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Summary

This thesis describes the research activity that was carried out in the Telecommunica-
tion Network Group at the Electronics and Telecommunication Department (former
Electronics Department) of the Politecnico di Torino.

The main motivation of this work is to investigate techniques to reduce the power
consumption inside a network element. It is enough to consider the high energy de-
mand associated to the telecommunication networks field. As practical consequence
the power consumption has become a relevant parameter and it represents a critical
constraint for the network designers looking both the whole network infrastructure
and the network elements like switches, routers and servers.

The PhD has been focused mainly on two research areas of interest, the first one
was the power consumption inside the switching fabric of an high speed router. The
target was to analyze the effect of the dynamic power inside a switching fabric, to
evaluate a set of optimization strategies in order to minimize the power consumption
and to achieve the best trade-off between power, high performances and packet
delays; the crossbar was used as reference switching architecture for this study.
Looking at the consumption side, generally speaking, it is possible to define two
families of switching fabrics:

� Bit-rate independent switching fabric, in which the consumption does
not depend on the number of transported bits; this family is typical of optical
switching fabrics

� Bit-rate dependent switching fabric, where the total consumption is pro-
portional to the data transmission bit-rate, this family is typical of electronic
switching fabrics

The second research activity was carried at the Alcatel-Lucent Bell Laboratories,
based in New Jersey (USA) and over a period of 9 months. The study of the power
consumption across several network elements that are commercially available for the
“corporate” market.

We started from a set of collected larger number of power measurements over
these network elements and thanks to them we were able to develop a linear math-
ematical model to describe the power consumption of a generic network element.

iii



Acknowledgements

So, it was a long but funny story, a nice journey...
First of all I wish to thank my supervisor Paolo, or in “a more official way”

Prof. Paolo Giaccone, for his support during my research activities and for his pa-
tience. During this three-year period I made agaist with him at least about a
thousand of bets on my results (and I had lost all of them.. try to figure out how
many “ice creams” I had to pay).

I would like to thank all the people in the Telecommunication Network Group in
Torino, in particular Prof. Andrea Bianco who provides an important contribution
and feedback on my work.

A special thanks is for Andrea Francini who gave the opportunity to visit USA
and the Bell Laboratories.

The last, but probably more important, “thank you” is for the patience and
support of my parents, my brother, my family who experienced all ups and down of
my research.

iv



Contents

Summary iii

Acknowledgements iv

1 Introduction 1

1.1 Network elements and power costs . . . . . . . . . . . . . . . . . . . . 1

1.2 How to reduce power? . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Power aware switching fabric . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Power characterization of network elements . . . . . . . . . . . . . . . 4

1.5 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Power control for crossbar-based input-queued
switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.2 Energy profiling of network element . . . . . . . . . . . . . . . 6

2 Frame-Scheduling with Energy Reconfiguration Costs 9

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Energy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Frame Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Energy-Aware Frame Scheduling . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Matching Selection . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Frame Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Traffic Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Performance of Diag algorithm . . . . . . . . . . . . . . . . . 19

2.3.3 Performance of the GExa algorithm . . . . . . . . . . . . . . . 24

2.3.4 Effect of Frame Sorting . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Energy and Throughput Tradeoff . . . . . . . . . . . . . . . . 26

2.4 Delay control through frame scheduling . . . . . . . . . . . . . . . . . 30

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3 Power Control for Crossbar-based Input-Queued Switches 35
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Energy model for a single CMOS gate . . . . . . . . . . . . . 35
3.1.2 Switching architecture . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Crossbar power control . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Input traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 The minimum power control problem . . . . . . . . . . . . . . 39
3.2.3 Power control algorithms . . . . . . . . . . . . . . . . . . . . . 44

3.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Power consumption for double-stochastic matrices . . . . . . . 47
3.3.2 Power consumption for sub-stochastic matrices . . . . . . . . . 48

3.4 Hardware design and evaluation . . . . . . . . . . . . . . . . . . . . . 50

4 Energy Profiling of Network Equipment for Rate Adaptation Tech-
nologies 55
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Energy profiling overview . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Rate adaptation overview . . . . . . . . . . . . . . . . . . . . 58

4.2 SUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Testbed equipment . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 A new model for energy profiles . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Isolation of traffic contribution . . . . . . . . . . . . . . . . . . 64
4.4.2 The complete linear model . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Discussion of the new model . . . . . . . . . . . . . . . . . . . 66

4.5 System with DC power supply . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Measurement methodology . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions 75

Bibliography 79

vi



List of Tables

2.1 Power consumption and performance for constant uniform request
matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Energy per packet for Diag (and GExa) algorithm . . . . . . . . . . . 19
2.3 Energy per packet for Uni-AS request matrices, with N = 64 . . . . . 25
3.1 The power consumption ratio between DVFS with discrete voltage

levels (Opt-MP) and continuous DVFS (Cont-MP), for double-
stochastic matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Fixed port power terms for SFP-ready ports in ES1 (TX and SX ports
set at 1Gbps , LW/LR ports at 10 Gbps ). . . . . . . . . . . . . . . . 68

4.2 Parameters of linear model (1GbE BASE-TX ports configured for
operation at 1Gbps ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Port parameters (10/100BASE-TX ports in IR2 and IR3 configured
for operation at 100 Mbps ) . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Port parameters (1GbE BASE-SX ports configured for operation at
1Gbps ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Port parameters (10GbE BASE-LR/LW ports configured for opera-
tion at 10 Gbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



List of Figures

2.1 Logical structure of an IQ switch with VOQ architecture . . . . . . . 10
2.2 Bipartite graph (left) and a proposed matching (right) . . . . . . . . 10
2.3 Analytical and simulated results for the average frame-expansion ratio

and for different request matrices under the Diag algorithm. . . . . . 24
2.4 Throughput and energy tradeoff under Uni-AS traffic for N = 16

(white shapes) and N = 128 (black shapes). . . . . . . . . . . . . . . 27
2.5 Tradeoff between the average number of matchings and energy con-

sumption under Uni-AS traffic for N = 16 (white shapes) and N =
128 (black shapes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Throughput and energy tradeoff for GMin-NS and GExa-NS under
Uni-AS traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Throughput and energy tradeoff under Bim-AS traffic for N = 16
(white shapes) and N = 128 (black shapes). . . . . . . . . . . . . . . 30

2.8 Throughput and energy tradeoff under Uni-PS scenario for N = 16
(white shapes) and N = 128 (black shapes). . . . . . . . . . . . . . . 31

2.9 Throughput and energy tradeoff under Bid-PS scenario with α = 2/3
for N = 16 (white shapes) and N = 128 (black shapes). . . . . . . . . 32

2.10 Throughput and energy tradeoff under Bid-AS scenario for N = 16
(left) and N = 128 (right). . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Power control scheme in an IQ switch . . . . . . . . . . . . . . . . . . 37
3.2 Optimal solution for continuous DVFS (Cont-MP), under any ρ-

double-stochastic matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Relative power for N = 16 and β = 0.3, under sub-stochastic matrices 50
3.4 Relative power for N = 256 and β = 0.3, under sub-stochastic matrices. 51
3.5 Mux-based 3× 3 crossbar . . . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Architecture of a slice of the switch fabric . . . . . . . . . . . . . . . 52
3.7 Power obtained by the VHDL synthesis, for a 128×128 crossbar with

410 Gbps bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1 Experimental testbed for power measurements. . . . . . . . . . . . . . 63
4.2 Estimated breakdown of system power when all ports in the system

are fully loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



Chapter 1

Introduction

1.1 Network elements and power costs

What is, in a whole picture, the total energy and total power consumption of Inter-
net? It is not easy to get a unique answer, considering the continuous emergence
of new technologies and their utilization over Internet, but it is well known that In-
ternet power consumption is still growing due to the increasing number of network
elements connected together [1]. Only in the USA region it represents more of the
2% of overall power consumption and it has been estimated that it is going to grow
up to 8% [2].

The foresight for the whole telecommunication network sector reports that the
overall consumption will increase threefold until 2020: from 150 GW to 450 GW [3].
Making a comparison to 2000, the overall power consumption has increased twice as
much and the consumption associated only to the network elements represents the
40% of all.

In a packet telecommunication network, roughly speaking, data among users
are transfered across network elements (like routers, switches and servers) through
communication links.

Focusing on network elements that are commercially available, they are always
operative but often most of them are underutilized: this represents a large waste
of power consumption. As a consequence, this single contribution causes a twofold
outcome: from one side the power demand requested for the telecommunication
networks sector is still growing, on the other side it is possible to take account this
constraint for the design of future generations network elements.
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1 – Introduction

1.2 How to reduce power?

The roadmap drew to reduce power consumption costs associated to telecommu-
nication networks sector, suggests a twofold optimization over the whole network
resources and over network nodes.

The following example can be used as toy scenario. Assume that a source wants
to send data to a destination and assume that there are multiple paths to reach the
destination. Now, let suppose that one path is underutilized, i.e. the transmission
bandwidth is lower than the maximum bandwidth available over that link. In one
case, that link can be turned off and the traffic data flow to another one. In the
latter, transmitter and receiver can be slowed down the speed of that link. In both
cases, through these actions, it is possible to save power.

The discussion over this topic has been appeared insistently since 2000 and it is
strongly connected to the claim to achieve high performances and scalability. It is
enough to remember the transition from the Mbit/s to the Gbit/s domain.To achieve
these results the price to pay is a significant growth in term of power consumption.

The aim of this work is to investigate techniques to reduce the power consumption
inside a network element. Next sections describe a brief overview of this work. On
one side it was considered the analysis of the power consumption for switching fabrics
described in Section 1.3. The switching fabric is only a component of a network
element, like an high speed router. As a consequence, described in Section 1.4, there
is the energy profiling characterization of a commercial available network element
in order to exploit “rate adaptation” techniques to reduce the power consumption.

1.3 Power aware switching fabric

Focusing on current generation of network devices, the aggregate bandwidth of high
speed routers is growing fast, due to the increased traffic demand in the Internet.
To support traffic growth, in core routers a switching fabric that must switch data
at increasing speed is often implemented on a single integrated circuit. As a results,
power consumption in high speed switching fabrics has become one of the most
critical design issues, mainly due to high integration level on a single chip, that
implies very high power spatial density [18].

The power consumption of a packet switching fabric is a sum of many contri-
butions: supply power, data transfer and control power. Depending on the specific
employed technology, the relative importance of each contribution is different.

Traditional electronic switching fabrics are based on CMOS technology. Roughly
speaking, in an electronic crossbar, which is one of the simplest and most widely
deployed switching fabric architectures, the output line is connected to the input line
through a logic gate. The activation of the logic gate corresponds to selecting the

2



1.3 – Power aware switching fabric

proper crosspoint in the crossbar fabric. The power consumption depends strongly
on the electric charges that are moved to charge/discharge the input/output lines,
for each bit transmission. Thus, the total power depends mainly on the amount of
data transferred, and it is increasing with the bit rate.

The hardware design of such fabric is becoming more and more critical, because of
the large pin count and the high bit rate. Indeed, if f is the maximum digital signal
frequency, the power consumption of a CMOS device is proportional to f 3 [17].
In a N × N single-chip crossbar with N2 crosspoints, each implemented through
proper logic blocks, there are1 Θ(N2) CMOS components (i.e., a fixed number for
each crosspoint), and the total power consumption becomes proportional to R3N ,
where R is the data-transmission bit rate and N is the maximum number of data
simultaneously flowing across the switching fabric.

In integrated circuits, Dynamic Voltage and Frequency Scaling (DVFS) [17], a
classical technique used to control the power consumption, is based on the idea of
jointly varying the power supply voltage and the peak signal frequency.

The main idea is to reduce the power when the traffic load is low, extending the
packet transmission duration through bit voltage and frequency reduction. Indeed,
networks are typically provisioned for worst-case or peak-hour traffic. However,
several measurements (see for example [19]) show that backbone utilization rarely
exceeds 30%, thus suggesting that exploiting low traffic conditions can be a signifi-
cant asset to reduce power.

We propose a set of algorithms for power control that operate on an estimated
traffic matrix to assess the potential power gain that can be obtained exploiting
DVFS. We take an idealized approach based on fluid model, i.e., we disregard the
interaction with packet scheduling algorithms that select the packets to be trans-
ferred across the switching fabric.

In electronic switches, it is critical the high density of power to dissipate on a
single chip. Considering the power for the data transfer, another way to address this
problem can be to consider as alternative the optical switching architecture. Optical
switching fabrics usually offer a good scalability with the line rate. This is mainly
due to the fact that the optical device dynamics are decoupled from the bit rate: the
energy (and power) consumption is largely independent of the number of transported
bits and depends mainly on the power supply and on the switch control. This fact
holds for some optical linear analog switches [4] and for switching technologies based
on latching electromechanical systems (like MEMS [5] or NEMS [6]).

Motivated from such optical technologies, we focus just on the power spent to
change the configuration of the switching fabric, assuming that the amount of energy

1In Landau notation, function g(n) is Θ(h(n)) if, for n→∞, k1h(n) < g(n) < k2h(n) for some
positive constants k1 and k2.

3



1 – Introduction

depends only on the number of input-output connections added and/or removed
inside the switching fabric.

We study how to achieve high throughput while minimizing the number of con-
nections that change inside the switching fabric. Intuitively, our approach is based
on changing the switching configuration in a “lazy” way, i.e., trying to keep the
switching configuration as similar as possible in consecutive timeslots. Since the
power is the energy averaged on a time scale much larger than the packet duration,
we propose a frame-based approach, in which the packet scheduler pre-computes the
configuration of the switching fabric once during the frame duration.

Under both scenarios, electronic and optical switching fabrics, we consider specif-
ically IQ (Input-Queued) switches, since they are the reference architectures for
high-performance packet switches thanks to their good scalability. Indeed, memory
access speed does not increase linearly with the number of switch ports, as in OQ
(Output-Queued) architectures. We only concentrate on the power of the crossbar
chip, not considering the power contribution of other components of the switching
architecture.

1.4 Power characterization of network elements

In packet networks, the term “rate adaptation” designates a broad set of methods
aimed at establishing a direct relationship between sustained workload and energy
consumption. In an ideal framework for energy efficiency, the network design is
optimized to minimize energy consumption under full-load traffic conditions [26].

Rate adaptation additionally ensures that the energy-workload function is linear
and that the network consumes no energy when there are no packets to trans-
port [27]. To support such behavior, rate adaptation schemes provide the network
systems with a discrete set of operating states, where each state maps a fixed traffic
processing rate onto a respective power consumption level. The scope of the con-
trol exercised by a rate adaptation scheme can range from large subsets of network
links and nodes [28], [29], [30] to individual sections of a single traffic processing
chip [31]. Hence, for the sake of clarity we partition “rate adaptation” techniques
based on their timescale of operation, which is defined by the switching time needed
to transition between states and ultimately depends on the size of the targeted
system.

Demand-timescale rate adaptation (DTRA) techniques control the state of net-
work links and nodes based on expected or measured trends in traffic demands
between network endpoints [28], [29], [30]. DTRA state transitions involve network
signaling and system-level power cycles, so their timescale ranges from seconds to
minutes. Packet-timescale rate adaptation (PTRA) techniques adjust the clock fre-
quency and supply voltage of data-path hardware components to locally maintained

4



1.5 – Organization of the thesis

workload indicators such as queue lengths and traffic arrival rates [32], [33]. The
timescale of PTRA state transitions ranges from microseconds to milliseconds de-
pending on the underlying integrated circuit technology. Bit-timescale rate adapta-
tion (BTRA) also applies to data-path hardware components. Compared to PTRA,
BTRA transitions are much faster to execute (down to nanoseconds) because they
only involve control of the system clock (e.g., by gating of the clock signal), at
the expense of reduced power savings. To assess the energy-saving benefits that
may derive from the application of the different types of rate-adaptation techniques
we conduct power measurement experiments on a set of network systems that are
commercially available. In the case of network-wide DTRA techniques, the energy
profiles that result from the measurements quantify the benefits of enabling and
disabling network ports and possibly also entire line cards and systems based on
expected traffic demands; in the case of PTRA and BTRA techniques, instead, the
profiles identify the energy saving margins that are available for the introduction of
rate adaptive hardware components.

The energy profile of a network element maps system and traffic configurations
onto power consumption levels, typically by means of a simplified linear model.
Examples of system configuration variables can include the number of cards plugged
into the chassis (in slotted systems), the number of ports that exchange traffic over
network links and the transmission capacity provisioned for those ports. Traffic
configuration variables include the traffic arrival rate at each network port and
the statistical distribution of packet sizes and packet inter-arrival times at ports
where traffic is present. While energy profiles are commonly available for computing
systems and processors, studies that focus on networking systems and components
have started appearing in the literature only recently [34], [35], [36] and suffer from
important limitations. In fact, as we discuss below, the energy profiles presented in
those studies are not always complete in the identification of system configuration
variables [34] or in the modeling of critical system components [35], or rely mostly
on manufacturer power-rating data rather than experimental measurements [36].
Profiling approaches that condense the energy-efficiency properties of a system into
a small number of scalar indices [26], [37], [38] are unfit to support the fine-tuned
state-setting decisions that are at the core of all rate adaptation methods.

1.5 Organization of the thesis

We focus in Chapters 2 and 3 on the problem of minimizing the power spent to
control the configuration of the switching fabric, by neglecting the contribution
due to the data transfer and to the supply power. After the characterization for
crossbar-based IQ switches, Chapter 4 is focused on the energy profiling made over
a set of different network equipments available for commerce in order to highlight

5



1 – Introduction

the achievable benefits introduced with “rate adaptation” technologies. Exploiting
these technologies we assess how compatible they are with existing network elements
and identify the design upgrades that can maximize their energy savings in new
generations of network systems. Finally, Chapter 5 draws the conclusions of this
thesis.

1.5.1 Power control for crossbar-based input-queued
switches

Bit-rate independent crossbar

Chapter 2 is organized as follows. Section 2.1 defines the scheduling problem and
Section 2.2 describes the algorithms we propose to solve it.

The performances of such algorithms are investigated in terms of energy and
throughput both analytically and by simulation under different traffic scenarios in
Section 2.3, whereas Section 2.4 discusses the performances in terms of delays. Fi-
nally, Section 2.5 discusses the related work.

Bit-rate dependent crossbar

In Chapter 3 we propose to exploit DVFS for the power control of a single-chip
crossbar, to reduce the power consumption at the cost of increasing packet delays
at low-medium loads without sacrificing switch throughput.

The Chapter 3 is organized as follows. The system model is defined in Section 3.1,
while Section 3.2 formalizes the optimal crossbar chip power control problem, de-
scribes its properties, and proposes a set of algorithms to solve it. Performance
results in Section 3.3 show the possible power gain of our approach.

Details on the hardware architecture for a 410 Gbps crossbar are provided in
Section 3.4, where we show that the synthesis results well fit those of the theoretical
model.

1.5.2 Energy profiling of network element

In Chapter 4, an overview of existing models for energy profiling and instances of
“rate adaptation” techniques from the literature is described in Section 4.1. Sec-
tion 4.2 lists technical specifications for the network systems that we target for
energy profiling. Section 4.3 describes the auxiliary equipment of our experimental
testbed.

In Section 4.4 we introduce our new model for energy profiling. In Section 4.6
we illustrate the measurement methodology that we follow for estimation of the
parameters of the linear model.

6
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In Section 4.7 we present and discuss the results of our power measurement
experiments.

7





Chapter 2

Frame-Scheduling with Energy
Reconfiguration Costs

2.1 Problem Definition

We consider an N×N synchronous (slotted) IQ switch as shown in Fig. 2.1. Time is
slotted and input and output ports are assumed to be slot synchronized. Fixed-size
packets are received and stored at inputs. Input queues are organized according to
the classical Virtual Output Queueing (VOQ) architecture. Under this architecture
there is one separate First In First Out queue (FIFO) at each input port for each
output port, for a total of N2 queues in the switch. The queue VOQij stores, at
input port i, packets that must be routed to output port j. The IQ architecture
ensures high scalability in line rate and number of ports, and the VOQ scheme is
theoretically optimal from the performance point of view.

At each timeslot, a packet scheduler [22] chooses a switching configuration i.e.
an input/output port interconnection pattern to select the set of packets transferred
simultaneously through the crossbar. This configuration satisfying the constraints
that at most one packet is sent from each input and to each output, to avoid output
conflicts in a timeslot.

This problem can be modeled as a matching problem in a bipartite graph. Each
left hand side vertex corresponds to an input and each right hand side vertex cor-
responds to an output. An edge connects input i to output j if the corresponding
VOQij is not empty. In each timeslot the scheduler computes a matching, i.e. a
subset of edges with no vertex in common, corresponding to a feasible switching
configuration. A graphical example of this problem is shown in Fig. 2.2 where
N = 5, the bipartite graph is shown on the left side of Fig. 2.2 while the scheduler
choice, i.e. a matching, is represented on the right side Fig. 2.2.

A matching can be represented by an N ×N binary matrix M = [mij], denoted

9



2 – Frame-Scheduling with Energy Reconfiguration Costs

Switching Fabric

Packet Scheduler

VOQ

Figure 2.1. Logical structure of an IQ switch with VOQ architecture

as matching matrix, in which mij = 1 if and only if input i is connected to output
j, and at most one element is set to 1 in each row and in each column:

N∑
k=1

mik ≤ 1
N∑
k=1

mkj ≤ 1 ∀i, j.

The set of all matching matrices is denoted by M. A matching M is:

� complete if exactly one element is set to 1 in each row and in each column,
and it is represented by a permutation matrix

Scheduler

choice

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 2.2. Bipartite graph (left) and a proposed matching (right)
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2.1 – Problem Definition

� non-null if at least one element is set to 1:∑
i,j

mij ≥ 1

2.1.1 Energy Model

The goal is to minimize the energy consumption required to modify the switching
configuration in consecutive timeslots. More precisely, if input i was connected to
output j at timeslot t, and input i becomes connected to output k /= j at timeslot
t + 1, two energy costs arise: ed is the energy required to delete the connection
from input i to output j and ea is the energy required to add the new connection
from input i to output k. The total energy cost of a new switching configuration is
obtained as the sum of the energy costs required to delete all connections selected in
the previous timeslot and not selected in the current timeslot, plus the energy cost
required to add all connections selected in the current timeslot and not selected in
the previous one.

The actual values of ed and ea depend on the considered switching technology;
e.g. in the case of bi-stable latching MEMS, with forces acting on the micro-mirrors
only when mirrors change position, we can assume ê = ed = ea, i.e. the energy cost
to remove or to add a connection is the same. In this case, the minimum value of
energy required to modify the output at which an input is currently connected is 2ê.
Note that the approach here presented can be easily extended to the general case of
ed /= ea or to other values of energy consumptions. In the following, we normalize
the energy costs to ê or, equivalently, set ê = 1.

Define E
(
Mh,Mk

)
as the total amount of energy spent to modify matching

Mh = [mh
ij] in matching Mk = [mk

ij]. The total amount of energy can be computed
by counting the number of edges that are either removed from Mh or added to Mh

to obtain Mk:

E
(
Mh,Mk

)
= ê

N∑
i=1

N∑
j=1

|mh
ij −mk

ij|.

By construction, E
(
Mh,Mk

)
= E

(
Mk,Mh

)
.

2.1.2 Frame Scheduling

We assume that the scheduler operates on a frame basis [7]. The scheduler samples
the state of input queues at the beginning of a sampling period, that lasts T timeslots;
i.e. the queues are sampled at timeslot t = nT , for any n ∈ N. Then it computes
a frame, i.e. a sequence of matchings, to empty the input queues before the next
sampling period. Finally, the switching fabric is configured according to the frame
to serve the packets during the current sampling period, i.e. for nT ≤ t < (n+ 1)T .

11



2 – Frame-Scheduling with Energy Reconfiguration Costs

If the queues are not empty at t = (n + 1)T , the residual packets are kept and
will be served in one of the subsequent sampling periods. Note that the two phases
of computing the frame and serving the packets can be pipelined in subsequent
scheduling periods; this allows to amortize the time to compute a new frame on the
whole sampling period, at the acceptable cost of increasing the delays of T timeslots.

Let R = [rij] be an N × N request matrix, where rij is the number of packets
enqueued at VOQij, sampled at timeslot t = nT , for n ∈ N. The maximum row and
column sum of R is denoted by TR:

TR = max

{
max
j=1...N

N∑
i=1

rij, max
i=1...N

N∑
j=1

rij

}
The frame maximum load is defined as ρ = TR/T and R is said to be admissible
when ρ ≤ 1.

The frame FAR computed by a specific scheduler A on the request matrix R is
defined as an ordered sequence of K distinct and non-null matchings:

FAR = {(Mk, φk)}Kk=1

with Mk ∈M and φk ∈ N is the number of consecutive timeslots in which matching
Mk is used to configure the switching fabric. Each distinct matching appears always
in consecutive timeslots to minimize the considered energy cost. To serve all packets
in R, it must hold:

R =
K∑
k=1

φkM
k (2.1)

Let FAR =
∑K

k=1 φk be the frame duration, i.e. the total number of slots used to
transfer packets and empty the queues. Note that T is fixed, whereas FAR varies with
R. An admissible request matrix R is said to be sustainable by scheduling algorithm
A if during a sampling period all the packets in the request matrix are transferred,
i.e. if

FAR ≤ T (2.2)

Due to the Birkhoff-von Neumann theorem [23], the minimum frame duration to
serve R is TR slots. In general, FAR ≥ TR and we define the frame-expansion factor
S as1:

S =
FAR
TR

(2.3)

Combining (2.2) and (2.3), R is sustainable if ρS ≤ 1. We assume that R is always
sustainable, thus 1/S can be seen as the normalized maximum sustainable load

1Even if S depends on R and A, we omitted them from the notation for the sake of conciseness
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according to an algorithm A. The total energy cost to configure the switching fabric
according to frame FAR is:

E(FAR ) =
K−1∑
k=1

E(Mk,Mk+1)

Note that E(FAR ) is independent of the values of φk. The corresponding power,
evaluated over the sampling period, is:

P (FAR ) =
E(FAR )

T

In this work we aim at finding scheduling policies that maximize throughput (i.e.,
the maximum sustainable load) and minimize the power, under a generic request
matrix.

2.1.3 A Toy Example

To understand the possible tradeoffs between throughput and power, we consider
the case of a constant uniform request matrix R, where rij = u, ∀i, j, and u is a
fixed positive integer. In this case, TR = Nu.

Let Dk = [dkij] ∈M be the permutation matrix corresponding to the i-th diago-
nal, i.e. dkij = 1 if and only if |(i− 1) + (k− 1)|N = (j − 1) for some positive integer
k, where |x|N is the module-N operator. Let us consider three possible frames, all
of them satisfying (2.1):

� F1 = {(D1,1), . . . , (DN ,1), . . . , (D1,1), . . . , (DN ,1)}: the matchings are cycli-
cally selected among all the N diagonals in a round robin fashion, keeping
each matching for one timeslot.

� F2 = {(D1, u), . . . , (DN , u)}: the matchings are cyclically selected among all
the N diagonals in a round robin fashion, keeping each matching for u timeslot.
The same matching is used only in consecutive timeslots within the frame.

� F3 = {(U11, u), . . . , (U1N , u), . . . , (UN1, u), . . . , (UNN , u)}, where U ij is a match-
ing with only one edge, from input i to output j.

Table 2.1 reports the corresponding sustainable load (when T = TR) and power.
From the throughput point of view, F1 and F2 provide an optimal scheduling,

whereas F3 is inefficient. From the power point of view, F2 and F3 provide an
optimal scheduling, because they use the same matching in consecutive timeslots.
As a conclusion, under such constant traffic matrix, F2 is the best frame, achieving
optimality in terms of both power and throughput.

13



2 – Frame-Scheduling with Energy Reconfiguration Costs

Table 2.1. Power consumption and performance for constant uniform request matrix

Frame FAR S Max sustainable load Energy per frame
F1 TR 1 1 2uN2

F2 TR 1 1 2N2

F3 NTR N 1/N 2N2

2.2 Energy-Aware Frame Scheduling

Our energy-aware frame-scheduling problem can be modeled as a two-objective op-
timization problem: define a frame that minimizes the energy consumption, due to
switching fabric reconfigurations whilst maximizing the throughput (or, equivalently,
minimizing the frame duration FAR ).

We solve this problem in two steps the first one to maximize the throughput and
the second one to minimize energy:

� matching selection

given the request matrix R, define an algorithm A that computes an unordered
frame UAR = {Mk, φk}Kk=1 such that

1. condition (2.1) is satisfied

2. condition |UAR | the corresponding frame duration is minimized

The objective is to serve all the packets in R to maximize throughput.

� frame sorting

compute the final frame FAR by ordering UAR to minimize the energy consump-
tion due to switching reconfigurations.

2.2.1 Matching Selection

We consider five different algorithms for the matching selection. The first four are
iterative algorithms, exploiting the same generic decomposition algorithm Gen-DEC,
whose pseudo-code is reported below.

At each iteration of Gen-DEC, a specific algorithm Ω(R) computes a matching
matrix M on R. Then, the value of the minimum element in R among those selected
by the matching matrix M is subtracted from all selected elements in R, and a
residual request matrix is obtained. The process iterates until R becomes empty.

Since, at each iteration, at least one element (at most N elements) of R becomes
zero, N2 iterations are needed in the worst case to fully schedule R.

14



2.2 – Energy-Aware Frame Scheduling

Gen-DEC (Input: R; Output: UR)

UR = ∅, k = 1, R(k) = R // initialize

while R(k) /= 0 // while R(k) is not completely zero

{
Mk = Ω(R(k)) // find a matching

φk = min
1≤i,j≤N

{mk
ijrij(k)|rij(k) > 0} // find minimum

R(k + 1) = R(k)− φkMk // subtract

UR = UR ∪ {(Mk, φk)} // frame update

k = k + 1 // start a new iteration

}

BvN

A Gen-DEC based algorithm, exploiting the Birkhoff-von Neumann decomposi-
tion [23] on R, satisfying condition (2.1). Ω(R) is a MSM (Maximum Size Matching)
on R, i.e. the matching with the largest number of edges corresponding to non-null
elements of R. The MSM algorithm complexity is O(N2.5).

The BvN decomposition is “optimal”, because it achieves the minimum frame
duration (equal to TR) and the minimum frame-expansion ratio S = 1. The overall
computational complexity is O(N4.5).

GMax

A Gen-DEC based algorithm, where Ω(R) is a greedy maximum weight matching
on R. The algorithm selects the element in R with the maximum value, then it
removes the corresponding row and column from R, and repeats the process until
all the rows and columns in R are considered.

The complexity of each iteration is O(N2 logN) (needed to sort the N2 values in
R in the initial step); hence, the overall computational complexity is O(N4 logN).

GExa

A Gen-DEC based algorithm. Ω(R) is a maximal size matching with the constraint
that a queue is always served in consecutive timeslots until it becomes empty. More
formally, if Mk−1

ij = 1 and Mk
ij = 0, then rkij = 0. Otherwise, on the remaining

15



2 – Frame-Scheduling with Energy Reconfiguration Costs

input-output pairs, Ω(R) computes a maximal size matching. This is equivalent to
the exhaustive service decomposition discussed in [8].

Since the complexity of a greedy maximal size matching is O(N2), then the
overall computational complexity is O(N4).

GMin

A Gen-DEC based algorithm. Ω(R) is a greedy minimum weight matching on R.
Thus, the algorithm chooses the smallest elements in R, then it removes the corre-
sponding row and column from R, and repeats the process until all the rows and
columns in R are considered. Thus, the complexity is O(N4 logN).

Diag

The matching selection is based on a precomputed set of N covering diagonals
Dk = [dkij] on R, i.e. matchings with no elements in common and able to cover all

the elements in R. Formally, dkijd
h
ij = 0 for any h /= k, and

∑N
k=1 d

k
ij = 1 for any i, j.

The matching duration φk is chosen equal to the maximum value of the elements
in the request matrix selected by Dk, i.e. φk = maxi,j{dkijrij|rij > 0} and the frame

duration is
∑N

k=1 φk.
The total number of iterations is N , each of the iterations having a complexity

O(N) (the maximum value among N elements of R must be found). Hence, the
overall computational complexity is O(N2).

2.2.2 Frame Sorting

In this second step of the frame definition algorithm, the matchings found in the
frame UR are ordered to minimize the energy consumption due to reconfigurations
in consecutive timeslots. One simple way to model this problem is to consider an
auxiliary graph. Each matching in UR is associated with a vertex, and any pair of
vertexes is connected by an edge, thus creating a complete graph by construction.

The cost of the edge connecting the vertex of Mk with the one of Mh is defined as
the energy needed to move the switching fabric configuration from one matching to
the other, i.e. E(Mk,Mh). The cost of any path in the auxiliary graph corresponds
to the energy needed to follow the particular sequence of matchings defined by the
path.

The frame sequence FAR minimizing the energy consumption can be computed
from UR by finding the minimum-cost Hamiltonian cycle, also known as the TSP
problem, which is NP-complete. However, in our scenario, the edge costs satisfy
the triangle inequality, and the problem reduces to a metric TSP [9], which is still
NP-complete, but it can be simply approximated.
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We consider the following algorithms to sort UR:

� No-Sort (NS) leaves the sequence of matching unmodified.

� Best-Sort (BS) is a greedy algorithm that finds an approximated minimum
cost cycle by visiting all the vertexes: it chooses, at each step, the minimum
cost edge towards an unvisited vertex. The initial vertex is chosen at random.

� Worst-Sort (WS) is a greedy algorithm that heuristically finds the maximum
cost Hamiltonian cycle: starting from a random vertex, at each step, the
maximum cost edge towards an unvisited vertex is chosen. This algorithm
permits to define a worst-case sequence from the energy consumption point of
view, and it is useful to highlight the impact of the frame-sorting phase.

The above frame-sorting algorithms can be freely combined with the matching-
selection algorithms defined in the previous section.

As remainder we use the notation:

(matching-selection)-(frame-sorting)

to denote the particular pair of algorithms considered in our investigations: e.g.
GMax-BS, GExa-NS, etc.

2.3 Performance Results

2.3.1 Traffic Scenarios

We compare the performance of the previously presented algorithms for several
families of randomly generated request matrices. The choice of such families is
arbitrary, but each of them is aimed to test the performance of the algorithms
under some specific scenario.

The first family is denoted as Average Sum (AS): the matrix elements rij are
i.i.d. random variables, and satisfy the constraints:

E

[
N∑
i=1

rij

]
= E

[
N∑
j=1

rij

]
= µN

i.e. the sum of each row and column is, on average, equal to a constant µN . Hence,
µ represents the average number of packets arrived to each input during T timeslots.
Let Geom(x) be a geometric distribution with average x. Among the family of AS
request matrices, we consider:
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2 – Frame-Scheduling with Energy Reconfiguration Costs

� Uniform (Uni-AS): rij = Geom(µ). The coefficient of variation2 of the el-
ements in R is Cv = 1. This is a common testbed used in assessing the
performance of switches. Furthermore, the variance of the elements is small.

� Bidiagonal (Bid-AS): let M1,M2 ∈ M be two randomly chosen permutation
matrices. Set

rij = Geom(αµN)d1
ij + Geom((1− α)µN)d2

ij

(with 0 < α < 1), i.e. R is obtained by summing two permutation matrices
with random weights for each non-null element. Computing a maximum size
matching on such family of matrices is difficult using any greedy approach, and
for this reason this family is considered critical during the matching selection
phase.

� Bimodal (Bim-AS):

rij =

{
0 with probability p
Geom(µ) otherwise

(2.4)

Since the coefficient of variation is

Cv =

√
(1 + p)µ− 1 + p

µ(1− p)
≈
√

1 + p

1− p

we can set the values of p and µ to obtain a given Cv. For example, setting
p = 0.601 and µ = 100 gives Cv ≈ 2. Note that, just for this scenario, the
average sum of the rows and columns is (1 − p)µN . This family is similar to
the uniform one, but with a larger variance.

We also consider the family of Perfect Sum (PS) matrices, whose rows and
columns sum exactly to a constant µN :

N∑
i=1

rij =
N∑
j=1

rij = µN

Obviously, the elements {rij} are not i.i.d.. PS matrices are an extension to the
integer domain of double stochastic matrices, for which the BvN [23] decomposition
was originally defined. Similarly to AS matrices, we consider the following PS
families:

2Given a probability distribution, the coefficient of variation Cv is defined as the ratio of its
standard deviation σ and its mean µ:

Cv =
σ

µ
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Table 2.2. Energy per packet for Diag (and GExa) algorithm

Request matrix Total energy Total packets Energy per packet

Uni-AS, Uni-PS 2êN2 µN2 2ê

µ

Bid-AS, Bid-PS 4êN µN2 4ê

µN

Bim-AS 2ê(1− p)N2 µ(1− p)N2 2ê

µ

� Uniform (Uni-PS): choose a set of µN random permutation matrices Mk ∈M
and compute

R =

µN∑
k=1

Mk

Uni-PS matrices are characterized by elements with low variance, because, for
the Central Limit Theorem, Cv → 0, as N →∞.

� Bidiagonal (Bid-PS): let M1,M2 ∈M be two random permutation matrices

R = αµNM1 + (1− α)µNM2

with 0 < α < 1.

2.3.2 Performance of Diag algorithm

The energy and throughput performance of Diag algorithm can be evaluated ana-
lytically for all the considered scenarios. The energy consumption of Diag can be
evaluated easily because the energy cost is always equal to 2ê for each non-null rij.
Hence, for a frame of k distinct matchings, with k ≤ N , the total energy cost is
always upper bounded by 2êkN . Note that this holds independently from the match-
ing sorting, since the final frame FAR is independent from it. Table 2.2 provides the
energy per packet for all the considered traffic scenarios.

Note that for Uni-AS and Bid-AS the energy per packet is an upper bound on the
actual energy costs (due to possibly zero values in R), for Bim-AS it is an average,
whereas for Uni-PS and Bid-PS this energy value is exact. In Sec. 2.3.3 we will show
that the results in Table 2.2 hold also for GExa.

To evaluate the throughput, we leverage some results from classical i.i.d. extreme
value theory [10], exploiting the properties of the maximum among N i.i.d. random
variables. Let γ be the Euler constant (γ ≈ 0.58).
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Lemma 1 (Bimodal case). Consider a set of N i.i.d. random variables {Xi}Ni=1, in
which

X =

{
0 with probability p

U with probability 1− p

where U is a random variable exponentially distributed with average 1/λ

U ∼ λe−λx for x ≥ 0

Then, for N →∞ the average value of the maximum:

E

[
max

i=1,...,N
Xi

]
→ 1

λ
(γ + logN + log(1− p))

Proof. Let Y be the random variable corresponding to the maximum among N
samples: Y = maxi=1,...,N{Xi}. Following standard methodology, the corresponding
cumulative distribution function (CDF) of Y can be obtained as follows:

FY (y) = P (Y ≤ y) = P

(
max

i=1,...,N
{Xi} ≤ y

)
=

N∏
i=1

P (Xi ≤ y) =
N∏
i=1

P (X ≤ y)

=
N∏
i=1

FX(y) = FX(y)N

To compute the CDF of X, we recall that for U

FU(x) = 1− e−λx for x ≥ 0

After some simple computation FX(x) = 1− (1− p)e−λx, for x ≥ 0 and

FY (x) =
(
1− (1− p)e−λx

)N
(2.5)

Apply the following change of variable:

(1− p)e−λx =
e−y

N

then

x =
1

λ
(y + logN + log(1− p))
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Exploiting (2.5):

FY

(
y + logN + log(1− p)

λ

)
= P

(
Y ≤ y + logN + log(1− p)

λ

)
=

(
1− e−y

N

)N
For N →∞: (

1− e−y

N

)N
→ e−e

−y

and
P (λY − logN − log(1− p) ≤ y) = e−e

−y

for −∞ < y < +∞. After defining

Z = λY − logN − log(1− p) (2.6)

we obtain P (Z ≤ y) = e−e
−y

, which corresponds to the Gumbel-type distribu-
tion [11] whose average is the Euler constant γ. Hence, by combining (2.6) with
E[Z] = γ, for N →∞

E[Y ]→ γ + logN + log(1− p)
λ

Lemma 2 (Exponential case). Consider a set of N i.i.d. random variables {Xi}Ni=1.
If all Xi are exponentially distributed with average 1/λ, then

E

[
max

i=1,...,N
Xi

]
→ 1

λ
(γ + logN) for N →∞ (2.7)

Proof. The bimodal case for p = 0 corresponds to the exponential case. Just apply
Lemma 1 to get the assert.

Lemma 3 (Gaussian case). Consider a set of N i.i.d. random variables {Xi}Ni=1.
If all Xi have normal distribution with average a and variance b2: X ∼ N (a, b2),
then, for N →∞: E [maxi=1,...,N Xi]→ a+ bΓ(N), with function Γ(N) defined as

Γ(N) = (2 logN)
1
2 − 1

2
(2 logN)−

1
2 (log(4π) + log logN)

We are now ready to present the theorem regarding the performance of Diag
algorithm under different request matrices.

Theorem 1. Let R = [rij] be a Uni-AS request matrix, with E[rij] = µ � 0. R is
sustainable under Diag algorithm with a frame-expansion factor S that can be upper
bounded by

E[S] ≤ logN + γ(
1 + Γ(N)√

N

)
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Proof. To evaluate E[S], we start to compute the average value of FAR and then
we evaluate the average value of TR. Let us focus on FAR . Let Cd be the maxi-
mum element along the d-th diagonal of R. By construction, under Diag policy,
FAR =

∑N
d=1Cd. We now wish to evaluate the average frame size E[FAR ]. Note that

C1, C2, . . . , CN are i.i.d. random variables. Then

E[FAR ] = NE[Cd] (2.8)

Cd = maxi=1...N{Ai}, i.e. the maximum of N i.i.d. random variables Ai, distributed
as each element of R. Since rij is geometrically distributed with average µ� 0, we
can approximate Ai with an exponential distribution with average µ. By Lemma 2
and (2.8),

E[FAR ] = µN(logN + γ) (2.9)

Let us now focus on TR. Define T ′R and T ′′R as the maximum row and column
sums of R, i.e.

T ′R = max
j=1,...,N

N∑
i=1

rij T ′′R = max
i=1,...,N

N∑
j=1

rij

From the Birkhoff-von Neumann theorem [23], TR = max{T ′R, T ′′R}. Since all
rij are i.i.d., we can focus on a generic row i of R and evaluate the sum Bi of the

corresponding values: Bi =
∑N

j=1 rij. Thanks to the Central Limit Theorem, the
distribution of Bi tends to the Normal distribution

Bi ∼ N (µN, µ2N) (2.10)

Rewriting T ′R as T ′R = maxi=1,...,N{Bi}, from Lemma 3

E[T ′R]→ µN + µ
√
NΓ(N) (2.11)

Since TR ≥ T ′R (stochastically), the right side of (2.11) represents a lower bound on
E[TR]. Combining (2.9) and (2.11), the frame-expansion ratio S is upper bounded
by:

E[S] ≤ N(logN + γ)

N +
√
NΓ(N)

Theorem 2. Let R = [rij] be a Uni-PS request matrix, being E[rij] = µ. R is
sustainable under Diag algorithm with a frame-expansion factor S whose average is:

E[S] = 1 +

√
1

µ

(
1− 1

N

)
Γ(N)
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Proof. Note that, by construction, TR = µN . We need to evaluate E[FAR ] to compute
E[S]. All the elements rij of the request matrix are identically distributed, even if
not independent. Say A is the random variable corresponding to any rij.

Now A is obtained by the contribution of µN matchings, each of them including
the element (i, j) with probability 1/N . This is equivalent to state that:

A =

µN∑
i=1

Hi, with Hi =


0 with probability

1

N

1 with probability 1− 1

N

Thanks to the Central Limit Theorem, A is normally distributed:

A ∼ N
(
µ, µ

(
1− 1

N

))
Define C as the maximum along a particular diagonal; C is the maximum of N i.i.d.
random variables distributed as A.

By Lemma 3, E[C]→ µ+
√
µ(1− 1/N)Γ(N). Since E[FAR ] = NE[C], we obtain:

E[S] =
Nµ+N

√
µ(1− 1/N)Γ(N)

Nµ

which corresponds to the assert of the theorem.

Theorem 3. Let R = [rij] be a Bim-PS request matrix, being E[rij] = µ(1− p). R
is sustainable under Diag algorithm with a frame-expansion factor S whose average
can be upper bounded as:

E[S] ≤ log(1− p) + log(N) + γ

1− p+
Γ(N)√
N

√
1− p2

(2.12)

Proof. It is possible to repeat exactly the same arguments as the proof of Theorem 1.
To compute E[FAR ], simply substitute logN with logN + log(1 − p) (thanks to
Lemma 1).

To compute E[T ′R], it can be shown that Bi is normally distributed as N (µN(1−
p), Nµ2(1− p2)). The result immediately follows.

Fig. 2.3 shows the average frame-expansion ratio obtained by simulating a large
number of request matrices for different values N . We have investigated the different
families of request matrices: Uni-AS, Bim-AS with Cv = 2 (large variance) and
Cv = 4 (very large variance) and Uni-PS. The points (SIM) refer to the results
obtained by simulation, and the curves (TEO) refer to the analytical curves of
Theorems 1, 2 and 3. The graphs show that the bounds of Theorems 1 and 3 are
quite tight, especially for large N , and the approximation of Theorem 2 is very
accurate.
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Figure 2.3. Analytical and simulated results for the average frame-expansion ratio
and for different request matrices under the Diag algorithm.

2.3.3 Performance of the GExa algorithm

Let us evaluate the energy cost and the worst case throughput for the GExa algo-
rithm. Since the service is exhaustive for each input-output pair, the energy cost is
always equal to 2ê for each non-null rij, as for Diag. Hence, Table 2.2 is also valid
for GExa and we can claim that GExa is optimal from the energy point of view.

Regarding the throughput, it can be easily shown that:

Theorem 4. Let R = [rij] be any request matrix. R is sustainable under the GExa
algorithm with a frame-expansion factor S ≤ 2.

Proof. Observe that GExa decomposes R using a sequence of maximal matchings.
From Theorem 2.2 in [7] or Theorem 4.2 in [8], if a matrix is decomposed by any
sequence of maximal matchings, then the number of matchings needed is at most
twice than the number obtained by BvN. Hence, FAR ≤ 2TR and S ≤ 2.

As a consequence, the maximum sustainable load by GExa is always ≥ 0.5,
independently of the switch size.
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Table 2.3. Energy per packet for Uni-AS request matrices, with N = 64

Decomposition alg. Worst Sort (WS) No Sort (NS) Best Sort (BS)
BvN 0.872 0.810 0.741

GMax 0.425 0.415 0.377
GMin 0.723 0.045 0.049
GExa 0.866 0.020 0.020
Diag 0.020 0.020 0.020

2.3.4 Effect of Frame Sorting

We first evaluate the effect of the algorithms sorting the frame. Table 2.3 reports
the energy per packet obtained by combining a specific matching selection algorithm
with a particular sorting algorithm, for Uni-AS request matrices with µ = 100, in a
N×N IQ switch, withN = 64. Very similar results were obtained for different switch
size and different random request matrices. The Diag algorithm is not affected by
the sorting and the energy per packet is coherent with the analytical values reported
in Table 2.2.

Indeed, all the matchings are distinct and 2N2ê is the total energy spent in a
frame. Since the total number of packets is, on average N2µ, the average energy per
packet is simply 2N2ê/(N2µ) = 2ê/µ, independently from R, as shown in the table.

Recall that this value is the minimum energy achievable by any algorithm under
the Uni-AS scenario, but it requires a large frame-expansion factor S, as shown
later.

As a general comment, the beneficial effect of the frame-sorting algorithm on
the energy minimization depends from the specific matching-selection algorithm. In
general, we expect that best-sorting (BS) will outperform no-sorting (NS) which, in
turn, will outperform worst-sorting (WS). This is not always true, as shown below.

For the BvN matching-selection algorithm, BS allows to reduce by 10% the
energy cost with respect to NS, and 17% with respect to WS. In all cases, the
absolute costs are the highest, and this is due to the specific algorithm adopted
in BvN, based on computing a maximum size matching at each iteration, without
considering the energy cost to change the matching.

When combined with GMax, BS reduces the energy cost similarly for the BvN
case. In absolute terms, the cost are smaller than BvN, since the greedy algorithm
based on the queue length induces some correlation between the matchings computed
in subsequent iterations of the algorithm. This effect is highlighted in GMin.

Interestingly, in GMin, the effect of the frame-sorting is always negative. Indeed,
the energy cost obtained by NS is natively very small, and BS increases the energy
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cost. This is not surprising, since BS is an approximated algorithm to solve TSP
and its solution is worse than the initial sequence offered by unsorted UR. Although
not completely intuitive at a first glance, this effect is due to the particular metric
used to compute the matching at each iteration. By subtracting the minimum
weight matching Mk from Rk at iteration k, there is a high probability that the
new minimum weight matching Mk+1 shares some (at most, N − 1) edge with Mk.
This correlation induces an efficient “self-sorting” property, providing an energy
efficiency comparable with, and in some situations even better, than the one achieved
by BS sorting. On the contrary, when running GMax algorithm, Mk is a (almost)
maximum weight matching; as such, there is a very low probability that Mk+1 shares
edges with Mk. This explain the lower energy cost of GMin with respect to GMax.
As a conclusion, GMin is efficient in terms of energy-cost without any additional
sorting algorithm.

Similarly to Diag, GExa-NS are GExa-BS are both optimal in terms of energy,
since the matching order induced by GExa is already optimal. On the contrary, WS
changes the order and (differently from Diag), the energy cost increases.

Since the above reported results hold qualitatively in many scenarios, we focus
only on the following optimized combinations of frame scheduling algorithms in the
next sections: BvN-BS, GMax-BS, GMin-NS, Diag-NS and GExa-NS. These algo-
rithms have very different computational complexities and memory requirements;
the sorting procedure itself requires to store the whole frame sequence to sort it.
The ranking among the algorithms in terms of increasing complexity is: Diag-NS
(less complex), GExa-NS, GMin-NS, GMax-BS and BvN-BS (more complex).

2.3.5 Energy and Throughput Tradeoff

Simulations have been run in a proprietary simulation environment written in C
language. The parameter µ, related to the packet arrival rate, is set equal to 100; all
simulations results are obtained as an average of 100 simulation runs, each run using
a different randomly generated request matrix, to obtain statistically significant
simulation results.

We mainly report the results for N = 16 (denoted with white shapes in the
graphs) and N = 128 (denoted with black shapes in the graphs); however, similar
results hold also for N = 32 and N = 64 scenarios.

In all the reported plots, each point corresponds to the average value; two bars
around each point (one horizontal bar and one vertical bar) show the maximum and
minimum values obtained considering all 100 runs. When the error-bars are not
visible, the results of each run are almost identical to the average value, i.e., a small
variance exists when changing the seed to generate the random matrices.

Fig. 2.4 shows the tradeoff between the maximum sustainable load and the energy
per packet obtained by the different algorithms. To read the plot, suppose that the
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Figure 2.4. Throughput and energy tradeoff under Uni-AS traffic for N = 16
(white shapes) and N = 128 (black shapes).

switch designer is willing to obtain a minimum sustainable load and a maximum
energy consumption per packet. These design constraints define a point (e′, ρ′) in
the graph. All the algorithms whose performance are in the region to the left and
above this point (i.e., with energy ≤ e′ and maximum sustainable load ≥ ρ′) satisfy
the design constraint.

Only for a small switch size N = 16, the algorithms Diag-NS and GMin-NS show
some variations in the maximum sustainable load; in all other cases, simulations
results show a very small variability when changing the traffic matrix. As expected,
the Diag-NS and GExa algorithms achieve the minimum energy per packet, whose
value can be computed with the formulas in Table 2.2. However, due to the large
frame-expansion factor required, Diag-NS cannot sustain large loads, as stated in
Theorem 1.

The GMin-NS algorithm, despite its relative simplicity, achieves energy consump-
tion levels only 2-3 times larger than Diag-NS, but with a throughput very close to
the maximum throughput. GExa-NS achieves the best overall performance, with
energy consumption as low as Diag-NS and almost maximum throughput. BvN-BS

27



2 – Frame-Scheduling with Energy Reconfiguration Costs

 10

 100

 1000

 10000

2 0.01  0.1  1

N
u
m

b
er

 o
f 

M
at

ch
in

g
s

Energy for Packet

Figure 2.5. Tradeoff between the average number of matchings and
energy consumption under Uni-AS traffic for N = 16 (white shapes)
and N = 128 (black shapes).

and GMax-BS provide almost the same throughput, but at the expenses of large
energy consumption, even after the frame sorting. Note that GMax-BS is more
energy-efficient than BvN-BS, due to the metrics used to compute the matching, as
already observed in Sec. 2.3.4. Finally, energy consumption per packet increases a
lot for larger switch size, as expected.

Fig. 2.5 shows the number of distinct matchings computed by each algorithm,
for the Uni-AS scenario. The algorithm Diag-NS, by construction, uses only N
matchings. All other algorithms use a significantly larger number of matchings.
For N = 128, GExa-NS uses the largest number of matchings, even if the energy
consumption is minimum. Note that roughly N2µ packets should be scheduled in
a frame, and, to achieve the maximum frame load (ρ = 1), each single matching
should roughly serve N packets. Hence, there are at most Nµ = 12,800 different
matchings in the frame under Uni-AS. Even if the algorithm GExa-NS uses almost
all the different matchings, the total energy cost is small because the energy cost
between any pair of matchings is very small.
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Figure 2.6. Throughput and energy tradeoff for GMin-NS and GExa-NS
under Uni-AS traffic.

In Fig. 2.6 we focus on the energy-throughput tradeoff obtained by GExa-NS and
GMin-NS by varying N . Regardless of the switch size, the maximum sustainable
load is always significant for both algorithms, and the increase in the energy per
packet as a function of N is marginal for GMin-NS and null for GExa-NS. Similar
observations hold for the Bim-AS scenario, as reported in Fig. 2.7.

In the case of Uni-PS scenario, Fig. 2.8 shows that BvN-BS achieves the worst
energy performance, even if the maximum sustainable load is always achieved. The
best energy results are obtained by GExa-NS and Diag-NS, the latter providing
higher throughput differently from the Uni-AS scenario. This is mainly due to the
smaller variance of the values in the diagonal elements of the request matrix R: the
maximum element on a diagonal is close to the average and Diag-NS shows better
performance. BvN-BS appears to be very inefficient in terms of energy consumption,
when compared with any other algorithm, especially when the switch size grows.
GExa-NS and GMin-NS show the best tradeoff, since they achieve the minimum
energy, close to Diag-NS, and almost the maximum throughput.

As a last scenario, we consider the Bid-PS scenario in Fig. 2.9, where GExa-NS
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Figure 2.7. Throughput and energy tradeoff under Bim-AS traffic for N = 16
(white shapes) and N = 128 (black shapes).

and Diag-NS achieve the energies computed in Table 2.2. The two algorithms are
not optimal anymore, since GMax-BS and GMin-NS find a frame with only two
matchings (corresponding to D1 and D2) and with a total energy per frame equal
to (N − 1)ê, i.e. roughly 1/µ, half of the values achieved by GExa-NS and Diag-
NS. This is the only traffic scenario in which we were able to show some energy
impairment (bounded by a factor 2) for Diag-NS and GExa-NS algorithms.

Fig. 2.10 shows the results for Bid-AS scenario. All the considered algorithms
achieve the maximum throughput (for large switch size) except for Diag-NS. Regard-
ing the energy, Diag-NS and GExa-NS achieves the minimum values, as estimated
in Table 2.2. GMin-NS behaves very similarly to GExa-NS.

2.4 Delay control through frame scheduling

In the previous performance evaluation, we have deliberately omitted to evaluate the
delays, since they can be controlled by the frame scheduling in a complementary way
to ours. Indeed, a generic frame scheduling approach can guarantee delay bounds;
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we consider specifically the “Fair-Frame” approach proposed in [12], ensuring delays
that grows logarithmically with N .

Let Rnew be the request matrix corresponding to only the packets arrived during
the current sampling period, i.e. during the interval (n− 1)T < t ≤ nT , for n ∈ N;
let Rres be the residual matrix with the packets arrived in earlier periods, during
any timeslot t ≤ (n− 1)T , and not yet served at timeslot t = nT . By construction,
the total request matrix at t = nT is R = Rnew +Rres.

Assume now that the input traffic is Poisson with rates λij satisfying:∑
k

λik ≤ θ
∑
k

λkj ≤ θ, ∀i, j

where θ is the normalized load. Sec. IV of [12] shows that, if the traffic is admissible
(θ < 1), it is possible to define a minimum sampling period T , function of θ, such
that R is admissible with arbitrary high probability and TRnew ≤ T . Analogously, if
the decomposition algorithm shows a frame-expansion ratio S, it is again possible to
find a minimum T , function of θ/S, such that R is both admissible and sustainable
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Figure 2.9. Throughput and energy tradeoff under Bid-PS scenario with α = 2/3
for N = 16 (white shapes) and N = 128 (black shapes).
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with high probability. For simplicity, assume that S = 1. In the case TRnew > T (this
occurs with low probability), a new request matrix R′new is built by reducing some
elements in Rnew to obtain TR′new

= T and make R′new admissible; the remaining
packets, given by Rnew −R′new, will be served in future periods.
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The main idea of “Fair-Frame” is to define the current frame FAR based on R′new,
without considering Rold. But, in the case a matching in FAR is not complete, the
scheduler exploits the unused input/output ports to serve the packets in Rres.

This frame scheduling approach, applicable also for our energy-aware frame
scheduling, allows to achieve an explicit delay bound for a given load θ using (26)
of [12], i.e. to obtain delays O(log(N)). Such delays are asymptotically much smaller
than any frame scheduling policy oblivious of the VOQ lengths, for which delays are
O(N).

2.5 Related Work

In optical switches based on MEMS, tunable lasers and other technologies, a recon-
figuration latency must be paid when the switching fabric changes configuration; a
“blackout” period is experienced in packet transmissions, during which the whole
switching fabric is not available to transfer packets.

In [13] the optimal frame scheduling to compute the fabric configurations was
studied. The cost function minimized in [13] is similar to the one considered here. In-
deed, the reconfiguration is a cost paid anytime the switching configuration changes.
However, differently from our case, the cost in [13] is independent of the number of
input-output connections that change inside the switching fabric: a single connec-
tion modification implies that the whole switching fabric becomes unavailable, thus
introducing the cost of a complete reconfiguration. Hence, differently from ours,
the scheduling policy is designed to minimize the number of matchings to serve all
the packets in the request matrix. [13] showed that the optimal scheduling problem
with reconfiguration latency belongs to the NP-complete class, and proposed two
sub-optimal algorithms Min and Double. Min algorithm decomposes the request
matrix into N matchings as our Diag, but the corresponding frame-expansion fac-
tor S grows as S ≈ 4 log2N . As an alternative, Double algorithm decomposes the
request matrix with 2N matchings while keeping S = 2.

An input queued switch in which the power consumption depends on the speed
at which packets are sent through the switching fabric is considered in [14]. A power
quadratic cost with the transmission speed is assumed, and an on-line scheduling
algorithm derived from the theory of dynamic programming is defined. At any time,
the algorithm selects the packets to transfer and the switching fabric speedup, trying
to achieve the best tradeoff between power consumption and delays. Similarly, [15]
investigates on-line scheduling algorithms to stop temporary the packets transmis-
sions across the switching fabric to reduce the power consumption and to keep a
target delay/backlog performance. Finally, [16] combines the on-line approaches
of [14, 15] in a more generic queueing system. However, the addressed problem is
not the minimization of the energy due to reconfiguration costs.
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Chapter 3

Power Control for Crossbar-based
Input-Queued Switches

3.1 Problem Definition

We start by considering a single CMOS component, the basis of the combinatorial
logic of a single crosspoint in the crossbar chip.

3.1.1 Energy model for a single CMOS gate

The energy consumption of a CMOS gate is strongly dependent on the supply voltage
V and it can be modeled as the sum of a dynamic energy component (due to electrical
signal switching activity needed to transfer sequence of 0s and 1s) and a static
energy component (due to leakage currents). We consider only the dynamic energy
component, while we neglect the latter contribution. Leakage currents tend to be
proportional to occupied area and are normally controlled by means of circuit level
techniques that are out of the scope of this work. The energy due to a bit transition
(i.e., the switching activity) is a quadratic function of V according to the well known
formula Ebit = 0.5CV 2, where C is the load capacitance. If we consider a 0-1 square
wave signal with frequency f , the power consumption is

P = Ebitf ∝ fV 2 (3.1)

that represents also the thermal power to dissipate.
The allowed frequency is f ∝ V due to the delay needed to switch from one

logic state to another [20]. Thereby, the power consumption for a CMOS operating
at maximum frequency and voltage is proportional to f 3. DVFS techniques jointly
reduce V and f to minimize power consumption, exploiting time periods in which
the signal can be “slowed down” to a lower peak frequency.
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3 – Power Control for Crossbar-based Input-Queued Switches

This approach is actually implemented in commercial CPUs, where the process-
ing speed changes with the instantaneous processing load [21].

We consider a CMOS device operating at voltage V , ranging between Vmin and
Vmax. Within this range, we assume that bit transmissions can occur at intermediate
voltage levels. When operating at V < Vmax, since f ∝ V , the signal frequency can
be slowed down by a factor

α =
Vmax

V

with respect to the maximum frequency allowed when using Vmax. Thus, α is the
expansion factor of the bit duration with respect to the bit duration when using
Vmax.

Furthermore, V must be larger than Vmin > 0, because of technological con-
straints that forbid to reduce the voltage level too much and of the impact of leakage
currents, that otherwise would become not negligible. Define β = Vmin/Vmax. By
construction,

1 ≤ α ≤ 1

β

Depending on the technology, β = 0.5 for a classical DVFS scheme or β = 0.3 in
the case of an “extreme” DVFS scheme, according to [17].

3.1.2 Switching architecture

We consider an N × N input queued (IQ) switch, with virtual output queueing
(VOQ) as shown in Fig. 2.1.

In this chapter the switching fabric is anN×N crossbar chip, withN2 crosspoints
and Θ(N2) CMOS components. The crosspoint connecting input i to output j is
denoted as XPij and is fed by VOQij traffic.

The scheduling decisions occur at a packet level, with a time granularity equal
to the minimum packet duration. In the case of minimum Ethernet packet size and
10 Gbit/s line rates, a new scheduling decision must be taken every 50 ns. Given
such a strict timing constraint, packet schedulers are often implemented directly in
hardware, but off-chip, i.e., on a separate chip with respect to the crossbar chip.

We do not focus on any particular scheduler, although for simplicity the model
assumptions hint at packet schedulers able to achieve 100% throughput under ad-
missible traffic.

3.2 Crossbar power control

A vast literature is available on the design of low complexity and high performance
packet schedulers for input queued switches [22].
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Rate estimator
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VOQs

Power control

schedulerPacket

Figure 3.1. Power control scheme in an IQ switch

The aim of the power control block in Fig. 3.1 is to exploit DVFS at crosspoints
to reduce the crossbar chip power consumption. Based on traffic measurements on
the ms scale which provide rate estimations, the control determines the DVFS factor
αij for the combinatorial logic at XPij, assuming that each crosspoint is controlled
independently. Due to the relaxed timing constraints, the algorithm for power
control is assumed to be implemented as a software component running on an off-
chip processor. Since we focus on crossbar power consumption, we disregard the
power contribution of the scheduler and of the power control block. However, the
only additional power consumption introduced by our proposed DVFS is due to the
power control block; this contribution is negligible with respect to the scheduler
consumption due to comparable algorithmic complexity and much larger time scale.

Let α = [αij] be the N ×N matrix with the DVFS factors currently employed in
the crossbar. Note that setting αij > 1 implies that the forwarding rate at XPij is
reduced and the packet transmission time is increased by the expansion factor αij.
This has two main consequences:

1. an additional queueing delay in VOQij

2. the packet scheduler cannot serve any new packet from input i and to output
j until XPij ends the packet transmission

Thus, the packet scheduler should be slightly modified to take into account DVFS
factors in packet scheduling. We disregard this issue in the analysis, and we take an
ideal fluid-based approach, looking only at I/O flow rates, to evaluate the possible
asymptotic benefits in terms of reduced power consumption. Note that extending
packet duration might influence switch throughput and buffer size requirements.
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However, the power control algorithms avoid switch overloading, by increasing
packet duration only at low-medium input load. This translate in an internal load
increase. In other words, the switch operates internally always in a high load regime,
regardless of the real input load, but never in overload. As such, buffer requirements
are not modified, because buffer size are designed for high load conditions, which
are not modified by the power control scheme.

3.2.1 Input traffic

To avoid dealing with data content, we assume that a data packet of length L is
transmitted using L signal transitions: i.e., each packet is composed by a sequence
of alternating 0 and 1.

Denote the maximum line rate as rmax, measured in [bit/s]: rmax is achievable
only for V = Vmax. The traffic load on each link is measured on a time window
whose duration Tw is in the order of ms. Let rij be the average arrival rate [bit/s] for
the traffic flows enqueued at VOQij during the current time window, and R = [rij]
the corresponding N × N traffic matrix. Let S = [sij] be the normalized traffic
matrix obtained by setting sij = rij/rmax, with sij ∈ [0,1]. We assume that sij > 0
for any i and j.

Definition 1. The average load of matrix S is defined as

ρave(S) =
1

N

N∑
i=1

N∑
j=1

sij

Definition 2. The average load at input i and at output j is

ρIi (S) =
N∑
k=1

sik and ρOj (S) =
N∑
k=1

skj

respectively.

Definition 3. The maximum load of matrix S is

ρmax(S) = max{max
k
{ρIk(S)},max

k
{ρOk (S)}}.

Definition 4. The traffic matrix S is said to be admissible if and only if

ρmax(S) ≤ 1

Obviously, ρave(S) ≤ ρmax(S).
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3.2.2 The minimum power control problem

To keep bounded queues and delays, and to avoid overload, we model the constraints
related to the maximum time expansion allowed for the transmitted bits. During
a measurement period, the total number of arrived bit is Twrij, smaller than the
maximum number of bits Twrmax that can be transmitted at Vmax. Hence, the
maximum allowed expansion factor for each bit is rmax/rij, i.e. αijrij ≤ rmax. At the
same time, to avoid overload, it is necessary to limit the expansion at each input
and output:

N∑
k=1

αikrik ≤ rmax

N∑
k=1

αkjrkj ≤ rmax ∀i, j

which can be normalized as

N∑
k=1

αiksik ≤ 1
N∑
k=1

αkjskj ≤ 1 ∀i, j (3.2)

Similarly to (3.1), the power consumption of XPij, denoted as Pij, is proportional
to

Pij ∝ rij

(
Vmax

αij

)2

= sijrmax

(
Vmax

αij

)2

∝ sij
α2
ij

The total crossbar power consumption is the sum of the power contributions of all
crosspoints:

Ptot =
N∑
i=1

N∑
j=1

Pij ∝ fP (α) =
N∑
i=1

N∑
j=1

sij
α2
ij

(3.3)

where fP (α) is a power cost factor.
Finally, the minimum power problem (denoted as Opt-MP) becomes: given an

admissible S, find a feasible α minimizing fP
1:

min
α
fP (α) = min

{αij∈R+}i,j

N∑
i=1

N∑
j=1

sij
α2
ij

(3.4)

subject to



N∑
k=1

αiksik ≤ 1 ∀i (3.5)

N∑
k=1

αkjskj ≤ 1 ∀j (3.6)

αij ∈ A ∀i, j (3.7)

1More properly, we should say that fP is a power cost factor.
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where A is the set of all available voltage levels.

Property 1. Opt-MP is an integer convex non-linear optimization problem.

Continuous version of the problem

Following a standard methodology, we start to relax Opt-MP to continuous vari-
ables. This leads to the following problem, denoted as Cont-MP: minimize fP (α)
subject to (3.5) and (3.6); (3.7) is substituted by

αij ≥ 1 ∀i, j

corresponding to a DVFS scheme in which any voltage between 0 and Vmax is al-
lowed2.

Let α̂Opt-MP be the optimal solution of Opt-MP. Let α̂Cont-MP be the optimal
solution of Cont-MP. Since Cont-MP is a relaxed version of Opt-MP, α̂Cont-MP

is a lower bound on the power cost

Property 2. fP (α̂Cont-MP) ≤ fP (α̂Opt-MP).

Theorem 5. Cont-MP is equivalent to

min
α
fP (α) (3.8)

subject to



N∑
k=1

αiksik = 1 ∀i (3.9)

N∑
k=1

αkjskj = 1 ∀j (3.10)

αij ≥ 1 ∀i, j (3.11)

Proof. Assume α̂ = [α̂ij] to be the optimal solution. Define ŝij = α̂ijsij. By contra-

diction, assume that there exists i such that
∑

k ŝik < 1, i.e. the i-th row of Ŝ = [ŝij]
sums to less than one (the same argument holds for the case the column sums to
less than one).

Now two cases can occur. In the first case, it exists also one column j that
sums to less than one, i.e.

∑
k ŝkj < 1. Hence, it is possible to increase ŝij to

ŝ′ij while satisfying constraints (3.5)-(3.6). The new corresponding α′ij = ŝ′ij/sij is
feasible and provides a lower cost function; this contradicts our assumption. In the
second case, all the columns sum to one and, summing over all the columns, we have∑

j

∑
k skj = N , which contradicts the assumption

∑
i

∑
k sik < N .

2The constraint on Vmin will be discussed at the end of the section.
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Note that one of the constraints in (3.9)-(3.10) is linearly dependent of the others
and can be omitted.

Definition 5. Given a non-negative matrix H ∈ RN×N , H is said to be ρ-double-
stochastic if ρIi (H) = ρOj (H) = ρ for any i and j, i.e. ρave(H) = ρmax(H) = ρ. A
1-double-stochastic matrix is usually called double-stochastic matrix.

Definition 6. Given a non-negative matrix H ∈ RN×N , H is said to be ρ-sub-
stochastic if ρmax(H) = ρ. In this case, ρIi ≤ ρ for any i and ρOj ≤ ρ for any j;
furthermore, ρave(H) ≤ ρmax(H) = ρ must hold.

Thanks to Theorem 5, Cont-MP translates to: given a ρ-sub-stochastic matrix
S, find a double-stochastic matrix Ŝ = [ŝij] such that the set of αij = ŝij/sij
minimizes fP (α). In other words, S is augmented to become double-stochastic.

The following Theorem provides an easily computable optimal solution:

Theorem 6. Given a ρ-double-stochastic matrix S, the optimal solution α̂ for
Cont-MP is

α̂ij =
1

ρ
∀i, j

The corresponding power cost factor is

fP (α̂Cont-MP) = Nρ3

Proof. The proof is based on the use of the Lagrange multipliers and on the Tay-
lor’s Theorem for multivariate functions. Denote ⊗ as the Hadamard product (i.e.,
element-by-element) of two matrices. Define α̂ as the optimal solution given by
α̂ij = 1/ρ and define α, with α /= α̂, a generic feasible solution satisfying (3.9) and
(3.10); α⊗ S and α̂⊗ S are both double stochastic matrices. We can define matrix
∆ = α− α̂ and assume that maxi,j{∆ij} ≤ ε where ε > 0. We can use Birkhoff-von
Neumann Theorem [23] to claim that there exist a set of real numbers γk such that

∆⊗ S =
∑
k

γkM
k

∑
k

γk = 0 (3.12)

where Mk is a permutation matrix. Equivalently,

∆ij =
∑
k

γk
mk
ij

sij
(3.13)

Consider for algebraic convenience consider the vectorization form of a matrix;
the column vector form of matrix ∆ is denoted by ∆. By classical Taylor’s Theorem
for multivariate functions,

fP (α)− fP (α̂) = ∆T∇fP (α̂) +
1

2
∆TH(η)∆ (3.14)

41



3 – Power Control for Crossbar-based Input-Queued Switches

where H(η) is the Hessian matrix computed in η = (1 − γ)α̂ + γα = α̂ + γ∆, for
some constant γ ∈ [0,1]. Equivalently,

ηij = α̂ij + γ∆ij (3.15)

We first show that the first term in the right hand side of (3.14) is null. Indeed,
by (3.12) and (3.13):

∆T∇fP (α̂) =
∑
ij

−2sij
α̂3
ij

∑
k

γk
mk
ij

sij
=

=
∑
ij

(−2ρ3)
∑
k

γkm
k
ij =

= (−2ρ3)
∑
k

γk
∑
i,j

mk
ij =

= (−2ρ3)
∑
k

γkN = 0

thanks again to (3.12).
Let us consider now the second term in the right hand side of (3.14). Observe

that H(α) is a diagonal matrix, in which the element corresponding to (i, j) pair is
equal to 6sij/α

4
ij. Hence, by (3.15):

∆TH(η)∆ =
∑
i,j

∆2
ij

6sij
η4
ij

=
∑
i,j

∆2
ij

6sijρ
4

(1 + γρ∆ij)4

Let ε′ = minij{∆ij|∆ij > 0} and s′ = minij{sij}. Finally, we can claim

fP (α)− fP (α̂) = ∆TH(η)∆ ≥ 6ρ4(ε′)2s′

(1 + γρε)4
> 0

that means that any α /= α̂ that satisfies (3.9) and (3.10) cannot be the optimal
solution.

The minimum power cost factor is immediately obtained by computing fP (α̂).

In Sec. 3.4, we validate the cubic relation between power and load through the
results of the actual hardware synthesis of a crossbar chip. Furthermore, we can
get an important intuition from the above theorem, which will drive the design of
approximated algorithms for the Cont-MP problem: In the optimal solution, all
the αij are expanded proportionally by the same factor.
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3.2 – Crossbar power control

When considering also the constraint on Vmin, the expansion ratio is limited by
αij ≤ 1/β. For ρ-double-stochastic matrices, the optimal solution becomes

αij = min

(
1

ρ
,

1

β

)
, ∀i, j

and the corresponding optimal solution for Cont-MP becomes:

fP (α̂Cont-MP) =

{
Nρβ2 if ρ < β

Nρ3 if ρ ≥ β
(3.16)

Thus, β is the value of “critical load” above which DVFS is not able to expand the
bit duration due to the constraints imposed by the traffic load in (3.2).

Consider now a relaxed version of the Cont-MP problem, denoted as Miso-
MP (Multiple-Inputs Single-Output), in which we remove the expansion constraints
(3.9) on each input.

Theorem 7. Given any admissible traffic matrix S, the optimal solution of Miso-
MP is given by αij = 1/ρOj (S). The corresponding power cost factor is:

fP (α̂Miso-MP) =
∑
j

(ρOj (S))3

Note that this results does not require S to be a double-stochastic matrix.

Proof. Define the Lagrange function as

Λ =
∑
ij

sij
α2
ij

+
∑
j

λj

(∑
k

skjαkj − 1

)

A necessary condition for the solution to be optimal is ∂Λ/∂αij = 0, which implies
−2sijα

−3
ij + λjαijsij = 0. It should be αij = (2/λj)

−4, i.e. for a fixed j, all the
αij are constant. Thus (3.10) becomes αij

∑
k skj = 1 and hence αij = 1/ρOj (S).

This satisfies also (3.11). By simple substitution, we get the corresponding power
cost.

Property 3. fP (α̂Miso-MP) ≤ fP (α̂Cont-MP)

i.e. Miso-MP provides a lower bound, simple to compute, for Cont-MP and
Opt-MP under any admissible traffic matrix.
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3 – Power Control for Crossbar-based Input-Queued Switches

Power consumption without DVFS

A feasible, but not optimal, solution for Opt-MP is when no DVFS scheme is
adopted, i.e. αij = 1 for all i, j. We define this scheme as NoDVFS and the
corresponding solution as α̂NoDVFS. The power cost factor fP under any admissible
traffic matrix S can be obtained by setting αij = 1 in (3.3):

fP (α̂NoDVFS) =
N∑
i=1

N∑
j=1

sij = Nρave(S) (3.17)

denoting a linear relationship between the average load on S and the total power
consumption.

Property 4. fP (α̂Opt-MP) ≤ fP (α̂NoDVFS).

Thus fP (α̂NoDVFS) is a loose upper bound for Opt-MP. We define the relative
power η(α̂) of a DVFS solution α̂, relative to NoDVFS, as:

η(α̂) =
fP (α̂)

fP (α̂NoDVFS)
=

fP (α̂)

Nρave(S)
. (3.18)

Since η(α̂) ∈ [0,1], the closer η(α̂) to zero, the larger the scheme gain with respect
to NoDVFS.

For double-stochastic matrices, dividing (3.17) by (3.16):

Property 5. Under ρ-double-stochastic matrices

η(α̂Cont-MP) =

{
β2 for ρ < β

ρ2 for ρ ≥ β

In summary, the solution to the Cont-MP problem, which uses any voltage
level between Vmin and Vmax, provides a lower bound for the power of the Opt-MP
problem. When the matrix is double-stochastic, the optimal solution to Cont-MP
is trivial. Otherwise, a lower bound can be found with the solution of Miso-MP,
trivial to compute.

3.2.3 Power control algorithms

To solve Opt-MP for any traffic matrix we propose to:

1. solve the corresponding Cont-MP problem

2. approximate each αij to the closest smaller value available in the set A
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3.2 – Crossbar power control

In other words, if αij is the solution for Cont-MP, then use for Opt-MP:

α′ij = max{α ∈ A | α ≤ αij}

Note that, by construction, the set of α′ij defines an admissible solution for Opt-MP.
To solve Cont-MP, we adopt a quasi-optimal algorithm based on the logarith-

mic barrier method for convex problems [24] which provides an ε-approximation
of the optimal solution. Furthermore, we adopt a two-steps algorithm: we aug-
ment S to a double stochastic Ŝ according to one of algorithms among Augm-1,
Augm-Max or Augm-Sort, described below. Then, we compute αij = ŝij/sij.

Increase-Matrix Algorithm

Input: N ×N matrix S = [sij], {ρIi }Ni=1, {ρOj }Nj=1, ρT , ΩI , ΩO.

Output: N ×N matrix ∆ = [δij]

1. δij = 0 for any 1 ≤ i, j ≤ N

2. ΩIO = {(i, j) : i ∈ ΩI , j ∈ ΩO}
3. repeat until no choice is anymore available

4. choose any (i, j) ∈ ΩIO such max{ρIi , ρOj } < ρT

5. δij = min{ρT − ρIi , ρT − ρOj }
6. ρIi = ρIi + δij, ρOj = ρOj + δij

We now describe the Increase-Matrix procedure, on which all the augmen-
tation algorithms are based. The inputs of the procedure are

1. a sub-stochastic matrix S

2. the corresponding row ρIi and column ρOj sums

3. a target load value ρT such that

max
k
{ρIk, ρOk } ≤ ρ ≤ 1

4. a set of input ports ΩI and output ports ΩO

The algorithm returns a matrix ∆ = [δij] with the largest possible elements such
that:
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3 – Power Control for Crossbar-based Input-Queued Switches

1. only the elements δij corresponding to rows and columns present in both ΩI

and ΩO may be > 0

2. the maximum row and column sum is ρT , i.e.

N∑
k=1

sik + δik ≤ ρT for any i ∈ ΩI

N∑
k=1

skj + δkj ≤ ρT for any j ∈ ΩO

The algorithm operates only on a sub-matrix restricted to the rows in ΩI and the
columns in ΩO. It chooses a sequence of elements whose row and column sum to less
than ρT . Then, each element in the sub-matrix is augmented to reach ρT without
violating the constraints. Note that the maximum number of iterations in step 3 is
upper bounded by 2N .

Having defined Increase-Matrix, we now describe the algorithms we propose
to augment S to a double-stochastic Ŝ:

� Augm-1:

1. compute ρIi and ρOj for any i and j;

2. run Increase-Matrix on S, ρIi , ρ
O
j , ρT = 1, ΩI = ΩO = {1, . . . , N};

3. compute ŝij = sij + δij for all i and j.

Note that Augm-1 is a classical iterative algorithm (see Sec. II.A of [23]) to augment
a sub-stochastic matrix to a double-stochastic one. The complexity is O(N2), due
to steps 1) and 3).

� Augm-Max:

1. compute ρIi and ρOj for any i and j;

2. compute ρmax(S);

3. run Increase-Matrix on S, ρIi , ρ
O
j , ρT = ρmax(S), ΩI = ΩO = {1, . . . , N};

4. compute

ŝij = sij + δij +
1− ρmax(S)

N
.

The complexity of Augm-Max is O(N2), due to steps 1) and 4).

� Augm-Sort:
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3.3 – Performance evaluation

1. compute ρIi and ρOj on S for any i and j;

2. sort ρIi and ρOj in increasing order. Let i(k) be the kth input and j(k) be the
kth output in such increasing sequences;

3. initialize an auxiliary matrix X(0) = S and set ΩI
0 = ΩO

0 = ∅;
4. iterate, for k from 1 to N , the following steps:

(a) ΩI
k = ΩI

k−1 ∪ i(k), i.e. the set of the inputs with the k smallest row sums;

(b) ΩO
k = ΩO

k−1 ∪ j(k), i.e. the set of the outputs with the k smallest column
sums;

(c) run Increase-Matrix onX(k−1), ρIi , ρ
O
j , ΩI

k, ΩO
k and ρ

(k)
T = max{ρIi(k) , ρ

O
j(k)
},

i.e. ρ
(k)
T is the maximum load for the first kth inputs and outputs of S;

(d) x
(k)
ij = x

(k−1)
ij + δij for any i, j, i.e. set X(k) = X(k−1) + ∆;

(e) eventually go to a) to start a new iteration;

5. compute

ŝij = x
(N)
ij +

1− ρmax(X(N))

N

The complexity of Augm-Sort is O(N2) by optimizing the data structure to choose
an (i, j) ∈ ΩIO in Increase-Matrix and by sorting only once ρIi and ρOj .

Theorem 6 suggests that the optimal way to increase the S is proportionally, at least
for some families of traffic. Augm-1 is a classical way to augment a matrix. Instead,
Augm-Max and Augm-Sort tend to augment the matrix more proportionally.

3.3 Performance evaluation

We first discuss the performance for ρ-double-stochastic matrices. Then, we move
to ρ-sub-stochastic matrices.

3.3.1 Power consumption for double-stochastic matrices

According to Theorem 6, the optimal solution for Cont-MP is expressed by (3.16).
Fig. 3.2 shows the power consumption per port fP (α̂)/N vs. the average load, for
the optimal solution of Cont-MP and β ∈ {0.3,0.5,0.7}. We show also the linear
growth of NoDVFS, computed with (3.17).

For small loads, DVFS is very efficient, by reducing the power by a factor 1/β2

(see Property 5), equal to 11, 4 and 2, respectively, for each value of β. For larger
loads, the DVFS power reduction decreases, becoming negligible in highly loaded
conditions, because bit expansion is not allowed due to the high traffic load.
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Figure 3.2. Optimal solution for continuous DVFS (Cont-MP), under any
ρ-double-stochastic matrix.

We now consider the effect of a finite set A of voltage levels. Table 3.1 shows the
worst-case (for any load) ratio between the consumption of Opt-MP with finite set
of voltage levels and the consumption of Cont-Opt with continuous DVFS, as a
function of the number of available voltage levels. The |A| − 2 intermediate voltage
levels between Vmin and Vmax have been numerically optimized to minimize such
ratio. Note that very few intermediate levels (i.e., one for β = 0.5) are sufficient to
observe differences lower than 10%. Hence, the simple solution to Cont-MP well
approximates the solution to the Opt-MP problem. Finally, very few voltage levels
are enough to exploit the potential benefits of DVFS.

3.3.2 Power consumption for sub-stochastic matrices

We consider the family of random traffic matrices generated as follows. Given
ρ ∈ (0,1], generate a matrix U = [uij] of N2 random variables, uniformly distributed
on the interval (0,1]. Then, derive each element of S as

sij =
uijρ

ρmax(U)
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3.3 – Performance evaluation

Table 3.1. The power consumption ratio between DVFS with discrete voltage lev-
els (Opt-MP) and continuous DVFS (Cont-MP), for double-stochastic matrices

|A| β
Voltage levels

Vmax

max
0≤ρ≤1

fP (α̂Opt-MP)

fP (α̂Cont-MP)
0.3 0.3,0.55,1 1.31

3 0.5 0.5,0.71,1 1.09
0.7 0.7,0.84,1 1.02
0.3 0.3,0.45,0.67,1 1.13

4 0.5 0.5,0.63,0.79,1 1.04
0.7 0.7,0.78,0.89,1 1.01
0.3 0.3,0.41,0.55,0.74,1 1.07

5 0.5 0.5,0.60,0.71,0.84,1 1.02
0.7 0.7,0.76,0.84,0.92,1 1.01

Using this construction, it can be shown that the corresponding average load

ρave(S) ≈ ρ

1 +

√
0.67

log(N)

N

for large enough N .
We compare the algorithms proposed in Sect. 3.2.3 for continuous DVFS, be-

cause, as shown in the previous section, Cont-MP is a good approximation of
Opt-MP even when few voltage levels are available. We show the optimal solution
for Cont-MP only for smaller switch sizes (N = 16), due to computational con-
straints. We report also the solution for the lower bound provided by Miso-MP.
Even if the results hold for β = 0.3, similar results were obtained for other values of
β.

Figs. 3.3, 3.4 show the relative power (Eq. (3.18)), for different N . Note that,
to ensure admissibility, the maximum average load in the abscissa is limited by
construction to be always less than 1/(1 +

√
0.67 log(N)/N), i.e. 0.75 and 0.88 for

N = 16 and N = 256 respectively.
When increasing ρave(S), the relative power of Miso-MP shows a quadratic

growth, similarly to double-stochastic matrices for which Property 5 holds. The
behavior is close to the optimal solution, justifying its use to approximate Cont-MP
for large N . Even if not optimal, Augm-Sort and Augm-Max show performance
close to the optimal. On the contrary, Augm-1 behaves the worst, only providing
minor power reductions with respect to NoDVFS.

Similar results holds For N = 256 in Fig. 3.4. We were unable to obtain the
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Figure 3.3. Relative power for N = 16 and β = 0.3, under sub-stochastic matrices

optimal solution in reasonable time. Augm-1 does not provide any benefit. Augm-
Sort and Augm-Max provide performance close to the lower bound Miso-MP.
Thus, these DVFS schemes appear to be the most efficient, especially at low average
load, regardless of the switch size.

3.4 Hardware design and evaluation

To better explore the effects of DVFS on a real switch fabric, a 128× 128 crossbar
switch was adopted as a case study. To optimize crossbar scalability, instead of
the classical X-Y architecture, we choose a mux-tree based pipelined architecture.
Indeed, in classical X-Y based crossbar switches [25], any input–output connection
is provided by horizontal and vertical wires spanning the whole area.

Hence, propagation delay along wires tends to grow rapidly with the number
of input-output ports and soon becomes the limiting factor for throughput perfor-
mance. Multiple bit slices can be used to cope with limited clock frequency, while
reaching at the same time high line throughput. However, in this case, improved
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Figure 3.4. Relative power for N = 256 and β = 0.3, under sub-stochastic matrices.

performance comes at the cost of additional implementation complexity.
High data rates over a large switch, with more than one hundred input output

ports, can be obtained at a lower implementation complexity with a mux-tree based
pipelined architecture [25], shown in Fig. 3.5. Each output is connected through a
tree of multiplexers that receive all input ports.

Two basic features of the tree organization can be exploited to improve speed:

1. the entire multiplexing operation can be split in several tree stages, with each

outputs

inputs

Figure 3.5. Mux-based 3× 3 crossbar
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Figure 3.6. Architecture of a slice of the switch fabric

stage individually sized to match timing constants according to its load capac-
itance

2. pipeline registers can be inserted along the tree to cut critical path delays,
thus achieving very high clock frequency

The mux–tree based pipelined switch of size 128×128 was modeled using VHDL
language and synthesized to derive area occupation, achievable throughput and dis-
sipated power. Fig. 3.6 shows the structure of a single slice of the crossbar fabric:
each input port receives data serially and the 128 inputs are divided into two parts,
where the upper (and the lower) portion deals with 64 inputs. Internal registers
are used to provide pipelining. In the upper half of the fabric, 16 multiplexers and
4 multiplexers are contained in the first and second pipeline stages respectively. A
4 × 1 multiplexer is allocated in the third pipeline stage. The same structure is
repeated in the lower half, and a 2 × 1 multiplexer is used for the final selection.
Thus, the showed slice forms a 128× 1 multiplexer with pipelining. To control the
whole set of multiplexers, 85 select lines are required.

The complete fabric architecture consists of 128 slices equal to the one given
in Fig.3.6. The same data inputs are applied to each slice and a total of 128 ×
85 = 10880 select lines are used to control the switch. Destination conflicts are
not allowed in the described architecture, and are prevented by a proper scheduling
algorithm [22].

A further important property of the adopted switch fabric architecture is its
modularity. This feature enables the possibility to adopt a hierarchical synthesis
flow that simplifies the floorplan. Additionally, although this is not exploited in this
work, the modular structure of the switch also allows for applying different choices
of voltage and frequency scaling to individual slices. Assuming that a lower traffic
is observed along paths associated with a specific slice, then voltage and frequency
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3.4 – Hardware design and evaluation

scaling for this single slice would be beneficial to reduce power consumption and
would allow at the same time for higher throughput across different slices.

The VHDL code of the fabric was written, debugged and simulated under Mentor
Graphics Modelsim using randomly generated patterns of input data. Synthesis was
performed using Synopsys Design Compiler on a 90 nm CMOS technology. The
power analysis of the switch fabric was performed using Synopsys Power Compiler.
We do not consider the power contribution due to the implementation of the power
control algorithm or any other component because we focus on the crossbar chip.
We restrict our analysis to the synthesis results and we do not consider the con-
sumption due to the actual chip layout; hence, our power consumption results are
relative. Derived power dissipation figures are based on the actual switching ac-
tivities measured at circuit nodes during simulation of the fabric in the presence of
different test patterns.

Thanks to the high level of applied pipelining, the maximum operating frequency
of the designed crossbar, when the supply voltage is not scaled, is as high as 3.2
GHz, allowing to reach an aggregated bandwidth of 410 Gbps. To evaluate the po-
tential of the described DVFS approach, the crossbar was synthesized with several
values of supply voltage and frequency of the clock signal. Six scaling factors (i.e.
{0.4, 0.5, 0.6, 0.7,0.8,0.9}, corresponding to α = {2.50, 2.00, 1.67, 1.43, 1.25, 1.11}),
were used to reduce supply voltage. In addition, the clock frequency, fCK , was
changed in the range between the maximum achievable value of 3.2 GHz down to
200 MHz, equally for all the ports. Hence, the corresponding traffic matrix S is ρ-
double-stochastic with all sij = ρ/N and ρ = fCK/(3.2 GHz). The power consump-
tion in the fabric is associated with the switching activity in the slice components
and therefore to the average data throughput. For each selected value of fCK , the
maximum possible data rate has been assumed for input data. For example, with
fCK = 1.2 GHz, data are received at the rate of 1,200 Mbps per input port. The
select lines which control the multiplexers are assumed to switch at a 1000 times
lower rate. Note that power would also be consumed to change between voltage
levels.

Furthermore, each transition to new values of supply voltage and fCK introduces
a latency, which may affect the global throughput. However, for simplicity reasons,
latency and power overheads generated by these transitions are not considered in
this study.

Switch fabric power consumption per port is reported in Fig. 3.7 for different
voltage scaling factors and clock frequencies. The theoretical curve is ρave(S)3. As
expected, power consumption scales linearly with fCK and thus with input data
rate, but the slope depends on the applied voltage scaling. Therefore different
power reduction gains can be obtained at different input data rates. For example, if
input data rate is 50% of the maximum allowed level, 75% of the dissipated power
can be saved, from 4.2 mW with no applied DVFS to 1 mW with a voltage scaling
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Figure 3.7. Power obtained by the VHDL synthesis, for a 128×128 crossbar
with 410 Gbps bandwidth.

factor equal to 0.5. A lower reduction of dissipated power is possible when working at
higher data rates: with input data at 75% of the maximum frequency, the dissipated
power can be reduced by 51% from 6.3 mW to 3.1 mW.

Furthermore, the filled points on the theoretical curve for a specific load ρ are
aligned with the linear interpolation of the powers obtained for a specific value of
α = 1/ρ. This means that the cubic dissipation model of Theorem 6, based on a
single expansion factor for the whole crossbar, is accurate.
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Chapter 4

Energy Profiling of Network
Equipment for Rate Adaptation
Technologies

4.1 Background

1 In this section we summarize prior work on energy profiling that is relevant to rate
adaptation and provide an overview of PTRA, BTRA, and DTRA techniques.

4.1.1 Energy profiling overview

We review energy profiling approaches from the literature, focusing on those that
are suitable for inclusion in DTRA frameworks because they explicitly map system
and traffic configurations onto power consumption levels.

Chabarek’s linear model

In [34], Chabarek et al. construct energy profiles for two IP routers manufactured
by Cisco Systems, namely the GSR 12008 core router and the 7507 edge router.
The GSR 12008 chassis contains twelve slots, of which one accommodates the route
processor card and two others are dedicated to switch fabric modules (10 Gbps

1Let me thanks all people met at Alcatel-Lucent Bell Laboratories, it was an extraordinary
experience. In particular I would like to thank Steven Fortune and Thierry Klein for their support,
their help and to all people who offer their contribution to the assembly of the experimental testbed
in Murray Hill, NJ. Another thank is for the researchers of DOE-ESNet for their technical and
logistical support before and during execution of the power measurements at the ANI Testbed
facility in Brookhaven, NY.
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capacity each). The remaining nine slots can be used for network adapter cards,
each with capacity up to 4 Gbps. The 7507 has a seven-slot chassis, with one slot
for the route processor card and the other six slots for adapter cards, each with
capacity up to 1Gbps.

A first set of experiments yields for each system the power contribution of the
chassis and of the different types of modules that can be installed in the adapter
slots. No cables are attached to the network interfaces, so obviously no traffic flows
through the system. The measured power consumption is the bare sum of the chassis
and card contributions in idle state. A second set of experiments focuses on the GSR
12008, in a configuration that includes the route processor card, the switch fabric
cards, one adapter card with four 1Gbps Ethernet (1GbE) interfaces (of which only
three connected), and one adapter card with one OC-48 interface, also connected.
Traffic flows from the three 1GbE interfaces to the OC-48 link. The experiments
focus on the power consumption effects of different types of traffic (CBR versus
bursty TCP traffic), of different packet sizes (100, 576, and 1500 bytes), of different
routing table sizes, and of different routing functions.

Overall, the power contribution that derives from the presence of traffic is rela-
tively small compared to the total. The differences observed across different traffic
configurations are even smaller. The following equation defines the linear model
adopted for construction of the energy profiles:

S = C0 +

NL∑
i=1

(L0,i + Lb,i(βi)) (4.1)

where S is the total power consumption, C0 is the power consumed by the chassis
when idle, LN is the number of line cards, possibly of different types, that are
plugged into the chassis, L0,i is the power consumed by a line card i when idle, and,
Lb,i(βi) is the additional power contribution of the same line card when traversed by
traffic at bit-rate load βi (0 ≤ βi ≤ 1) where βi = 1 when line card i is fully loaded).
In (4.1) and in all linear model equations that follow, the chassis power includes
contributions from the power modules, the cooling system, the switch fabric, and
the control processor board, whether physically integrated or distributed in multiple
modules. We remark that , Lb,i( ) is a generic, not necessarily linear function of the
line card load βi. The definition of βi does not distinguish explicitly between input
and output load (meaning “from the network to the line card” in the former case
and “from the line card to the network” in the latter).

In [34], the model of (4.1) is primarily utilized in the optimization of network
planning decisions that set the placement of network nodes and the allocation of line
cards per node. Consistently with its application, the model does not attempt to
single out the power contribution of individual network ports, especially those that
are connected to a network cable but not enabled for handling traffic. To support
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DTRA techniques it is desirable to enhance the model.

Mahadevan’s Linear Model

In [35], Mahadevan et al. obtain energy profiles for seven systems of different sizes
and capabilities, including an Ethernet hub, a wireless access point, three edge LAN
switches, one core switch, and one edge router. The following equation defines the
reference model for construction of the energy profiles:

S = C0 +

NL∑
i=1

L0,i +

NP∑
j=1

Pb,j(βj) (4.2)

where C0,NL and L0,i are the same as in (4.1), NP is the total number of ports that
are connected and enabled, Pb,j is the power consumed by a port j when loaded at
full bit rate, which depends on the type of the port and on its rate configuration,
and βj is the bit-rate load sustained by the port (0 ≤ βj ≤ 1) where βj = 1 when the
port is fully loaded). Compared to (4.1), the linear model of (4.2) explicitly includes
the power contribution of individual ports. However, the model assumes that a port
consumes power only when there is traffic flowing through it. In absence of traffic,
the power contribution of a port is null, whether the port is enabled or disabled. The
measurements that we present show that this assumption can mislead the energy
optimization procedures of DTRA frameworks. The authors of [35] indeed address
this issue in [28], where they apply a slightly modified equation with the port load
term βj of (4.2) removed:

S = C0 +

NL∑
i=1

L0,i +

NP∑
j=1

Pj (4.3)

where Pj is the power consumed by port j when enabled, irrespective of the traffic
that flows through it. Although not explicitly stated in [28], we can safely as-
sume that Pj in 4.3 is measured under the same traffic conditions as Pb,j in 4.2,
that is, when port j is fully loaded. The conversion of the load term into a fixed
contribution most likely derives from the practical observation that, especially in
Ethernet switches, power consumption shows very little sensitivity to the traffic
volume handled by a port.

The simplification fits well the scope of the work presented in [28], which focuses
exclusively on two Ethernet switches for data center applications, but may not be
appropriate for systems like IP routers, which present a heavier energy overhead
per packet header. Nevertheless, the attribution of a fixed power offset Pj to each
active port j does ensure that 4.3 is more accurate than 4.2 in the context of DTRA
operations, because it captures the power consumption effects of switching network
links on and off.
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Tamm’s linear model

In [36], Tamm et al. deliver a comprehensive study of the distribution of power con-
sumption among the functional components of a large set of Alcatel-Lucent network
systems, including optical switches, Ethernet switches, and IP routers. The results
help identify key hotspots for energy savings in systems designs and offer high-level
indications of the benefits that may derive from the introduction of BTRA/PTRA-
capable hardware in circuit packs. However, all power measures are obtained from
typical ratings of common hardware components and not directly from experimen-
tal measurements. Also, the power distribution models presented do not provide a
direct mapping of system and traffic configurations onto power consumption levels,
falling short of supplying DTRA algorithms with the type of information that they
require for running their network-wide energy optimizations.

4.1.2 Rate adaptation overview

We start our rate adaptation review with PTRA because it is one of the building
blocks of the most advanced DTRA frameworks and its description covers most of
the essential concepts of BTRA.

Packet-Timescale Rate Adaptation (PTRA)

PTRA techniques target the design of individual hardware components in the data
path of network systems. They provide those components with multiple operating
states, each state being characterized by a traffic processing rate (expressed in bits
per second or packets per second depending on the function of the component) and
a corresponding power consumption level. The goal is to minimize the energy spent
by the hardware component to sustain the traffic workload that it receives from
the data path. State-setting decisions occur at the micro/millisecond timescale, in
response to fluctuations in traffic arrival rates and packet queue occupancies. Nede-
vschi et al. studied in [32] the application of sleep-state exploitation (SSE) and
rate-scaling (RS) techniques to the links of a network. With SSE, a link alternates
between only a full capacity state (at full power) and a low-power sleep state. With
RS, a link can choose from an extended set of operating states that lie along a convex
curve in the power-rate plane. In [33], Francini and Stiliadis refined the specifi-
cation of the two techniques by embedding robust constraints on the packet delay
degradation that they induce and formalized a new hybrid rate adaptation (HRA)
scheme that combines the best properties of the two approaches. The IEEE 802.3az
standard [39], approved in 2010, is an important example of PTRA instantiation in
network elements. A fundamental property of PTRA, not always fully appreciated,
is that a mandate to keep the state transition time well within the sub-millisecond
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range guarantees that the technology is virtually transparent to the operation of
the network. If the state transitions took longer to execute, the technology would
simply not be suitable for widespread deployment in packet networks. Therefore,
provided that the state transition time mandate is satisfied, network links and nodes
are never seen missing by the rest of the network, even when most of their hardware
components are in their low-power sleep states. Likewise, PTRA is never directly the
cause of packet losses or of disruptive degradations in the performance of network
protocols and applications.

Bit-Timescale Rate Adaptation (BTRA)

Compared to PTRA, BTRA techniques trade lower energy savings for simplicity and
faster state transitions. To enter the sleep state of a PTRA scheme, a component
must gate its clock signal and also adjust the power supply distribution network
so that leakage currents are minimized (e.g., by resetting the supply voltage). The
latter step and the reverse one needed to bring the component back into operation
dominate the quantification of the state transition time, so that it spans over multi-
ple packet transmission times. To prevent back-to-back transitions from excessively
diluting the amount of data processed per unit of energy consumed, PTRA state
setting policies must ensure that a minimum hold time is enforced in between con-
secutive transitions. This minimum hold time is the main contributor to the packet
delay degradation introduced by a data path component with PTRA capabilities.

BTRA techniques retain the clock signal gating of PTRA but drop the adjust-
ment of the power supply distribution network. State transitions can now occur in
one clock cycle: the increase of packet delay is practically erased but the energy
savings are also drastically reduced.

Demand-Timescale Rate Adaptation (DTRA)

An excellent example for the illustration of the goals and mechanics of DTRA tech-
niques can be found in [28]. The paper uses simulations to estimate the energy
savings that can be obtained in the Ethernet switching infrastructure of a data
center by turning off unused switches, disabling unused ports, and adapting link ca-
pacities. The input to the simulation experiments is a 5-day trace of traffic demands
averaged over 10-minute periods. A first round of tests produces ideal results under
the assumption that a centralized power controller knows ahead of time the evolu-
tion of the traffic demands. More realistic results are subsequently obtained with
predictors based on real-time traffic measurements. Load prediction errors trans-
late into link overload conditions with higher queueing delays and packet losses, or
simply wasted energy.

The portion of the network topology that is subject to DTRA control consists
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of a set of 1-redundant trees with two tiers of switches. The algorithm that assigns
processing jobs to the servers at the leaves of the trees is designed to minimize the
overall energy consumption of the two tiers of Ethernet switches. The energy profiles
of the switches conform to the model of (4.3) and provide the foundation of the job
assignment algorithm. Using the best of the three job assignment algorithms studied
in the paper, energy savings up to 75% can be obtained within the two switched
tiers if evident performance impairments are accepted with respect to queueing delay
and service availability. With a more conservative scheme that avoids any degra-
dation of data center performance the maximum savings amount to 20%. In [29],
Antonakopoulos et al. apply power-aware routing to variously meshed topologies for
IP autonomous system (AS) networks. Compared to the tiered switching networks
of [28], the AS networks present different hop counts for alternate paths between
endpoints. As a consequence, the energy benefits of any diversion from the basic
shortest-path routing are partially reduced by the associated increase in the average
number of hops per end-to-end path. The reference model for power consumption
only focuses on network ports and excludes contributions from the chassis and line
cards:

S =

NP∑
j=1

(
P0,j+Pb,j(βj)

)
(4.4)

As opposed to Pj in (4.3), the value of P0,j in (4.4) is obtained when port j is enabled
but idle. The paper evaluates the joint effects of DTRA (instantiated as power-aware
routing) and PTRA (only applied to network links, not entire nodes), concluding
that power-aware routing is most beneficial when PTRA is scarcely deployed, as
is the case in commercial equipment available today. In the case where PTRA is
completely absent but individual links can be turned on and off, the energy savings
in one sample topology range between 25% (at 90% of the maximum load) and 50%
(at 10% load).

In [30], Rossi et al. evaluate the energy-saving benefits of power-aware routing in
an experimental core network where the continuous transit of packets forces individ-
ual nodes to remain powered on without interruption. A mixed integer program that
handles binary and continuous variables controls the distribution of traffic to the
network links, creating the opportunity for switching off unused links and for saving
additional energy with PTRA in partially utilized links and nodes. The reference
linear model combines results from the literature [40], [41], [42], [43]:

S = C0 + CbβC +

NP∑
j=1

(
P0,j+Pb,j(βj)

)
(4.5)

where C0 is the power consumed by the chassis when idle, Cb is the additional power
consumed by the chassis when fully utilized, and βC is the chassis bit-rate load.
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The paper avoids a parametric analysis of the optimal solution by instantiating
specific values for every parameter of the linear model. Compared to (4.4), equa-
tion (4.5) adds a chassis contribution that quantitatively dominates over the port
terms, with substantial impact on the energy saving metrics network-wide. How-
ever, it does not include terms for the explicit contributions of individual line cards,
which appear instead in the models of (4.1), (4.2), and (4.3). In absence of PTRA,
DTRA saves only 0.2% of the overall energy, despite a 34% reduction in the energy
consumed by the network links. With ideal PTRA, which scales power linearly with
the load in the links and chassis of every node, PTRA alone saves 96% of the total
energy, while DTRA only adds an extra 0.1%. One last point to remark is that
the model of (4.5) rightly takes into account the full-duplex nature of network links
and ports. As a consequence, a network port is fully loaded when its traffic load
is 100% in both the input direction (from the network to the port) and the output
direction (from the port to the network). Accordingly, the port load variable βj
ranges between 0 and 2.

4.2 SUT

We obtain energy profiles for the following five systems under test (SUT’s), manu-
factured by multiple vendors:

� ES1 Ethernet switch in fixed system configuration with integrated control
and switch module (no slots for plug-in cards), twenty-four 1GbE Ethernet
ports (SFP), two 10GbE Ethernet ports (SFP), and AC power supply. The
switch supports VLAN and MPLS tunneling for E-Line, E-LAN, and VPLS
applications [44], [45]

� ES2 Ethernet switch with twenty-four integrated 1GbE ports (RJ-45), four
of which are dual-mode ports that also offer the alternative of loading an
SFP module, two 10GbE Ethernet ports (SFP), and AC power supply. The
aggregate capacity and functional capabilities of ES2 are the same as those of
ES1. One important difference that is worth noting is that ES2 has twentyfour
integrated 1GbE ports, whereas all 1GbE ports of ES1 are SFP-ready

� IR1 Edge/aggregation router in fixed system configuration with integrated
control and switch module, twenty 1GbE Ethernet ports (SFP), six 10GbE
ports (SFP), and AC power supply.

� IR2 Aggregation router in fixed system configuration with integrated control
and switch module, six 10/100Mbps Ethernet ports (RJ-45), two 1GbE ports
(SFP), and DC power supply
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� IR3 Aggregation router in modular system configuration with 8-slot chassis.
In the IR3 instance available for our experiments, the chassis is populated
with one fan card, two control and switch module (CSM) cards, and two 8-
port Ethernet adapter cards (EAC’s). Each EAC includes six 10/100Mbps
Ethernet ports (RJ-45) and two 1GbE ports (SFP). IR3 also works with a DC
power supply

Please note that Ethernet (RJ-45) identifies an integrated BASE-TX Ethernet
port. Ethernet (SFP) identifies an Ethernet port that accommodates a small form-
factor pluggable (SFP) transceiver. The SFP itself can be of different types depend-
ing on the type of cable connector that it supports: 1000BASE-LX and 1000BASE-
SX SFP’s support optics cables, 1000BASE-TX SFP’s support copper cables with
RJ-45 connectors, and 10GBASE-LW/LR SFP’s support 10 Gbps optics cables.
10GBASE-LW/LR modules are commonly referred to as XFP’s, but let us call
them SFP’s for simplicity of notation.

4.3 Testbed

We list the definitions and conventions that we follow in the presentation of our
results and describe the equipment that makes up our experimental testbed, high-
lighting the constraints that it imposes on the execution of the power measurements.

Definition 7. We refer to an SFP-ready SUT port as loaded if it has an SFP module
attached; otherwise we call it an empty port.

Definition 8. The average load of matrix S is defined as We refer to a loaded port
or to an integrated RJ-45 port as connected if a network cable connects the port
to a peering interface on the same system or on a traffic generator/sink, and as
disconnected otherwise.

Definition 9. We refer to a network port as enabled if it is configured for operation
at a set rate, and as disabled otherwise.

In general, a port can be switched between the enabled and disabled states
when it is empty, loaded but disconnected, and connected. However, we are only
interested in the distinction between the enabled and disabled states in the particular
case where the port is connected, because this is the kind of state transition that is
controlled by DTRA techniques.

Definition 10. We refer to a connected port as input-busy if it receives traffic from
the attached network cable and as input-idle otherwise. We refer to a connected port
as output-busy if it has traffic ready for transmission over the attached network cable
and as output-idle otherwise.
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Definition 11. We refer to an input-busy (output-busy) port as input-saturated
(output-saturated) when it receives (transmits) traffic at a rate that approaches its
nominal capacity.

Definition 12. We refer to an input-busy (output-busy) port as input-overflowing
(output-overflowing) when it receives traffic in excess of its capacity.

4.3.1 Testbed equipment

Figure 4.1 shows a schematic drawing of the laboratory testbed where we execute
the power measurement. The testbed includes the items listed in the following
subsections.

Power meter station

The power meter station (PM in Fig. 4.1) consists of the power meter proper and of
the auxiliary data logging software that runs on a connected laptop. The power me-
ter is an Extech Instruments 380801 true RMS single-phase power analyzer, placed
between the power supply (whether AC or DC) and the SUT.

The meter’s resolution is 0.1W for readings up to 200W and 1W for readings
between 200W and 2 kW. The data logging laptop acquires power samples at 1 s
intervals over the serial port of the power meter. We obtain the 48V DC power
supply for IR2 and IR3 from a Xantrex Technology XKW 1kW module (DC). We
do not include the power consumption of the DC power supply module in our power
measurements. With ES1, ES2, and IR1 the power supply path bypasses the DC
module.

Traffic endpoints

For the generation and termination of test traffic we use two desktop computers
with 1GbE network cards (PC TE in Fig. 4.1) and a Spirent SmartBit SMB-200

Figure 4.1. Experimental testbed for power measurements.
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with 1GbE and 10/100Mbps Ethernet interfaces (SMB TE). Each computer runs
an instance of the Linux OS (Ubuntu Release 10.10) and is equipped with a 3.0
GHz dual-core processor, 6 GB DRAM, 1TB hard drive, and one 1GbE network
port (RJ-45). We rely on the iperf utility for configuration and operation of the
traffic sources and sinks on the two PC’s. The Spirent SmartBit SMB- 200 chas-
sis (firmware version 6.7, umbrella SmartBit release 10.51) hosts two SmartMetrics
10/100Mbps Ethernet SmartCards (RJ-45) and two GX-1405B 1000BASE-SX Eth-
ernet SmartCards (optics). We use the two PC’s for traffic exchanges with RJ-45
SUT ports at rates up to 1Gbps. We use the 10/100Mbps Ethernet ports of the
SMB-200 for exchanges with RJ-45 SUT ports at rates up to 100 Mbps. The two
1GbE ports on the SMB-200 can be used exclusively for exchanges with SUT ports
loaded with 1000BASE-SX modules.

Network connectors and cables

We can rely on two 10GBASE-LW/LR SFP modules for loading the 10GbE ports on
ES1, ES2, and IR1. For the SFP-ready 1GbE ports on ES1, IR1, IR2, and IR3 we
have two 1000BASE-SX SFP modules and twenty-four 1000BASE-TX SFP modules.
Notice that, while we have cables for all interfaces, we do not have matching ports
on the traffic endpoints for the 10GBASE-LW/ LR modules.

4.4 A new model for energy profiles

In this section we define the linear model that we use for construction of the energy
profiles of the SUT’s of our testbed. We start by explaining how we isolate the
contributions of bitrate and packet-rate loads to the power consumption of a generic
system component (chassis, line card, or port). We then illustrate the model that we
consider ideal for the construction of a complete, unconstrained energy profile. We
provide insight about the reasons for inclusion in the ideal model of the various terms
that compose it and evaluate the opportunity of removing some of those terms in
the specific context of our energy profiling exercise, due to the characteristics of the
SUT’s and of the auxiliary equipment in our testbed. We integrate the conclusions
of these discussions in the simplified model that we present at the end of the section.

4.4.1 Isolation of traffic contribution

In the data path of a network system we can identify hardware devices whose
power consumption depends mostly on the bit rate of the sustained traffic (e.g.,
transceivers, switch fabric modules) and others for which it depends mostly on the
packet rate (e.g., packet processors, traffic managers). A power meter that only

64



4.4 – A new model for energy profiles

captures fluctuations of the current absorbed by the system cannot directly identify
the power consumed by each device, but can detect the effects of varying bit and
packet rates on the overall power consumption.

We should therefore include independent terms for the bit rate β and the packet
rate ρ in the ideal expression of the power consumed by each controllable system
component (chassis, line card, and port). However, since β and ρ are not indepen-
dent of one another (ρ = β/σ, where σ is the average packet size measured in bits),
the term for packet-rate sensitivity cannot be a function of the packet rate ρ.

Instead, the term is a linear function of the average packet size σ, such that
the packet rate contribution is null when the average packet size is maximum (i.e.,
the packet rate is minimum for the given bit rate), and maximum when the packet
size is minimum (the packet rate is maximum for the given bit rate). The following
equation expresses our first-order approximation Xd

t of the contribution of each
traffic direction d to the power consumed by a generic system component x (chassis,
line card, or port):

Xd
t (β, σ) = Xd

b β
d
x

(
1 +

σmax,x − σx
σmax,x − σmin,x

)
(4.6)

In (4.6), Xd
b is the bit-rate sensitivity of component x in direction d ( X becomes

C when x is the chassis, L when x is a line card and P when x is a port), Xd
r is

the packet-size sensitivity for the same component and direction, βdr is the sustained
bitrateload (0 ≤ βdr ≤ 1), σmax,x is the maximum size of a data packet in the
component (e.g. σmax,x = 1518B when x is an Ethernet port), and σmin,x is the
minimum size ( σmin,x = 64B when x is an Ethernet port).

4.4.2 The complete linear model

The linear model that we consider ideal for application in rate adaptation contexts
is one that captures the power contributions of all system components whose state
can be controlled by external action, whether by network signaling, by system man-
agement interface, or by physically plugging or unplugging hardware. These system
components include the chassis, the line cards (when present), and the network ports
with respective accessories (e.g., SFP modules in our set of SUT’s). For every com-
ponent, there should be one term that expresses the fixed cost of keeping it powered
on and one that is sensitive to traffic.

The contributions of bit rate and packet rate should be distinguished in parts of
the system where the packet size is variable. The following equation synthesizes the
above requirements:

S = C(βC) +

NL∑
i=1

L(βini , β
out
i , σi) +

NP∑
i=1

P (βinj , β
out
j , σj) (4.7)
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where
C(βC) = C0 + CbβC (4.8)

is the power consumed by the chassis, inclusive of a fixed term 0 C and a variable
term that depends on the aggregate traffic load sustained by the switch fabric;

L(βini , β
out
i , σi) = L0,i + Lini β

in
i

(
1 + Linr,iq(σ)

)
+ Louti βouti

(
1 + Loutr,i q(σ)

)
(4.9)

is the power consumed by line card i , inclusive of a fixed term 0, i L and variable
terms that depend on input and output loads;

q(σ) =
σmax,x − σx

σmax,x − σmin,x

is the packet-size load, completely independent of the bit-rate loads βini and βouti and

P (βini , β
out
i , σi) = P0,i + Lini β

in
i

(
1 + P in

r,iq(σ)
)

+ P out
i βouti

(
1 + P out

r,i q(σ)
)

(4.10)

is the power consumed by port j, inclusive of a fixed term P0,j and variable terms
that depend on the bit-rate and packet-size loads in the input and output directions
of the port.

4.4.3 Discussion of the new model

In this section we illustrate in detail the terms of equations (4.8), (4.9) and (4.10).
We refine their definitions where required by the engineering and measurement con-
straints of our testbed.

Chassis power

It is fair to assume that the chassis power consumption C is sensitive to the traffic
load, especially if the switch fabric exhibits some degree of modularity with rate
adaptation capabilities within each module. In (4.8) we have no distinct terms for
bit-rate and packet-rate contributions because packets typically cross the switch
fabric after being segmented into fixed sized data units with either standard or
proprietary formats, setting a constant ratio between the two rates. Also there is
no distinction between input and output traffic because the amount of packets that
enter and exit the central module through the switch fabric interfaces is always the
same. The same is not true in individual line cards and network ports, where it is
possible to have an unbalance between input and output traffic.

We remark that the type of power meter that we use in our testbed and the
absence of rate adaptation capabilities in the switch-fabric hardware of current-
generation network systems make the extraction of the bit-rate sensitivity Cb of the
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chassis practically impossible. In theory there could be ways to isolate the variable
terms in the power contributions of the chassis, line cards, and network ports by
arranging the same amount of traffic over different combinations for the numbers of
busy line cards and ports. However, the sensitivity to traffic shown by the power
consumption in the SUT’s of our testbed is so low that it is often masked by the
measurement error of the power meter (between 0.05W and 0.5W). We expect the
issue to get gradually solved in the future, as rate adaptation becomes more pervasive
and critical resources for more accurate measurements become more affordable. For
the time being, we consider it acceptable to reduce the chassis power term of (4.8)
to the fixed component alone: C(βC) = C0.

Line card power

The line card, when present, is the place where packets that are associated with
multiple ports undergo the format conversion from network to switch fabric and
vice versa. It is easy to find a qualitative justification for every term that appears
in (4.9). The switch fabric adapter is one example of a line card device where the
power contribution of the sustained bit rate clearly dominates over its packet-rate
counterpart. Packet rate dominance over bit rate can be expected instead in the
packet processor.

However, the aggregate nature of the measurements produced by our power
meter compromises our ability to discern the traffic-sensitive power contributions of
a line card from those of its ports. As a consequence, we decide to concentrate all
traffic-sensitive terms at the port level, identifying the line card power with its fixed
term: L(βini , β

out
i , σi) = L0,i.

Port power

Due to the simplifications of the two previous subsections, the network port remains
the only configurable component of the system where we can retain traffic-sensitive
contributions to power consumption. Even the port power model is not exempt
from trimming. In fact, because of measurement inaccuracies that are induced by
the limited availability of traffic endpoints in our testbed, we cannot differentiate
between the values of input and output load parameters.

We must resort instead to unified traffic sensitivity parameters Pb,j and Pr,j , and
accordingly to unified load variables βj and q(σ) The value of βj ranges between 0
(when packet traffic is completely absent) and 1 (when port j sustains 100% bit-rate
load simultaneously in both directions).

Preliminary measurements on idle systems show us that the fixed power contri-
bution P0,j of a port j must be split into two distinct terms: the fixed hardware port
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Table 4.1. Fixed port power terms for SFP-ready ports in ES1 (TX and SX ports
set at 1Gbps , LW/LR ports at 10 Gbps ).

TX [W] SX [W] LW/LR [W]

P
(h)
0,j 0.308 0.5 1.2

P
(s)
0,j 1.091 0.3 1.8

power P
(h)
0,j and the fixed software port power P

(s)
0,j

Pj = P
(h)
0,j + P

(s)
0,j + Pb,jβj(1 + Pr,jq(σ))

The fixed hardware port power captures the power contribution of port j when it
is loaded with an SFP, whether or not the port is enabled for operation. The term
P

(h)
0,j obviously disappears in the case of integrated BASE-TX ports. The isolation

of P
(h)
0,j is important because it offers the network operator the option to save energy

by unplugging the SFP’s of ports that remain disabled for extended periods of time.
It also offers system vendors an incentive to add to their designs provisions for
controlling this power contribution (and the associated energy waste in the case of
disabled ports) via software.

The fixed software port power P
(s)
0,j is the added contribution of a port that is

enabled for operation, before it starts handling traffic. Table 4.1 lists values for the
two terms measured on ES1 with BASE-TX and BASE-SX SFP’s (configured at
1Gbps), and with BASE-LW/ LR SFP’s (set at 10 Gbps).

The switching of individual ports between the enabled and disabled states is
one of the primary knobs that DTRA techniques have available for saving energy.
Setting the operating rate of an enabled port to a maximum of 10 Mbps, 100 Mbps,
or 1Gbps (and 10 Gbps in the case of 10GbE ports) is another dimension of dy-
namic configuration that DTRA techniques can explore, because each rate generally
presents a different value of P

(s)
0,j . In the example of Table 4.1, the measured values

of P
(s)
0,j for a BASE-TX SFP are 0.238W, 0.338W, and 1.091W when the configured

rate of operation is 10 Mbps, 100 Mbps, and 1Gbps.

Simplified linear model

The following equation synthesizes the linear model that results from the simplifi-
cations of the previous subsections:

S = C0 +

NL∑
i=1

L0,1 +

NP∑
j=1

P
(h)
0,j + P

(s)
0,j + Pb,jβj(1 + Pr,jq(σ)) (4.11)
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We emphasize that the model of Eq. (4.11) derives entirely from simplifications of
the model laid out in equations (4.7), (4.8), (4.9) and (4.10). As the engineering
and measurement limitations that warrant the simplifications fade out over time,
we expect all the terms of the complete model to gradually reappear in Eq. (4.11).

4.5 System with DC power supply

The routers IR2 and IR3 of our testbed receive power from a dedicated DC module
that also dissipates its own power D . We decide to exclude D from the estimation
of the linear parameters of IR2 and IR3 because the values of the parameters should
be intrinsic of the two systems and independent of the specific DC module used in
the measurements.

This is particularly true with the DC module of our testbed (Xantrex Technology
XKW 1kW), which operates out of its high efficiency region when it supplies less
than 70W to a single load, as in most of our experiments with IR2 and IR3. If we
factored D in our measurements, we would likely overestimate the values of the linear
parameters compared to rack-based multi-load applications where the efficiency of
the DC module is much higher. To guarantee that the power contribution of the
DC module is not ignored entirely, we include it when we estimate the total power
that IR2 and IR3 consume under given system and traffic configurations. However,
instead of adding the measured power consumption of our DC module, we add the
nominal power consumption of a generic DC module with 90% efficiency [46]. The
total power consumed by the SUT and the DC module is therefore A = S + D =
1.11S, where S is defined in Eq. (4.11).

4.6 Measurement methodology

Our power measurement experiments aim at obtaining accurate estimates for all
the parameters in Eq. (4.11): C0, L0, P

(h)
0 , P

(s)
0 , Pb,j and Pr.

We omit the line card and port indices in the symbols of the profile parameters
unless we refer to specific instances of those system components.

To optimize the accuracy of the estimates in spite of the relatively coarse resolu-
tion of the power meter (0.1W) we must maximize in each experiment the number
of target system components that operate in identical conditions, compatibly with
the equipment availability limitations of our testbed. The limitations are particu-
larly important when we measure the port parameters, especially those that require
the presence of traffic (the bit-rate sensitivity Pb and the packet-size sensitivity Pr),
because we can only rely on three pairs of traffic generator ports, each pair being of
a different kind (two 1000BASE-TX ports on the PC’s, two 10/100BASE-TX ports
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on the SMB-200, and two 1000BASE-SX ports also on the SMB-200). Additional
measurement constraints are imposed by the limited availability of BASE-SX and
BASE-LW/LR SFP’s (only two per type), and by the lack of BASE-LW/LR traffic
generator ports.

Based on the above constraints, all measurements with BASE-TX SFP’s involve
up to twenty-four ports, whereas the measurements with BASE-SX and BASE-
LW/RW SFP’s never involve more than two ports. In BASE-TX and BASE-SX
measurements with packet traffic the system is fed by traffic generator ports of
the same kind. In BASE-LW/LR measurements, the traffic arrives from BASE-TX
or BASE-SX ports, which also contribute to the power measurements: we must
subtract the estimated contribution of the traffic generator ports from the total
system power before we can estimate the power consumed by the target ports. Only
two traffic generator ports are available for measurements that involve BASE-TX
integrated ports and BASE-TX SFP’s. To ensure that every BASE-TX port in the
system actually contributes to the measured power, we join with loop-back cables
all pairs that we can form with ports that are not directly attached to a generator.
Within each loop-back pair, one port transmits traffic to the loop-back cable and the
other port receives it. We enable the spanning tree protocol (STP) to prevent the
volume of the injected broadcast traffic from exploding. With STP enabled, each
receiving port internally forwards traffic to only one transmitting port. Since every
port handles saturation-level traffic in one direction and no traffic in the other, we
use β = 0.5 to derive the value of Pb from the power meter readings.

For traffic measurements with the 10GbE SFP’s, instead, we keep STP disabled:
the replication of broadcast packets that occurs at each receiving port is strictly
necessary for expansion of the traffic volume from the 1Gbps rate supplied by the
two generators to the 10 Gbps rate that each 10GBASE-LW/RW can sustain. Since
every port that is enabled receives and transmits traffic at full capacity, we use
β = 1.0 in the estimation of the bit-rate sensitivity.

4.7 Experimental results

In this section we present results from our experiments. We focus on data that gauge
the compatibility of existing equipment with DTRA techniques and underscore the
need for PTRA support in future system designs. Table 4.2 lists for each SUT the
sum of the port capacities (possibly larger than the actual switching capacity) and
the estimated values for five of the six parameters that make up the linear model
of (11), in the specific case where the SUT is loaded with BASE-TX ports enabled
for operation at 1Gbps. The missing parameter is the (port) packet-size sensitivity,
whose values are practically impossible to distinguish from zero in the system con-
figurations used in the experiments of Table 4.2. We observe non-negligible values
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Table 4.2. Parameters of linear model (1GbE BASE-TX ports configured
for operation at 1Gbps )

Chassis, Line card, Port, Port, Port,
SUT idle idle fixed fixed bit-rate

hardware software sensitivity

C0[W ] L0[W ] P
(h)
0 [W ] P

(s)
0 [W ] Pb[W ]

ES1 44Gbps 32.4 N/A 0.3 1.1 0.3
ES2 44Gbps 35.0 N/A N/A 1.0 0.1
IR1 80Gbps 216 N/A 0.2 1.0 1.1
IR2 2.6Gbps 40.4 N/A 0.2 1.0 0.8
IR3 15.6Gbps 54.8 14.5 0.2 1.0 0.8

Table 4.3. Port parameters (10/100BASE-TX ports in IR2 and IR3 config-
ured for operation at 100 Mbps )

Port, Port, Port,
SUT fixed software bit-rate sensitivity packet-size sensitivity

P
(s)
0 [W ] Pb[W ] Pr[W ]

IR1 0.3 0.1 10
IR2 0.3 0.1 9

of the parameter only in the case of integrated 10/100BASE-TX ports in IR2 and
IR3 (see Table 4.3 for the values measured with ports configured at 100 Mbps).

Table 4.4 lists the parameters of 1GbE ports loaded with BASE-SX SFP’s (ES2
is missing because its 1GbE ports are integrated, IR1 because the SMB-200 traffic

Table 4.4. Port parameters (1GbE BASE-SX ports configured for operation at 1Gbps )

Port, Port, Port,
SUT fixed hardware fixed software bit-rate sensitivity

P
(h)
0 [W ] P

(s)
0 [W ] Pb[W ]

ES1 0.5 0.3 0.3
IR2 0.5 0.1 0.8
IR3 0.5 0.2 0.7
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Table 4.5. Port parameters (10GbE BASE-LR/LW ports configured for
operation at 10 Gbps)

Port, Port, Port,
SUT fixed hardware fixed software bit-rate sensitivity

P
(h)
0 [W ] P

(s)
0 [W ] Pb[W ]

ES1 1.2 1.8 1.6
ES2 0.9 2.0 0.5
IR3 0.2 1.0 2.9

generator could not be moved to the facility where our instance of the system was
located). Table 4.5 provides the same information for 10GbE ports loaded with
BASE-LR/LW SFP’s (10GbE ports are only available in ES1, ES2, and IR1). The

results in Table 4.2 indicate that the fixed software port power P
(s)
0 is by far the

dominant port power term in the two Ethernet switches. The traffic-sensitive terms
gain relevance in the IP routers, consistently with the increased variety and intensity
of the packet processing functions in those systems. Table 4.5 shows similar trends
for the 10GbE ports, although the traffic-sensitive terms are generally heavier than
with 1GbE ports. We note in Tables 4.2 and 4.4 the quantitative inversion between
fixed hardware power P

(h)
0 and fixed software power P

(s)
0 when we replace BASE-TX

SFP’s with BASE-SX SFP’s in the 1GbE ports of ES1, IR2, and IR3. Table 4.2 also
shows that the idle chassis power is much higher in IR1 than in all other SUT’s. This
is because IR1 is the only system in the set that combines high aggregate switching
capacity (80 Gbps) with the complex packet processing functions of a router in a
non-modular architecture.

We define the margin for saving energy with DTRA techniques as the entire
portion of the total energy consumption of a system that is associated with compo-
nents that DTRA can control. This is clearly a hard upper bound on the amount of
energy that DTRA can save. Network topology and traffic demands determine the
tightness of the bound in practical applications. To quantify the DTRA margin, we
must look at the relative weights of the line-card and port terms within the overall
power consumption of each system. Figure 4.2 shows the breakdown of the total
power consumption for the five SUT’s when all ports are enabled and fully loaded.
In ES1, ES2, and IR1 we configure the 1GbE ports as in Table 4.2 (BASE-TX at
1Gbps) and the 10GbE ports as in Table 4.5. In IR2 and IR3 the configurations are
those of Table 4.2 (BASE-TX SFP’s at 1Gbps) and Table 4.3 (integrated BASE-TX
at 100 Mbps). We normalize the power levels in each column to the total power con-
sumption of the respective system. We obtain the contributions of the port power
terms by multiplying the maximum number of ports configurable for each type by
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the respective per-port values. With IR2 and IR3 the sum of the port capacities
in this maximum configuration exceeds by far the actual switching capacity of the
system, with the effect of producing overestimated values for the traffic sensitive
power contributions.

We would obtain more accurate estimates if we could rely on a larger number
of traffic generator ports to pair with the system ports in the power measurement
experiments (up to 48 ports with IR3). Still, even if overestimated and maximized
by the assumption of minimum-length Ethernet frames (64 B), the traffic-sensitive
shares of the total power remain marginal in IR2 and IR3, causing no qualitative
impact on the interpretation of the results. In Figure 4.2, the traffic-sensitive terms
range between 5% and 21% across the five systems. If we also consider that the two
highest values, in IR2 and IR3, are certainly overestimated, the maximum traffic
power share is likely well below 15%. We can comfortably conclude that current
designs are far from exhibiting the type of rate-proportional power consumption
behavior that rate adaptation techniques aim at establishing at the system level.
While the indication is disappointing in terms of overall energy efficiency, in light of
the results in [29] and [30] it signals that DTRA techniques have a clear window of
opportunity in the short term for bringing along important energy savings through
relatively simple signaling extensions and software modifications applied to existing
hardware platforms.

Figure 4.2. Estimated breakdown of system power when all ports in the
system are fully loaded.
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If we compute the DTRA margin as the sum of the fixed-software and traffic-
sensitive port power terms, that is without including the fixed-hardware port power
and the line card power, we see that it ranges between 46% and 49% in the two
Ethernet switches and between clearly lower values (23% and 32%) in the three
IP routers. The potential for DTRA savings increases substantially in modular
systems where individual line cards can be switched on and off (+41% in IR3), and
even more if DTRA can control the operating state of the entire chassis. However,
in network applications that are not necessarily unusual, such as those addressed
in [30], it may be likely that an entire system, or even just individual line cards, can
never be switched off. To ensure that the energy savings remain consistently large
irrespective of the network topology and application, PTRA capabilities must be
pervasively deployed in future generations of hardware platforms. Design challenges
and performance properties are well understood for PTRA techniques in linear data-
path devices with one input and one output [33]. The same is not true for devices
with multiple inputs and outputs like the switch fabric, which typically resides in
the system chassis.

The challenge for those devices is to achieve direct proportionality between power
consumption and aggregate switching throughput irrespective of the traffic load
distribution across interfaces. Since the chassis contribution to the total power is
always large (between 39% and 76% in the SUT’s of our testbed), future research
efforts should direct their aim at the identification of viable PTRA solutions for
multi-interface devices.
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Chapter 5

Conclusions

The motivations of this PhD thesis are based on the claim that the power consump-
tion related to network elements has became a relevant issue, in particular looking
the side of scalability and high performances. As practical example it is enough to
think about high speed routers and how much the aggregate bandwidth is growing
fast due to the increasing of the traffic demand. To achieve this target the price to
pay is in term of power consumption.

In particular we have considered an N ×N input-queued switch with a crossbar-
based switching fabric implemented on a single chip. Thus, at increasing bit rate,
power dissipation is becoming more and more challenging, limiting the crossbar
scalability for high performance switches. The time is slotted and, in each timeslot, a
centralized scheduler determines a switching fabric configuration to transfer packets.

As a first step of we have considered an optical switching fabric and we focused
on the energy consumption needed to change its configuration, assuming that the
energy is proportional to the number of changes between consecutive timeslots. We
have addressed the computation of a minimum-energy frame to schedule a set of
packets in a request matrix. We propose a family of algorithms that decouple the
computation into two different phases: matching selection and frame sorting.

Throughout a theoretical and simulation study, we were able to investigate the
throughput-energy tradeoff achieved by the different algorithms. We observed that
the energy consumption per packet may vary by almost two order of magnitude
depending on the algorithm and traffic matrix.

We showed that one specific algorithm achieves the best tradeoff between energy,
throughput and complexity. In particular, we propose the GExa-NS algorithm, that
provides always the best compromise between sustainable load (very close to the
maximum) and energy consumption (very close to the minimum possible). Further-
more, its complexity is much lower that the other similar algorithms (GMax-BS and
BvN-BS), since the matching selection induces already an energy-efficient ordering
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among the matchings. The BvN-BS algorithm, even if optimal algorithm for energy-
oblivious frame decomposition, is the least efficient in terms of energy consumption
and furthermore it requires a high computational complexity.

After this first analysis we focused on the electrical crossbar switching fabric. The
power consumption produced by the crossbar chip and due to the data transfer grows
as NR3, where R is the maximum bit rate. We discussed the potential power gains
exploiting Dynamic Voltage and Frequency Scaling (DVFS) techniques to control
packet transmissions through each crosspoint of a crossbar used as the switching
fabric in an input-queued switch. We took an idealized approach, disregarding the
details related to packet scheduling, looking at flow rates.

Our power control operates independently of the packet scheduler and exploits
the knowledge of a traffic matrix obtained by on-line measurements. We proposed
a family of control algorithms to reduce the power consumption. The proposed
algorithms are computationally simple and obtain performance gain close to those
of more complex, optimal algorithms and they are particularly efficient in non-
overloaded conditions.

The actual potential of the proposed approach is bore out by performance results.
They were validated through a real hardware synthesis, a real design case synthesized
on a 90 nm CMOS technology, that show that a significant power reduction can be
obtained, especially at low loads.

Note that this approach to the problem is compatible with complementary poli-
cies that minimize the other power components.

In the last part of the thesis, it has been focused on the energy characterization
of existing network elements available for commerce. The definition of accurate
energy profiles is a critical step in the process of planning for the short-term (i.e.
software) and long-term (i.e. hardware) design upgrades that can enable better
energy efficiency in future generations of network systems.

Learning from the limitations of existing models for energy profiling, we have
introduced a new linear model that suits well the requirements for supporting new
frameworks with capabilities of rate adaptation technologies at multiple timescales.
These technologies aim at establishing a direct, possibly linear, relationship between
the power consumption of a packet network and the traffic load that the network
sustains. As a consequence, the deployment of accurate energy profiles for sample
commercial equipment represents a first step in this direction.

A set of extensive power measurement experiments was run to compute the
energy profiles of five network systems from multiple vendors, namely Ethernet
switches and IP routers for enterprise and access applications. The first result found
was that existing linear models for mapping system and traffic configurations onto
power consumption levels are not adequate to drive effectively the operation of rate
adaptation frameworks, as a consequence we enhanced those models with essential
revisions.
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This model indicates that a “current generation” network equipment requires
straightforward signaling extensions and system management software upgrades to
achieve appreciable energy savings thanks to the deployment of demand-timescale
rate adaptation techniques that remotely control the operating state of individual
system components (ports, line cards, and chassis) based on network-wide power
minimization goals. The reason is that our model supplies information at the right
granularity needed for control of the system components that tangibly contribute to
the power consumption of individual systems and entire networks.

The model also shows that energy savings at a much larger scale can only be
attained with a new generation of hardware platforms for network systems, through
a pervasive deployment of packet timescale rate adaptation techniques. The future
generations must support low-power sleep states for unutilized system components
and packet-timescale rate adaptation methods in order to establish true proportion-
ality between energy consumption and traffic workload.

Future research efforts should be particularly directed at the identification of vi-
able PTRA techniques for data-path hardware components with multiple input and
output interfaces. We have applied the model to the results of power measurement
experiments conducted on five commercial network systems using a testbed with
limited auxiliary resources, learning that the availability of a large number of traffic
endpoints is instrumental to the accuracy of estimation of the traffic-sensitive terms
of the model. We plan to keep running experiments on new network gear while
expanding the traffic generation capabilities of the adopted testbed.
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