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Abstract—Many new therapeutic techniques depend not only
on the knowledge of the molecules participating in the biological
phenomena but also their biochemical function. Advancements
in prediction of new proteins are immense if compared with the
annotation of functionally unknown proteins. To accelerate the
personalized medicine effort, computational techniques should
be used in a smart way to accurately predict protein function.
In this paper, we propose and evaluate a technique that utilizes
integrated biological data from different online databases. We use
this information along-with Gene Ontology (GO) relationships
of functional annotations in a wide-ranging way to accurately
predict protein function. We integrate PPI (Protein Protein Inter-
actions) data, protein motifs information, and protein homology
data, with a semantic similarity measure based on Gene Ontology
to infer functional information for unannotated proteins. Our
method is applied to predict function of a subset of homosapiens

species proteins. The integrated approach with GO relationships
provides substantial improvement in precision and accuracy
as compared to functional links without GO relationships. We
provide a comprehensive assignment of annotated GO terms to
many proteins that currently are not assigned any function.

Index Terms—Function Prediction, Gene Ontology, PPI, Pro-
tein motifs
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I. INTRODUCTION

Targets for drug and vaccine design are almost always
based on proteins, mainly those involving enzymatic functions.
Unfortunately, since many proteins remain uncharacterized,
they cannot be taken into account as potential protein targets
in drug and vaccine manufacturing process. To make drugs
more efficient and to widen the set of their possible targets, it
has become necessary to devise effective automated tools for
the precise annotation of uncharacterized proteins.

The existence of various recently available high throughput
data sets, such as protein-protein interaction networks, mi-
croarray data and genome sequences offers a deep insight into
the mechanisms related to a protein’s function. Until recently,
many approaches like [1],[2],[3] and [4] were developed
to predict protein function using protein-protein interaction
networks. Protein-protein networks, are graphs where each
node represents a protein and edges between nodes represent
different types of functional relationships. These methods are
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based on the idea that interacting proteins share common
functions; therefore, these methods tend to assign functions
to an unannotated protein based on the functions of its
neighbors. But for precise and accurate function prediction,
the context information of protein functions is necessary to be
incorporated by encapsulating the relationship between them.
A prominent standard that maintains a structural framework
of protein functions is the Gene Ontology. Gene Ontology
is a directed acyclic graph where each node represents a
functional term with each term arranged in a parent-child
relationship with others. The child term either IS A special
case of the parent or is a PART OF the parent process i.e.,
a sub-process or component. Annotated proteins are linked to
one or more functional terms of the GO structure and because
of parent child relationship a protein is known to a child term
it is also known to all of its parent terms. Some techniques,
e.g., [5], tried to incorporate protein-protein interactions with
Gene Ontology (GO) structural relationships to accurately
predict protein function. One limitation of such methods is the
increase in complexity to incorporate full functional coverage
of a protein since they consider Gene Ontology terms of fixed
size.

In this paper we propose a new approach to protein function
prediction that overcomes this limitation by incorporating all
the annotations of a protein present in the GO structure. The
conceptual innovation of our method is to enhance annotated
functional space of the GO terms by selecting flexible ontology
structure size that represents all annotations of a protein. We
build a computational model that integrates optimal potential
information that give positive evidence to protein function. The
integrated model is then used with GO structure annotations by
calculating a semantic similarity measure between terms. Our
method computes annotation for protein based upon its likely
functional context i.e., set of annotation under an abstract
function of the GO structure.

Multiple sources of information i.e., protein-protein in-
teractions, inter-species homology information, and common
protein motifs with appropriate similarity threshold values is
used to define the functional potential of interacting proteins.
This functional potential is a global indicator of functional
similarity. We also compute a more specific similarity measure



Figure 1. A set of human proteins that share common functions with an edge representing number of common proteins between them.

between the annotated neighbors by defining the functional
context in which the interaction can occur. This two way
integration improves both the precision and accuracy of the
annotation.

The paper is organized as follows: In section II we give
an overview of all the closely related protein interaction
network approaches that utilize hybrid information with GO
structural similarity to predict protein function. In section III
we elaborate the proposed computational model that integrates
protein-protein interactions, protein binding sites, inter-species
homology, and GO functional similarity for protein function
prediction. Section V details the effectiveness of the proposed
method when applied to proteins of homosapiens species. In
section V we present some preliminary results and conclude
the paper with some future developments.

II. RELATED WORK

Protein-protein interactions based approaches for protein
function prediction can be classified into three major groups:
module-assisted, direct methods, and probabilistic methods
[6]. Module-assisted methods try to find modules in the
network that perform a particular function. The annotation is
assigned based upon the protein falling in a specific module.
On the other hand direct methods consider the assumption that
neighboring proteins in the network have similar functional
annotations. Methods of this category, e.g., [7], predict the
annotations based upon direct interactions among proteins.
This approach is further extended to indirect neighbor [8],
where the author distinguishes between direct and indirect
functional associations by taking into account first and second
level neighbors. The functional flow method [2] considers a
network flow of annotations from functionally known proteins
to unannotated proteins.

Earlier network based approaches assume that proteins with
similar functions are always close to each other in the network,
which is not true for all proteins[9]; so a third group of

techniques considers probabilistic models based on Markov
Random Fields [10], [11], [12]. The main hypothesis of these
techniques is that a target protein annotation is independent
of all other proteins, given the target neighbors [6]. These
methods first estimate prior and conditional probabilities of
annotations and then project the joint likelihood of unanno-
tated protein to all target annotations.

More recently, research has shown that methods that
incorporate GO structure into computational models by fully
utilizing the semantic similarity offered by the Direct Acyclic
Graph (DAG) architecture of Gene Ontology, are showing
more promising results than those that do not utilize it. [13],
[14],[15] and [16] use multifunctional GO terms to infer
protein function. These methods exchange information within
GO structure as well as between interacting proteins to infer
protein function by calculating semantic similarity measures.

An integrated Markov Random Field (MRF) based approach
is presented in [5], there the authors used GO structure with
protein-protein networks and inter-species protein homologs
information by constructing MRF based graphs among the
GO terms of fixed size. In network based prediction all
annotations/(GO terms) of a protein along with their functional
relationships should be incorporated in order to accurately
predict function. The GO structure has different hierarchy for
each functional annotation of protein, e.g., ADP-ribosylation
factor 6 protein is annotated with GTP binding, GTPase
activity, and thioesterase binding terms of the GO hierarchy. If
the two functions are totally different the hierarchy structure
is also very different, e.g., GTP binding, GTPase activity are
related to binding and catalytic activity respectively and have
different GO structural hierarchy. These different hierarchical
information can be utilized by considering all the terms anno-
tation and the semantic relationship between them. But there is
always a tradeoff between choosing a network based prediction
method and the size of the ontology structure. This bottleneck



Figure 2. The general scheme of information integration for protein function prediction.

can be overcome by smartly integrating biological data with
functional relationships and by taking into account network of
potentially interacting proteins. In this way available data can
be used to extract new knowledge, to accurately infer functions
for unannotated proteins.

III. METHODS

A single protein can be part of more than one biological pro-
cess or molecular activities thus performs multiple functions at
the same time. In Figure 1, a functional overlap graph between
major molecular functions of homosapiens species is shown
where each node represents a widely present GO term with the
number of proteins annotated with this term. Edges between
the terms represents the number of overlapping proteins that
share those terms. The graph depicts high intersection of
annotations for different GO terms which implies that a large
number of proteins have more than one functional annotation.
These functional annotations with diverse contexts add much
complexity when used with network based prediction methods.
We develop a technique that takes into account multi-function
annotation with potential interactions to infer the function
accurately.

Our technique is based on the fact that interacting proteins
are likely to collaborate on a common purpose thus the
function of an unannotated protein can be deduced when the
function of its binding partners is known. For this purpose
we use and integrate information from different biological
databases to construct a network for an unannotated protein.
Combining various types of information covers different as-
pects of a protein’s activity and hence improves the overall
predictive power of automated protein annotation.

We obtain our protein dataset from UniProt [17] database
for homosapiens specie. We use a subset of these proteins to
test our methodology. For unannotated proteins we consider
related protein-protein network information which is passed
as input to the proposed method. The general scheme of
information integration for our method is shown in Figure
2. Our methodology consists of three major steps: selection,
filtering and context similarity score.

A. Interacting Protein Selection

In the first step we construct a network for an unannotated
protein based upon its interaction data. We select protein-
protein interaction data from two databases: IntAct [18] and
DIP (Database of Interacting Proteins) [19]. We only consider
interactions for which there is an experimental evidence.
Redundant and self interactions are removed to construct a
protein interaction network for the protein under consideration.

B. Filtering of Potential Interactors

In the second step we compute a functional potential mea-
sure FP(i,j) to filter out proteins which have high potential
of being functionally similar to the unannotated protein. The
functional potential measure FP(i,j) is based upon two func-
tional indicators: (1) protein motif information and (2) protein
homolog information.

Motifs are structural elements that are conserved among
different proteins. Proteins often have several motifs with
distinct evolutionary histories. Patterns of evolutionarily con-
served motifs in a protein-sequence reflect the tendency of
biochemical functions of an annotated protein. These motifs



Algorithm 1 Function Prediction Algorithm
Input:
PPN(AP,UP,E): is the protein-protein interaction network
where,
AP is the set of annotated proteins;
UP is the set of unannotated proteins;
E is the set of edges/inteactions among proteins.
Output:
AT; are the set of annotated terms for UP
Method: PredictFunction(PPN(AP,UP,E))

1: for each unannotated protein Pi in the set UP
2: calculate the value of functional potential FP(i,j) between

protein P

i

and interactor P
j

defined in Eq. 2;
3: if FP(i,j) � threshold

4: for each pair of interactors between protein P

i

and
interactor P

j

5: retrieve functional contexts terms F

c

from the Gene
Ontology graph annotations;

6: end for
7: for each functional context F

c

among annotated neigh-
bors of protein P

i

8: calculate a semantic similarity measure Sim(P
j

, P

k

)
among neighbor P

j

and P

k

of Protein P

i

defined in Eq.
3.

9: if Sim(P
j

, P

k

) � threshold then
10: add the Functional term to AT vector of protein Pi.
11: end if
12: end for
13: end if
14: end for
15: end method

can be conserved in unannotated proteins too, so the num-
ber of common motifs in two connected proteins can be
a strong functional clue for functionally unknown proteins.
We incorporate motif information from the ProSite database
[20]. ProSite provides a number of conserved motifs for a
query protein which are associated with a particular protein
functional activity. Thus this information can be used to
characterize the associated protein. We compute the functional
relevance of proteins by calculating a similarity measure based
on common motifs. This measure is normalized to M

i,j

and is
calculated for same number of common motifs between two
interacting proteins P

i

and P

j

as follow,

M

i,j

=
Common

Motif

(P
i

, P

j

)

Min

Motif

(P
i

, P

j

)
(1)

Where Common

Motif

(P
i

, P

j

) is the number of common
motifs conserved between the two interacting proteins and
Min

Motif

(P
i

, P

j

) is the minimum number of motifs con-
served in one of the two proteins. If two proteins share the
same functionally conserved motifs then there is a higher
possibility that they share the same function which is com-
puted using equation 1. The second measure that increases

the functional potential of a protein is the homologs similarity
between two proteins P

i

and P

j

of different species. We define
a sequence similarity measure between protein P

i

and P

j

as
S(i,j) a normalized pairwise BLAST score. A BLAST score
is a numerical value that describes the overall quality of a
sequence alignment. Higher numbers correspond to higher
similarity. We use normalized BLAST scores, defined as the
BLAST score (homolog) divided by self score of query (which
is BLAST score of the protein against itself). The value of
the normalized BLAST measure ranges from 0 to 1. We only
consider score above 0.5 threshold value as in [5]. Normalized
protein homology information S(i,j) of a protein adds to
functional potential FP(i,j) a higher likelihood of sharing
the same functions. Thus, if two proteins are homologs it
increases the potential FP(i,j) for sharing the same functional
information.

The overall functional linkage potential FP(i,j) between
interacting protein P

i

and its neighbor P
j

is defined as follows,

FP(i,j) = Mi,j + Si,j (2)

where S

i,j

is the normalized pairwise sequence similarity
score, and M

i,j

is the normalized score for common motifs
between protein P

i

and P

j

, as defined in Eq. 1 and Eq. 2
respectively. The interacting nodes with high value of FP(i,j)

are more likely to participate in common functions. After this
step we have a network for unannotated protein with potential
interactors.

C. Context based Similarity Measure

In the third step we define functional contexts and a simi-
larity score among annotated neighboring proteins by utilizing
Gene Ontology relationships. We use Gene Ontology structural
data, downloaded from the Gene Ontology database[21]. The
GO structure is organized in a DAG structure with three
broader top hierarchies: (1) molecular function, (2) biological
process and (3)cellular component. Each term of the GO
structure refers to a protein function of one of the three hierar-
chies. The functional terms are organized into two fundamental
assumptions: if a protein is positively annotated to a term, then
it is also positively annotated to all of its parents or ancestors
and if a protein is negatively annotated to a term, then it is
also negatively annotated to all of its children or descendants.
For our methodology we use the molecular function class of
the GO hierarchy.

For proteins with multiple functions we define the functional
context terms F1, F2, .....Fn

as the top most annotations of
the Gene Ontology. A functional context is used to calculate
the functional relevance of annotated child nodes with the
unannotated protein under a given context. Functional contexts
improve the predictive power of algorithm as the computations
are more centered towards semantically related annotations.
For each functional context we calculate a similarity mea-
sure among different annotations of neighboring proteins. For
protein annotations under the same functional context we
define a functional similarity measure between two annotated
proteins as the measure of functional relevance as in [15]. The



functional similarity Sim(P
i

, P

j

) between protein P

i

and P

j

is calculated as follows,

Sim(Pi,Pj) =
SimTO(Pi,Pj)

Min(annotPi ,annotPj)
(3)

Where SimTO(P
i

, P

j

) is the term overlap between two
annotated proteins and Min(annot

Pi , annotPj ) is the min-
imum number of annotations between the two proteins. We
set a threshold of 0.75 as an adequate measure of similarity
between two annotations. The set of annotations which cross
this similarity threshold are considered as potential annotations
for unannotated protein.

Based upon the FP(i,j) and Sim(P
i

, P

j

) measures we de-
velop an algorithm (see Algorithm 1) to annotate the function
of unannotated proteins. For each unannotated protein we build
a network with related interactions. We calculate the value of
FP(i,j) measure, for highly similar proteins showing similarity
above defined potential; we include them for further analysis to
accurately infer function. For set of annotations related to each
protein, we calculate functional context terms. The protein
annotations under each functional context are incorporated,
for a set of highly similar annotations whose similarity score
crosses the similarity threshold are considered as potential
functions for protein under test.

IV. EXPERIMENTAL SETUP AND RESULTS

We tested our methodology for a set of homosapeins
proteins and have obtained positive results. The complete
prototype of the method is under development and will be
available in camera ready version after fixing some technical
parameters. Here, we report only a single test which is
performed on Aurora Kinase A protein that is annotated with
ATP binding, protein kinase binding, protein serine/threonine
kinase activity, and protein serine/threonine/tyrosine kinase
activity functions. To test our methodology we consider this
protein as an unannotated protein and try to infer its function
using our methodology. We report all the values that are
observed during the test, including all set of annotations.

A. Initial Interactions Dataset

In the the first step, for unannotated protein Aurora Kinase
A, we construct an interaction network. In Table I, we report
the set of interaction data for Aurora Kinase A(O14965)
protein which is obtained from DIP and IntAct databases.
Every protein in the table is represented by the relative UniProt
Identifier.

B. Functional Potential

The interaction dataset is filtered by calculating a functional
potential FP(i,j) measure for each interaction. In Table II, we
report the values of homolog sequence similarity S

i,j

, motif
similarity measure M

i,j

, and the overall functional potential
FP(i,j). The set of protein interactors which attain functional
potential FP(i,j) >0.5 are considered as potential candidates
to have functional information. The set of potential interactors
is shown in Table III. The annotation information of these

interactors is used to infer the function of unannotated protein
under consideration.

C. Functional Contexts and Similarity scores

In the last step we define functional contexts for all
neighboring interactors by using the Gene Ontology rela-
tionships between functions. We only report contexts whose
child annotation crosses the similarity threshold i.e., Binding
and Catalytic Activity contexts. A similarity score between
different annotations of a protein is calculated. The annotation
that crosses the similarity threshold i.e., Sim(P

i

, P

j

) is greater
than 0.75 are considered as potential annotations for protein
under consideration. In Table IV, we report all functional
contexts and related functional similarity values that cross the
defined threshold.

Among all four annotations of Aurora Kinase A protein our
method successfully predicted 3 out of 4 annotations accu-
rately, for unpredicted annotation i.e., serine/threonine/tyrosine
kinase activity our method predicted IKappaB Kinase Activity
which is a sibling term of serine/threonine/tyrosine kinase
activity function in Gene Ontology. Thus, semantically part
of the same parent molecular activity.

V. CONCLUSION

In this paper we presented a new method that uses existing
biological data with Gene Ontology functional dependencies to
infer function of uncharacterized proteins. We combined three
sources of information along with the incorporation of seman-
tic relationships of the annotated functions. Incorporating Gene
Ontology information enables simultaneous consideration of
multiple but related functional categories. This relationship is
utilized for defining functional context for each set of related
functions. This context information improves the predictive
ability by involving only related functions for the similarity
measurements. This approach may easily be extended by
integrating more sources of biological information to further
increase the function prediction accuracy.
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Protein Name IntAct Database Interactors DIP Database Interactors

O14965

P42771 Q9Y6K9
P04198 Q9Y297
O75410 O14920
Q14008 O15111
Q8K1R7 Q9ULWO
O76095 Q9NQS7
Q6P2K8 O15392
B3KPG9
P61026

Q9WU62
P04179
Q8TEP8
AOAUL9
Q8VDQ8
Q96RR5
Q9NWT8
P68036
Q01469

Q9ULW0

Table I
STEP-1 INTERACTION SET FOR Aurora Kinase A PROTEIN

Unannotated Protein Pi Interactor Pj Homolog Similarity Score Si,j Motif Similarity Mi,j Functional Potential FP(i,j)

O14965

P42771 0.507 NA 0.507
P04198 0.8731 NA 0.8731
O75410 0.4097 NA 0.4097
Q14008 0.1311 NA 0.1311
Q8K1R7 0.7917 1 1.7917
O76095 0.2279 NA 0.2279
Q6P2K8 0.3456 NA 0.3456
B3KPG9 NA 0 NA
P61026 0.6132 0 0.6132

Q9WU62 0.2018 NA 0.2018
P04179 NA 0 NA
Q8TEP8 0.2072 NA 0.2072
AOAUL9 NA NA NA
Q8VDQ8 0.5762 NA 0.5762
Q96RR5 0.5831 NA 0.5831
Q9NWT8 0.8332 NA 0.8332
P68036 0.5798 0 0.5798
Q01469 0.7143 0 0.7143

Q9ULW0 NA NA NA
Q9Y6K9 0.2083 NA 0.2083
Q9Y297 0.2166 0 0.2166
O14920 0.8013 NA 0.8013
O15111 0.504 1 1.504

Q9ULWO NA NA NA
Q9NQS7 0.271 NA 0.271
O15392 NA NA NA

Table II
FUNCTIONAL POTENTIAL BETWEEN Aurora Kinase A PROTEIN AND ITS INTERACTORS

Unannotated Protein Pi Interactor Pj Homolog Similarity Score Si,j Motif Smilarity Mi,j Functional Potential FP(i,j)

O14965

P42771 0.507 NA 0.507
P04198 0.8731 NA 0.8731

Q8K1R7 0.7917 1 1.7917
P61026 0.6132 0 0.6132

Q8VDQ8 0.5762 NA 0.5762
Q96RR5 0.5831 NA 0.5831
Q9NWT8 0.8332 NA 0.8332
P68036 0.5798 0 0.5798
Q01469 0.7143 0 0.7143
O14920 0.8013 NA 0.8013
O15111 0.504 1 1.504

Table III
POTENTIAL INTERACTORS OF Aurora Kinase A PROTEIN WITH FP(i,j)>0.5



Functional Context Interactor Pj Sim(Pi, Pj) Predicted Function Prediction Result

Binding

O14920

1 ATP Binding TrueO15111
Q8k1r7
P68036
Q8k1r7 1 Protein Kinase Binding TrueP42771
O14920

1 Protein Binding True(because Protein Binding is a
parent of ATP binding)

O15111
P42771
P04198

Q8K1R7
98VDQ8
Q9NWT8
P68036
P01469
P8Q1R7 1 GTP Binding This term is more specific or detailed

annotation of ATP binding.P61026

Catalytic Activity

O14920 1 IKappaB Kinase Activity This is more detailed annotation of
Protein S/T Kinase ActivityO15111

O14920
1 Protein Serine Therine Kinase Activity TrueO15111

P8Q1R7

Table IV
FUNCTIONAL CONTEXT AND ANNOTATIONS FOR Aurora Kinase A PROTEIN WITH Sim(Pi, Pj) >0.75


