
01 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Organizing the Technical Debt Landscape / Clemente, Izurieta; Vetro', Antonio; Nico, Zazworka; Yuanfang, Cai; Carolyn,
Seaman; Forrest, Shull. - STAMPA. - (2012), pp. 23-26. (Intervento presentato al convegno Third International
Workshop on Managing Technical Debt (MTD '12) tenutosi a Zurich, Switzerland nel 5 June)
[10.1109/MTD.2012.6225995].

Original

Organizing the Technical Debt Landscape

Publisher:

Published
DOI:10.1109/MTD.2012.6225995

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2497507 since:

IEEE COMPUTER SOC

Organizing the Technical Debt Landscape
Clemente Izurieta1, Antonio Vetrò 2,5, Nico Zazworka5,

Yuanfang Cai3, Carolyn Seaman4,5, Forrest Shull5

1Dept. of Computer Science
Montana State University

Bozeman, MT, USA
clemente.izurieta
@cs.montana.edu

2Automatics and Informatics Dept.

Politecnico di Torino
Torino, Italy

antonio.vetro@polito.it

3Dept. of Computer Science
Drexel University

Philadelphia, PA, USA
yfcai@cs.drexel.edu

4Dept. of Information Systems
UMBC

Baltimore, MD, USA
cseaman@umbc.edu

5Fraunhofer CESE
College Park, MD, USA

nzazworka@fc-md.umd.edu
fshull@fc-md.umd.edu

Abstract—To date, several methods and tools for detecting

source code and design anomalies have been developed. While
each method focuses on identifying certain classes of source
code anomalies that potentially relate to technical debt (TD),
the overlaps and gaps among these classes and TD have not
been rigorously demonstrated. We propose to construct a
seminal technical debt landscape as a way to visualize and
organize research on the subject.

Keywords-technical debt; Design Debt; Code Smells;
Landscape.

I. INTRODUCTION

The technical debt (TD) metaphor [22], created and
initially driven by the agile community, is often discussed in
blogs and other development forums. However, work aiming
at putting the metaphor into a scientific context is only
beginning. The first attempts to formalize TD into a
scientific framework have been made by the authors and
other participants in the MTD workshops [1]. These
workshops, with participants from both industry and research
communities, have confirmed that many practitioners are
lacking a generally applicable body of knowledge on how
TD can be organized, visualized, identified, and managed in
their software projects. Thus, many developers are trying to
implement their own customized TD solutions.

Herein, we propose work that aims to facilitate this
process, by providing practitioners and researchers with a
seminal landscape of existing approaches for organizing,
visualizing, and identifying one important form of TD, i.e.
debt resulting from anomalies in the source code. This initial
landscape serves as an invitation for researchers to contribute
to its further development. As the landscape evolves, we
expect that tools and processes will become better able to
cover existing gaps and handle overlaps in decision making
abilities, TD management, payoff techniques, and the inter-
relationships that exist between them. Gaps are types of
technical debt that are important to practitioners but cannot
be detected by any existing technique or tool solution. This
will address the shortcomings of the current state of the art in
this area, namely that the overlaps and gaps between the
methods are not known, that the relationship between

specific source code anomalies and TD has not been
demonstrated, and that the use of techniques for organizing,
visualizing, identifying and managing TD have not been
provided in a form that is easily integrated into software
practice.

II. RESEARCH APPROACH

In order to investigate the relations among various code
and design anomaly analysis techniques, as well as their
ability to find and diagnose TD, we have formulated two
main research questions:

1. What are the overlaps and gaps among existing

techniques?
2. To what extent do existing techniques help in

identifying TD?

To address these questions, we propose a two-staged

iterative research methodology, as illustrated in Fig. 1.
Through a diverse set of empirical studies we can build
support for understanding the landscape of TD with respect
to the commonalities and differences between different
existing techniques and tools, and which types of TD are
worth managing by practitioners. In the first stage the focus
is on identifying and characterizing the types of TD,
resulting in a “draft” of the TD landscape. This information
is extracted from:

i. Existing techniques and tools. For example, the
existing approaches described in section III constitute
the techniques and tools that the authors have worked
with thus far. Current unpublished work [2],
summarized later in this paper, suggests little overlap
among different techniques. However, there are other
such techniques described in the literature, and we
expect that the proposed landscape will help serve as a
way of framing and organizing further research on the
subject.

ii. War stories reported by practitioners. Qualitative
analysis of war stories (a particular interview
technique meant to yield illustrative examples [3])
provides insight into the types of TD which
practitioners struggle with most (and therefore are
important to manage). Some of our colleagues have
already collected a significant number of such war
stories, which we and others should analyze in an
effort to contribute to the TD landscape.

Stage 2 of our proposed approach involves refining and
validating the draft landscape through targeted and
coordinated empirical studies, resulting in a more accurate
and complete TD landscape. We envision the following
types of studies that would contribute to stage 2:
 Design 1: Direct comparisons of TD identification

techniques: This design compares the output of two or
more source code analysis techniques (e.g. those
described in section III) applied to the same software
system, to understand differences and commonalities
between the outputs of these techniques. Variations of
this design will include open source and commercial
software systems and different combinations of
techniques. Our unpublished study, described briefly in
section IV, implements this design by comparing the
output of four different techniques in an open-source
software context, showing that the problems each
detects are different but with some overlaps.

 Design 2: Evaluating TD identification techniques
for identifying real debt: Existing TD identification
techniques do, in fact, detect various forms of

anomalies in the source code. It is not always clear,
however, that these anomalies constitute TD, i.e. that
they result in future maintenance problems if not
corrected. This study design characterizes the
usefulness of a technique to identify and quantify TD
properties. This case study design would begin with the
application of one of the TD detection techniques,
followed by a focus group involving the developers of
the code that was analyzed. The focus group
participants will be asked to comment on how they
would use the output of the source code analysis to
manage TD, including how they could quantify the
debt, how they would decide when (or if) to pay off the
debt, and what the consequences of the debt are likely
to be. An example of a study of this type is described in
[24]. Studies following this design will help us to refine
techniques for quantifying different types of debt.

 Design 3: Evaluating the relationship between types
of TD and future maintenance: Experiments
following this design would test the negative effects of
TD on software quality using various indicators, e.g.
introducing elevated defect rates, lowered
maintainability, and higher cost of future changes. The
basic design is to first produce two versions of a
software module (e.g. a class or set of related classes), a
“clean” version and a version that contains some type
of code-based TD (e.g. grime, a code smell, etc.). Then
subjects will be divided into two groups and both
groups will be given the same maintenance task. One
group will perform the maintenance task on the “clean”
version and the other will modify the version with debt.
The maintenance effort and resulting quality will be
compared between the two groups. These controlled

Figure 1. Technical Debt Landscape

designs will provide insight into which kinds and
amounts of debt actually result in lower maintainability.

 We expect that contributions from the research
community in the form of these study designs and others,
will help refine and validate our draft landscape, as depicted
in stage 2 of Fig. 1.

III. EXISTING APPROACHES

There are a number of techniques and tools that could
potentially be useful in the identification of source code-
based TD, even if many of them were not developed with
that aim in mind. We will not attempt to list them all here.
However, very few, if any, have been validated with respect
to their contribution to TD identification. To that end, we
have begun the work of building the TD landscape by
examining and comparing four specific techniques, described
below in terms of their basic concepts and related work.

Modularity Violations (tool: CLIO) [4]. During
software evolution, if two components always change
together to accommodate modification requests but they
belong to two separate modules that are designed to evolve
independently, then there is a discrepancy. Such
discrepancies can indicate TD as they may be caused by side
effects of a quick and dirty implementation, or requirements
may have changed such that the original designed
architecture could not easily adapt. When such discrepancies
exist, the software can deviate from its designed modular
structure, which is called a modularity violation. Wong et al.
[4] have demonstrated the feasibility and utility of this
approach. In their experiment using Hadoop, they identified
231 modularity violations from 490 modification requests, of
which 152 (65%) violations were conservatively confirmed
by the fact that they were either indeed addressed in later
versions, or were recognized as problems in the developers’
subsequent comments.

Design Patterns and Grime Buildup. Design patterns
are popular for a number of reasons, including but not
limited to claims of easier maintainability and flexibility of
designs, reduced number of defects and faults [5], and
improved architectural designs. Software designs decay as
systems, uses, and operational environments evolve, and
decay can involve design patterns. Classes that participate in
design pattern realizations accumulate grime – non-pattern-
related code. Design pattern realizations can also rot, when
changes break the structural or functional integrity of a
design pattern. Both grime and rot represent forms of TD, in
that the effort to keep the patterns cleanly instantiated has
been deferred. In prior work Izurieta and Bieman [6, 22]
introduced the notion of design pattern grime and performed
a study of the effects of decay on three open-source systems,
JRefactory, ArgoUML and eXist. They studied pattern
realizations and found that coupling increased and
namespace organization became more complex due to design
pattern grime, but they did not find changes that “break” the
pattern (design pattern rot). Izurieta and Bieman [7] also
examined the effects of design pattern grime on the

testability of JRefactory, a handful of patterns were
examined, and they found that there are at least two potential
mechanisms that can impact testability: 1) the appearance of
design anti-patterns [8] and 2) the increases in relationships
(associations, realizations, and dependencies) that in turn
increase test requirements. They also found that the majority
of grime buildup is attributable to increases in coupling.

Code Smells (tool: CodeVizard). The concept of code
smells (aka bad smells) was first introduced by Fowler [9]
and describes choices in object-oriented systems that do not
comply with widely accepted principles of good-object
oriented design (e.g., information hiding, encapsulation, use
of inheritance). Code smells indicate where effort to improve
the design has been deferred, hence indicate TD, and can be
roughly classified into identity, collaboration, and
classification disharmonies [10]. Automatic approaches
(detection strategies [11]) have been developed to identify
code smells. Schumacher et al. [12] focused on evaluating
these automatic approaches with respect to their precision
and recall, and others [13] [14] have evaluated the
relationship between code smells (e.g., god classes) and the
defect and change proneness of software components. This
work showed that automatic classifiers for god classes work
with high recall and precision when studied in industrial
environments. Further, in these environments, god classes
were up to 13 times more likely affected by defects and up to
seven times more change prone than their non-smelly
counterparts.

ASA issues (tool: FindBugs). Automatic static analysis
(ASA) tools analyze source or compiled code looking for
violations of recommended programming practices
(“issues”) that might cause faults or might degrade some
dimensions of software quality (e.g., maintainability,
efficiency). Some ASA issues can indicate TD as they are
good candidates for removal through refactoring to avoid
future problems. In previous work Vetró et al. [15] [16]
analyzed the issues detected by FindBugs [17] on two pools
of similar small programs (85 and 301 programs
respectively), each of them developed by a different student,
in order to verify which FindBugs issues were related to real
defects in the source code. By analyzing the changes and test
failures in both studies they observed that a small percentage
of issues were related to known defects in the code. Some of
the issues identified as good/bad defect detectors by the
authors in these studies were also found in similar studies
with FindBugs, both in industry [18] and open source
software [19]. Similar studies have also been conducted with
other tools [20] [21] and the overall finding is: a small set of
ASA issues is related to defects in the software, but the set
depends on the context and type of the software.

IV. HADOOP CASE STUDY

Our strategy of investigating the research questions
proposed in Section II is to apply different TD identification
technologies to the same set of subject systems. Each
technique reports a set of files to be problematic. We then
study how these results overlap and what the gaps are. We
also study the relation between these detected problematic
files and quality issues, such as the existence of bugs. The

purpose is to investigate which techniques can detect
problems that most likely lead to quality issues. These
issues, presumably, contain more expensive TD, and should
be taken care of sooner than others.

Our unpublished case study [2] using Hadoop produced
three main findings: a) different TD techniques point to
different classes and therefore to different problems; b)
dispersed coupling, god classes, modularity violations and
multithread correctness issues are located in classes with
higher defect-proneness; and c) modularity violations are
strongly associated with change proneness. These findings
contribute to building an initial picture of the TD landscape.
The initial result showed that these TD techniques are
loosely overlapping and only a subset of them is strongly
associated with defect and change proneness. This indicates
that, in practice, multiple TD indicators should be used.

V. FUTURE WORK

In addition to comparing existing techniques for their
overlaps, we will also investigate the gaps between existing
techniques and TD identification. Gaps are types of TD that
are important to practitioners but cannot be detected by any
existing technique or tool solution. Research is needed to
study or find techniques able to fill those gaps. We will also
investigate quality factors other than defect and change
proneness, such as productivity and maintenance difficulties.
We envision a future when designers can use a well-
developed, well-validated TD landscape to select and
combine the results from different techniques to detect the
TD items with most significance and impact, and further
associate values and costs to make well-informed decisions
on refactoring.

ACKNOWLEDGMENT

The participation of Seaman, Guo, Zazworka, Vetró, and
Shull in this work is supported by the US National Science
Foundation, award #0916699.

REFERENCES
[1] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,

A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K.
Sullivan, and N. Zazworka, “Managing technical debt in software-
reliant systems,” FoSER, Santa Fe, NM, USA, pp. 47-52, Nov. 2010.

[2] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman, and
F. Shull, “Comparing Four Approaches for Technical Debt
Identification,” unpublished.

[3] W. Lutters and C. Seaman “The Value of War Stories in Debunking
the Myths of Documentation in Software Maintenance.” Information
and Software Technology. 49(6):576-587, January. 2007.

[4] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Proc. 33th International Conference on
Software Engineering, May 2011, pp. 411–420.

[5] Y.G. Guéhéneuc and H. Albin-Amiot, “Using design patterns and
constraints to automate the detection and correction of inter-class
design defects,” in Proceedings of the 39th International Conference
and Exhibition on Technology of Object-Oriented Languages and
Systems (TOOLS39), ser. TOOLS ’01. Washington, DC, USA: IEEE
Computer Society, 2001.

[6] C. Izurieta and J.M. Bieman, “How software designs decay: A pilot
study of pattern evolution,” First International Symposium on
Empirical Software Engineering and Measurement, ESEM 2007, sept.
2007, pp. 449 –451.

[7] C. Izurieta and J.M. Bieman, “Testing consequences of grime buildup
in object oriented design patterns,”, 1st International Conference on
Software Testing, ICST ’08, april 2008, pp. 171 –179.

[8] W. J. Brown, R. C. Malveau, and T. J. Mowbray, “AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis.” Wiley,
Mar. 1998.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code, 1st ed.
Addison-Wesley Professional, Jul. 1999.

[10] M. Lanza and R. Marinescu, Object-oriented Metrics in Practice.
Berlin: Springer-Verlag, 2006.

[11] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” IEEE International Conference on Software
Maintenance, vol. 0, pp. 350–359, 2004.

[12] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’10.
New York, NY, USA: ACM, 2010, pp. 8:1–8:10.

[13] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating
the impact of design debt on software quality,” in Proceeding of the
2nd working on Managing technical debt, ser. MTD ’11. New York,
NY, USA: ACM, 2011, pp. 17–23.

[14] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are all code
smells harmful? a study of god classes and brain classes in the
evolution of three open source systems,” in Proceedings of the 2010
IEEE International Conference on Software Maintenance, ser. ICSM
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–10.

[15] A. Vetro’, M. Torchiano, and M. Morisio, “Assessing the precision of
findbugs by mining java projects developed at a university,” in
Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, may 2010, pp. 110 –113.

[16] A. Vetro’, M. Morisio, and M. Torchiano, “An empirical validation of
findbugs issues related to defects,” in Evaluation and Assessment in
Software Engineering (EASE), EASE 2011, April 2011.

[17] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, pp. 92–106, December 2004.

[18] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings
of the 19th international symposium on Software testing and analysis,
ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 241–252.

[19] S. Kim and M. D. Ernst, “Prioritizing warning categories by
analyzing software history,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories, ser. MSR
’07. Washington, DC, USA: IEEE Computer Society, 2007.

[20] C. Boogerd and L. Moonen, “Evaluating the relation between coding
standard violations and faultswithin and across software versions,” in
Mining Software Repositories, 2009. MSR ’09. 6th IEEE
International Working Conference on, may 2009, pp. 41 –50.

[21] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC-FSE ’07. New York,
NY, USA: ACM, 2007, pp. 45–54.

[22] C. Izurieta and J.M. Bieman, “A Multiple Case Study of Design
Pattern Decay, Grime, and Rot in Evolving Software Systems.”
Springer Software Quality Journal, ISSN: 0963-9314, DOI:
10.1007/s11219-012-9175-x, February 2012.

[23] W. Cunningham, “The wycash portfolio management system,” in
Addendum to the proceedings on Object-oriented programming
systems, languages, and applications (Addendum), ser. OOPSLA ’92.
New York, NY, USA: ACM, 1992, pp. 29–30. [Online]. Available:
http://doi.acm.org/10.1145/157709.157715

[24] Y. Guo, C. Seaman, N. Zazworka, and F. Shull, "Domain-Specific
Tailoring of Code Smells: An Empirical Study," in the 32nd
ACM/IEEE International Conference on Software Engineering, 2010,
pp. 167-170.

