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Abstract—The technical debt (TD) metaphor describes a 
tradeoff between short-term and long-term goals in software 
development. Developers, in such situations, accept 
compromises in one dimension (e.g. maintainability) to meet an 
urgent demand in another dimension (e.g. delivering a release 
on time). Since TD produces interests in terms of time spent to 
correct the code and accomplish quality goals, accumulation of 
TD in software systems is dangerous because it could lead to 
more difficult and expensive maintenance. The research 
presented in this paper is focused on the usage of automatic 
static analysis to identify Technical Debt at code level with 
respect to different quality dimensions. The methodological 
approach is that of Empirical Software Engineering and both 
past and current achieved results are presented, focusing on 
functionality, efficiency and maintainability.

Keywords: Technical Debt;  Automatic Static Analysis; 
Software Maintenance; Software Quality Monitoring. 

I. RESEARCH PROBLEM AND MOTIVATION

Systems evolve continuously to meet the changes of the 
surrounding technical and human context. Therefore a 
system needs maintenance, which according to Godfrey and 
German [1] can be corrective, adaptive, perfective or 
preventive.

Maintenance is a costly activity and recent studies have 
reported that the relative cost for maintaining software and 
managing its evolution now represents more than 90% of its 
total cost [2]. Due to time constraints and limited budget, 
maintenance is often done following a compromise between 
a well done change (e.g., preserving architectural design, 
employing good programming practices and standards, 
updating the documentation and testing thoroughly) and a 
change that simply works, done as quickly as possible and 
with as few resources as possible. The gap between the two 
types of change is the Technical Debt (TD).

The term “technical debt”  was first coined by Ward 
Cunningham in [3], in which he presented the metaphor of 
“going into debt”  every time a new release of a system is 
shipped. Cunningham explained that a little debt can speed 
up the software development in the short run and lower the 
cost of the current release, but every extra minute spent on 
not-quite-right code counts as interest on that debt in future 
releases [3]. In other words, the technical debt (TD) 
metaphor describes a tradeoff between short-term and long-
term goals in software development, such as situation where 
developers accept compromises in one dimension (e.g. 
maintainability) to meet an urgent demand in another 
dimension (e.g. delivering a release on time). 

TD produces interests that must be repaid to reduce it 
and restore the health of the system, avoiding that future 

changes in the system become too costly and hard to 
perform. Identifying TD, quantifying the values of debt and 
make proper decision making are some of the open issues in 
the current research on TD [4].  

The research presented in this paper is focused on the 
problem of TD identification at code level. 

II. BACKGROUND AND RELATED WORK

Some techniques identify TD through source code 
analysis:  code smells [5], automatic static analysis issues 
[6], grime build up [7] and modularity violations [8]) are 
some examples and have been partly evaluated to be valid 
TD indicators. The research presented herein is focused on 
automatic static analysis. 

Source code analysis is a specific technique of reverse 
engineering [15] that consists in extracting information about 
a program from its source or artifacts (e.g., from Java byte 
code or execution traces) generated from the source code 
using automatic tools [16].

Automatic static analysis (ASA) tools analyze source or 
compiled code looking for violations of recommended 
programming practices (“issues”) that might cause faults or 
might degrade some dimensions of software quality (e.g., 
maintainability, efficiency). Issues should be removed 
through refactoring to avoid future problems. 

Some ASA issues are identified in the literature as 
good/bad defect detectors, both in industry [11] [13] [14] 
and open source software [12]. The overall finding is that 
not all ASA issues are related to defects in the software and 
the remaining ASA issues are related to other quality 
dimensions. However, no researches have differentiated the 
different quality dimensions degradations identified by ASA. 

III. APPROACH AND UNIQUENESS

TD derives from the compromise between desirable 
system properties and economic properties (e.g. effort, cost, 
time-to-market). Examples of desirable properties in the 
system are specific quality dimensions such as functionality, 
performance, reliability, maintainability, extendibility, 
usability, etc. The ISO\IEC standard 25010 [18] (that revises 
the ISO\IEC 9126 [19]) defines a quality model for the 
software product and specifies different quality 
characteristics: Functionality-Suitability, Reliability, 
Operability, Performance-Efficiency, Security, 
Compatibility, Maintainability, and Transferability. 

The objective and uniqueness of my research is to 
differentiate the impact of using ASA tools on code quality 
with respect to the different quality dimensions. Knowing 
which ASA issues impact the different quality characteristics 
is an important step in better identify TD in code, and will 
enable both programmers and managers to prioritize 



maintainability activities with respect to the quality 
dimensions of interest. 

The idea is that quality dimensions of higher interest 
produce higher interests in the future because a lower quality 
in that area could compromise the software mission. 
However the quantification of the interests is currently 
beyond the scope of this research.

The methodological approach I adopt is that of empirical 
software engineering [20] [21], performing experiments and 
case studies. The research is part of my PhD plan, which was 
presented at the 5th International Doctoral Symposium on 
Empirical Software Engineering [22]. Results summarized in 
this paper were collected through experiments and case 
studies conducted both at Politecnico di Torino and at the 
Fraunhofer Center for Experimental Software Engineering - 
USA. I acknowledge all my supervisors and collaborators 
for their support.

IV. RESULTS

Results achieved so far are specific to three quality 
characteristics: Functionality-Usability, Performance 
Efficiency, and Maintainability. The choice of the quality 
characteristics to analyze first was driven by the availability 
and needs of industrial and academic partners. 

A. Functionality-Suitability (Methodology: Case Studies) 

We analyzed in two studies [9][10] the issues detected by 
FindBugs [6] on two pools of similar small programs (85 
and 301 programs respectively), each of them developed by 
a different student, in order to verify which FindBugs issues 
were related to real defects in the source code. By analyzing 
the changes and test failures in both studies, we observed 
that a small percentage of issues (about 3%) were related to 
known defects in the code.

We also conducted another study (not yet published) 
with the Resharper tool analyzing the capability of the issues 
categories to identify the 80% most defect prone files and 
components of an industrial web application. We 
differentiated defects by ISO\IEC 9126 categories. 

We found that only certain categories of Resharper issues 
were good indicators of faulty files and components, and 
those different categories of issues pointed to different 
quality dimensions according to the ISO\IEC 9126. The 
issues of these categories pointed to problems that can be 
associated to difficulty in the design of the code or a limited 
knowledge of the possibilities offered by the C# language. 
However, the Resharper issues were more efficient in 
identifying the 80% of defects and defect fixes rather than 
indicators of size and complexity.

B. Performance-Efficiency (Methodology: Experiments)

We conducted another study [17] with FindBugs but 
focused in efficiency, on which we empirically proved that 
refactoring code on the basis of certain ASA issues will 
improve its execution time.

We selected 20 issues and for each of them we set up 
two source code fragments: one containing the issue and the 
corresponding refactored version, functionally identical but 
without the issue. We set up three different platforms, 
isolated from network and other user programs, and then we 
executed the code fragments measuring the execution time 

of both code versions. We found that eleven issues have an 
actual negative impact on performance in all platforms (up 
to 6 times slower).

Moreover, in an industrial experiment not yet published, 
we quantitatively assessed the impact on time efficiency of 
three code patterns detectable by ASA: dead store to local 
variable, useless try-catch block and inefficient construction 
of Boolean objects. We refactored an industrial Java web 
application removing the three code patterns and we 
observed that the refactored software was about two fold 
faster (100ms less) than the original application.

C. Maintainability (Methodology: Case Study)

In yet another study not published, we compared the four 
TD techniques listed in section II (code smells, automatic 
static analysis issues, grime buildup, and modularity 
violations) and applied them to 13 versions of the Apache 
Hadoop open source software project. We collected and 
aggregated statistical measures to investigate whether the 
different techniques identified TD indicators in the same 
classes and whether those classes exposed high defect and 
change proneness. The latter metric is a proxy for 
Maintainability. 

Although ASA issues were not directly associated with 
Maintainability issues, those with higher priority were 
associated with classes with intensive coupling. A possible 
explanation for this relation is that both indicators point, 
more than any others, to generally poorly designed code.

Moreover, the study demonstrated that the four 
approaches for TD identification have very little overlap and 
are therefore pointing to different problems in source code. 

V. CONTRIBUTIONS

Assessing the impact of ASA on the different quality 
dimensions will enable developers and managers to better 
manage TD, detecting anomalies in the system that 
negatively impact specific qualities of interest. Therefore, 
maintenance activities could be prioritized according to the 
most degraded quality dimensions or those that deeply 
impact the software mission.
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