

numerical calculations.
To solve this problem, we propose a scheme in which we

expand the components of ca using the solutions of two
Schrödinger-like equations with two fictitious, arbitrary
masses m1, m2, which we then tune in order to improve the
convergence:

F \2

2m1 ~ k̂ x
21 k̂ y

2!1V~x ,y !Gfn
1~x ,y !5en

1fn
1~x ,y !, ~11a!

F \2

2m2 ~ k̂ x
21 k̂ y

2!1V~x ,y !Gfm
2~x ,y !5em

2fm
2~x ,y ! ~11b!

~here and in the following we use the index n for 1 states,
and m for 2 states!. In this way, we diagonalize exactly only
part of the kinetic energy terms P̂1 and P̂2 of ĤL , but the
potential V(x ,y) is exactly diagonalized. Of course, in this
representation en

1 , em
2 are not the diagonal elements of the

matrix representing the Hamiltonian, and P̂1, P̂2 give rise to
additional off-diagonal terms. However, the time spent to
calculate the additional terms is more than compensated by
the improved convergence which can be achieved by prop-
erly choosing m1 and m2. In the end, we shall find it con-
venient to choose m15m2, and both equal to the heavy-
hole effective mass along the @001# direction.

To implement this idea, we add and subtract a term
\2/2m1( k̂ x

21 k̂ y
2) to P̂1, and a term \2/2m2( k̂ x

21 k̂ y
2) to P̂2.

Then we obtain

P̂15 P̂15
1

m1 ~ k̂ x
21 k̂ y

2!1px
1k̂ x

21py
1k̂ y

2

1S g12
g223g3

2 D kz
2 , ~12a!

P̂25 P̂25
1

m2 ~ k̂ x
21 k̂ y

2!1px
2k̂ x

21py
2k̂ y

2

1S g11
g223g3

2 D kz
2 , ~12b!

where

px
15S g12

g213g3

2 D2
1

m1 , ~13a!

py
15~g11g2!2

1

m1 , ~13b!

px
25S g11

g213g3

2 D2
1

m2 , ~13c!
py
25~g12g2!2

1

m2 . ~13d!

Then we solve the equations ~11a! and ~11b! by a plane-
wave expansion, as outlined in Ref. 22. Typically, we fix two
energy cutoffs, Ecut

1 and Ecut
2 , and we find the N1 and N2

eigenstates which fall below the cutoffs. Using the eigen-
functions fn

1 , fm
2 , we form the following basis set:

u1 ,n ,"&5S fn
1

0

0

0

D , u1 ,n ,#&5S 0

0

0

fn
1
D , ~14a!

u2 ,m ,"&5S 0

fm
2

0

0

D , u2 ,m ,#&5S 0

0

fm
2

0

D , ~14b!

with n51 . . . N1 and m51 . . . N2, and we expand ca
h in

this basis:

ca
h 5(

ns
Ca

1~n ,s!u1 ,n ,s&1(
ms

Ca
2~m ,s!u2 ,m ,s&.

~15!

The explicit matrix elements of ĤL in this basis are given in
Appendix B. The total dimension of the Hamiltonian matrix
in this representation is 23(N11N2). All we need to com-
pute, in order to evaluate the matrix elements, are integrals
of the kind

E
V

@f i
g~x ,y !#*k̂bf j

g8~x ,y !dx dy , ~16a!

E
V

@f i
g~x ,y !#*k̂bk̂b8f j

g8~x ,y !dx dy , ~16b!

evaluated over the supercell volume V , where b ,b8
P$x ,y% and g ,g8P$1 ,2%; these are easily obtained given
the plane-wave expansions of the f i

1’s and f i
2’s. The

choice of m1, m2, which is important in order to obtain an
efficient convergence, is discussed in detail in Appendix A;
here we only anticipate that in all our calculations we use
m15m25(g122g2)21.

Once we have calculated the electron and hole subbands
by the above method, we are in the position to evaluate the
absorption spectrum ae(\v) in the dipole approximation,
summing the dipole matrix element, with the appropriate po-
larization of light e , over all electron and hole states:

ae~\v!} (
a ,n ,s

uM a!n ,s
e u2d~En

e1Ea
h 1Eg2\v!, ~17!

where the optical matrix elements M a!n ,s
e are given in Ap-

pendix C, and Eg is the bulk energy gap of GaAs; typically,
a set of sixty kz points have been included in the summation.
The absorption spectra shown in this paper have been ob-
tained by superimposing a Gaussian broadening sb to



7114 55G. GOLDONI, F. ROSSI, E. MOLINARI, AND A. FASOLINO
ae(\v), in order to simulate the inhomogeneous broadening
due to structural imperfections of the samples. The broad-
ened spectrum is obtained as

ae~\v!5E
2‘

‘
ae~\v8!e2\2~v2v8!2/2sb

2
dv8. ~18!

II. BAND STRUCTURE AND OPTICAL PROPERTIES
OF V-SHAPED WIRES

A. Samples

As a prototype of V-QWR’s, we first consider a sample
described in Refs. 5, 27. This consists of an active GaAs
layer embedded in a ~AlAs! 4/~GaAs! 8 SL, overgrown by
molecular beam epitaxy on the exposed surface of the etched
substrate. As in Refs. 23, 27, we use the V-shaped potential
profile obtained by digitalizing a TEM micrograph of the
sample. We also adopt the same supercell geometry as in
Refs. 23, 27. The complicated structure of the SL which
provides the quasi-one-dimensional confinement is modeled
by a homogeneous barrier with effective conduction- and
valence-band offsets, Veff

e and Veff
h , respectively. Based on

previous investigations27,23 for the same sample, we take
Veff

e 5150 meV and Veff
h 585 meV. It should be noted that

the effort of including exactly the confining SL in the calcu-
lations would not necessarily result in improved accuracy, as
the envelope-function approximation itself loses its validity
for such short-period SL’s.

In order to investigate the role of the confinement in the
optical properties, we shall consider two sample profiles,
which differ in the value of the confinement length L at the
bottom of the V-shaped region ~see Fig. 1!: profile A
(L58.7 nm) and profile B (L56.83 nm). These SL-
embedded QWR’s will be labeled A/SL and B/SL.

A key issue which makes nm-scale QWR’s interesting for
electro-optical applications are large confinement energies
which can be obtained with large band offsets in addition to
geometric confinement. In view of this fact, we shall com-
pare the samples described above with samples having the
same profiles and barriers constituted by pure AlAs, that we
will label A/AlAs and B/AlAs. The parameters of the four
samples are summarized in Table II.

B. Band structure

A qualitative interpretation of the band structure of a
V-QWR can be obtained by adding to a QW of width L an
additional lateral confinement due to the crescent shape of
the profile. In the lowest approximation, the latter can be
thought of as a parabolic potential1 which splits each sub-
band of the parent QW into a new set of subbands. Since the

TABLE II. V-QWR’s sample parameters.

A/SL A/AlAs B/SL B/AlAs

L ~nm! 8.7 8.7 6.83 6.83
Barrier type ~AlAs! 4/~GaAs! 8 AlAs ~AlAs! 4/~GaAs! 8 AlAs
Veff

e (eV) 0.150 1.036 0.150 1.036
Veff

h (eV) 0.085 0.558 0.085 0.558
additional confinement is less effective than the confinement
due to the original QW, the new sets of subbands have
smaller gaps with respect to the subband splittings of the
parent QW. This simplified picture will serve as a guideline
for the discussion of numerical results obtained for the actual
samples.

The calculated energies at kz50 of the lowest conduction
and valence states are listed for reference in Table III for the
four samples. In the following we shall focus on hole sub-
bands, which are shown in Fig. 2 ~right panel! for sample
A/SL. First, we note that at kz50 each subband is doubly
degenerate, while at finite kz the subbands are spin split, due
to the lack of inversion symmetry of the confining
potential.28 Splittings are in the range of few meV. Second, a
strongly nonparabolic energy dispersion is evident. This fact,
familiar from QW’s, is due to mixing of states with HH
(Jm563/2) character and LH (Jm561/2) character.

The HH/LH character of hole states influences the optical
properties of the sample, since different atomic orbital com-
ponents have different oscillator strengths; of particular in-
terest from this point of view are the kz50 states which, due
to the large density of states ~DOS! stemming from their
quasi-one-dimensional character, mainly contribute to the

TABLE III. Confinement energies ~in meV! of the lowest con-
duction and valence states at kz50 for the V-QWR’s. Note that at
kz50 spin degeneracy holds. Therefore, subband m51 is degener-
ate to m52, etc. ~Ref. 24!.

Electrons
n A/SL A/AlAs B/SL B/AlAs

1 43.3 68.3 55.5 98.8
2 57.3 91.9 63.2 117.0
3 65.3 112.5 67.0 124.0
4 69.8 126.1 72.4 132.2

Holes
m A/SL A/AlAs B/SL B/AlAs

1,2 10.7 14.4 13.1 18.7
3,4 13.1 18.1 13.8 19.5
5,6 14.4 20.0 15.6 21.7
7,8 15.8 21.8 17.1 23.7

FIG. 2. Right panel: hole band structure along the free axis
@110# of the V-QWR labeled A/SL. Black triangles indicate the
eigenvalues used in the later Fig. 11 to analyze the convergence.
Left panel: LH character of the kz50 states; the J quantization axis
is taken along @001#.
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FIG. 3. Total charge density ~left panels!, and HH- and LH-projected charge densities ~center and right panels! of selected hole subbands,
according to the labels, at kz50 for the same V-QWR of Fig. 2. Full lines indicate the GaAs/SL interfaces. For clarity, some charge density
maps have been magnified by a factor of 5 or 10, as indicated by labels. Note that the hole subbands m51,3,5, . . . at kz50 are degenerate
with the subbands m52,4,6, . . . , ~Ref. 24! and the total and projected charge densities are equal for degenerate states.
absorption intensity. Contrary to the case of QW’s, hole sub-
bands cannot be strictly classified as HH and LH states even
at kz50. To define the HH/LH character in the present
samples, we note that the direction of strongest confinement
is the @001# direction, as demonstrated by charge density
maps of the lowest-lying states which we will show later in
Fig. 3. It is therefore meaningful to calculate the HH/LH
character along this direction, because this would be the
quantization axis of J in an equivalent @001#-grown QW of
width L . To do this, we calculate the rotated vector
ca ,R

h (x ,y)5R21� ca
h (x ,y), where

R5
1

2A2 S 1 2A3 A3 1

A3 1 21 A3

A3 1 1 2A3

1 2A3 2A3 21

D . ~19!

R is obtained by diagonalizing the matrix Jy written in the
representation in which Jx is diagonal, with eigenvalues
Jm . Then we define the HH- and LH-projected charge den-
sities
ra
HH~x ,y !5 (

Jm563/2
uca ,R ,Jm

h ~x ,y !u2, ~20a!

ra
LH~x ,y !5 (

Jm561/2
uca ,R ,Jm

h ~x ,y !u2. ~20b!

Finally, the HH and LH character is obtained by integrating
the above charge densities over all space. ~In the above equa-
tions, the real-space representation is chosen for clarity. The
corresponding expressions in Fourier space, which we use in
the numerical implementation, are very easy to obtain and
are not explicitated here.!

In the left panel of Fig. 2 we show the calculated LH
character of the hole subbands at kz50. This is best analyzed
in connection with Fig. 3, where we show the total and pro-
jected charge densities of the hole states at kz50 for the
same A/SL sample. In the ground state, the LH component is
rather small (;8%), but it increases rapidly for the excited
subbands. Correspondingly, the ground state is well localized
@Fig. 3~a!#, while the lowest excited states @Figs. 3~b!, 3~c!#
have wave functions which increasingly extend along the
V-QWR sidewalls. The regular increase of the LH compo-
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nent is interrupted by the m525, 26 levels ~13th doublet:
recall that each point at kz50 is doubly degenerate! at
;27 meV which is mainly of LH character (56%). This can
be interpreted as the reminiscent of the LH state of a QW
with confinement length L . The wave function of this level
@Fig. 3~d!#, in fact, is again well localized, analogously to the
ground state, and in contrast to the wave functions of nearby
states. We shall comment later on the fingerprints of this
strongly LH-like state in the optical spectra, and, particu-
larly, in the optical anisotropy. Note also that in Fig. 2 there
are other ‘‘jumps’’ in the LH character at higher energies;
these correspond to energies where ladders of levels of dif-
ferent symmetries, like an additional nodal plane parallel to
the @110# direction, begin.

In Fig. 4 we compare the LH character vs subband energy
at kz50 for samples with different barriers ~SL and pure
AlAs!. For both profiles A and B , the strong confinement due
to AlAs barriers induces not only the expected blueshift of
the subbands, but also reduces the LH character of the lowest
LH-like state, as compared to SL barriers: in sample A/SL,
the m525, 26 doublet is 56% LH, while its counterpart in
sample A/AlAs, the m527, 28 doublet, is only 42% LH. In
sample B/SL, the m535, 36 doublet is 75% LH, while its
counterpart in sample B/AlAs, the m537, 38 doublet, is
only 52% LH.

C. Optical properties

In Fig. 5 we show the calculated absorption intensity for
the four samples of Table II and for light linearly polarized
parallel to the wire axis, I i , and perpendicular to it along the
@110# direction, I' . A Gaussian broadening of sb
564.5 meV has been included.23 For all samples, we also
report the relative optical anisotropy ~thick lines in Fig. 5!,
defined as 100*(I i2I' )/I i . The optical absorption spectra
are obtained integrating over the whole band structure ~i.e.,
integrating over kz and summing over electron and hole sub-
bands and spin!; however, for illustration we show the stron-
gest optical transitions due to kz50 states, and for one spin
orientation of the conduction electrons, for light polarization
perpendicular to the QWR axis ~histograms in Fig. 5!. To
identify the electron and hole states involved in each transi-
tion, we use the label n/m , where n and m are, respectively,
the indices of the conduction and valence states.

FIG. 4. LH character vs subband energy at kz50 for samples
with profile A ~left panel! and B ~right panel!, and with SL or AlAs
barriers ~full circles and triangles, respectively!.
We first focus on sample A/SL, for which experimental
data are available.23 The calculated anisotropy in the low-
energy part (&1.62 eV) is 10– 20 %, with a deep minimum
at ;1.59 eV, where the anisotropy is almost suppressed.
Both the average anisotropy and the position of the minimum
are in quantitative agreement with experimental data.23 The
agreement worsens at higher energies (*1.62 eV), where
the calculated anisotropy drops rapidly and finally changes
sign, while experimental data23 show an increase. We believe
that this discrepancy is due to our ‘‘effective’’ description of
the barriers which affects particularly the higher-lying hole
states.

By comparing the calculated anisotropy of the four
samples, it appears that a more or less pronounced dip over a
range of ;10 meV ~i.e., the linewidth of the broadened
spectra! is always present in the low-energy range of the
spectrum, superimposed onto a background of an otherwise
large and positive anisotropy. Additional structure, particu-
larly for sample A/AlAs, is also present in the high-energy
range. Note also that the maximum anisotropy is in the range
15– 25 %, and does not change dramatically in the different
samples.

By studying the optical matrix elements, it can be shown
that the dips in the anisotropy are due to states with a large
LH character,17 e.g., the m525 subband in sample A/SL.
Since this is a localized state and has a large spatial overlap
with the first conduction subband, it contributes to the low-
energy part of the spectrum. This is true, in general: as can
be seen from Fig. 5, for all samples the anisotropy dip cor-
responds to a kz50 transition ~highlighted as black bars in
the histograms! between the electron ground state (n51)
and an excited hole state which is the m525, the m527, the
m536, and the m537 level for A/SL, A/AlAs, B/SL, and
B/AlAs, respectively. For sample A/SL, comparison with

FIG. 5. Optical absorption intensity for linearly polarized light
parallel ~thin solid lines! and perpendicular ~thin dotted lines! to the
wire axis for the four samples listed in Table II. The relative an-
isotropy is also shown ~thick lines! in the scale on the right-hand
side of each panel. A Gaussian broadening of sb564.5 meV is
included. For each sample, we show a histogram of the strongest
optical transitions at kz50 and for one spin orientation, for light
polarizion perpendicular the QWR axis. Each bar is proportional in
height to the oscillator strength, and it is labeled with n/m , where
n is the index of the conduction state and m the index of the valence
state involved in the transition ~Ref. 24!.
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Fig. 2 shows that the involved m525 hole state has a strong
LH character and its wave function @Fig. 3~d!# is strongly
localized. The large LH component assumes that the inten-
sity for the two polarizations is reversed with respect to the
strongly HH-like ground state, causing the dip in the aniso-
tropy at 1.59 meV. A similar correspondence between the
dip and a localized LH-like state applies also to the other
samples.

An immediate consequence of the above result is that,
since both the ground HH state and the LH-like state couple
with the lowest electron subband, the difference in energy
between the onset of the continuum and the position of the
dip in the anisotropy is a direct measure of the energy split-
ting between the ground HH and the first LH state, indepen-
dently of the electron confinement. Note that such informa-
tion cannot be extracted from the absorption spectra alone, as
the large broadening prevents the identification of any single
transition apart from the fundamental one.

The HH/LH splitting obtained in the above manner can be
used to extract band structure parameters as, for example, the
effective hole confinement Veff

h . In the measured PLE spectra
for sample A/SL,23 the anisotropy dip lies ;16 meV above
the onset of the continuum; in Fig. 6 we report the HH/LH
splitting calculated for several values of Veff

h ~full dots! for
this sample. We also show, for comparison, the HH/LH split-
ting calculated by a simple square well model for a QW of
width L ~empty dots!, using the bulk HH and LH effective
mass along @001# . It can be seen that the splitting is quite
sensitive to Veff

h , and that the experimental value is compat-
ible with Veff

h ;80 meV. This observation provides a good
criterion for choosing the confinement energy of holes,
which would otherwise be rather arbitrary. Using this proce-
dure, Veff

h was finally taken equal to 85 meV in Ref. 23. Note
that a variation of the valence-band offset of 615 meV
shifts the HH/LH splitting of 61.3 meV, well within the
experimental accuracy for the determination of the HH/LH
splitting.23 Note also that, for a rough estimation of Veff

h ,
calculations using a simple square well model may be suffi-
cient.

FIG. 6. Energy gap between the hole ground state and the first
localized state with a strong LH character for the V-QWR sample
labeled A/SL as a function of the effective valence-band offset
Veff

h . Full dots: full calculation. Empty dots: square well model for a
QW of width L and barrier height Veff

h , the HH and LH levels are
obtained with mHH50.377 and mLH50.090, respectively. The ex-
perimental value is obtained as explained in the text.
The comparison with the absorption spectra demonstrates
that kz50 transitions alone give a poor estimate of the inte-
grated spectrum. This is due to the DOS contribution of the
hole subbands which are strongly nonparabolic, and have a
large DOS also for kz points away from kz50 ~see Fig. 2!.
Finally, note the relaxation of selection rules for kz50 tran-
sitions shown in Fig. 5. Indeed, if the envelope-function
parity-conserving selection rule would be obeyed, only tran-
sitions of the type n/(m52n) or n/(m52n21) ~depending
on electron spin orientation! would be allowed.

III. BAND STRUCTURE AND OPTICAL PROPERTIES
OF T-SHAPED WIRES

A. Samples

We investigate a T-QWR with the geometry sketched in
Fig. 1. In our calculation, the SL grown along the @001#
direction is constituted by 5.3 nm wide QW’s ~QW1!, sepa-
rated from each other by 50 nm wide AlAs barriers, while
the QW grown along the @110# direction ~QW2! is 4.8 nm
wide. These parameters correspond to a sample for which
polarization-dependent PLE spectra are available.12

Note that the T-QWR’s which form at the intersection
between QW1 and QW2 are not uncoupled in the @001# di-
rection, due to the SL structure of QW1’s, a fact which we
fully take into account in the supercell representation used in
our calculations. On the other hand, the T-QWR’s are iso-
lated along the @110# direction; in our calculations, this is
simulated by truncating QW1 with a AlAs barrier 50 nm on
the left-hand side.

B. Band structure

The nature of the 1D confinement in T-QWR’s is rather
different with respect to the V-QWR’s case. There, we used
the picture of a lateral confinement added on a QW structure
which, therefore, localizes all states in the x-y plane. Con-
versely, T-QWR states can be better interpreted as the result
of the coupling between 2D states of the QW’s, QW1, and
QW2. Beside perturbing the 2D states, this coupling also
induces localized states or resonances; these can be also seen
as due to a 1D defect in the otherwise translationally invari-
ant ~in the QW plane! 2D states of a QW, due to the coupling
with the other QW. This picture has nontrivial consequences,
particularly for hole states, which we analyze in the follow-
ing.

First, we focus on the lowest-lying states at kz50. Elec-
trons and holes are very different from this point of view:
contrary to the electron effective mass which is isotropic in
GaAs, the HH effective mass is strongly anisotropic between
the @001# direction (mHH50.377) and the @110# direction
(mHH50.69). The effect of this difference is shown in Fig. 7,
where we report the total charge densities for the lowest
electron and hole states at kz50. For the present structure,
being QW1 and QW2 of comparable width, the electron
ground state @Fig. 7~a!# is a quasi-one-dimensional state ex-
tending both in QW1 and QW2; the lowest excited subbands
@Figs. 7~b!, ~c!, ~d!# belong to the continuum of 2D states of
QW1, since QW1 is wider ~actually, discrete levels are ob-
tained here, due to the supercell method!; the localized
quasi-one-dimensional electron lies 15 meV below the QW1
continuum.
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On the contrary, for holes the larger mass along @110#
more than compensate for the smaller width of QW2, and the
hole ground state @Fig. 7~a!#, although localized in the center
of the T , is much more a QW2-like state, only weakly per-
turbed by coupling to QW1; accordingly, the lowest excited
hole subbands @Fig. 7~b!, ~c!# are basically 2D states belong-
ing to QW2, up to the fourth level @Fig. 7~d!#, which is a
QW1 state. The quasi-one-dimensional ground state is prac-
tically degenerate with the QW2 continuum; note, however,
that in contrast to conduction electrons, there is a second
hole level @Fig. 7~b!# with a significant component along
QW1.

The full band structure of holes is shown in the right-hand
panel of Fig. 8. In the rather complex dispersion of the sub-
bands, we can distinguish a peculiar feature of T-QWR,
namely, a huge spin splitting of the lowest doublet at finite
kz which, at kz.0.035 � 21, is ;15 meV for the present
structure.

FIG. 7. Total charge density of electrons ~left panels! and holes
~right panels! of the lowest kz50 subbands for the T-QWR.
Before discussing the origin of such a large spin splitting,
it is useful to examine the actual localization of the calcu-
lated states in the QWR. To this aim, we need to discriminate
the states peaked around the center of the T from states that
are typical of one of the parent QW’s and are left essentially
unchanged by the interaction with the other one. This is par-
ticularly useful because we expect that most of the states of
Fig. 8 simply arise from folding of QW states induced by the
supercell periodicity and to the truncation of the T along the
@110# direction. Therefore, in Fig. 8 we identify by full
circles those states which, by direct inspection of the wave
function, show a strong localization in the center of the T .
Indeed, it appears that only a limited subset has predomi-
nantly a localized character, and can therefore be assigned to
quasi-one-dimensional QWR-like states or resonances.
These include the localized states arising from the lowest
two doublets, already discussed above, as well as the reso-
nant states falling around 40 meV. The remaining states are
similar to 2D QW-like states, with the charge density local-
ized mostly in QW1 or QW2.

To clarify the origin of the large spin splitting, it is useful
to compare the band structure of the T-QWR with the hole
subbands of the parent isolated QW1 and QW2. In Fig. 8 we
show with open squares and open circles the lowest HH sub-
band of QW1 and QW2; the LH subbands, for these thick-
nesses, lie high in energy (.80 meV in QW1 and
.100 meV in QW2!.29 A small gap of ;8 meV separates
the two levels at kz50; as already noted above, the lowest
state is QW2, due to the larger HH mass. Owing to different
HH-LH mixing in each QW separately, the HH subbands of
the two parent QW’s have different energy dispersion as a
function of kz and cross at some finite kz .

Large spin splittings are, in general, an effect of HH-LH
mixing in asymmetric structures.30 In the present case, how-
ever, the energy difference between the HH and LH levels in
each isolated QW is too large to explain the huge splitting
that we have found in the lowest-energy subbands of the

FIG. 8. Right panel: hole band structure along the free axis
@110# of the T-QWR. Solid lines show the dispersion of all states
resulting from the full calculation for our supercell geometry. The
full circles identify the states that, from direct inspection of the
wave function, exhibit a predominantly localized character at center
of the T , and are therefore assigned to quasi-one-dimensional
QWR-like states or resonances. As explained in the text, the re-
maining states are similar to 2D QW-like states, with the charge
density localized mostly in QW1 or QW2. Open squares and circles
show the lowest-hole subbands of the parent isolated QW1 and
QW2, respectively. Left panel: LH character ~with J quantization
axis along @110#! of the kz50 states.
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FIG. 9. Total charge density of the lowest two
hole states of the T-QWR at kz50.035 � 21. The
HH- and LH-projected charge densities of each
state are also shown separately in the center and
right-hand panels. Full lines indicate the GaAs/
AlAs interfaces.
QWR. Naively, one would rather expect small gaps ~induced
only indirectly by coupling to the far-lying LH states! to
open at the crossing of the QW1 and QW2 subbands. Note,
however, that the HH states of the parent QW’s are eigen-
states of J with Jm563/2, but with the quantization axis
along different directions. Taking, for example, the J quan-
tization axis along @110#, a HH state of QW2 is
uQW2&5u3/2,13/2& ~for one of the degenerate spin orienta-
tions!. A HH state of QW1 written in the same basis, is

uQW1&5
1

2A2
~ u3/2,13/2&1A3u3/2,11/2&1A3u3/2,21/2&

1u3/2,23/2&). ~21!

In words, a HH state of QW1 has a strong LH component
from the point of view of QW2. Therefore, the lowest HH
subbands arising from QW1 and QW2 are strongly coupled,
which results in a strong avoided-crossing behavior and a
very large spin splitting.

This interpretation is supported by our calculation of the
LH character, which is shown in the left panel of Fig. 8. In
view of the fact that the hole ground state is rather QW2-like,
we have computed the LH character with the quantization
axis along @110#, i.e., it is obtained, as in Sec. II, by integrat-
ing the projected charge densities @see Eqs. ~20a!–~20b!#, but
using the ca

h instead of the rotated ca ,R
h . As expected, the

lowest subbands are nearly pure HH, being localized in QW2
~see Fig. 7!, while the m57,8 subbands are more than 60%
LH. This should not be interpreted as a mixing with LH
states of QW2; rather, it is a manifestation of the fact that
this state is localized in QW1 and, therefore, does not have a
well-defined orbital character along @110#.

We conclude our analysis of the lowest spin-split doublet
by noting that, as kz increases, only the lowest level remains
a well localized, quasi-one-dimensional state, while its spin
companion gradually merges into the QW1 quasicontinuum
~at large wave vectors, QW1 becomes the ground state!. For
illustration, we show in Fig. 9 the charge density of the two
lowest levels at kz50.035 � 21 ~close to the wave vector
where the QW2 and QW1 dispersions cross!. The lowest
state ~labeled "), which falls far in energy from the QW
bands, is strongly localized at the intersection of the QW’s.
The higher state ~labeled ") is peaked at the center of the T
but it also extends quite far into QW1.

C. Optical properties

In Fig. 10 we show the calculated absorption intensity for
the T-QWR and for light linearly polarized parallel to the
wire axis, I i , and perpendicular to it along the @001# direc-
tion, I' . A Gaussian broadening of sb565 meV has been
included. We can identify four main structures, a peak
around 1.65 eV, another peak around 1.68 eV ~with a minor
shoulder on the low-energy side!, a large composite structure
beginning above 1.7 eV, and another large structure at 1.74
eV. Of these, only the lowest peak involves essentially pure
QWR-like localized states @Fig. 7~a!#. The second structure
involves transitions from the next electron state, extending in
QW1 @see Fig. 7~b!#, to the first hole states with significant
spatial overlap @see Fig. 7~d!#. The structure above 1.7 meV

FIG. 10. Absorption intensity of the T-QWR for light linearly
polarized parallel ~solid line! and perpendicular ~dashed line! to the
wire axis along @001#, labeled with the main contributions to the
peak intensities. A Gaussian broadening of 65 meV is included.
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involves predominantly QW2 states, with a contribution
from higher QWR resonances which produce the high-
energy shoulder in I i . Finally, the large peak at 1.74 eV is
due to many subbands, with a significant contribution from
LH states belonging to both QW’s. The lowest three struc-
tures are polarization dependent with I i.I' . The anisotropy
is maximum for the second structure, for which I' is very
small, consistently with the expectation for a ~001! QW. The
higher structure, on the other hand, is nearly polarization
independent, due to the LH contributions.

These results can be compared with the experimental PLE
spectra of Ref. 12. There, three main structures occur at 1.64,
around 1.67–1.68, and above 1.7 meV. The agreement with
the calculated spectra is again surprisingly good, taking into
account that these neglect excitonic effects. The experimen-
tal assignment of the first structure to a QWR-like state and
the successive structures to QW1-like states, based on the
comparison with reference QW’s, is fully consistent with our
picture. As concerns intensities, the agreement is also reason-
ably good if one considers that the weight of the QWR peak
is sensitive to the relative volume occupied by the QW’s,
which enters the calculation through the choice of the super-
cell. On the other hand, the reasons of an enhanced intensity
of QW1-like features in the PLE experimental data are dis-
cussed in Ref. 12. Finally, we compare our results with the
observed values of the anisotropy.12 From PLE, Akiyama
et al. estimate I' 50.39I i for the QWR peak, and
I' 50.14I i for the next structure assigned to QW1. The cor-
responding theoretical values from Fig. 10 are approximately
I' 50.52I i and I' 50.19I i ~the coefficients are slightly
larger, 0.57 and 0.17, respectively, if the broadening is re-
duced to sb561.5 meV). The very different anisotropy of
the two structures is therefore in qualitative agreement with
experiments, although further investigation would be re-
quired to understand the origin of the difference.

SUMMARY AND CONCLUSIONS

We have presented an accurate and efficient approach that
allows us to calculate the electronic and optical properties of
quantum wires, taking into account valence-band mixing ef-
fects together with realistic profiles of the confining poten-
tials. We have studied specifically V- and T-shaped quantum
wires, where the shape of the confinement region differs con-
siderably from the model geometries assumed in most of the
previous investigations. The two classes of wires differ sig-
nificantly in the structure of their energy spectra: while the
crescent shape of V-QWR’s induces a series of localized
quasi-one-dimensional levels, only the lowest states of
T-QWR’s are clearly localized in the wire because of the
subsequent onset of the continua of the parent QW’s. The
consequences on the optical spectra have been discussed in
detail. In particular, we have focused on the optical anisot-
ropy, and demonstrated that the analysis of anisotropy spec-
tra can be used as an effective tool to extract information on
valence states, usually very difficult to obtain otherwise.

Comparison with very recent PLE spectra for both classes
of wires shows good agreement, in spite of our neglecting
excitonic effects. As we discussed in the Introduction, this
agreement might be due to the symmetry properties of the
Coulomb interaction and, therefore, might be a rather general
feature. However, while the approximation of neglecting ex-
citonic effects is very convenient from the computational
point of view, its accuracy for a given class of materials
should be established a posteriori from comparison to ex-
periments, as we have positively tested in this paper for
V-QWR’s and T-QWR’s.

As a final remark, we stress that all our calculations have
been performed by a numerical method which proved com-
putationally very convenient. Furthermore, our method lends
itself to include calculations of Coulomb correlation effects
on the linear and nonlinear optical properties of these wires
which are currently implemented only for noninteracting va-
lence bands,22 as well as to include external magnetic
fields20,31 to interpret magnetoluminescence experiments.
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APPENDIX A: BASIS SET CONVERGENCE
AND THE CHOICE OF m1, m2

The fictitious masses m1, m2 entering Eqs. ~11a! and
~11b! can be chosen arbitrarily. In this appendix we will
show that a judicious choice can lead to a significant im-
provement in the basis set convergence and the lowering of
the computational cost of the calculation. Note that the con-
vergence with respect to the number of functions fn

1 , fn
2

included in the basis set, which we investigate below, is a
separate problem from the convergence in the plane-wave
expansion of the fn

1 , fn
2 themselves which, for a given

structure, must therefore be checked once and for all before
the diagonalization of the Luttinger Hamiltonian is started.

In Fig. 11 we show the behavior of the lowest hole eigen-
values as a function of the number of basis functions
N11N2. The calculations have been performed for the
V-QWR A/SL, which is described in detail in Sec. II. The
eigenvalues reported in Fig. 11 are highlighted by black tri-
angles in the full band structure of the same V-QWR shown
in Fig. 2: they are the doubly degenerate lowest eigenvalue at
kz50 @panel ~a!#, and the two spin-split lowest eigenvalues
at kz50.02 � 21 @panels ~b! and ~c!#.

In each panel of Fig. 11 we show two sets of calculations,
both obtained with m15(g122g2)21, but with different
choices of m2. The empty dots are obtained with
m25(g112g2)21. With this choice, m1 and m2 are the
HH and LH effective masses along the @001# crystallographic
direction; since this is the direction of strongest confinement
for these V-QWR’s ~see next section!, these are the ‘‘physi-
cal’’ masses in the sense that, for example, they would de-
termine the HH and LH levels of a QW with comparable
confinement length grown in this direction. It can be noted,
however, that convergence is achieved only within
;1 meV with N11N2 as high as 280, which corresponds
to Ecut

1 5120 meV and Ecut
2 5200 meV; these, in turn,

should be compared with the low barrier height of this
sample, which is 85 meV. Therefore, one needs to reach
energies high in the continuum to achieve convergence. The
couples of empty dots at N11N25210 are obtained with
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two different choices of the pair (N1, N2): (125, 85) for
the upper points, and (97, 113) for the lower points. We
conclude that, with fixed N11N2, the convergence im-
proves with increasing N2, suggesting that the 2 states are
responsible for the slow convergence.

In fact, lowering the m2 mass improves the convergence.
In Fig. 11, the black dots correspond to the extremal choice
m25m1 which, as we anticipated in Sec. I, is our final
choice, and has been used in all calculations presented in this
paper. With respect to the previous case, the convergence is
much faster: the well-converged values at N11N25150
~i.e., N15N2575) are obtained with Ecut

1 5Ecut
2

592.2 meV; indeed, we find that the convergence nearly
saturates when Ecut

1 5Ecut
2 *85 meV, i.e., just above the

valence-band offset for this QWR. Note that, in addition to
the improved convergence, the choice m25m1 implies that
only one of the two Eqs. ~11a!–~11b! need to be solved.

As a final remark, we note that the convergence is slower
for the eigenvalues at kz50.02 � 21 than at kz50, due to
the strong HH-LH mixing for large wave vectors. An accu-
rate convergence at these wave vectors, as it can be achieved
by our method, is, e.g., necessary to calculate in-wire effec-
tive mass at the Fermi wave vector. The slow convergence of
the in-plane effective mass at the Fermi edge is a well-known
problem in QW’s.32

APPENDIX B: MATRIX ELEMENTS OF ĤL

Once we have calculated the functions fn
1(x ,y),

fm
2(x ,y), we compute the following integrals:

s~n ,m!5E
V

@fn
1~x ,y !#*fm

2~x ,y !dx dy , ~B1a!

FIG. 11. Energy of the lowest eigenvalues for the V-QWR la-
beled A/SL ~see Sec. II! at ~a! kz50 ~spin degenerate! and ~b!, ~c!
at kz50.02 � -1 for the two spin-split states. Empty dots: eigenval-
ues calculated with m15(g122g2)21, m25(g112g2)21. Black
dots: eigenvalues calculated with m15m25(g122g2)21. The
pairs of empty dots at N11N25210 are calculated with
(N1, N2)5(125, 85) ~upper dots! and (N1, N2)5(97, 113)
~lower dots!.
wb~n ,m!5E
V

@fn
1~x ,y !#*k̂bfm

2~x ,y !dx dy , ~B1b!

wbb8~n ,m!5E
V

@fn
1~x ,y !#*k̂bk̂b8fm

2~x ,y !dx dy , ~B1c!

vb
1~n ,n8!5E

V
@fn

1~x ,y !#*k̂b
2 fn8

1 ~x ,y !dx dy , ~B1d!

vb
2~m ,m8!5E

V
@fm

2~x ,y !#*k̂b
2 fm8

2 ~x ,y !dx dy , ~B1e!

where b ,b8P$x ,y%. In our implementation, the functions
fn

1 , fm
2 are expanded in plane waves. Although this is not

necessary, it makes it very easy to compute the above inte-
grals, where the operators k̂b are just substituted by scalar
numbers kb .

With the above definitions, and using the short notations
s5s(n ,m), vb

15vb
1(n ,n8), vb

25vb
2(m ,m8), wb5wb(n ,m),

and wbb85wbb8(n ,m), the only nonzero matrix elements of
ĤL in the basis set ~14a! and ~14b! are

^1 ,n ,"uHLu1 ,n8,"&5Fen
11S g12

g223g3

2 D kz
2Gdnn8

1px
1v x

11py
1v y

1 , ~B2a!

^1 ,n ,#uHLu1 ,n8,#&5^1 ,n ,"uHLu1 ,n8,"&, ~B2b!

^2 ,m ,"uHLu2 ,m8,"&5Fem
21S g11

g223g3

2 D kz
2Gdmm8

1px
2v x

21py
2v y

2 , ~B2c!

^2 ,m ,#uHLu2 ,m8,#&5^2 ,m ,"uHLu2 ,m8,"& , ~B2d!

^1 ,n ,"uHLu2 ,m ,"&52
A3

2
@2~g2wyy22ig3kzwy!

2~g21g3!kz
2s2~g22g3!wxx# ,

~B2e!

^1 ,n ,#uHLu2 ,m ,#&52
A3

2
@2~g2wyy12ig3kzwy!

2~g21g3!kz
2s2~g22g3!wxx# ,

~B2f!

^1 ,n ,#uHLu2 ,m ,"&52A3~g3wxy1ig2kzwx!, ~B2g!

^1 ,n ,"uHLu2 ,m ,#&522A3~g3wxy2ig2kzwx!. ~B2h!

APPENDIX C: OPTICAL TRANSITION
MATRIX ELEMENTS

We define the electron-hole overlap integrals

t1~n ,n!5E
V

@cn
e~x ,y !#*fn

1~x ,y !dx dy , ~C1!
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t2~n ,m!5E
V

@cn
e~x ,y !#*fm

2~x ,y !dx dy . ~C2!

Then, the matrix elements for valence-to-conduction-band
absorption, with light linearly polarized along the @110#,
@001#, and @110# directions, are the following.

Direction [110],

M a!n ,"5(
Jm

^s ,"upxu3/2,Jm&E @cn
e~x ,y !#*cJm

h ~x ,y !dx dy

52
P

A2
F 2

A3
(
m

Ca
2~m ,# !t2~n ,m!G , ~C3!

M a!n ,#5(
Jm

^s ,#upxu3/2,Jm&E @cn
e~x ,y !#*cJm

h ~x ,y !dx dy

52
P

A2
F 2

A3
(
m

Ca
2~m ," !t2~n ,m!G . ~C4!

Direction [001],

M a!n ,"5(
Jm

^s ,"upyu3/2,Jm&E @cn
e~x ,y !#*cJm

h ~x ,y !dx dy

5
P

A2
F(

n
Ca

1~n ," !t1~n ,n!

2
1

A3
(
m

Ca
2~m ," !t2~n ,m!G , ~C5!
M a!n ,#5(
Jm

^s ,#upyu3/2,Jm&E @cn
e~x ,y !#*cJm

h ~x ,y !dx dy

5
P

A2
F2(

n
Ca

1~n ,# !t1~n ,n!

1
1

A3
(
m

Ca
2~m ,# !t2~n ,m!G . ~C6!

Direction [110],

M a!n ,"5(
Jm

^s ,"upzu3/2,Jm&E @cn
e~x ,y !#*cJm

h ~x ,y !dx dy

5
iP

A2
F(

n
Ca

1~n ," !t1~n ,n!

1
1

A3
(
m

Ca
2~m ," !t2~n ,m!G , ~C7!

M a!n ,#5(
Jm

^s ,#upzu3/2,Jm&E @cn
e~x ,y !#*cJm

h ~x ,y !dx dy

5
iP

A2
F(

n
Ca

1~n ,# !t1~n ,n!

1
1

A3
(
m

Ca
2~m ,# !t2~n ,m!G . ~C8!
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