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Abstract

This paper focuses on the extraction of i-vectors, a compact
representation of spoken utterances that is used by most of the
state–of–the–art speaker recognition systems.
This work was mainly motivated by the need of reducing the
memory demand of the huge data structures that are usually pre-
computed for fast computation of the i-vectors.
We propose a set of new approaches allowing accurate i-vector
extraction but requiring less memory, showing their relations
with the standard computation method introduced for eigen-
voices. We analyze the time and memory resources required
by these solutions, which are suited to different fields of appli-
cation, and we show that it is possible to get accurate results
with solutions that reduce both computation time and memory
demand compared with the standard solution.

1. Introduction
Speaker recognition technology has shown relevant improve-
ment in the last decade, and is rapidly moving from research
laboratory evaluations to real applications. The scale of these
applications ranges from large speaker identification systems,
requiring clusters of servers, to simple and fast speaker verifi-
cation systems to be hosted in mobile devices, where memory
and computation resources are limited.

State–of–the–art systems are still based on Gaussian Mix-
ture Models (GMMs), first proposed in [1]. In this approach,
a speaker model is represented by a supervector stacking the
GMM means, which is adapted from a Universal Background
Model (UBM) using Maximum a Posteriori Adaptation. This
basic framework, however, has evolved focusing on robust
speaker model adaptation techniques with limited amount of
data, and proposing different solutions to the problem of inters-
ession compensation.

In particular, eigenvoice modeling, a technique that con-
strains the variability of speaker utterances to a low dimensional
space, introduced in [2] for speech recognition, has been the in-
spiration for modern speaker recognition systems. It has proved
to be effective for speaker adaptation not only in speech [2,3]
and speaker recognition [4, 5], but also for intersession com-
pensation through eigenchannel modeling [6, 7]. All these ap-
proaches rely on Factor Analysis (FA), which allows a compact
representation of a speaker or channel model to be obtained as
a point in a low–dimensional subspace. A much more effective
technique that faces at the same time intra-speaker variability
is Joint Factor Analysis (JFA) [8, 9]. JFA uses the same FA
algorithms but jointly estimates speaker and channel variability.

A simpler model for speaker recognition has been intro-
duced in [10, 11], which gets rid of the distinction between
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speaker and channel variability subspaces, and models bothin a
common constrained low dimensional space, referred to as the
“total variability space”. In this approach, a speech segment is
represented by a low-dimensional “identity vector” (i-vector for
short) extracted by Factor Analysis. The main advantage of this
representation is that the problem of intersession variability is
deferred to a second stage, dealing with low-dimensional vec-
tors rather than with the high-dimensional supervector space of
the GMM means.

Good performance has been obtained using i-vectors and
simple LDA and cosine distance scoring [10], but better per-
formance has been achieved by using generative models based
on Probabilistic Linear Discriminant Analysis (PLDA) [12,13].
The goal of such systems is to model the underlying distribu-
tion of the speaker and channel components of the i–vectors
in a Bayesian framework. From these distributions it is possi-
ble to evaluate the likelihood ratio between the “same speaker”
hypothesis and “different speakers” hypothesis for a pair of i–
vectors. The same paradigm can be used to train discriminative
systems where the observation patterns are pairs of i–vectors
[14, 15].

In this paper we propose a set of new approaches allowing
accurate i-vector estimation but requiring less memory, showing
their relations with the standard method introduced for eigen-
voices. We analyze the time and memory costs of these solu-
tions which are suited to different fields of application, and fi-
nally we propose a new i-vector estimator technique that is able
to obtain accurate results using a fraction of the memory of the
standard approach and running three times faster.

The paper is organized as follows: Section 2 summarizes
the i–vector model for speaker recognition, setting the back-
ground for i–vector computation and model training. Section 3
recalls a recently proposed approximate i–vector estimator ap-
proach that significantly reduces memory demand and process-
ing time. Section 4 shows that a Variational Bayes approach,
which computes the i–vector components iteratively, ends up to
the standard solution in matrix form, thus producing the same
i–vectors. The same results can be obtained with the same or
less computation time of the standard solution, but with less
memory using two methods illustrated in Section 5. The exper-
imental results are presented and commented in Section 6, and
conclusions are drawn in Section 7.

2. i–vector model
The i–vector model [10, 11] constrains the GMM supervector
s, representing both the speaker and channel characteristics of a
given speech segment, to live in a single subspace accordingto:

s = m + Tw (1)

wherem is the UBM supervector,T is a low-rank rectangular
matrix withC × F rows andM columns, andC andF are the



number of GMM components and feature dimension, respec-
tively. The M columns ofT are vectors spanning the “total
variability” space, andw is a random vector of sizeM having
a standard normal prior distribution.

Following [8] and the notation in [16], given a sequence of
feature vectorsX = x1x2 . . .xt extracted for a speech seg-
ment, the corresponding i–vectorwX is computed as the mean
of the posterior distributionp(w|X ):

wX = L
−1
X T

∗
Σ

−1
fX (2)

whereL is the precision matrix of the posterior distribution:

LX = I +
X

c

N
(c)
X T

(c)∗
Σ

(c)−1

T
(c) (3)

In these equations,N (c)
X are the zero–order statistics estimated

on thec-th Gaussian component of the UBM observing the set

of feature vectors inX , Σ(c)−1

is the UBMc–th precision ma-
trix, Σ is the block diagonal matrix withΣ(c) entries,T(c) is
theF ×M sub-matrix ofT corresponding to thec–th mixture

component such thatT =
“

T(1)∗, . . . , T(C)∗
”∗

, and fX is

the supervector stacking the first–order statisticsf
(c)
X , centered

around the corresponding UBM means:

N
(c)
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X

t

γ
(c)
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f
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−N
(c)
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wherext is thet–th feature vector inX , andγ
(c)
t is its occupa-

tion probability.
Since Cholesky decomposition can be applied to each UBM

precision matrixΣ(c)−1

, its contribution can be distributed on
its adjacent factors in (2) by setting

f
(c)
X ← Σ

(c)− 1

2 f
(c)
X

T
(c) ← Σ

(c)− 1

2 T
(c) (6)

Using these “normalized” statistics and sub–matrices, thei–
vector espression in (2) can be written as:

wX = L
−1
X T

∗
fX (7)

with
LX = I +

X

c

N
(c)
X T

(c)∗
T

(c) (8)

2.1. Complexity analysis

The complexity of a single i–vector computation mainly de-
pends on the computation ofLX and on its inversion. In par-
ticular, the computation complexity isO(M3 + CFM) for (7)
plusO(CFM2) for (8). Usually the number of Gaussian com-
ponentsC is greater than the subspace dimensionM , and the
latter is greater that the feature dimensionF . The results re-
ported in Section 6.1 have been obtained with settings often
used for state–of–the-art systems:F = 60, C = 2048, and
M = 400. The termO(CFM2) (quadratic inM ) accounts
for most of the computation complexity, whereas the memory
demand for storing matrixT is O(CFM) .

A faster solutionO(CM2) for (8) can be obtained if every
covariance matrixT(c)∗T(c) is pre–computed and stored for

each mixture component. The speed–up comes, however, at the
expense of an additional (large) memory demand for comput-
ing (8), which dominates the other memory costs because it is
O(CM2).

In the following we will refer to the latter as the stan-
dard method of i–vector extraction, or fast baseline approach,
whereas the former will be referred to as the slow baseline ap-
proach.

In the next sections we will present a number of approaches
aiming at reducing the complexity of the i–vector extraction
process either trading accuracy for speed and memory, or even
achieving accurate results with less resources. All these ap-
proaches focus on the reduction of the cost of matrixLX com-
putation, either devising a suitable approximationL̂X , or avoid-
ing altogether its computation saving memory and time.

3. Approximate i–vector extraction

SinceT(c)∗T(c) is symmetric and semi–definite positive, it can
be eigen–decomposed as:

T
(c)∗

T
(c) = G

(c)
D

(c)
G

(c)∗ (9)

whereG(c) is an orthogonal matrix, and matrixD(c) is diago-
nal. D(c) can be expressed as:

D
(c) = G

(c)∗
T

(c)∗
T

(c)
G

(c) (10)

A simultaneous orthogonal transformation of the matricesT(c)

has been introduced in [16] for fast computation of the i–vectors
with low memory resources, where eachG(c) is replaced, for
the sake of efficiency, by a single matrixQ.

D̃
(c) = Q

∗
T

(c)∗
T

(c)
Q (11)

and everyD̃(c), which is no more diagonal, is forced to be di-
agonal by setting to zero its off-diagonal elements.
Substituting (11) in (8), we get a diagonalized posterior distri-
bution precision matrix:

L̂X = I +

 

X

c

N
(c)
X D̃

(c)

!

(12)

and the approximated posterior distribution precision matrix,
can be obtained by back–rotation ofL̂X , as

L̃X = QL̂XQ
∗ (13)

Assuming thatD(c) in (11) is diagonal, i.e. that its off-diagonal
entries can be ignored, has the remarkable advantage thatL̂X

can be computed byC element–wise products of two vectors of
dimensionM , and its inversion is negligible.

A suitable common orthogonalizing matrixQ has been pro-
posed in [16], based on the eigen-decomposition

W = QΛQ
−1 (14)

of the weighted average covariance matrix

W =
X

c

ω(c)
T

(c)∗
T

(c) (15)

whereω(c) is the weight of thec–th GMM in the UBM super-
vector.

By combining (7) and (13), the i–vector̂wX approximating
wX is obtained as:

ŵX = QL̂
−1
X Q

∗
T

∗
fX (16)



3.1. Complexity analysis

Using this approach, the computational complexity for the i–
vector extraction is reduced toO(CFM), due toT∗fX in (16).
This cost dominates because computing the diagonal matrixL̂X

has complexityO(MC), and its inversion is justO(M). The
contributionO(M2) for L̂X back–rotation is also negligible
compared toO(CFM).

The main contribution to memory costs isO(CFM) for
storing matrixT, but additional memory,O(CM) andO(M2),
is needed for storinĝLX andQ, respectively. These additional
costs, however, are relatively small becauseCF >> M .

This approach is very fast and memory effective. Its per-
formance is good, as it has been shown in [16], and confirmed
in our section devoted to the experiments, but it does not reach
the accuracy of the standard approach. Thus we studied alter-
native memory-aware accurate i–vector extraction methods. In
the next section we present the first one: a Variational Bayes
approach that computes i–vectors as accurate as the ones ob-
tained by the standard technique but requires only a fraction of
its memory.

4. Variational Bayes accurate i–vector
extraction

Considering the training dataX of a specific speaker, and given
the model represented in (1), the joint log-probability ofX and
w is given by:

log PT,Σ(X ,w) = log PT,Σ(X|w) + log P (w) = (17)

GΣ + w
∗
T

∗
Σ

−1
fX −

1

2
w

∗
T

∗
NXΣ

−1
Tw −

1

2
w

∗
w

whereNX is aCF ×CF block diagonal matrix with diagonal
blocksN (c)I, with I anF × F identity matrix, and

GΣ =
X

c

"

N
(c)
X log

1

(2π)F/2|Σ(c)|
1/2
−

1

2
tr
“

Σ
(c)−1

s
(c)
X

”

#

where thes(c)
X are the second order centered statistics, collects

the terms that do not depend onw.
The posterior distribution ofw can be expressed in closed

form [3] as
w|X ∼ N (wX ,L−1

X )

wherewX andLX are given in (7) and (8), respectively.
A diagonalLX would imply that the i–vector components

wi are uncorrelated, and thus their posterior distribution would
factorize over the components. In general case, however,LX

is a full rank matrix and the i–vector componentswi are corre-
lated in the posterior. For this reason the complexity of thestan-
dard approach is much higher than the eigen–decomposition ap-
proach. Thus, we look for a variational approximation of the
posterior distributionq(w) ≈ PT,Σ(w|X ) having this factor-
ized form:

q(w) =
B
Y

i=1

q(wi)

wherewi is a set taken from a partition ofw into B disjoint
subsets.

Variational Bayes (VB) provides a framework to estimate
the distributionsq(wi) that minimize the Kullback-Liebler di-
vergence between the posteriorPT,Σ(w|X ) and its approxima-
tion q(w) [17]. These estimates are given by

log q(wi) = Ej 6=i [log PT,Σ(X ,w)] + const (18)

LetTi be the matrixexcluding a block of adjacent columns
i from T, and letwi be the vectorexcluding the corresponding
elements from vectorw

wi = [w1, . . .wi−1,wi+1, . . .wB]∗

Ti = [T1, . . .Ti−1,Ti+1 . . . TB]

where the sum of the dimensions of theB blocks is equal to the
dimension of the subspaceM . The productTw can be thus
written as:

Tw = Tiwi + Tiwi (19)

that is valid for everyi = 1, . . . , B.
Substituting (19) in (17) and the latter in (18), and ignoring the
terms that do not depend onw, we get:

log q(wi) = Ej 6=i

ˆ

TiwiΣ
−1

fX + TiwiΣ
−1

fX

−
1

2
w

∗
i T

∗

i NX ,Σ
−1

Tiwi −wiTiNXΣ
−1

Tiwi

−
1

2
w

∗
i T

∗
i NXΣ

−1
Tiwi −

1

2
w

∗
i wi −

1

2
w

∗
i wi

–

+ const

(20)

which shows that the distribution ofq(wi) is Gaussian:

q(wi) ∼ N (wi|µi, Λ
−1
i )

The terms that are quadratic inwi represent its precision matrix:

Λi =
`

T
∗
i NXΣ

−1
Ti + I

´

(21)

and the Gaussian meanµi can be obtained from the terms that
are linear inwi:

µi = Λ
−1
i T

∗
i Σ

−1 `
fX −NXTiE [wi]

´

(22)

= Λ
−1
i T

∗
i Σ

−1 `
fX −NXTiµi

´

whereµi denotes all the current i–vector means excluding the
ones included in blocki.
Thus, the computation of an i–vector can be performed in a
Variational Bayes framework by iterating the estimation ofone
µi at a time, keeping fixed all the others.

DenotingfX ,i the first–order statistics centered around the
new supervector meanm + Tiµi, the Gaussian meanµi can
be computed as:

µi = Λ
−1
i T

∗
i Σ

−1
fX ,i (23)

4.1. Fast implementation

It is worth noting that a naive implementation of (23) with a
block size equal to 1 would make the complexity of this ap-
proachO(CFM2K), whereK is the number of performed it-
erations. This is because the computation load ofT∗

i Σ
−1fX ,i

is O(CF (M − 1)) that would be almost as expensive as com-
puting T∗fX in (7) and would be repeated for each i–vector
dimension at every iteration.

An efficient implementation is, however, possible by defin-
ing and updating a vectorfc that stores the first order statistics
centered around the current supervector mean. At the beginning
of the iterations the vector is set to:

f
old
c = fX −NXTµ

0 (24)

= fX −
B
X

j=1

Tjµ
0
j



Performing the iterations one block at a time from blocki = 1
to B, and definingKi = Λ−1

i T∗
i Σ

−1, the i-th component of
the new i–vector is computed at iterationk as:

µ
k+1
i = Ki

`

fX −NXTiµi

´

= Ki

 

fX −NX

X

j<i

Tjµ
k+1
j −NX

X

j>i

Tjµ
k
j

!

= Ki

“

fc + NXTiµ
k
i

”

(25)

and the new vector of the centered first order statistics becomes:

f
new
c = fX −NX

X

j<≤i

Tjµ
k+1
j −NX

X

j>i

Tjµ
k
j

= f
old
c + NX

X

j<i

Tjµ
k+1
j + NX

X

j≥i

Tjµ
k
j −

NX

X

j≤i

Tjµ
k+1
j −NX

X

j>i

Tjµ
k
j

= f
old
c + NXTiµ

k
i−NXTiµ

k+1
i (26)

4.2. Complexity analysis

The computation complexity of the VB approach must be an-
alyzed, as a function of the block sizeb, for the naive and the
fast implementation, and taking also into account the cost of
computingΛ−1

i .
Let’s first set aside the computational cost ofΛi. The naive

VB implementation takesO(KCF (M − b)M/b) for comput-
ing the factorfX −NXTiµi in (22), plusO(KCFM) for its
product withT∗

i Σ
−1, andO(KbM) for the product ofΛ−1

i

with the other factors.
The fast VB implementation, instead, has complexity

O(KCFM) for updating the current first order statistics of
(26), plusO(KCFM) for updating (25) and againO(KbM)
for performing the final matrix product ofΛ−1

i with the other
factors.

Since (21) has the same form of (8),Λi can be computed
as it has been done forLX : either accepting the slow solution,
which performs the sum of the matrix products to save mem-
ory, or by pre–computing and storing the covariance matrices

T
(c)
i

∗
Σ(c)−1

T
(c)
i of each blocki for speeding-up the compu-

tation.
The complexity of the slow solution, which does not re-

quire any additional memory, isO(CFMb), which reduces to
O(CMb) for the fast solution, but with an additionalO(CMb)
memory cost. The inversion of allΛi requiresMb2 operations.

The minimum memory cost would be obtained by comput-
ing a single component at a time, i.e. using a block sizeb = 1.
It is necessary, however, to trade the memory occupation and
the computational load because the selected block size affects
the number of iterations necessary for convergence to a preset
tolerance value.

Compared with the standard method, the computation com-
plexity of the fast VB approach is thus reduced fromO(CM2)
to O(KCFM) because, as shown in the section devoted to the
experiments, the number of iterations required by the VB algo-
rithm to compute suitable i–vectors is small. Overall we will
show that the fast VB technique gets the same performance of
the standard approach using less than 20% of its memory.

4.3. Accuracy

In order to show that the expected valuesE(wi) converge to the
standard solution, we rewrite equation (22) as:

E [wi] = Λ
−1
i T

∗
i Σ

−1
i (fX −NXTE [w] + NXTiE [wi])

Multiplying both sides byΛi and rearranging we obtain:

T
∗
i NXΣ

−1
TE [w] +

`

Λi −T
∗
i NXΣ

−1
Ti

´

E [wi] = T
∗
i Σ

−1
fX

and replacingΛi given by (21) we finally get:

T
∗
i NXΣ

−1
TE [w] + E [wi] = T

∗
i Σ

−1
fX

Thus, the optimal values for the set ofµi = E [wi] are given
by the solution of the linear system

`

T
∗
NXΣ

−1
T + I

´

wX = T
∗
Σ

−1
fX (27)

or
wX =

`

T
∗
NXΣ

−1
T + I

´−1
T

∗
Σ

−1
fX (28)

which corresponds, in matrix form, to the mean of the full pos-
teriorPT,Σ(w|X ) given in (2) and (3).

5. Solving a linear system
Since (27) is a linear system of equations, of formLXwX = c,
it is interesting to analyze the solutions that can be obtained by
using standard techniques. There are many iterative algorithms
for solving linear systems, but in this work we considered only
two of them: the Gauss–Seidel and the Conjugate Gradient
(CG). These methods share the property of convergence to the
correct solution for positive definite matrices. This condition
is satisfied in our system becauseLX = T∗NXΣ−1T + I

is a symmetric and positive definite matrix:it is the sum of
T∗NXΣ−1T, which is a symmetric and positive semidefinite
covariance matrix and of an identity matrix.

The first method has been considered also because it shows
that the Variational Bayes approach illustrated in the previous
section is a generalization of the Gauss-Seidel method, whereas
the Conjugate Gradient method has been selected because it is
fast and allows obtaining accurate results with less memory.

5.1. Gauss–Seidel solution

The Gauss-Seidel method solves our linear system of equations
Lw = c element–wise

wk+1
i =

1

lii

"

ci −
X

j<i

lijw
k+1
j −

X

j>i

lijw
k
j

#

, i = 1, . . . , n.

iteratively until convergence within a predefined threshold has
been achieved. Thus, it would solve iteratively the linear system
(27) exactly as our Variational Bayes approach does, just using
M blocks of sizeb = 1, but without the speed–up given by the
technique illustrated in Section 4.1.

Gauss–Seidel is a special case of the Successive Over Re-
laxation (SOR) method, where the Gauss-Seidel solution at iter-
ationk+1 is linearly combined with the solution of the previous
iteration through a factorα as:

w(k+1) = αw(k+1)
gs + (1− α)w(k)

For a symmetric and positive definite matrix the SOR itera-
tion is guaranteed to converge for any value of0 < α < 2. The



choice ofα affects the convergence rate, but finding an optimal
value ofα is too expensive. Thus we did not try to heuristi-
cally improve the convergence behavior of the VB approach by
finding a suitableα value.

5.2. Conjugate Gradient solution

Since matrixL is symmetric and positive definite, the Conju-
gate Gradient method (CG) method can be used to solve the
linear system of equations in (27). It proceeds iterating from
an initial guessw0 and generating successive vectors that are
closer to the solutionw that minimizes the quadratic function:

f(w) =
1

2
w

∗
Lw −w

∗
c (29)

Our main interest in this approach comes from the consid-
eration that the iteration updates in this algorithm are based on
the residual:

rk = c− LXwk (30)

It is thus possible to reduce the i–vector extraction complex-
ity, avoiding the high storage demands of the standard solution
and the costs due to the computation and inversion of matrix
LX , because in the residualLX appears multiplied bywk. The
productLXwk can be performed as:

LXwk = (T∗
NXΣ

−1
T)wk + Iwk (31)

and computed, right–to–left, by the sequence of operations:

Z = Twk (32)

Z ← NXΣ
−1

Z

Z ← T
∗
Z

LXwk = Z + wk

The order of the operations is important because the first oper-
ation gives a vector, which is then scaled by the values of the
diagonal matrixNXΣ−1, and finallyLXwk is obtained by the
last two operations. It is worth noting that even ifΣ−1 in (31)
is a full matrix, it can be distributed to the adjacent factors T∗

andT as it has been done in (6).

5.3. Complexity analysis

The computation complexity of the GD method thus is
O(KCFM) for the first and third operation, plusO(KCF )
for the second andO(M) for the fourth one in (32). The cost of
a single GC iteration is less expensive compared to the standard
fast computation, which isO(CFM2). Since few iterations
are usually necessary to reach an acceptable approximation, the
Conjugate Gradient approach is as fast as the standard approach,
but it uses far less memory, i.e. the same memory O(CFM) re-
quired by the baseline slow approach to keep in memory matrix
T.

6. Experiments
Since the focus of this work was i–vector extraction, we did
not devote particular care to select the best combination offea-
tures, techniques, and training data that allow obtaining the best
performance. However, we targeted the parameters of state–of–
the-art systems, i.e. large feature and model dimensions, and
good results, in order to avoid taking biased conclusions that
could not be extended to the best recognition systems.

We tested the techniques introduced in the previous sections
on the female part of the tel-tel extended NIST 2010 evalua-
tion trials [18], by using two i–vector systems having the same
front–end, based on cepstral features.

In particular, we extracted, every 10 ms, 19 Mel frequency
cepstral coefficients and the frame log-energy on a 25 ms slid-
ing Hamming window. This 20–dimensional feature vector was
subjected to short time mean and variance normalization using
a 3 s sliding window, and a 60-dimensional feature vector was
obtained by appending the delta and double delta coefficients
computed on a 5–frame window.

We trained a gender-independent UBM, modeled by a di-
agonal covariance 2048-component GMM, and also a gender-
independentT matrix using only the NIST SRE 04/05/06
datasets. The i-vector dimension was fixed to 400 for all the
experiments.

The first recognition system that has been tested is based
on the LDA–WCCN approach [11], which performs interses-
sion compensation by means of Linear Discriminant Analysis
(LDA), where all the i-vectors of the same speaker are associ-
ated with the same class. LDA removes the nuisance directions
from the i-vectors by reducing the feature dimensions (from400
to 200 in our tests, as in the original proposal [11]). These
speaker features are finally normalized by means of Within
Class Covariance Normalization (WCCN) [19], and used for
cosine distance scoring.

The second system is based on Gaussian PLDA, imple-
mented according to the framework illustrated in [12]. We
trained models with full–rank channel factors, using 120 dimen-
sions for the speaker factors.

The LDA matrix, the WCCN transformations, and the
PLDA models have been trained using the NIST and addition-
ally the Switchboard II, Phases 2 and 3, and Switchboard Cel-
lular, Parts 1 and 2 datasets.
The i–vectors of the PLDA models areL2 normalized, whereas
the scores provided by both systems are not normalized.

6.1. Results

Table 1 summarizes the performance of the evaluated ap-
proaches on the female part of the extended telephone condition
in the NIST 2010 evaluation. The results were obtained using
2048 Gaussian systems.

The recognition accuracy is given in terms of Equal Error
Rate (EER) and Minimum Detection Cost Functions defined by
NIST for the 2008 (minDCF08) and 2010 (minDCF10) evalua-
tions [18].

The first observation is that, no matter the i–vector extrac-
tion technique used, the accuracy of the PLDA system is sig-
nificantly better than the LDA-WCCN cosine distance scoring
approach.

Our fast baseline results, corresponding to the standard i–
vector extraction approach, are obtained 3–4 time faster than
the corresponding slow approach. However, the latter requires
only 375 MB for storing matrixT, whereas the former needs
7 times more memory to store the termsT(c)∗T(c) required to
speed–up the computation of (8).

The approximate i–vector extraction based on eigen-
decomposition of Section 3 is extremely fast and requires al-
most the same amount of memory of the accurate slow ap-
proach. However, it is not able to reach the accuracy of the
baseline system.

In Section 4.3 it has been shown that the Variational Bayes
approach, given enough iterations, converges to the i–vectors



Table 1: Results for the extended NIST SRE2010 female tests in terms of % EER, minDCF08 and minDCF10 with different i–vector
extractors

1 core 12 cores Cosine Scoring PLDA
System Memory 100utterances 500utterances (%) min min (%) min min

1127224 frames 6168082 frames EER DCF08 DCF10 EER DCF08 DCF10
(MB) rel. speedup cpu time rel. speedup cpu time

Fast baseline 2875 1 116.8 s 1 109.2 s 4.97 230 612 3.59 180 567
Slow baseline 375 0.27 435.9 s 0.36 306.5 s 4.97 230 612 3.59 180 567
Eigen–decomp. 382 29.30 4.0 s 12.71 8.8 s 5.67 252 697 4.26 202 685
VB-20-100 500 4.23 27.5 s 2.98 37.5 s 5.13 232 622 3.51 183 576
VB-20-10 500 2.63 44.3 s 1.60 69.5 s 4.93 229 621 3.46 182 569
CG-100 375 0.85 136.6 s 1.48 75.4 s 5.16 224 618 3.59 183 567
CG-10 375 0.56 207.4 s 0.99 110.4 s 4.96 230 612 3.59 179 564

of the standard solution, thus it gives the same results of the
standard system.

As illustrated in Section 4.2, the block sizeb affects mem-
ory and computation costs. We did experiments with several
values of the block size. While the system accuracy does not
change, we found that the best speed and memory trade–off was
obtained by settingb = 20. Moreover, for the sake of efficiency,
the iterations can be terminated before the convergence to the
“standard” i–vector has been reached, i.e. when the difference
between theL2-norm of the current estimated i–vector and the
one computed in the previous iteration is less than a predefined
threshold.

The two rows in Table 1 labeled VB-20-100 and VB-20-10
refer to i–vectors extracted according to the Variational Bayes
approach with block sizeb = 20, using as stopping criterion a
threshold equal to 100 and 10, respectively. The first threshold
has been selected to show that the accuracy of the system is not
particularly affected by i–vectors that significantly differ from
the “’standard’ ones. Using 1/3 more memory than the memory
efficient slow baseline system, the VB-20-10 system is able to
get the same results of the baseline systems 1.6 to 2.6 times
faster than the standard approach, depending on the available
number of concurrent threads. Very good performance is also
obtained by the VB-20-100 system, with an earlier stop of the
iterations, leading to a 3 to 4 times faster i–vector extraction.

In the Conjugate Gradient approach the stopping criterion
is based on the value of the residual (30). Again two threshold
values have been tested to show that the threshold value is not
critical for the recognition accuracy. The Conjugate Gradient
approach is as fast as the standard method and achieves the same
accuracy, but it uses the same amount of memory of the slow
baseline approach, just the one required for storing matrixT,
even slightly less than the Eigen–decomposition approach.

Table 2: Percentage of the overall recognition time devotedto
i–vector extraction using the standard approach

System 512 G 1024 G
Segment duration (sec) 30 15 30 15

Relative cost (%) 21 34 34 50

6.2. Relative cost of i–vector extraction

It is worth considering that i–vector extraction is only oneof the
steps involved in the speaker recognition process. Voice activ-
ity detection, feature extraction, Gaussian selection, collection
of the zero– and first order statistics, i–vector scoring andscore
normalization are, of course, time consuming modules. Thus,
the incidence of the time spent for i–vector computation in a
system using large models and scoring long speaker segments,
is negligible compared to the importance of keeping the origi-
nal accuracy and saving memory. However, while large models
are typically used for NIST evaluations, real applicationsoften
constrain the dimensions of the features, of the subspace and
the number of Gaussian components that can be used. More-
over, while the duration of the voice regions in the tel-tel con-
versations of NIST 2010 is approximately 2 minutes, several
applications deal with much shorter segments.

Since an i–vector summarizes the speaker information of
a speaker segment, the complexity of its extraction does not
depended on the length of the segment, thus the effectiveness
of the i–vector extractor is more relevant for systems dealing
with short utterances such as, for example, the text promptsin
speaker verification.

In order to assess the incidence of i–vector extraction time
on the overall recognition process time we performed a set of
experiments using two i–vector systems with smaller models
and shorter segments. In particular, the relative contribution of
i–vector extraction to the overall processing time has beenmea-
sured reducing the feature dimension to 25 MFCC parameters
(c1−c12, ∆c0−∆c12), and using 512 or 1024 Gaussian compo-
nents, parameters that are more suited to real applications[20].
100 segments of duration 15s and 30s, respectively were ex-
tracted from random selected test trials.

The results of these experiments are summarized in Table 2,
which shows for the 512 and 1024 Gaussian systems, the per-
centage of the overall recognition time devoted to i–vectorex-
traction using the standard approach, as a function of the seg-
ment duration. For a given segment duration, the percentage
of time spent by i–vector extraction increases doubling thedi-
mensions of the models because the time spent for Gaussian se-
lection and collection of statistics does not increase as much as
the i–vector extraction does. For a given model dimension, the
relative cost of i–vector extraction increases for short utterances
because the time devoted to i–vector extraction does not depend
on the segment duration. In these conditions, a fast technique,
such as the VB approach, gives an important contribution to the
reduction of the recognition times.



7. Conclusions
The aim of this work was to optimize the memory, and possibly
computation time, required for the i-vector extraction module
of a speaker recognition system. Although this optimization is
particularly useful for small footprint applications, it can be also
relevant for speaker identification and verification applications,
where the duration of the available speaker segments is short.

We analyzed the time and memory resources required by
two new techniques for i-vector extraction. Their implemen-
tation has been compared with the standard one, and with the
eigen–decomposition approximation. Our approaches are not as
fast as the eigen–decomposition technique, but allow obtaining
accurate i–vectors and results, and require much less memory
than the standard technique.

Two are the key ideas in our proposals. The first one is the
fast iterative optimization ofµi in (23) andΛi in (21) in the
Variational Bayes technique. The second one is the elimination
of the computation, and inversion, of the posterior distribution
precision matrixLX , which is possible in the Conjugate Gradi-
ent solution because it does not requireLX but onlyLXwk.

Using the settings of most high performance systems, 2048
GMMs, 60 dimensional MFCC features, and 400 dimension i–
vectors, and the Variational Bayes technique, the i–vectorex-
tractions is three times faster and we obtain accurate results us-
ing a fraction of the memory needed for the standard approach.
Even less memory is required for the Conjugate Gradient ap-
proach, which allows obtaining accurate results, but requires
more time than the standard approach. This drawback could be
negligible for applications focusing on speaker recognition in
conversations.
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