Green’s function based simulation of trap-induced device variability

Original

Availability:
This version is available at: 11583/2497863 since:

Publisher:
Associazione gruppo italiano di elettronica

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Green’s function based simulation of trap–induced device variability

Author: Ph.D student Riccardo Tisseur
Co-Author: Prof. Fabrizio Bonani
Prof. Simona Donati
Prof. Giovanni Ghione

Dipartimento di Elettronica e Telecomunicazioni
Politecnico di Torino
OUTLINE

- MOS Variability
 - Random Telegraph Noise (single trap)
 - also in conjunction with Random Doping Fluctuation (RDF)
- Green’s function vs. incremental approach
- Case study
 - 32 nm MOS for FLASH applications
 - Varying trap position
- Green’s function approach Validation
 - static case
- Variability analysis
Device scaling

Moore’s law

- **RTN** (Random Telegraph Noise)
- **RDF** (Random Dopant Fluctuation)
Variability: Random Telegraph Noise

Capture/Emission of single electrons by oxide/interface traps

Due to reduced device dimensions, fluctuations in the device terminal properties become important
Single Trap Analysis

- Worst case difference of the drain current with full-empty trap
How to evaluate Single Trap Effect?

- **Incremental**
 - Simulations at the possible traps positions
 - Time consuming
 - High computing resources

\[
\Delta I_{D,inc}(x) = I_{D,full}(x) - I_{D,empty}(x)
\]
How to evaluate Single Trap Effect?

- **Green’s function**
 - Well established tool for variability analysis e.g. RDF Synopsis model
 - One simulation to evaluate the Green’s function
 - Single trap effect amounts to a small variation of charge → linear response through Poisson equation Green’s function

Evaluate Green’s function
(computation time ~ SS analysis at 0 f.)

Convolution integral for single trap reduces to 1 product

\[\Delta I_{D,ifm}(x) = q_{trap} \times G_\phi(x) \]
Simulation setup for RTN

- Advanced MOS 32nm [1]
 - European MODERN Project
 - Bando Alta Formazione – Regione Piemonte

- Traps positions
 - Si/SiO₂ interface
 - Si channel
 - SiO₂
- No traps dynamics

Figure 1: 2D cross-section of the 32 nm MOSFET device obtained by eliminating the floating gate from the template non-volatile memory device used in MODERN
Model Validation: RTN

Figure 2: Comparison between the incremental (symbols) and Green’s function (line) estimation of (minus) the relative drain current variation $\Delta I_D/I_D$. Trap placed at the interface between SiO$_2$ and Si.

Threshold voltage variability found from drain current 1×10^{-7} A/mm exploiting Y21 SS parameter at zero freq.

Figure 3: Comparison between the incremental (symbols) and Green’s function (line) estimation of (minus) the relative drain current variation $\Delta I_D/I_D$. Trap placed near the interface at the SiO$_2$ side.
Randomize traps position at Si–SiO₂ interface
 ◦ Uniform distribution
 ◦ Evaluate Green’s function at the interface
Device fabricated in large numbers

Differences in the number and exact placement of dopant atoms

Induced fluctuations (noise-like) at the device terminal

Figure 4: Synopsis NMOS structure with (left) continuum doping and (right) randomized doping profile
Green’s functions statistical RTN + RDF analysis

- Ongoing work
 - Green’s function statistical RTN
 - Linearity Uncorrelated

- Synopsis demonstrated statistical RDF
Variability analysis: RTN

- Extraction of the slope λ [mV/dec] of the statistical distribution of the single trap RTN (1000 random position on Si/SiO2 interface)

Figure 5 Statistical distribution of the RTN on the threshold voltage
Variability analysis: RTN + RDF

- Dependence of λ [mV/dec] on Gate length considering both the RTN and RDF

Figure 6 Statistical distribution of the RTN on the threshold voltage
Further work

- Validation of the Green’s function approach on a MOS 3D template
- Study of other 3D structures
Thanks for the attention

Riccardo Tisseur