
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Using Automatic Static Analysis to Identify Technical Debt / Vetro', Antonio. - STAMPA. - (2012), pp. 1613-1615.
(Intervento presentato al convegno 34th International Conference on Software Engineering (ICSE) tenutosi a Zurich,
Switzerland nel June 2–9, 2012) [10.1109/ICSE.2012.6227226].

Original

Using Automatic Static Analysis to Identify Technical Debt

Publisher:

Published
DOI:10.1109/ICSE.2012.6227226

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2497506 since:

IEEE COMPUTER SOC

Using Automatic Static Analysis to Identify Technical Debt

 Antonio Vetrò
Politecnico di Torino/Fraunhofer CESE
Torino (Italy)/College Park, MD (USA)

antonio.vetro@polito.it

Abstract—The technical debt (TD) metaphor describes a
tradeoff between short-term and long-term goals in software
development. Developers, in such situations, accept
compromises in one dimension (e.g. maintainability) to meet an
urgent demand in another dimension (e.g. delivering a release
on time). Since TD produces interests in terms of time spent to
correct the code and accomplish quality goals, accumulation of
TD in software systems is dangerous because it could lead to
more difficult and expensive maintenance. The research
presented in this paper is focused on the usage of automatic
static analysis to identify Technical Debt at code level with
respect to different quality dimensions. The methodological
approach is that of Empirical Software Engineering and both
past and current achieved results are presented, focusing on
functionality, efficiency and maintainability.

Keywords: Technical Debt; Automatic Static Analysis;
Software Maintenance; Software Quality Monitoring.

I. RESEARCH PROBLEM AND MOTIVATION

Systems evolve continuously to meet the changes of the
surrounding technical and human context. Therefore a
system needs maintenance, which according to Godfrey and
German [1] can be corrective, adaptive, perfective or
preventive.

Maintenance is a costly activity and recent studies have
reported that the relative cost for maintaining software and
managing its evolution now represents more than 90% of its
total cost [2]. Due to time constraints and limited budget,
maintenance is often done following a compromise between
a well done change (e.g., preserving architectural design,
employing good programming practices and standards,
updating the documentation and testing thoroughly) and a
change that simply works, done as quickly as possible and
with as few resources as possible. The gap between the two
types of change is the Technical Debt (TD).

The term “technical debt” was first coined by Ward
Cunningham in [3], in which he presented the metaphor of
“going into debt” every time a new release of a system is
shipped. Cunningham explained that a little debt can speed
up the software development in the short run and lower the
cost of the current release, but every extra minute spent on
not-quite-right code counts as interest on that debt in future
releases [3]. In other words, the technical debt (TD)
metaphor describes a tradeoff between short-term and long-
term goals in software development, such as situation where
developers accept compromises in one dimension (e.g.
maintainability) to meet an urgent demand in another
dimension (e.g. delivering a release on time).

TD produces interests that must be repaid to reduce it
and restore the health of the system, avoiding that future

changes in the system become too costly and hard to
perform. Identifying TD, quantifying the values of debt and
make proper decision making are some of the open issues in
the current research on TD [4].

The research presented in this paper is focused on the
problem of TD identification at code level.

II. BACKGROUND AND RELATED WORK

Some techniques identify TD through source code
analysis: code smells [5], automatic static analysis issues
[6], grime build up [7] and modularity violations [8]) are
some examples and have been partly evaluated to be valid
TD indicators. The research presented herein is focused on
automatic static analysis.

Source code analysis is a specific technique of reverse
engineering [15] that consists in extracting information about
a program from its source or artifacts (e.g., from Java byte
code or execution traces) generated from the source code
using automatic tools [16].

Automatic static analysis (ASA) tools analyze source or
compiled code looking for violations of recommended
programming practices (“issues”) that might cause faults or
might degrade some dimensions of software quality (e.g.,
maintainability, efficiency). Issues should be removed
through refactoring to avoid future problems.

Some ASA issues are identified in the literature as
good/bad defect detectors, both in industry [11] [13] [14]
and open source software [12]. The overall finding is that
not all ASA issues are related to defects in the software and
the remaining ASA issues are related to other quality
dimensions. However, no researches have differentiated the
different quality dimensions degradations identified by ASA.

III. APPROACH AND UNIQUENESS

TD derives from the compromise between desirable
system properties and economic properties (e.g. effort, cost,
time-to-market). Examples of desirable properties in the
system are specific quality dimensions such as functionality,
performance, reliability, maintainability, extendibility,
usability, etc. The ISO\IEC standard 25010 [18] (that revises
the ISO\IEC 9126 [19]) defines a quality model for the
software product and specifies different quality
characteristics: Functionality-Suitability, Reliability,
Operability, Performance-Efficiency, Security,
Compatibility, Maintainability, and Transferability.

The objective and uniqueness of my research is to
differentiate the impact of using ASA tools on code quality
with respect to the different quality dimensions. Knowing
which ASA issues impact the different quality characteristics
is an important step in better identify TD in code, and will
enable both programmers and managers to prioritize

maintainability activities with respect to the quality
dimensions of interest.

The idea is that quality dimensions of higher interest
produce higher interests in the future because a lower quality
in that area could compromise the software mission.
However the quantification of the interests is currently
beyond the scope of this research.

The methodological approach I adopt is that of empirical
software engineering [20] [21], performing experiments and
case studies. The research is part of my PhD plan, which was
presented at the 5th International Doctoral Symposium on
Empirical Software Engineering [22]. Results summarized in
this paper were collected through experiments and case
studies conducted both at Politecnico di Torino and at the
Fraunhofer Center for Experimental Software Engineering -
USA. I acknowledge all my supervisors and collaborators
for their support.

IV. RESULTS

Results achieved so far are specific to three quality
characteristics: Functionality-Usability, Performance
Efficiency, and Maintainability. The choice of the quality
characteristics to analyze first was driven by the availability
and needs of industrial and academic partners.

A. Functionality-Suitability (Methodology: Case Studies)

We analyzed in two studies [9][10] the issues detected by
FindBugs [6] on two pools of similar small programs (85
and 301 programs respectively), each of them developed by
a different student, in order to verify which FindBugs issues
were related to real defects in the source code. By analyzing
the changes and test failures in both studies, we observed
that a small percentage of issues (about 3%) were related to
known defects in the code.

We also conducted another study (not yet published)
with the Resharper tool analyzing the capability of the issues
categories to identify the 80% most defect prone files and
components of an industrial web application. We
differentiated defects by ISO\IEC 9126 categories.

We found that only certain categories of Resharper issues
were good indicators of faulty files and components, and
those different categories of issues pointed to different
quality dimensions according to the ISO\IEC 9126. The
issues of these categories pointed to problems that can be
associated to difficulty in the design of the code or a limited
knowledge of the possibilities offered by the C# language.
However, the Resharper issues were more efficient in
identifying the 80% of defects and defect fixes rather than
indicators of size and complexity.

B. Performance-Efficiency (Methodology: Experiments)

We conducted another study [17] with FindBugs but
focused in efficiency, on which we empirically proved that
refactoring code on the basis of certain ASA issues will
improve its execution time.

We selected 20 issues and for each of them we set up
two source code fragments: one containing the issue and the
corresponding refactored version, functionally identical but
without the issue. We set up three different platforms,
isolated from network and other user programs, and then we
executed the code fragments measuring the execution time

of both code versions. We found that eleven issues have an
actual negative impact on performance in all platforms (up
to 6 times slower).

Moreover, in an industrial experiment not yet published,
we quantitatively assessed the impact on time efficiency of
three code patterns detectable by ASA: dead store to local
variable, useless try-catch block and inefficient construction
of Boolean objects. We refactored an industrial Java web
application removing the three code patterns and we
observed that the refactored software was about two fold
faster (100ms less) than the original application.

C. Maintainability (Methodology: Case Study)

In yet another study not published, we compared the four
TD techniques listed in section II (code smells, automatic
static analysis issues, grime buildup, and modularity
violations) and applied them to 13 versions of the Apache
Hadoop open source software project. We collected and
aggregated statistical measures to investigate whether the
different techniques identified TD indicators in the same
classes and whether those classes exposed high defect and
change proneness. The latter metric is a proxy for
Maintainability.

Although ASA issues were not directly associated with
Maintainability issues, those with higher priority were
associated with classes with intensive coupling. A possible
explanation for this relation is that both indicators point,
more than any others, to generally poorly designed code.

Moreover, the study demonstrated that the four
approaches for TD identification have very little overlap and
are therefore pointing to different problems in source code.

V. CONTRIBUTIONS

Assessing the impact of ASA on the different quality
dimensions will enable developers and managers to better
manage TD, detecting anomalies in the system that
negatively impact specific qualities of interest. Therefore,
maintenance activities could be prioritized according to the
most degraded quality dimensions or those that deeply
impact the software mission.

REFERENCES

[1] Godfrey, M.W.; German, D.M.; , "The past, present, and future of
software evolution," Frontiers of Software Maintenance, 2008. FoSM
2008. , vol., no., pp.129-138, Sept. 28 2008-Oct. 4 2008

[2] Seacord, R., Plakosh, D. & Lewis, G. (2003). "Modernizing Legacy
Systems: Software Technologies, Engineering Processes, and
Business Practices" (SEI Series in Software Engineering). Addison-
Wesley

[3] Cunningham W. (1992). The WyCash Portfolio Management System.
Addendum to the proceedings on Object-oriented programming
systems, languages, and applications, pp. 29-30, 1992

[4] Brown N., Cai Y., Guo Y., Kazman R., Kim M., Kruchten P., Lim E.,
MacCormack A., Nord R., Ozkaya I., Sangwan R., Seaman C.,
Sullivan K., and Zazworka N. (2010). Managing technical debt in
software-reliant systems. FoSER 2010: 47-52

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code, 1st ed.
Addison-Wesley Professional, Jul. 1999.

[6] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, pp. 92–106, December 2004.

[7] C. Izurieta and J. Bieman, “How software designs decay: A pilot
study of pattern evolution,” in Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International Symposium on,
sept. 2007, pp. 449 –451.

[8] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Proc. 33th International Conference on
Software Engineering, May 2011, pp. 411–420.

[9] A. Vetro’, M. Torchiano, and M. Morisio, “Assessing the precision of
findbugs by mining java projects developed at a university,” in
Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, may 2010, pp. 110 –113.

[10] A. Vetro’, M. Morisio, and M. Torchiano, “An empirical validation of
findbugs issues related to defects,” in To appear in Evaluation and
Assessment in Software Engineering (EASE), EASE 2011, April
2011.

[11] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings
of the 19th international symposium on Software testing and analysis,
ser. ISSTA ’10. New York, NY, USA: ACM, 2010, pp. 241–252.

[12] S. Kim and M. D. Ernst, “Prioritizing warning categories by
analyzing software history,” in Proceedings of the Fourth
International Workshop on Mining Software Repositories, ser. MSR
’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 27–.

[13] C. Boogerd and L. Moonen, “Evaluating the relation between coding
standard violations and faultswithin and across software versions,” in
Mining Software Repositories, 2009. MSR ’09. 6th IEEE
International Working Conference on, may 2009, pp. 41 –50.

[14] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in
Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, ser. ESEC-FSE ’07. New York,
NY, USA: ACM, 2007, pp. 45–54.

[15] Tonella P., Torchiano M., Du Bois B., Systa T. Empirical Studies in
Reverse Engineering: State of the Art and Future Trends.
EMPIRICAL SOFTWARE ENGINEERING, Vol. 12(5), pp. 551-571

[16] D. Binkley, “Source code analysis: A road map,” in Future of
Software Engineering, 2007. FOSE ’07, may 2007, pp. 104
–119.

[17] A. Vetro’, M. Torchiano, and M. Morisio, “Quantitative assessment
of the impact of automatic static analysis issues on time efficiency,”
Inf-Q 2011, June 2011.

[18] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality.
ISO/IEC, 2001.

[19] ISO/IEC, ISO/IEC 25010. Systems and software engineering –
Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models. ISO/IEC, 2011.

[20] C. Wohlin, Experimentation in software engineering: an introduction,
ser. Kluwer international series in software engineering. Kluwer
Academic, 2000.

[21] Forrest Shull, Janice Singer, Dag I. K. Sjøberg , Guide to advanced
empirical software engineering, Springer, 2007

[22] A. Vetro’, Empirical Assessment of the Impact of Automatic Static
Analysis on Code Quality , In: IDOESE 2010 - 5th International
Doctoral Symposium on Empirical Software Engineering, Bolzano,
Italy, 15 September 2010

	I. Research Problem and Motivation
	II. Background and Related Work
	III. Approach and Uniqueness
	IV. Results
	A. Functionality-Suitability (Methodology: Case Studies)
	B. Performance-Efficiency (Methodology: Experiments)
	C. Maintainability (Methodology: Case Study)

	V. Contributions

