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Conditional results about primes between consecutive powers

Abstract. A well known conjecture about the distribution of primes
asserts that all intervals of type [n2, (n+1)2] contain at least one prime.
The proof of this conjecture is quite out of reach at present, even under
the assumption of the Riemann Hypothesis. In a previous paper the
author, assuming the Lindelöf hypothesis, proved that each of the in-
terval [nα, (n+ 1)α] contains the expected number of primes for α > 2
and n → ∞. In this paper we prove the same result assuming in turn
two different heuristic hypotheses. It must be stressed that both the
hypotheses are implied by the Lindelöf hypothesis.
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1 - Introduction

A well known conjecture about the distribution of primes asserts that all
intervals of type [n2, (n+ 1)2] contain at least one prime. The proof of this

conjecture is quite out of reach at present, even under the assumption of the
Riemann Hypothesis. D. A. Goldston proved the conjecture assuming a strong
form of Montgomery Conjecture, see [6]. The author improved this result by

proving that all intervals of type [n2, (n+ 1)2] contain the expected number of
primes, for n→∞, assuming a weaker hypothesis about the behavior of

Selberg’s integral in short intervals, see D. Bazzanella [2].
This paper is concerned with the distribution of prime numbers between two

consecutive powers of integers, as a natural generalization of the above

∗This version does not contain journal formatting and may contain minor changes
with respect to the published version. The final publication is available at
http://rivista.math.unipr.it/. The present version is accessible on PORTO, the Open Ac-
cess Repository of Politecnico di Torino (http://porto.polito.it).
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conjecture. In a previous paper the author, assuming the Lindelöf hypothesis,
proved that each of the interval [nα, (n+ 1)α] contains the expected number of

primes for α > 2 and n→∞, see [4, Theorem 1],
In this paper we prove the same result assuming in turn two different heuristic
hypotheses. It must be stressed that both the hypotheses are implied by the

Lindelöf hypothesis.
The first new hypothesis is a weakened version of the hypothesis stated in

D. Bazzanella [3].

Hypothesis 1. There exist a constant X0 and a function ∆(y, T ) such that,
for every 5/12 < β < 1/2 and ε > 0, we have∫ 2X

X

|ψ(y + y/T )− ψ(y)− y/T + ∆(y, T )|2kdy � X2k+εT 1−2k

and
∆(y, T )� y/(T log y)

for at least one integer k ≥ 1, uniformly for X ≥ X0, X5/12 ≤ T ≤ Xβ and
X ≤ y ≤ 2X.

To state the second new hypothesis we need to use the counting functions
N(σ, T ) and N (k)(σ, T ). The former is defined as the number of zeros

ρ = β + iγ of the Riemann zeta function which satisfy σ ≤ β ≤ 1 and |γ| ≤ T ,
while N (k)(σ, T ) is defined as the number of ordered sets of zeros ρj = βj + iγj

(1 ≤ j ≤ 2k), each counted by N(σ, T ), for which
|γ1 + · · ·+ γk − γk+1 − · · · − γ2k| ≤ 1.

We start to observe that D. Bazzanella and A. Perelli [1] made the heuristic
assumption that there exists a constant T0 such that

(1) N (2)(σ, T )� N(σ, T )4

T
T ε

for every T ≥ T0 and arbitrarily small ε > 0, which is close to being the best
possible, in view of the trivial estimate

N (2)(σ, T )� N(σ, T )4

T
.

The above may be generalized and weakened to

N (k)(σ, T )� N(σ, T )2k

T
T ε (1/2 ≤ σ ≤ σ) ,

with suitable σ < 1 and arbitrarily small ε > 0. We now observe that the
Lindelöf hypothesis implies that for every η > 0 we have

N(σ, T )� T 2(1−σ)+η (1/2 ≤ σ ≤ 1),

see A. E. Ingham [10], and then we are led to claim the following.
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Hypothesis 2. For every 0 ≤ η < 1/6 there exists an integer k ≥ 2 such that

N (k)(σ, T )� T 4k(1−σ)−1+η (1/2 ≤ σ ≤ 5/6 + η) .

We note that Hypotheses 1 and 2 are weaker than the Lindelöf hypothesis, see
G. Yu [13, Lemma B] and D. R. Heath-Brown [8, Lemma 1] respectively.

We are now able to state our main theorems.

T h e o r e m 1.1. Let α > 2 and assume Hypothesis 1, then each of the interval
[nα, (n+ 1)α] contains the expected number of primes for n→∞.

T h e o r e m 1.2. Let α > 2 and assume Hypothesis 2, then each of the interval
[nα, (n+ 1)α] contains the expected number of primes for n→∞.

Note that despite Hypothesis 1 and 2 are implied by the Lindelöf hypothesis
we obtain the same expected distribution of primes between consecutive
powers and then the two theorems are stronger than Theorem 1 of [4].

2 - Definitions and basic lemma

The basic lemma is a result about the structure of the exceptional set for the
asymptotic formula

(2) ψ(x+ h(x))− ψ(x) ∼ h(x) as x→∞.

Let X be a large positive number, δ > 0 and let | | denote the modulus of a
complex number or the Lebesgue measure of a set. Let h(x) be an increasing

function such that xε ≤ h(x) ≤ x for some ε > 0 and

Eδ(X,h) = {X ≤ x ≤ 2X : |ψ(x+ h(x))− ψ(x)− h(x)| ≥ δh(x)}.

It is clear that (2) holds if and only if for every δ > 0 there exists X0(δ) such
that Eδ(X,h) = ∅ for X ≥ X0(δ). Hence for small δ > 0, X tending to ∞ and
h(x) suitably small with respect to x, the set Eδ(X,h) contains the exceptions,

if any, to the asymptotic formula (2). We will consider increasing functions
h(x) of the form h(x) = xθ+ε(x), with some 0 < θ < 1 and a function ε(x) such

that |ε(x)| is decreasing,

ε(x) = o(1) and ε(x+ y) = ε(x) +O

(
|y|

x log x

)
.

A function satisfying these requirements will be called of type θ.

Lemma. Let 0 < θ < 1, h(x) be of type θ, X be sufficiently large depending on
the function h(x) and 0 < δ′ < δ with δ− δ′ ≥ exp(−

√
logX). If x0 ∈ Eδ(X,h)

then Eδ′(X,h) contains the interval [x0 − ch(X), x0 + ch(X)] ∩ [X, 2X], where
c = (δ − δ′)θ/5. In particular, if Eδ(X,h) 6= ∅ then

|Eδ′(X,h)| �θ (δ − δ′)h(X).
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The lemma essentially says that if we have a single exception in Eδ(X,h), with
a fixed δ, then we necessarily have an interval of exceptions in Eδ′(X,h), with
δ′ little smaller than δ. The interesting consequence of this lemma is that we

can use an average estimate to prove the non-existence of the exceptions.
The above lemma is part (i) of Theorem 1 of D. Bazzanella and A. Perelli, see

[1].

3 - Proof of the Theorems

The theorems assert that

(3) ψ((n+ 1)α)− ψ(nα) ∼ (n+ 1)α − nα as n→∞,

assuming a suitable heuristic hypothesis. In order to prove the theorems we
assume that (3) does not hold. Then there exists δ > 0 and a sequence

nj →∞ such that∣∣ψ((nj + 1)α)− ψ(nαj )− [(nj + 1)α − nαj )]
∣∣ ≥ δ[(nj + 1)α − nαj )].

In the remainder of the proof we will always assume that nj is sufficiently
large as prescribed by the various statements. Putting xj = nαj and

h(x) = (x
1/α
j + 1)α − xj , we then have

|ψ(xj + h(xj))− ψ(xj)− h(xj)| ≥ δh(xj)

and hence we have xj ∈ Eδ(xj , h). The use of the lemma leads to

(4) |Eδ/2(xj , h)| � h(xj)� x
1−1/α
j .

On the other hand we can bound |Eδ/2(xj , h)| and find a contradiction with
(4). For any y ∈ Eδ/2(xj , h) we can write

(5) |ψ(y + h(y))− ψ(y)− h(y)| ≥ δ

2
h(y)� x

1−1/α
j ,

for every xj ≤ y ≤ 2xj . We divide the interval [xj , 2xj ] into O(ln2 xj)
subintervals Ji = [ai, ai+1], with

(6) ai = xj + i
xj

log2 xj

and define

Eiδ/2(xj , h) = Eδ/2(xj , h) ∩ Ji.

We let

(7) Ti = a
1/α
i /α
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and observe that Hypothesis 1 implies that there exist an integer k ≥ 1, a
constant X0 and a function ∆(y, T ) such that, for every i, we have

(8)

∫ 2xj

xj

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2kdy � x2k+εj T 1−2k
i

and

(9) ∆(y, Ti)� y/(Ti log y),

uniformly for xj ≥ X0 and xj ≤ y ≤ 2xj . From the Brun–Titchmarsh theorem,
see H. L. Montgomery and R. C. Vaughan [12], we can deduce that for every i

we have

ψ(y+h(y))−ψ(y)−h(y) = ψ(y+y/Ti)−ψ(y)−y/Ti+∆(y, Ti)+O

(
x
1−1/α
j

log xj

)
,

for every y ∈ Ji. The above bound and (5) imply that

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)| � x
1−1/α
j ,

for every y ∈ Eiδ/2(xj , h). Thus we obtain

|Eδ/2(xj , h)| � x
−2k(1−1/α)
j

∑
i

∫
|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2k dy

Eiδ/2(xj ,h)

� x
−2k(1−1/α)
j

∑
i

∫ 2xj

xj

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2k dy.

By (8) we conclude that

(10) |Eδ/2(xj , h)| � x
−2k(1−1/α)
j

∑
i

x2k+εj T 1−2k
i � x

1/α+ε
j .

For α > 2, when ε is sufficiently small and xj is sufficiently large we have a
contradiction between (10) and (4), and this completes the proof of Theorem 1.
To prove Theorem 2 we use the classical explicit formula, see H. Davenport [5,

Chapter 17], to write

(11) ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

(
xj log2 xj

Ri

)
,

uniformly for xj ≤ y ≤ 2xj , where δi = log(1 + T−1i ), 10 ≤ Ri ≤ xj and
ρ = β + iγ runs over the non-trivial zeros of ζ(s). If we choose Ri = Ti log3 xj

and recall (7) and (6) we have

x
1/α
j log3 xj � Ri � x

1/α
j log3 xj
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and

ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

(
x
1−1/α
j

log xj

)
.

We note also that

(12)

∣∣∣∣eδiρ − 1

ρ

∣∣∣∣ =

∣∣∣∣∣
∫ δi

0

etρ dt

∣∣∣∣∣ ≤
∫ δi

0

etβ dt ≤ eδi �
1

Ti
.

Follow the method of D. R. Heath-Brown we can prove that for α > 2 and
every fixed u > 5/6 we have

∑
|γ|≤Ri, β>u

yρ
eδiρ − 1

ρ
�

x
1−1/α
j

log xj
,

see (12.79) in [11]. Thus we obtain

ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ
+O

(
x
1−1/α
j

log xj

)
,

for every i and y ∈ Ji. As before we observe that for every y ∈ Ji we have

ψ(y + h(y))− ψ(y)− h(y) = ψ(y + y/Ti)− ψ(y)− y/Ti +O

(
x
1−1/α
j

log xj

)
and then

ψ(y + h(y))− ψ(y)− h(y) = −
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ
+O

(
x
1−1/α
j

log xj

)
,

for every i and y ∈ Ji. This implies that

(13) |Eδ/2(xj , h)| � x
−2k(1−1/α)
j

∑
i

∫ 2xj

xj

∣∣∣∣∣∣
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dy.

To estimate the 2k-power integral we divide the interval [0, u] into O(lnxj)
subintervals Ir of the form

Ir =

[
r

log xj
,
r + 1

log xj

]
.

By Hölder inequality we obtain∣∣∣∣∣∣
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

� (lnxj)
2k−1

∑
r

∣∣∣∣∣∣
∑

|γ|≤Ri, β∈Ir

yρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

.
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Following again the method of D. R. Heath-Brown, we write

∫ 2xj

xj

∣∣∣∣∣∣
∑

|γ|≤Ri, β∈Ir

yρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dy �

∑
β1,...,β2k∈Ir

|γ1|≤Ri,...,|γ2k|≤Ri

(2xj)
ρ1+···+ρk+ρk+1+···+ρ2k+1 − xρ1+ρ2+···+ρk+ρk+1+···+ρ2k+1

j

ρ1 . . . ρ2k (ρ1 + · · ·+ ρk + ρk+1 + · · ·+ ρ2k + 1)

×(eδiρ1 − 1) · · · (eδiρk − 1)(eδiρk+1 − 1) . . . (eδiρ2k − 1)

� 1

T 2k
i

x
1+2kr/ log xj
j

∑
β1,...,β2k≥r/ log xj
|γ1|≤Ri,...,|γ2k|≤Ri

1

|ρ1 + · · ·+ ρk + ρk+1 + · · ·+ ρ2k + 1|
.

This implies

(14)

∫ 2xj

xj

∣∣∣∣∣∣
∑

|γ|≤Ri, β≤u

yρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dy � 1

T 2k
i

max
σ≤u

x2kσ+1+ε
j Mk(σ,Ri),

where

Mk(σ,Ri) =
∑

β1,...,β2k≥σ

|γ1|≤Ri,...,|γ2k|≤Ri

1

1 + |γ1 + · · ·+ γk − γk+1 − · · · − γ2k|

and

(15) Mk(σ,Ri)� N (k)(σ,Ri) log xj ,

see [11, p. 336]. From (13), (14) and (15) we have

(16) |Eδ/2(xj , h)| � x1−2k+εj

∑
i

max
σ≤u

x2kσj N (k)(σ,Ri).

We now consider an arbitrarily small constant η > 0, let u = 5/6 + η and
assume Hypothesis 2. Thus for every 1/2 ≤ σ ≤ u we have

x2kσj N (k)(σ,Ri)� x2kσj R
4k(1−σ)−1+η
i � x

2kσ+(4k(1−σ)−1)/α+η
j .

For α > 2 the above upper bound attains its maximum at σ = u and then
from (16) we obtain

(17) |Eδ/2(xj , h)| � x
1−k/3+(2k/3−1)/α+ε
j

For α > 2, when ε is sufficiently small and xj is sufficiently large we have a
contradiction between (17) and (4), and this completes the proof of Theorem 2.
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[11] A. Ivić, The Riemann Zeta-Function , John Wiley & Sons, New York
(1985).

[12] H. L. Montgomery and R. C. Vaughan, The large sieve , Mathematika
20 (1973), 119-134.

[13] G. Yu, The differences between consecutive primes, Bull. London Math.
Soc. 28 (1996), no. 3, 242-248.

Danilo Bazzanella
Dipartimento di Scienze Matematiche
Politecnico di Torino
Corso Duca degli Abruzzi, 24
Torino, 10129, Italy
e-mail: danilo.bazzanella@polito.it

8


