
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Elettronica e delle Comunicazioni
XXIV Ciclo

Tesi di Dottorato

Design of
Algorithms and Protocols for

Peer-To-Peer Streaming Systems

Stefano Traverso
Mtr. 160417

Tutore
prof. Marco Mellia

Gennaio 2012

Summary

Peer-to-Peer Streaming (P2P-TV) systems have been studied in the literature for
some time and they are becoming popular among users as well. P2P-TV systems
target the real time delivery of a video stream, therefore posing different challenges
compared to more traditional peer-to-peer applications such as file sharing (BitTor-
rent) or VoIP (Skype).

This document focuses on mesh based P2P-TV systems in which the peers form
a generic overlay topology at application level upon which peers exchange small
“chunks” of video. In particular, we study two problems related with this kind of
systems:

i) how to induce peers to share their available resources – such as their available
upload bandwidth – in a totally automatic and distributed way;

ii) how to localize P2P-TV traffic in order to lower the load on the underlying
transport network without impairing the quality of experience (QoE) perceived
by users.

Goal i) can be achieved playing on two key aspects of P2P-TV systems that are:

• the design of the trading phase needed to exchange chunks among neighbors;

• the strategy adopted by peers to choose the neighbors to connect with, i.e.,
the policy employed to build and maintain the overlay topology at application
level.

The former task has been successfully accomplished with the development of al-
gorithms that aim at adapting the rate at which peers offer chunks to their neighbors
to both peer’s available upload bandwidth and to the system demand. The results
presented in this document show that the automatic adjustment of transmission rate
to available upload capacity reduce delivery delays of chunks, thus improving the
experience of users.

Focusing on the latter problem, we prove that the topological properties of the
overlay have a deep effect on both users’ QoE and network impact. We developed

II

a smart, flexible and fully distributed algorithm for neighbors selection and imple-
mented it in a real P2P-TV client. This let us compare several different strategies
for overlay construction in a large campaign of test-bed experiments. Results show
that we can actually achieve the goal of leading peers to efficiently share their avail-
able resources – goal i) – while keeping a good degree of traffic localization, hence
lowering the load on the underlying network – goal ii). Furthermore, our experi-
mental results show that a proper selection of the neighborhood leads to a win-win
situation where the performance of the application and QoE are both improved,
while the network stress is nicely reduced.

III

Acknowledgements

I would like to thank my advisor Prof. Marco Mellia together with Prof. Emilio
Leonardi and the whole telecommunication group at the Politecnico di Torino: I
both learnt a lot and had fun working with you.

I also would to thank Csaba Kiraly, Prof. Renato Lo Cigno and Prof. Luca
Abeni from the Department of Computer Science of University of Trento for the
great work on P2P-TV client PeerStreamer.

Furthermore I’m thankful to Nikos Laoutaris, Vijay Erramilli and the Internet
scientific group of the Telefonica I+D center in Barcelona. Thanks for welcoming
me during the period I spent there.

Finally I thank my family, my father and mother, my aunt and my future wife,
Lorena, for giving all their support to me without which I would have not been able
to reach this goal.

IV

Contents

Summary II

Acknowledgements IV

1 Introduction 1
1.1 Transmission Control Problem . 2
1.2 Overlay Topology Design . 3

I Transmission Control Problem 5

2 Introduction 6
2.1 Related Work . 8
2.2 System Description . 9

3 Adaptive Signalling Protocol 10
3.1 Introduction . 10
3.2 The Chunk Trading Mechanism . 10
3.3 The Adaptive Signaling Protocol . 12
3.4 Performance Evaluation . 13

3.4.1 Simulation scenario and assumptions 13
3.4.2 ASP transient analysis . 15
3.4.3 Performance analysis and comparison with fixed Na schemes . 17
3.4.4 Bandwidth allocation among peers 18
3.4.5 Signaling overhead . 19

4 Hose Rate Control 21
4.1 Introduction . 21
4.2 The Chunk Trading Mechanism . 22
4.3 The Core of Hose Rate Control . 23
4.4 Performance Evaluation by Simulation 25

4.4.1 Simulation scenario and assumptions 25

V

4.4.2 Transient analysis . 26
4.4.3 Steady-state analysis . 27

4.5 Performance Evaluation by Experiment 29
4.5.1 Implementation issues . 30
4.5.2 Experimental results . 31

5 Conclusions 35
5.1 Future Directions . 36

II Overlay Topology Design 37

6 Introduction 38

7 Network Awareness in P2P Streaming Applications 40
7.1 Introduction . 40
7.2 Related work . 40
7.3 System Description . 42
7.4 Design Choices . 43

7.4.1 Overlay topology design . 43
7.4.2 Chunk trading . 44

7.5 Performance Evaluation by Simulation 46
7.5.1 Network scenario and assumptions 46
7.5.2 Video parameters . 47
7.5.3 Results . 49
7.5.4 Impact of rs and β . 51

7.6 System Implementation . 52
7.7 Overlay Management . 54
7.8 Performance Evaluation by Experiment 55

7.8.1 Bandwidth and delay measurements in the experiments 55
7.8.2 Experimental results . 56
7.8.3 Further experiments in an emulated context 58

8 Experimental comparison of neighborhood filtering strategies 61
8.1 Introduction . 61
8.2 Related Work . 62
8.3 PeerStreamer Description . 64

8.3.1 Hose rate control . 64
8.3.2 Overlay management . 65

8.4 Neighborhood and Topology Construction 66
8.4.1 Metrics driving the neighborhood selection 66

VI

8.4.2 Add filters . 67
8.4.3 Drop filters . 67
8.4.4 Blacklisting policies . 67

8.5 Testbed Configuration . 68
8.5.1 Network scenarios . 69

8.6 Performance Evaluation . 70
8.6.1 G Homo scenario . 70
8.6.2 G Bias scenario . 74
8.6.3 Lossy scenario . 75
8.6.4 Video performance versus load 76

9 Conclusions 78
9.1 Future Directions . 79

A Acronyms 80

Bibliography 82

VII

List of Tables

3.1 Average bandwidth utilization for classes 1, 2, 3 and Jain Fairness
Index at ρ = 0.6. 18

7.1 Notation and formalism adopted. 42
7.2 Characteristics of peer classes. 46
7.3 Percentage of peers per class for different scenarios. 47
7.4 Characteristics of the encoded video sequences. 48
8.1 Number of PCs per subnet. 68
8.2 RTTs in ms between areas of peers. 68
8.3 Characteristics of peer classes. 69
8.4 Average fractions of incoming traffic for Cluster 2. 76

VIII

List of Figures

2.1 Example of highly structured overlay topology built as a distribution
tree (left) and example of a generic mesh-based overlay topology (right). 7

3.1 Schematic representation of the peer chunk trading mechanism. . . . 11
3.2 Latency distribution taken from Meridian Project [1]. 14

3.3 Na evolution versus time with ASP with CR = 0.0 and ρ = 0.9. . . . 15

3.4 Chunk loss probability (top) and total number of signaling messages
per peer versus CR (bottom) at ρ = 0.9. 15

3.5 Average number of contacted neighbors Na with ASP algorithms for
all the peers, that are in decreasing order with their bandwidth at
ρ = 0.9. 16

3.6 Chunk loss probability versus load. 16
3.7 95th percentile of chunks delivery delay versus load. 17

3.8 Bandwidth utilization with fixed Np = 10 (top), ASP with CR = 0
(middle), ASP with CR = 0.5 (bottom) at ρ = 0.6. 18

3.9 Total number of received signaling messages per peer versus load. . . 19

3.10 Fraction of positive select messages versus load. 20

4.1 Schematic representation of the peer chunk trading mechanism. . . . 22

4.2 Queuing delay (top), value of Na (center) and throughput (bottom)
vs. time with variations due to interfering traffic on upload link.
ρ = 0.95 . 27

4.3 Queuing delay (top), Na (center) and throughput (bottom) vs. time
for flash crowd. 28

4.4 Average SSIM of HRC and non-adaptive schemes versus the system
load. Simulation results, 2000 peers. 29

4.5 Average SSIM for different values of D0 and Dmax. ρ = 0.95. Simu-
lation results, 2000 peers. 29

4.6 Schematic representation of the peer chunk trading mechanism with
prioritized signalling -PS- (left) and enqueued signaling -ES- (right). . 30

4.7 Queue delay (left) and Na (right). 31

4.8 Average Na for HRC when varying video rate rs. Experimental results
in swarm of 1000 peers. 32

IX

4.9 Average SSIM for HRC and non-adaptive schemes when varying video
rate rs. Experimental results in swarm of 1000 peers. 32

4.10 Average SSIM per peer distribution for HRC and non-adaptive schemes
for video rates rs = 800kb/s (left) and rs = 1600kb/s (right). Exper-
imental results in swarm of 1000 peers. 34

6.1 Representation of the interaction between application and network
levels for a network-aware overlay topology construction. 39

7.1 Schematic representation of the peer chunk trading mechanism. . . . 45
7.2 Average PSNR versus α for different values of the playout delay with

ρ = 0.9 and H = 0.10 for fixed and variable Kp. 49
7.3 Network stress versus α, for different topologies and values of the

playout delay, ρ = 0.9. 50
7.4 Average PSNR versus α for different values of H with Dmax = 5s. . . 51
7.5 Average PSNR for different values of the playout delay and number

of peers with ρ = 0.9 and H = 0.10. 52
7.6 Average PSNR versus ρ for different values of β with Dmax = 5s,

α = 0.1. The corresponding video rate rs is reported on the top x-axis. 52
7.7 PeerStreamer peer architecture. 53
7.8 Histogram of the pair-wise RTT (left plot) and CDF of end-to-end

upload capacity (on the right) measured during experiments. 56
7.9 Example of overlay topologies for α = 10 and α = 100 for TRTT = 50ms. 56
7.10 Number of bytes received by peers as a function of observed RTT on

the overlay connection . 57
7.11 average receive delay of chunks (left axis, increasing curves) and

PSNR of received video (right axis, decreasing curves) for TRTT =
100ms and different values of α. 58

7.12 Fraction of received bits for different values of α (left plot), and CDF
of received bytes as a function of observed RTT for different values
of α in the emulated scenario (right plot). 60

8.1 Pictorial representation of chunk exchanges from one peer with the
offer-select protocol used by PeerStreamer. 65

8.2 Frame loss for different strategies in G Homo scenario: Floss (average)
(top), percentage of peers whose F loss(p) > 0.01 (center), percentage
of peers whose F loss(p) > 0.03 (bottom). 71

8.3 Out-degree distribution of peers, G Homo scenario. 71
8.4 CDF of the distance traveled by information units, G Homo scenario. 72
8.5 Frame loss for different strategies in G Homo scenario with NI =

20: Floss (average) (top), percentage of peers whose F loss(p) > 0.01
(center), percentage of peers whose F loss(p) > 0.03 (bottom). 73

8.6 CDF of the frame loss probability for four different strategies, G Bias
scenario. 74

X

8.7 CDF of distance traveled by information units, G Biasscenario. . . . 75
8.8 CDF of chunk loss probability (top) and CDF of chunk delivery de-

lays (bottom) for three different strategies with and without adopting
blacklist mechanism in Lossy scenario. 75

8.9 Sssim index when varying video rate rs in Lossy scenario. 77

XI

Chapter 1

Introduction

During the last years we assisted to the growth of interest from the Internet commu-
nity for Peer-to-Peer streaming (P2P-TV in short) systems. Indeed, these systems
offer to broadcasters and providers the opportunity of transmitting TV signals to
huge populations of users without expensive infrastructural investments. A clear
proof of this interest is given by the continuous appearing of many commercial ap-
plications that are nowadays available over the Internet [2–4].

P2P-TV systems are generically based on an overlay topology which is built at
application level by the peers connecting to each other through logical links. In this
kind of systems a source peer takes a video-stream, slices it in small pieces called
chunks and starts injecting them inside the overlay topology. Exploiting a fully
distributed epidemic approach, peers act as repeaters to exchange chunks while the
video is played. Even if the mechanism behind P2P-TV systems looks similar to P2P
file sharing ones, in former systems chunks are generated sequentially, periodically
and, overall, in real-time. Chunks must be received by the peers within a deadline
to be played out and this makes delivery delays one of the key aspects of these
systems. For this reason, P2P-TV systems design is deeply different from file sharing
applications.

Due to their real-time constraints, P2P streaming systems generate un-elastic
traffic. Combining this with the fact that they may reach a potentially unlim-
ited population of users, eventually offering high definition signal (HD-TV) quality
streams, P2P-TV systems may constitute a worry for network carriers since the
traffic they generate may dramatically grow without control, causing a degradation
of the quality of service perceived by Internet users or even the network collapse
(and the consequent failure of the P2P-TV service itself!). The goal of this thesis
is to provide some simple guidelines for the design of new generation network-aware
P2P applications that optimize the chunk distribution effectively exploiting some
knowledge on the underlay transport network status.

The objective of this work is two-fold: i) we face with problem of inducing peers

1

1 – Introduction

to contribute to the chunk diffusion process in a way proportional to their available
resources; ii) we focus on the problem of reducing the load of P2P-TV systems on
the underlying transport network.

The first goal is successfully achieved by carefully designing the algorithm which
handles the trading phase needed before each chunk transmission. This is a critical
step to reach a better usage of peers’ available bandwidth. The latter objective,
instead, is translated into the problem of keeping a certain degree of localization
on traffic generated by P2P-TV applications. This can be efficiently sorted out by
finely organizing the overlay network which is built by peers at application level.
Moreover, acting on the overlay construction process, we can reach together goals i)
and ii) in such a way that peers fairly share their available resources while keeping
a good degree of traffic localization.

Finally, we show through experimental results that chasing goals i) and ii) does
not impair the good quality of received video, but, on the contrary, the QoE per-
ceived by the users is greatly enhanced.

1.1 Transmission Control Problem

The core of chunk distribution algorithms is the chunk scheduling policy, according
to which the peers choose which chunks should be delivered to which peers. In the
literature, there are two families of algorithms for practically implementing the cho-
sen policy. The push based algorithms organize the peers in distribution trees which
are rather static and over which a number of consecutive chunks are delivered; in
pull based approaches, peers are organized in a generic overlay network and a pre-
liminary trading phase is required before the actual chunk delivery: a peer advertises
to some of its neighbors which chunks it possesses via the so called offer messages
and the neighbors, in their turn, choose the chunks they want to receive through
select messages. By avoiding the trading phase, push based algorithms typically
achieve smaller chunk delivery delay than pull based approaches. The drawback is
the higher complexity to manage the structure of the tree and a lower robustness to
churning (peers moving into or out of the overlay network), which limits their scal-
ability in terms of number of peers. Conversely, in pull based algorithms a careful
design of the trading phase is needed to avoid that the additional signaling delay
translates into an excessive cost to pay for better resource usage and resilience to
churning.

Part I of this thesis presents two different algorithms to adapt the rate at which
offer messages are sent by peers to match their available upload bandwidth and the
system demand. In other words, both the schemes aim at controlling the bandwidth
allocation on the peer uplink channel.

Even if they chase the same objective, the two algorithms deeply differ from

2

1 – Introduction

each other: the Adaptive Signalling Protocol (ASP) described in Chapter 3 is based
on a synchronous mechanism that periodically generates advertisement of peer’s
buffermaps, which are offered to a subset of the peer’s neighbors. Simulation results
show that ASP actually reaches the goal of adjusting the chunk transmission rate
of peers while improving QoE perceived by users, but the resulting scheme assumes
essentially homogeneous latencies and may be difficult to implement in practice.

The latter scheme described in Chapter 4 is called Hose Rate Control (HRC)
and it aims at automatically adapting the offering rate of peers to the current
network scenario simply controlling the queueing delay experienced by delivered
chunks. HRC’s transmission rate control works in a peer aggregate fashion that
aims at exploiting the peer upload capacity while reducing as much as possible
chunk delivery delays. Being much simpler to develop with respect to ASP, HRC’s
control scheme has been implemented in a real P2P-TV application and it has been
extensively put on trial in test-bed experiments involving large populations of peers.

1.2 Overlay Topology Design

In Part II we focus on the study of smart algorithms for the construction and
management of mesh-based overlay topologies.

In particular Chapter 7 focuses on some issues about unstructured P2P-TV sys-
tems. First of all, we estimate what is the real impact of latencies and peer access
bandwidth heterogeneity on the performance of a P2P-TV system. Then, we in-
vestigate how the application can retrieve measurements coming from the network
layer and translate them in useful information to exploit at application level. Then,
we analyze the problem of implementing smart algorithms that explicitly exploits
the knowledge of network metrics and we study how the application can exploit
them. Finally, we come to our final scope: we face with the problem of reducing the
load on the underlying transport network while jointly improving the QoE perceived
by users. The simple heuristic we propose in Chapter 7 has been tested through
simulations and, since it has been integrated in a real P2P-TV application, through
experimental test-beds as well. Presented results show that the two objectives of
improving the system performance (QoE) and lowering the network stress can be
successfully reached at the same time.

Given the useful guidelines provided in Chapter 7, we present in Chapter 8 a
fully distributed algorithm for the overlay topology construction and maintenance.
The proposed algorithm allows us to combine different neighbor filtering schemes
whose weighted choices mechanism consider network level measurements like round
trip time (RTT), available bandwidth, path losses, etc. and application level indexes
such as amount of received chunks and chunk corruptions. The algorithm has been
implemented in a real P2P-TV application and deeply tested in a long campaign

3

1 – Introduction

of test-bed experiments. In our evaluation we compare 12 different combinations
of filters and prove through a fully experimental evaluation that we can increase
the localization of traffic, reducing therefore the load on the network layer. The
good news is that combining schemes able to localize the traffic with bandwidth-
aware scheme, we can confirm through a rich and rigorous experimental analysis
what shown in Chapter 7: we can jointly improve the QoE perceived by users while
lowering the network stress caused by the P2P-TV service.

4

Part I

Transmission Control Problem

Chapter 2

Introduction

In P2P-TV systems, download rate is dictated by video rate, which is limited by
definition; the source peer emits chunks in real time at “constant” rate and peers
must trade them minimizing delays and losses to guarantee the best Quality of
Experience (QoE) to users.

Common assumptions about P2P-TV systems are that i) the upload capacity
of peers constitutes the main bottleneck to system performance, and ii) each peer
is supposed to instantaneously have a perfect view of the internal state of other
peers [5–7]. While the former assumption is often met in practice, latency between
peers makes the latter unrealistic [8].

In the literature we can find two different architectural models to implement
a real P2P-TV system. The first one relies on a push based algorithm for chunk
transmissions. This implies that peers are organized in overlay topologies similar
to distribution trees which results to be rather static and over which a number of
consecutive chunks are delivered (as depicted in the left plot of Figure 2.1). The
second approach allows peers to be organized in generic mesh overlay topologies,
making the chunk distribution process based on a receiver-driven protocol, also
known as pull approach (right plot of Figure 2.1). In this case, indeed, before
each chunk delivery, a preliminary trading phase is required. During this, a peer
advertises to some of its neighbors which chunks it possesses and the neighbors,
in their turn, select chunks they are interested in. Thanks to the reduced amount
of signalling, typically push based algorithms present smaller chunk delivery delay
than pull based approaches. The drawback is the higher complexity to manage the
trees and a lower robustness to churning, which limits their scalability in terms of
number of peers.

Conversely, also to avoid chunk duplications at the receiver, in pull (also known
as receiver-driven) systems a preliminary trading phase is required to agree on the
chunks to be exchanged. This trading phase requires the exchange of messages
between peer pairs and must be carefully designed to avoid that the additional

6

2 – Introduction

Figure 2.1. Example of highly structured overlay topology built as a distribution
tree (left) and example of a generic mesh-based overlay topology (right).

signalling delay translates into an excessive delay and that a peer overbooks its
upload capacity by committing itself to transmit of too many chunks.

This part of the thesis focuses on the design of the trading phase, which has
been marginally studied in the literature. In general, the trading phase is composed
by four messages: i) each peer advertises to a subset of its neighbors the set of
chunks it possesses through an offer message; ii) neighboring peers reply to it with
a select message in which they specify the subset of chunks they are interested in;
iii) the transmitter then schedules the transmission of the selected chunks using a
first in first out (FIFO) queue, from which chunks are served one after the other,
since transmitting chunks in sequential order reduces the chunk delivery time with
respect to parallel transmissions [9]; iv) finally, successfully received chunks are
acknowledged to transmitters through an acknowledgement (ACK) message.

This receiver-driven mechanism requires a number of parameters to be tuned to
reach optimal results, and the optimal setup, in its turn, depends on the specific
scenario, which is typically highly variable due to the natural network variability
and user heterogeneity.

In addition, video chunks must be small, e.g., less than 8 packets, to minimize
the packetization delay at the source, the transmission delay on the network, and the
store-and-forward delay at the peers. To avoid both the burdening of handling TCP,
and unnecessary delay due to TCP retransmission and congestion control, UDP is
typically preferred by actual P2P-TV application [10]. This poses the problem of
how to handle the congestion control, and in particular, how to limit the amount
of information a peer can transmit, since its download rate is in all cases limited
by the stream rate. Controlling therefore the uplink bandwidth utilization is a key
problem, which has been so far practically ignored by the research community.

Several proposals and actual implementations adopt pull based mechanisms
(see [8, 9, 11, 12] for example), but, to the best of our knowledge, no discussion
about the tuning of the signaling mechanisms have ever been carried on. In this

7

2 – Introduction

part, we propose two schemes to automatically adapt the choice of: i) the frequency
with which a peer advertises the chunks it possesses, ii) the number of peers to
which the chunks are advertised. These two aspects are particularly critical since
an inadequate setting can translate into performance degradation, due to excessive
signaling overhead, waste of resources or queuing delay at the transmitting peer.
We thus propose two solutions to adapt the above mentioned parameters i) to the
video rate and ii) to the upload available bandwidth of the peers with the objective
of jointly maximizing the exploitation of peers’ upload heterogeneity and reducing
chunk delivery delay and losses. In other words, the two algorithms carefully control
the bandwidth allocation on the uplink channel of a peer.

In Chapters 3 and 4 we present two different algorithms respectively called
Adaptive Signalling Protocol (ASP) and Hose Rate Control (HRC). Even
if behind the two schemes we can find almost the same rationale, ASP and HRC
deeply differ in the timings at which offer and select messages are handled and sent.
The former scheme regulates the rate at which offer messages are sent for a sig-
nalling protocol in which offer messages are sent in a synchronous fashion and in
small bursts. HRC, instead, relies on a protocol in which offer messages are handled
in an asynchronous way that results much more flexible and easier to implement.
Both of the schemes have been extensively tested by simulations, but only HRC has
been actually integrated into the P2P-TV application called PeerStreamer 1 [14].
The results show that, with respect to not adaptive mechanisms, both schemes can
consistently improve system performance in terms of chunk loss, delivery delay, and
thus QoE. Furthermore, peers’ upload capacity is used in such a way that system
demand rate is satisfied in a fairer fashion, avoiding stressing low capacity peers,
and avoiding concentrating the download from high capacity peers only.

2.1 Related Work

The literature on P2P-TV streaming systems is rich of works. Common assump-
tions are that the upload capacity of peers constitutes the main bottleneck to system
performance, and each peer instantaneously has a perfect view of the internal state
of other peers [5–7, 15]. While the former assumption is often met in reality, la-
tency among peers makes the latter unfeasible. The impact of latency on system
performance has been analyzed by means of a simple model corroborated by real
measurements in PlanetLab in [8]. The authors propose a system that mitigates
the effect of latency by exchanging state information via signalling messages. Little
description is however given about the implemented signalling mechanisms details.

Few papers specifically focus on the impact of peers bandwidth heterogeneity
and how it can be exploited to improve system performance [9, 15, 16]. This aspect

1PeerStreamer has been developed within the EU-FP7 NAPA-WINE STREP project [13]

8

2 – Introduction

is crucial since peers homogeneity is hardly met in practice.
Given the small size of chunks, UDP is typically preferred by actual P2P-TV

applications [10] to enforce serial chunk packet transmission and to avoid both un-
necessary delay due to TCP retransmission and congestion control. Controlling the
uplink bandwidth utilization is thus a key problem.

2.2 System Description

We consider a system in which a source segments the video stream into chunks and
injects them in the overlay network. LetN be the set of peers composing the overlay,
with cardinality N . The application must deliver every generated chunk within a
deadline starting from the instant in which it is emitted by the source; this deadline
is called playout delay, Dmax. If the chunk age is greater then the playout delay, the
chunk cannot be traded anymore, as in a sliding window mechanism.

Chunks are transmitted by peers to their neighbors, i.e., they exchange chunks
in a swarm-like fashion; the overlay topology is defined by the set of peers and vir-
tual links connecting them. Let Ca be the set of a neighbors. The overlay topology
changes its structure dynamically due to the churning and the possibly dynamic
algorithms driving its maintenance and optimization [17]. Since the overlay dy-
namics are usually much slower than chunk distribution timings (minutes versus
tens/hundreds of ms), we are going to neglect churning effects in this part. The
overlay can be built by assigning a certain set of neighbors to every peer a. Since
the actual design of the overlay topology is handled in Part II, in this part of the
document we consider the simplest case in which the overlay network is built once
and on a random basis (as also did in [15]).

As normally assumed in the literature of P2P-TV systems, we consider a case
where peer’s uplink capacity represents the bottleneck to system performance, and
consider the chunk delivery loss as main performance indexes (this includes losses
and chunks arrived after the playout deadline). In addition, we consider each peer
uplink bandwidth utilization as an important index, which allows us to gauge the
fairness and efficiency in allocating system upload capacity.

9

Chapter 3

Adaptive Signalling Protocol

3.1 Introduction

In this chapter we propose a signaling mechanisms that must be in place to trade
chunks, combined with an algorithm for automatically adapting a peer service rate
to its upload capacity and to match the demand from other peers. The goal is to
maximize peer upload capacity utilization, while avoiding forming long transmission
queues, therefore minimizing the chunk delivery time which is a crucial parameter
for P2P-TV systems.

The objective is to design a an efficient receiver-driven protocol that integrates
a fully distributed scheme to automatically tune i) the frequency at which a peer
offers chunks to its neighbors and ii) the number of neighbors to contact to offer
chunks.

3.2 The Chunk Trading Mechanism

The signaling mechanism used to trade chunk is a pull mechanism similar to the one
used in other mesh-based P2P-TV systems, [8,9,11,12]. A chunk is sent from a peer
to one of its neighbors after a trading phase which is sketched in Fig. 4.1. In the
figure, trading messages are represented above the time line and chunk transmissions
are below it. The negotiation begins on the transmitter side: peer a periodically
chooses a subset of its neighbors Na (with |Na| = Na) and sends them a special
signaling message, called an offer message, containing the set of chunks it possesses
and whose age is smaller than Dmax. Every peer in Na replies to the offer with a
select message in which it indicates a subset of at most M desired chunks. Once a
chunk has been “selected”, the receiver will set it as pending to avoid requesting the

10

3 – Adaptive Signalling Protocol

Chunk #1

to Peer 2

OFFERS SELECTS

Na

P1

P2

P5

time

Chunk #1

to Peer 5
Chunk #2

to Peer 1

Chunk #2

to Peer 2
ACK

OFFERS SELECTS

Na

P2

P7
P4

Chunk Arrival

Tdiff

offerT queueT

ACK

ACK

Figure 3.1. Schematic representation of the peer chunk trading mechanism.

same chunk from different peers at the same time1.
As soon as a receives some positive select messages2, it schedules the transmission

of all requested chunks, maintaining a transmission queue of chunks to be sent that
is served in a FIFO order. Peer a is committed to send all the chunks requested
in all the received select messages. Chunks are small, to minimize the transmission
delay and to quickly spread them through the overlay via the store-and-forward
mechanism typical of the P2P systems.

Several design choices impact the performance of the pull mechanism: 1) the
criterion to select peers belonging to Na – known as the “peer selection”; 2) the
strategy according to which peers in Na select chunks to download – known as the
“chunk selection”; 3) the frequency at which a peer a offers chunks to its neighbors;
and 4) the values of the parameters M and Na.

Since the objective of our study is to discuss the last two issues, for the peer
selection and the chunk selection policies we make the simplest possible choices:
peer a chooses the neighbors to contact uniformly at random within the set of its
neighbors, and the neighbors choose the chunks to select at random among the ones
it needs. This policy is also known in the literature as “Random Peer - Random
Useful Chunk selection” [7].

To keep the chunk delivery delay as low as possible, the length in chunks of
the transmission queue must be kept as small as possible; this suggests to: i) set
M = 1 to avoid filling the transmission queue with many chunks directed to the
same neighbor, and ii) issue a new offer based on number of chunks waiting to be
transmitted.

1Note that pending chunks can not be published in offer messages yet.
2Positive means that at least one chunk was requested in the select message. In this case we

assume signaling messages are reliably delivered, e.g., an ARQ mechanism is present.

11

3 – Adaptive Signalling Protocol

In next section we describe the algorithm, called ASP (Adaptive Signaling Pro-
tocol), we propose to automatically set Na and decide the schedule of the offer
messages.

3.3 The Adaptive Signaling Protocol

Consider a traditional sliding window algorithm adopted to perform congestion con-
trol in a end-to-end connection. It is well known that the transmitter window size has
to be correctly set to match the actual available bandwidth and RTT. In our P2P-
TV peer design, we have to decide the amount of information a peer can transmit to
exploit its upload capacity. Na is equivalent to the transmitter window, measured in
chunks, which has to be correctly tuned to match peer a upload capacity, the actual
system demand, and the RTT experienced between a and its neighbors. Differently
from traditional congestion control algorithms, the overall system upload capacity
has to be allocated to match the total download demand rate, since each peer has
to contribute to the video distribution and each peer has to download an average
amount of information equal to the video rate. Therefore, Na determines also the
bandwidth allocation among peers in the system.

Selecting Na is not easy. If Na is too small, a upload bandwidth risks not to be
exploited at best: the transmission queue empties quickly, causing long periods of
inactivity (idle times); this can reduce system performance especially for high upload
capacity peers. If, instead, Na is too large, a transmission queue fills up, causing
additional chunk delivery delay and, possibly, losses due to late delivery of chunks.
Moreover, a lot of signaling overhead is produced. Thus, Na must be adapted to
the upload capacity of each peer, the average RTT, and the actual system demand
rate. Starting from a default value, each peer modifies Na according to the following
algorithm:

if Tdiff -eq 2AvgRTT then
Na⇐ Na + 1

else
if PosSelectNum/OfferNum -geq CR then
Na⇐ Na− 1

end if
end if

where

• Tdiff is the time between a new chunk arrival and the moment in which the
transmission queue becomes empty;

• AvgRTT is the round trip time averaged among all peer’s neighbors;

12

3 – Adaptive Signalling Protocol

• PosSelectNum and OfferNum are respectively the number of received pos-
itive select messages and the number of offered messages sent for a given
offer/select phase.

• CR is the clipping ratio that limits the growth of Na when the number of
positive select messages is small.

The algorithm is run every time a new chunk arrives and only once per trading
phase. Na is thus updated just before sending the offer messages. The algorithm
aims at jointly using the available upload bandwidth and maintaining the queue as
short as possible. If the transmission queue grows too long, the peer reduces the
number of offer messages it sends. On the contrary, if the queue is too short (possible
idle times and unused bandwidth), the number of neighbors to contact is increased.
The decision is based on Tdiff that, as sketched in Fig. 4.1; it represents the queue
residual busy time at the chunk arrival. The optimal design should lead to have
Tdiff equal to twice the average RTT, so that by sending the offer messages a time
equal to 2AvgRTT before the last chunk ACK message is received, the bandwidth
results continuously utilized and the queue delay minimized3, i.e., the queue residual
time when the selects are returned (Tqueue in the figure) tends to zero.

If at the chunk arrival the queue residual busy time Tdiff is too small, say smaller
than 2AvgRTT , the algorithm can foreseen some idle time for the peer; thus, Na

can increase. However, when the peer is slow in distributing chunks or far away
from the source, it tends to receive negative selects from neighbors and possibly to
stay idle for long time. To avoid flooding the neighbors with an excessive number
of useless signaling messages, Na is increased only if the fraction of positive select
messages is larger than the threshold CR.

3.4 Performance Evaluation

3.4.1 Simulation scenario and assumptions

All results shown in this chapter have been obtained through P2PTV-sim [18], an
open source event driven simulator developed within the NAPA-WINE project. In
our scenario, peers are partitioned in four classes based on their upload capacity:

• 15% of peers are in Class 1 with upload bandwidth equal to 5Mb/s ± 10%,

• 35% of peers are in Class 2 with upload bandwidth equal to 1Mb/s ± 10%,

3Twice the minimum RTT would be enough to guarantee that a select message is received before
the transmission queue empties. However, due to the variability of RTT and the randomness of
peer selection process, using the average RTT is a safer choice.

13

3 – Adaptive Signalling Protocol

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200

F
re

q
u

e
n

c
y

Latency [ms]

Figure 3.2. Latency distribution taken from Meridian Project [1].

• 30% of peers are in Class 3 with upload bandwidth equal to 0.64Mb/s ± 10%,

• 20% of peers are in Class 4 with negligible upload bandwidth.

The video source belongs to Class 1 peers. The corresponding average bandwidth
is E[Bp] = 1.3Mb/s. To study the system under several values of network load we
change the video rate rs, so that the load is

ρ = rs/E[Bp].

Chunk size is fixed and equal to L = 100kb, i.e., about 8 UDP packets (with typical
1500B size), while the inter-chunk time depends on the video rate. In each simulation
the source emits 2000 chunks, which are equivalent to a video of about 4min at
rs = 0.8Mb/s. Dmax is set to 7s. We consider N = 2000 peers. According to the
assumption that the bottleneck is at the peer upload link, the model of the network
end-to-end path is almost transparent: it is simply modeled by a delay lpq that is
added to the transmission time of all the packets flowing from a to q. End-to-end
latencies lpq are taken from the experimental data set of the Meridian project [1].
Latency frequencies are reported in Fig. 3.2, in which values of lpq ≥ 200ms are
accumulated in the last bin for simplicity; the overall mean latency is E[lpq] = 39ms.

The overlay topology is randomly generated at the beginning of a simulation
by letting each peer randomly select K = 20 other peers as its neighbors. Since
connections are bidirectional, the average number of neighbors for a peer is equal to
2K. The topology is static for the whole simulation run (as already mentioned, since
we simulate a few minutes of the system behavior, we neglect the effect of churning).
All results presented below (except for the time evolution) are obtained averaging
the results of four random topologies; when different systems are compared, they
use the same four topologies.

14

3 – Adaptive Signalling Protocol

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 250 500 750 1000 1250 1500 1750 2000

C
o

n
ta

c
te

d
 n

e
ig

h
b

o
rs

 N
p

Chunk

Class 1
Class 2
Class 3
Class 4

Figure 3.3. Na evolution versus time with ASP with CR = 0.0 and ρ = 0.9.

 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500

 0 0.2 0.4 0.6 0.8 1

R
e

c
e

iv
e

d
 M

e
s
s
a

g
e

s

CR

ASP - ρ=0.9

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0 0.2 0.4 0.6 0.8 1

L
o

s
s
 P

ro
b

a
b

ili
ty

CR

ASP - ρ=0.9

Figure 3.4. Chunk loss probability (top) and total number of signaling messages
per peer versus CR (bottom) at ρ = 0.9.

3.4.2 ASP transient analysis

We first show the evolution of Na with time. In Fig. 3.3 (ρ = 0.9 and CR = 0.0) Na

is averaged over all peers in the same class, considering time windows of 20 chunks
(that corresponds to 1.7 s). Starting from the initial Np = 10 for all the peers,
the setting of Na quickly converges (and then remains stable) to the proper value
that depends on a upload bandwidth. Clearly, peers with negligible uplink capacity
(class 4) do not generate any offer message.

Then, we analyze the impact of the clipping ratio on the performance of the ASP
algorithm. We set the load to ρ = 0.9, i.e., video rate rs = 1.1Mbps, and we plot
the loss probability and the average number of signaling messages sent per peer in
Fig. 3.4. The curves show that there is a trade-off between losses and signaling

15

3 – Adaptive Signalling Protocol

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000

E
[N

A
]

p
e

r
P

e
e

r

Peer ID

Clipping Ratio = 0.0
Clipping Ratio = 0.5

Figure 3.5. Average number of contacted neighbors Na with ASP algorithms for
all the peers, that are in decreasing order with their bandwidth at ρ = 0.9.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.6 0.7 0.8 0.9 1 1.1 1.2

L
o

s
s
 P

ro
b

a
b

ili
ty

ρ

ASP - CR=0.0
ASP - CR=0.5

Fixed Np=5
Fixed Np=10
Fixed Np=15

Figure 3.6. Chunk loss probability versus load.

overhead. As CR increases, loss probability increases but the signaling overhead
decreases; indeed, due to the epidemic and random chunk diffusion process, number
of positive selects decreases by reducing the number of peers that are contacted.
To achieve low loss probability, many peers should then be contacted, i.e., many
messages should be sent, clearly increasing the signaling overhead. In the following,
we will consider two cases: no clipping, CR = 0, and CR = 0.5, that seems a
reasonable trade-off between signaling overhead and loss probability.

Fig. 3.5 reports the average number of contacted neighbors in every offer session
(ρ = 0.9). Notice that peers are clusterized in the four different classes in decreasing
order with their uplink capacity. ASP nicely adapts Na to the peer upload band-
width, and the number of contacted peers is roughly proportional to the peer upload
bandwidth, The variability of Na within the class is due to the different position of
the peers in the overlay topology: peers that are close to the source tend to have
a large number of positive selects from their neighbors and they can effectively ex-
ploit their bandwidth by only emitting a limited number of offer messages (Na is

16

3 – Adaptive Signalling Protocol

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0.6 0.7 0.8 0.9 1 1.1 1.2

9
5

th
 P

e
rc

e
n

ti
le

 D
e

liv
e

ry
 D

e
la

y
 [

s
]

ρ

ASP - CR=0.0
ASP - CR=0.5

Fixed Np=5
Fixed Np=10
Fixed Np=15

Figure 3.7. 95th percentile of chunks delivery delay versus load.

small); on the contrary, peers that are far away from the source end up emitting a
large number of offer messages (Na is large). Squared markers refer to a scenario in
which the clipping ratio, CR, is set to 0.5, while crosses indicate no clipping ratio.
The absence of clipping ratio makes peers that are far from the source pointlessly
increase Na to very large values.

3.4.3 Performance analysis and comparison with fixed Na

schemes

We now consider the performance of ASP with respect to schemes in which Na

is fixed, so that every peer always generates the same amount of offer messages,
independently on its upload capacity and status of the transmission queue. Fig. 3.6
reports loss probability versus load for the case of ASP with CR = 0 or CR = 0.5
(solid lines) and Na fixed to 5, 10, or 15 (dashed lines). Loss probability is averaged
over all chunks and all peers. Observe that by guaranteeing a better utilization of
the bandwidth, ASP always achieves better performance than the scheme with fixed
Na, e.g., losses are reduced by a factor up to 4 for ρ > 0.9. Moreover, improvements
are equal to all classes of peers, so that loss probabilities are the same for all classes.
Interestingly, ASP outperforms also the system with Np = 15 that corresponds to
the value achieved by high bandwidth peers under the ASP (as can be observed
by Fig. 3.5). The reason is that Np = 15 is too large a value for low bandwidth
peers that end up transmitting lots of chunks, but introducing additional queuing
delays to the chunk delivery time. Conversely, when Na is fixed and equal to 5, peers
cannot fully exploit their bandwidth, and this explains the higher loss probability.
Same considerations can be achieved from Fig. 3.7 where the 95th percentile of
delivery delays of chunks is reported. Again ASP with CR = 0 or CR = 0.5 show
lower delivery delays and, therefore, better performance than schemes with fixed
Na. An interesting fact to point out is that a larger clipping ratio can actually help

17

3 – Adaptive Signalling Protocol

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n
PeerID

Fixed Np=10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n

PeerID

ASP CR=0.0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

B
a

n
d

w
id

th
 U

ti
liz

a
ti
o

n

PeerID

ASP CR=0.5

Figure 3.8. Bandwidth utilization with fixed Np = 10 (top), ASP with CR = 0
(middle), ASP with CR = 0.5 (bottom) at ρ = 0.6.

Table 3.1. Average bandwidth utilization for classes 1, 2, 3 and Jain
Fairness Index at ρ = 0.6.

Class 1 Class 2 Class 3 Fairness Index

Na = 10 0.412 0.836 0.904 0.934

ASP (CR = 0.0) 0.464 0.792 0.785 0.951

ASP (CR = 0.5) 0.550 0.657 0.695 0.962

in reducing delays when the system is under loaded (ρ < 0.7. Indeed the CR = 0.5
curve exhibits smaller delivery delays respect to CR = 0.0 one if ρ < 0.75. This is
due to the fairer peer uplink capacity utilization as discussed in the following.

3.4.4 Bandwidth allocation among peers

Fig. 3.8 reports the bandwidth utilization per peer measured as the fraction of time
the uplink channel is used to transmit chunks; average values per class and Jain’s

18

3 – Adaptive Signalling Protocol

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.6 0.7 0.8 0.9 1 1.1 1.2

R
e

c
e

iv
e

d
 M

e
s
s
a

g
e

s
 (

O
ff

e
r

+
 S

e
le

c
t)

ρ

ASP - CR=0.0
ASP - CR=0.5

Fixed Np=5
Fixed Np=10
Fixed Np=15

Figure 3.9. Total number of received signaling messages per peer versus load.

fairness index are reported in Tab. 3.1. We consider a scenario in which the video
rate is 0.7Mbps, corresponding to ρ = 0.6, meaning that each peer can contribute to
the chunk distribution by spending only 60% of its upload capacity. Top plot refers
to the case of fix Np = 10. High bandwidth peers have a low utilization of about
40% of their bandwidth, meaning that they are basically underutilized due to the
low number of contacted neighbors (NP is low). Class 2 and 3 peers compensate
by working most of the time, so that they experience utilization higher than 80%.
While this bandwidth allocation still allows to successfully deliver all chunks to all
peers (no losses are experienced), the overall delay is quite large, due to the slow
store-and-forward at low bandwidth peers.

The ASP scheme is fairer in distributing workload among peers proportionally
to their bandwidth, as can be observed by middle and bottom plots, respectively
referring to CR = 0 and CR = 0.5. In this case, the high bandwidth peers automat-
ically increase the number of offer messages, trying to increase the uplink bandwidth
utilization. Notice the beneficial impact of the CR = 0.5, which, by limiting Na, re-
duces the utilization of the low bandwidth peers. This speeds up the chunk delivery
time, as already noted in Fig. 3.7.

3.4.5 Signaling overhead

Let us now focus on the signaling overhead. Fig. 3.9 reports the average number of
exchanged signaling messages per peer. The signaling overhead decreases with the
load due to the larger probability of positive selects per offer message, as confirmed
also by Fig. 3.10 which reports the fraction of positive select messages versus all
select messages. The case of fixed Np = 5 leads to the smallest number of signaling
messages. However, Np = 5 leads also to the worst performance (see Fig. 3.6).
Improvements can be achieved for higher values of Na and for the ASP algorithm.
When the load is low, queues are short, chunks are distributed quickly, and peers get

19

3 – Adaptive Signalling Protocol

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2

P
o

s
it
iv

e
 S

e
le

c
t

/
R

e
c
e

iv
e

d
 S

e
le

c
t

ρ

ASP - CR=0.0
ASP - CR=0.5

Fixed Np=5
Fixed Np=10
Fixed Np=15

Figure 3.10. Fraction of positive select messages versus load.

them easily, so that most of select messages are negative; when no clipping is used,
CR = 0, the number of signaling messages is very high and the fraction of positive
selects is low. If, instead, clipping is active (ASP with CR =0.5), the mechanism is
much more efficient and the waste due to signaling reduces by a factor 3.

20

Chapter 4

Hose Rate Control

4.1 Introduction

Considering the trading scheme, the most critical parameter is the number of “offers”
(messages advertising the list of possessed chunks) a peer should send in parallel,
i.e., the number of active signalling threads. If this number is too small, the delivery
rate of chunks is small, thus upload bandwidth is under-utilized. Conversely, if this
number is too large, the committed workload would overflow transmission resources,
impairing perceived quality of the video stream.

In this chapter, we show a scheme called Hose Rate Control, HRC, to automat-
ically adapt the number of signalling threads to the current network scenario. By
doing so, the scheme implements a peer aggregate transmission rate control that
aims at jointly exploiting the peer upload capacity and improving QoE of users,
reducing as much as possible chunk delivery delays. In other words, the scheme
controls the bandwidth allocation on the peer uplink channel.

The HRC objective is to exploit the upload bandwidth of peers while not in-
creasing queuing delay, therefore targeting a less-than-best-effort policy being less
aggressive than the TCP congestion control whose regulation scheme is loss-based.
This is an explicit design choice that aims at tightly controlling chunk delivery delay
and chunk delivery probability, i.e., minimizing packet loss and lengthly retransmis-
sions.

Considering file sharing P2P systems the problem of controlling the sending rate
of peers is a timely problem. Recently, BitTorrent designers decided to adopt UDP
in their client. Indeed, a new congestion control algorithm called LEDBAT (Low
Extra Delay Background Transport) has been proposed [19]. LEDBAT targets a
less aggressive congestion control mechanism than the one implemented in TCP.

To this extent HRC is somehow similar to LEDBAT, however, they differ in the
following two key aspects: i) HRC is an aggregate hose mechanism that controls the

21

4 – Hose Rate Control

Figure 4.1. Schematic representation of the peer chunk trading mechanism.

overall sending rate of a peer, and not the per-flow end-to-end sending rate; ii) HRC
is chunk based rather than packet based. As previously mentioned, this stems from
the different goals of streaming versus file sharing P2P applications: the first targets
live distribution of un-elastic content, while the latter targets the maximization of
download throughput.

We implemented HRC in PeerStreamer [14], the P2P-TV application developed
within EU-FP7 Network-Aware P2P-TV Application over Wise Networks (NAPA-
WINE) STREP project [13]. This allows us to provide experimental results on
swarms of up to 1000 peers in a controlled environment. Extensive experimental
results obtained considering both simulations and the actual implementation show
that, with respect to non adaptive mechanisms, HRC optimizes resource utilization,
consistently improving system performance and QoE that we evaluate on real video
sequences by computing the SSIM (Structural Similarity Index) [20].

4.2 The Chunk Trading Mechanism

The signalling mechanism used to exchange chunks is a trading scheme similar to
the one used in other mesh-based P2P-TV systems [8,11,12]. A chunk is sent from
a peer to one of its neighbors after a trading phase. Peer a maintains a number of
trading threads, Na. Each trading thread evolves as follows:

1) Peer a chooses one of its neighbors b and sends it a signalling message, called
offer message; it contains the set of younger than Dmax chunks a possesses.

2) Upon receiving the offer message, b replies with a select message to request a
desired chunk. Once a chunk has been “selected”, the receiver sets it as pending

22

4 – Hose Rate Control

until it is correctly received; a pending chunk cannot be requested and cannot
be published yet.

3) When the select message is received by a
a) if a chunk was requested in the select message (positive select), a schedules

its transmission, inserts it in its chunk transmission queue that is served
in a FIFO order.

b) Once b has completely received the selected chunk, it sends an ACK mes-
sage to a.

c) When a receives the ACK message, it can send a new offer message and a
new cycle starts.

d) If no chunk was requested in the select message (negative select), a can
send a new offer message and a new cycle starts.

Peer a is committed to send all the chunks requested in all the received positive
select messages. Timers protect the waiting for messages so that in case no reply is
received within a timeout, the status is reset and a new thread can start. Fig. 4.1
represents the signalling messages and chunks exchanged by peer a with its neighbors
over time. In particular signalling messages/chunks associated to one active thread
are highlighted. Note that all Na trading threads continue these cycles independent
of each other.

Several design choices impact the performance of the trading mechanism: 1)
the criterion to select destination peers for the offer message – known as the “peer
selection”; 2) the strategy according to which peers receiving an offer message select
chunks to download – known as the “chunk selection”; 3) the number Na of threads
peer a handles which is somehow equivalent of the window size in a window protocol
and represents the rate at which potential transmitting peers offer their chunks.

For the peer selection and the chunk selection policies we make the simplest
possible choices: peer a chooses peers to contact uniformly at random within the
set of its neighbors, and the neighbors choose the chunks to select at random among
the ones they need. This policy is also known in the literature as “Random Peer -
Random Useful Chunk selection” [21].

The key parameter that requires to be set in this mechanism is Na.

4.3 The Core of Hose Rate Control

HRC, the adaptive signal mechanism that we propose, stems from the basic idea to
control the rate at which chunks are sent by peer a by controlling the number of
parallel active threads Na, so that the queuing delay at the transmission queue is at
a given (small) target. The rationale is that Na controls the amount of work that the
peer a has to do: if it is too large, upload capacity is exceeded and delay increases,
deteriorating performance; if it is too small, the peer available upload bandwidth

23

4 – Hose Rate Control

could not be well exploited. The rule to decide Na is based on an estimation of the
queuing delay incurred by chunks in the transmission queue: if the queuing delay is
large, Na is decreased, and vice-versa.

More in detail, the algorithm according to which Na is made adaptive is the
following. Let Wa be the internal control variable, which takes real values: Na =
max(1,⌊Wa⌋). Wa < Wmax, where Wmax limits the maximum number of offers in
flight, e.g., it can be constrained to the number of neighbors of peer a. For every
neighbor peer b, peer a maintains an estimate of the minimum Round Trip Time.
This estimate can be computed/updated by a every time it receives a select message
as the difference between the time the select message is received and the one the
offer is sent,

RTTab = t
(a)

rx,select − t
(a)

tx,offer

where t
(p)

action,type identifies the time of the “action” triggered by the message of

“type” at peer p; action={rx,tx}, type={offer,select,chunk,ack}.

When a receives an acknowledge from b, it estimates the delay D incurred by
the chunk in the transmission queue, as D̂ = t

(a)

rx,ack − t
(a)

rx,select − RTTab, i.e.,

subtracting a RTT from the difference between the time at which the acknowledge
was received and the time at which the chunk was enqueued. D̂ is then compared
with a prefixed target value, D0, and Wa is updated according to the following rule:

Wa(n)← Wa(n− 1)−K(D̂ −D0) (4.1)

Na is then increased/decreased by ∆Na = ⌊Wa(n)⌋ − ⌊Wa(n − 1)⌋. Now, if
∆Na = 0, the number of active threads is not changed, and peer a is allowed to
send a new offer to one of its neighbors. If ∆Na > 0, the number of active threads
is increased, and peer a is allowed to send two or more offers to its neighbors. At
last, if ∆Na < 0, the number of active threads is decreased and the current thread
is stopped (no new offer is sent).

Note that targeting queuing delay, HRC results less aggressive than TCP con-
gestion control which reacts to congestion only after a packet has been dropped
by the queue. This is an intended behavior of HRC since having a tight control of
chunk delivery delay is fundamental to make the system to work properly in P2P-TV
streaming applications. On this regards, observe that P2P streaming applications
can effectively exploit spatial diversity (every peer can retrieve a chunk from several
neighbors) to effectively face congestion that may arise at some of the peers.

24

4 – Hose Rate Control

4.4 Performance Evaluation by Simulation

4.4.1 Simulation scenario and assumptions

All simulation results shown in this document have been obtained with P2PTV-sim
, an open source event driven simulator available at [18]. In our scenario, peers are
partitioned in four classes based on their upload capacity: 15% of peers are in Class
1 with upload bandwidth equal to 5Mb/s ± 20%, 35% in Class 2 with 1.6Mb/s ±
20%, 35% in Class 3 with 0.64Mb/s ± 20%, 15% in Class 4 with negligible upload
bandwidth. The video source belongs to Class 1. The average bandwidth per peer
is E[Ba] = 1.25Mb/s.

In each simulation Dmax is set to 6s if not otherwise stated. We consider N =
2000 peers. According to the assumption that the bottleneck is at the peer upload
link, the model of the network end-to-end path is almost transparent: it is simply
modeled by a delay lab that is added to the transmission time of all the packets
flowing from a to b. End-to-end latencies are taken from the experimental dataset
of the Meridian project [1]; the overall mean latency is E[lab] = 39ms.

The well-known Pink of the Aerosmith video sequence, encoded using the H.264/AVC
Codec, is considered as benchmark. A hierarchical type-B frames prediction scheme
has been used, obtaining 4 different kinds of frames that, in order of importance,
are: IDR, P, B and b. The group of pictures (GOP) structure has been set to IDR
x 8 {P,B,b,b}. The video consists of 3000 frames, which correspond to about 120s
of visualization. The nominal video rate of the encoder rs is a free parameter that
we vary to enforce different values of the system load defined as,

ρ = rs/E[Ba] (4.2)

The source node generates a new chunk at regular time, i.e., every new frame. 40B
long signalling messages are considered.

The overlay topology is randomly generated at the beginning of a simulation by
letting each peer selects 30 other peers at random as its neighbors. Since connections
are bidirectional, the average number of neighbors for a peer is approximately equal
to 60. As we simulate a couple of minutes of the system behavior, we neglect the
effect of churning so that the topology is static for the whole simulation run. All
plots presented below (except for the time evolution) are obtained averaging the
results of four random topologies; when different systems are compared, they use
the same four topologies.

Real video streams carry highly structured information, part of which is more
important than other, with high variability in the generated bit-rate. Chunk loss
probability and delivery delay are the performance indexes typically adopted by the
networking community, but they provide only a partial view of the actual perfor-
mance of a P2P-TV system, the user perceived quality. In the multimedia and signal

25

4 – Hose Rate Control

processing communities, instead, the evaluation of the perceived quality is consid-
ered mandatory, see [22, 23] for notable examples. To this extent, performance is
expressed in terms of average Structural Similarity Index (SSIM) [20] which has been
designed to improve on traditional methods like Peak Signal-to-Noise Ratio (PSNR)
and Mean Squared Error (MSE), which have proved to be inconsistent with human
eye perception. The SSIM is a measure of the similarity of the received image com-
pared against the original source. It is a highly non linear metric in decimal values
between -1 and 1. Values above 0.95 are typically considered of good quality. In our
simulation scenario, SSIM has been computed considering video frames received by
100 peers (25 for each class), and then averaging among all of them. The initial and
final 10s of video have been discarded to focus on steady state performance.

4.4.2 Transient analysis

In the following, we show results about the HRC algorithm obtained through sim-
ulations; D0 is set to 100ms. The source has rate rs = 1.2Mb/s, corresponding to
ρ = 0.95.
• Simple scenario - Let us focus on a randomly selected peer a with available

upload bandwidth of 4Mb/s that varies due to interfering traffic. Fig. 4.2 reports
the evolution over time of queue delay D̂(t) (top), the number of active threads Na

(center) and the throughput (bottom) for peer a. During the first 20s, no interfering
traffic is present; after an initial transient the value of Na stabilizes around 25,
so that the peer can exploit at best its upload bandwidth. At time t = 20s, a
Constant Bit Rate flow starts injecting 3Mb/s of interfering traffic in the uplink.
D̂(t) abruptly grows; thus, Na is reduced and stabilized around 5 and the upload
throughput decreases to 1Mb/s. At t = 80s the whole upload bandwidth turns
to be available again, inducing an increase of Na which gets back to 25. Then,
from t = 100s to t = 120s, a TCP-like flow is present, consuming the whole peer’s
upload bandwidth. In this period, the number of active threads drops to its minimal
possible value, Na = 1, because the congestion due to the TCP-like flow pushes
D̂(t) over the control target D0. As a consequence, the application throughput
is reduced to negligible values. In conclusion, the control algorithm succeeds in
promptly reacting to bandwidth variations, and in achieving less-than-best-effort
bandwidth utilization.
• Flash crowd scenario - We now consider the scenario in which the system

operating point is abruptly modified at t = 30s: a sudden ingress of 400 new peers
with negligible upload-bandwidth and a contemporary reduction by 50% of the
available upload bandwidth of all peers belonging to Class 3 happens. Given video
rate rs = 1Mb/s, this causes the system load ρ to shift from 0.8 to 1.1. Even if this
scenario is rather artificial, it has been selected because it maximizes the stress on
the control scheme. Fig. 4.3 reports the evolution of Na (center) and throughput

26

4 – Hose Rate Control

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120

Q
u
e
u
e
 D

e
la

y
 [
s
]

Time [s]

Peer a - 4Mb/s
Target

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 20 40 60 80 100 120

N
a

Time [s]

Peer a - 4Mb/s

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

Time [s]

Peer a - 4Mb/s

Figure 4.2. Queuing delay (top), value of Na (center) and throughput (bottom)
vs. time with variations due to interfering traffic on upload link. ρ = 0.95

.

(bottom) for three sample peers, a, b and c, with upload bandwidth of 4, 2 and
1Mb/s, respectively. The evolution of peer a queue delay D̂(t) is also reported
(top). When ρ = 0.8, Na, Nb and Nc adapt to different values, reflecting each peer’s
ability to contribute to chunk diffusion. Since ρ < 1, not all system capacity is
required, and Na rapidly grows to its maximum value Na = Wmax = 53, i.e., the
number of a neighbors. At t = 30s, the HRC system reacts to the sudden system
condition variations. In particular, for the high bandwidth peer a, Na initially
increases, since the number of its neighbors increases and its capacity was not fully
exploited (its queuing delay still being smaller than D0). Then, the increased system
load boosts the percentage of offers that are positively selected, causing additional
queuing delay, so that Na decreases. After a quick transient, upload rate matches
each peer upload capacity, and queuing delay reaches the target D0.

4.4.3 Steady-state analysis

In this section, we focus on the steady-state performance of HRC and we compare
it with non-adaptive schemes that use a fixed value of Na.

Fig. 4.4 compares the HRC system for D0 = 150ms and 200ms and the non-
adaptive schemes in which Na is fixed. The video rate rs is increased (reported on

27

4 – Hose Rate Control

bottom x-axis) to observe the performance of the system of increasing ρ (reported on
top x-axis). When ρ < 1, the SSIM increases for increasing rs thanks to the higher
quality of the encoded video (Encoded Video Quality, EVQ, curve in the plot). As
soon as the system is overloaded, the SSIM rapidly drops due to missing chunks
which impair the quality of the received video. In all scenarios, HRC outperforms
the non-adaptive scheme, for any values of Na. Schemes with too small values of Na

do not fully exploit the system bandwidth, e.g., Na = 10; schemes with too large
values of Na tend to overload the peer transmission queue leading to an unnecessary
increase of the chunk delivery delay, e.g., Na = 40. The performance of the scheme
with Na = 20 are comparable with that of HRC. However, setting the value of Na

is very critical, since the optimal value depends on many other system parameters,
such as the peers upload bandwidth distribution, that, besides being difficult to
know, are variable in time due to interfering traffic, as seen in Figs. 4.2 and 4.3.

Fig. 4.5 reports the average SSIM obtained with HRC versus D0 for different
values of the playout delay Dmax. ρ = 0.95. On the one hand, small values of
D0 lead to inefficient exploitation of peer upload capacity. Being the system load
quite large, this leads to loss of chunks that impairs the video quality. On the other
hand, D0 represents the average queue delay that a chunk suffers at every hop it
traverses; larger values of D0 lead to larger delivery delays that might translate into

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90

Q
u
e
u
e
 D

e
la

y
 [
s
]

Time [s]

ρ=0.8 ρ=1.1

Peer a - 4Mb/s
Target

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

N
a

Time [s]

ρ=0.8 ρ=1.1

Peer a - 4Mb/s
Peer b - 2Mb/s
Peer c - 1Mb/s

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80

T
h
ro

u
g
h
p
u
t
[M

b
/s

]

Time [s]

ρ=0.8 ρ=1.1

Peer a - 4Mb/s
Peer b - 2Mb/s
Peer c - 1Mb/s

Figure 4.3. Queuing delay (top), Na (center) and throughput (bottom)
vs. time for flash crowd.

28

4 – Hose Rate Control

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 600 800 1000 1200 1400 1600

0.58 0.73 0.88 0.95 1 1.18 1.33

S
S

IM

VideoRate [Kb/s]

ρ

EVQ
HRC, D0=0.15 s
HRC, D0=0.20 s

Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

Figure 4.4. Average SSIM of HRC and non-adaptive schemes versus the system
load. Simulation results, 2000 peers.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
S

IM

D0 [s]

Dmax=3s
Dmax=4s
Dmax=5s
Dmax=6s

Figure 4.5. Average SSIM for different values of D0 and Dmax. ρ = 0.95.
Simulation results, 2000 peers.

chunk losses for small values of Dmax, again impairing the QoE represented by SSIM
index. Thus, smaller values of D0 should be preferred. A good tradeoff is obtained
for D0 ∈ [150,200]ms.

We have performed a more extensive set of simulations to assess the benefits of
HRC. Due to lack of space we do not report them here, but we prefer to present
some experimental results we collected from real implementation of HRC.

4.5 Performance Evaluation by Experiment

The HRC controller has been implemented into PeerStreamer [14] P2P-TV applica-
tion. In the following we briefly discuss the key aspects of the implementation and
provide some experimental evidence of the benefits of HRC.

29

4 – Hose Rate Control

TimeOffer Select

b

Peer a

Enqueued SignalingD + RTT
ab

bD
a

D
a

D + RTT
ab

b

Peer a

Offer Select

b

RTTab

D RTTab

Prioritized Signaling

Time

Figure 4.6. Schematic representation of the peer chunk trading mechanism with
prioritized signalling -PS- (left) and enqueued signaling -ES- (right).

4.5.1 Implementation issues

The most critical part when undergoing the actual engineering of the HRC scheme is
the estimation process of queuing delay which is at the core of HRC scheme. Three
different cases can be considered:
i) let us first consider the scenario in which the access device of the bottleneck
node supports separate queues: a high priority queue serves signalling packets, and
a low priority queue serves data packets. The estimation of the round-trip time
between a and b, RTTab (which does not include the queuing delay), could be easily
carried out by exploiting the higher priority service offered to signalling packets:
RTTab = t

(a)

rx,select − t
(a)

tx,offer;

ii) in the second scenario a single class of service is offered by the network devices,
but peers are synchronized. Here, signalling messages are delayed by the trans-
mission queue too, as sketched in left part of Fig. 4.6, but synchronization allows
to measure the One-Way-Delay between a and b, OWDab, as the minimum of all
t
(a)

rx,select − t
(b)

tx,select estimates. Even some coarse synchronization, as the one pro-

vided by the NTP protocol, would suffice and errors (in the order of 1ms) would
only marginally affect the HRC control, since its target queuing delay D0 is of the
order of 100ms;
iii) in the third scenario peers are not synchronized and no priority policy is pro-
vided. D̂ cannot be estimated anymore, since any RTT measurement includes both
the queuing delay at peer a, denote it by D(a), and the queuing delay at b, D(b); i.e.,
it is only possible to estimate the sum of the queuing delays,

D̂(a+b) = D(a) +D(b) = t
(a)

rx,ack − t
(a)

rx,select − RTTab (4.3)

RTTab can still be estimated as the minimum over all RTT samples, while it is
impossible to decouple D(a+b) from D(a) and D(b). Thus, the HRC algorithm at peer

30

4 – Hose Rate Control

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 60 120 180 240 300 360 420

Q
u
e
u
e
 D

e
la

y
 [
s
]

Time [s]

Target

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 60 120 180 240 300 360 420

N
a

Time [s]

-- 5Mb/s -- TCP -- Cong
neigh

--

Figure 4.7. Queue delay (left) and Na (right).

a controls the sum of the queuing delays, and it is coupled with the HRC control of
all its neighbors.

We consider this latter scenario in our implementation so that the queuing delay
is estimated as in (4.3). At last we emphasize that the implementation of HRC
requires to make the system robust to losses of signalling messages and chunks
through the use of opportune timeouts (set to 1.5s in current implementation).

4.5.2 Experimental results

• Simple scenario - We first consider a simple scenario in which the source s is
connected to a HRC-enabled peer a only. 36 other peers are then attached to a,
so that its upload capacity is used to feed all neighbors. We then impose transient
conditions to the upload link of a: the Linux tc tool is used to limit the upload
capacity and delay, while the iperf tool is used to inject artificial traffic. Video
rate is 0.6Mb/s, 20 ms RTT is imposed on all links and D0 = 75ms.

Fig. 4.7 reports the evolution of queuing delay (left) and of Na (right) for peer a.
During the first 60s, peer a uplink bandwidth (100Mb/s) is large enough to transmit
all committed chunks. Since a queuing delay cannot reach the target, Na stabilizes
at the neighborhood size (Na = Wmax = 36).

Decrease of available capacity - At time t = 60s, a uplink capacity is limited
to 5Mb/s, inducing HRC to reduce the number of parallel signalling threads while
queuing delay varies around the target value. From t = 120s to t = 180s, Na

stabilizes at the maximum allowed value, being uplink bottleneck removed.

Competing TCP traffic - At time t = 180s a competing TCP flow starts con-
suming the link capacity, increasing the queuing delay so that Na reduces to 1,
the minimum possible value. At the end of the TCP flow, HRC controls Na value
increasing it to 36 again.

Congestion at neighbor - From t = 300s to t = 360s, peer b, one of a’s neighbors,
suffer congestion in its uplink: a TCP flow starts sending data from b to a, so that
D(b) grows, possibly impairing D̂(a+b). The plot shows that the estimated queuing

31

4 – Hose Rate Control

 0

 20

 40

 60

 80

 100

 120

 140

 160

 400 600 800 1000 1200 1400 1600

E
[N

a
]

Video Rate [kb/s]

Class 1 - 5.0 Mb/s
Class 2 - 1.4 Mb/s
Class 3 - 0.6 Mb/s
Class 4 - 0.2 Mb/s

Figure 4.8. Average Na for HRC when varying video rate rs. Experimental
results in swarm of 1000 peers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 600 800 1000 1200 1400 1600

S
S

IM

VideoRate [Kb/s]

EVQ
HRC

Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

Figure 4.9. Average SSIM for HRC and non-adaptive schemes when varying video
rate rs. Experimental results in swarm of 1000 peers.

delay at peer a is slightly affected by the presence of congestion on its neighbor,
indeed some larger oscillations are visible. However Na is basically unaffected. The
intuition indeed suggests that if the number of “biased” estimates at peer a is limited,
the system is still able to control the peer uplink queue by “filtering” out the few
overestimated samples.

• Large swarm - We now present results collected by running the application in a
controlled test-bed composed of 200 PCs. Each PC runs 5 copies of the application
simultaneously, creating a swarm of 1000 peers. Also in this case, the average
number of neighbors for each peer was approximately equal to 60. Each peer upload
capacity has been artificially limited using a rate limiter embedded in our P2P-
TV application which runs at packet level: 10% of peers have 5Mb/s, 35% have
1.6Mb/s, 35% have 0.64Mb/s and 20% have 0.20Mb/s, corresponding to an average
per peer data link capacity of 1.32Mb/s. Latencies among peers randomly varies
between 10ms and 20ms (so that the RTT varies in [20,40]ms). The Pink of the

32

4 – Hose Rate Control

Aerosmith video (352x240p resolution, 25fps, H.264/AVC Codec) has been encoded
at different rates and “streamed” over the swarm looping the video 5 times. After
discarding the initial 12min of video, each peers saves 100s of the received frames
on disk. SSIM is then computed against the original YUV video for all video traces;
then average SSIM is computed over all peers. Simple random overlay topology and
random peer/random chunks selection are adopted. The playout delay Dmax is set
to 6s, the HRC queuing target D0 is set to 200ms, and the maximum number of
offer threads Wmax is set to twice the number of current neighbors.

Fig. 4.8 reports the average number of active signalling threads Na for each class
of peers when HRC is enabled and video rate rs is increased. The first evident
thing is that HRC achieves the objective of adapting Na to actual peer’s upload
bandwidth: e.g., for video rate 1.0Mb/s, E[Na] is 90 for high bandwidth peers,
E[Na] is 22 for mid bandwidth peers, E[Na] is 5 for the low bandwidth peers and
E[Na] is 1 for those peers with very low bandwidth. The second thing to notice is
how Na decreases when rs increases and, therefore, the load ρ of the system grows;
for higher loads, e.g., rs = 1.6Mb/s, the chunks acceptance probability becomes
higher inducing peers’ uplink queue to grow so that Na decreases. Instead, when
system conditions are relaxed, e.g., rs = 0.6Mb/s, queues are short and peers -
especially those whose upload bandwidth is large - increase the number of active
trading threads to raise their transmission workload. Note that no fixed values
would be suitable for any scenario.

Focusing on the Quality of Experience, again expressed with SSIM index 1,
Fig. 4.9 compares HRC behavior against non adaptive schemes in which Na =
10,30,20,40 respectively. Results are similar to the one of Fig. 4.4: all schemes
perform similarly when the system is under-loaded, e.g, rs = 400kb/s, but as soon as
rs increases, HRC dramatically outperforms any fixed schemes. Indeed, the correct
choice of Na is critical: it must be small to prevent from overloading low bandwidth
peers, while it must be large to avoid under-utilizing high bandwidth peers. Any
fixed values would cause a mismatch, impairing the overall system performance.
This is the fundamental concept behind HRC algorithm and it is even clearer when
combining results in Fig. 4.9 with those shown in Fig. 4.8: by simply adapting the
transmission window represented by Na to peer’s upload bandwidth, performances
are greatly improved.

In Fig. 4.10 we report SSIM index for each peer for video rate of 0.8Mb/s (left
plot) and 1.6Mb/s (right plot), respectively. The former corresponds to a case in
which the system is under-loaded, the latter refers to a scenario in which system
conditions are heavily stressed. Again HRC shows much better performance: if
system load is low (rs = 0.8Mb/s) HRC guarantees each peer to successfully play
the whole video. On the contrary, any fixed value ofNa fails at successfully delivering

1SSIM is smaller than 1 since we are considering the encoding loss too.

33

4 – Hose Rate Control

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

S
S

IM

Peer

HRC
Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

S
S

IM

Peer

HRC
Fixed Na=10
Fixed Na=20
Fixed Na=30
Fixed Na=40

Figure 4.10. Average SSIM per peer distribution for HRC and non-adaptive
schemes for video rates rs = 800kb/s (left) and rs = 1600kb/s (right). Experimental
results in swarm of 1000 peers.

the content, severely impairing the video quality; finally, when rs = 1.6Mb/s the
system has not enough resources to satisfy all peers demand, but, still, HRC shows
better performance respect to whatever fixed scheme by efficiently allocating peers’
upload capacity.

34

Chapter 5

Conclusions

In this first part of the document, we focused on the trading phase of pull-based
P2P-TV systems. While a large amount of messages exchanged during the trading
phase causes transmission queues to grow, increasing chunks delivery delays, losses
and wasted time and resources, a strong limitation to the number of these signaling
messages leads to bad performance in terms of losses.

To find the best trade-off, we proposed two distributed algorithms called Adap-
tive Signalling Protocol (ASP) and Hose Rate Control (HRC). They both aim at
determining the best rate at which peers should send buffermaps to their neighbors.
Their final objective is to efficiently exploit the peer available upload bandwidth
by controlling the queuing delay suffered by transmitted chunks in the peer up-
link, which is today the typical bottleneck for P2P-TV systems. Our first proposal,
ASP, represents a preliminary scheme based on periodic advertisement of peer’s
buffermap, offered to a subset of peer’s neighbors. However, the resulting mecha-
nism assumes scenarios in which latencies among peers are expected to be almost
homogeneous, but this is a difficult condition to meet in practice. Indeed, in het-
erogeneous scenarios implementing the estimation process of Tdiff represents a hard
task. For this reason, we selected only HRC to be implemented in a real P2P-
TV client: indeed, HRC proves to be much simpler to implement and flexible with
respect to the network scenario variability.

Our results prove that the proposed algorithms actually reduce the amount of
signaling overhead, they automatically induce peers to share available resources,
introducing a fair and efficient upload bandwidth utilization in different scenarios.
Furthermore, ASP and HRC improve system performance in terms of delays, chunk
loss probability and, thus, QoE perceived by users.

35

5 – Conclusions

5.1 Future Directions

Given its implementation in PeerStreamer and the promising results achieved in
a controlled environment, HRC is ready to be tested over the real Internet. We
are focusing on the evaluation of its effectiveness in a large world-wide distributed
environment such as PlanetLab. Plus, we would like to compare its delay-based core
mechanism with a more aggressive loss-based one and test its benefits in a scenario
in competition with TCP connections.

36

Part II

Overlay Topology Design

Chapter 6

Introduction

The goal of this part of the document is to provide simple guidelines for the design
of new generation network-aware P2P applications that optimize the chunk dis-
tribution effectively exploiting some knowledge on the underlay transport network
status. Information about the network status is collected through simple end-to-end
measurements performed by a distributed monitoring platform embedded within the
P2P-TV application. This information can be used locally by peers to guide the
neighbors selection process, thus influencing the final construction of the overlay
topology at application level (Figure 6.1).

More in detail we show how the logic adopted to create and maintain the overlay
topology can leverage on peers upload bandwidth and peer-to-peer distances (in
terms of latencies and hop-count) knowledge to achieve the twofold objective of
localizing the traffic generated by the P2P-TV application while improving the user
experience. We present a rich collection of both simulation and experimental results
in support of our considerations. All the experiments presented in this part were
performed using PeerStreamer, an Open Source P2P-TV application available at [14]
that has been developed within the FP7-ICT NAPA-WINE project [13].

In particular this part aims at shedding light to the following open issues about
unstructured P2P-TV systems:

• What is the real impact of latencies and peer access bandwidth heterogeneity
on the performance of a P2P-TV system?

• Is it possible to implement smart algorithms that explicitly exploits the knowl-
edge of network metrics and how can the application exploit them?

• How can the application get the required information?

• Which are the possible gains for the application?

38

6 – Introduction

ISP-1
ISP-2 ISP-3

Application/L7 Level

Network/L3 Level
ControlMonitoring

Figure 6.1. Representation of the interaction between application and network
levels for a network-aware overlay topology construction.

• How can we reduce then the underlying transport network load by designing
a smart system?

We emphasize that building new P2P applications that are network-aware and
reduce the underlay transport network resource consumption is an important issue.
This problem has received a lot of attention considering P2P file sharing applica-
tions (see [24] and references therein), but the same problem is even more important
for P2P-TV applications, and the only works on the subject that we are aware of
are [25–27]. Therefore, it is still a matter of debate how to design P2P-TV appli-
cations that minimize the impact on underlying network, while still guaranteeing
good performance for the users.

In Chapter 7 we present a preliminary set of results to show that network-
awareness in P2P-TV systems is actually achievable and exploitable. In particular,
we want to prove that localization of traffic generated by P2P-TV applications can
actually lighten the load on the underlying network, while improving – or at least
not impairing – the QoE perceived by users. This conclusion is validated through
simulations and test-bed experiments.

Chapter 8 presents a novel algorithm for neighbors selection whose final objec-
tive is bringing some smartness into the overlay construction process. Specifically,
we show purely experimental results involving more than 1000 peers and we confirm
the early results achieved in Chapter 7. Results, obtained comparing 12 different
strategies for neighbors selection, prove that we can get a good degree of localiza-
tion of traffic generated by P2P-TV application while actually improving system
performance and the user experience.

39

Chapter 7

Network Awareness in P2P
Streaming Applications

7.1 Introduction

A preliminary version of this chapter has been presented in [28] where the perfor-
mance of P2P streaming systems with bandwidth heterogeneity, network latencies
and realistic properties of encoded video have been analyzed in theory and via sim-
ulations. This chapter adds some new content:

1. a working implementation of the P2P-TV system;
2. a set of real in-network P2P measurements supporting the decisions of the

network-aware application;
3. measurements results obtained with the real application in controlled network-

ing scenarios;
4. performance and measures on Internet-Wide experiments mixing PlanetLab

nodes and peers running on our University campuses.

7.2 Related work

The goal of this Section is not writing a short survey on P2P streaming, but give the
correct perspective to the contribution of this part of the document. We restrict our
the analysis to papers dealing with the control/optimization of the chunk distribu-
tion process in P2P-TV systems, with specific attention to works with implemented
systems based on real measures.

Two key features to optimize the chunk distribution process in unstructured P2P-
TV system are: the chunk scheduling algorithm according to which peers exchange
chunks, and the logic adopted to create and maintain the overlay topology. For
the chunk scheduling, several algorithms have been proposed and analyzed in an

40

7 – Network Awareness in P2P Streaming Applications

idealized scenario in which each peer is supposed to instantaneously have a perfect
view of the internal state of other peers and, in particular, of the chunks they
need [5–7,15,29]. This assumption, however appears rather far from reality in light
of the fact that in practical settings the typical end-to-end latencies between peers
are usually comparable or even larger than time constants associated to chunks
dynamics. The impact of latency on system performance has been analyzed by
means of a simple model corroborated by real measurements in PlanetLab in [8]. The
authors propose a system that mitigates the effect of latency introduced by the need
for exchanging state information. Furthermore, while many of the previous works
have considered homogeneous scenarios in which all peers are indistinguishable,
some papers specifically focus on the impact of peers bandwidth heterogeneity and
how it can be exploited to improve system performance [9, 15, 30]. Delay (instead
of bandwidth awareness) is considered in [31] for scheduling chunk transmission
on a randomly built overlay. These aspects seem fundamental in building a real
system, peers homogeneity being hardly met in practice where narrow bandwidth
residential users coexist with larger bandwidth business/residential users. More
recently, an experimental comparison of different software streaming approaches
has been reported in [32]. This chapter, combined with Chapter 8, is somehow
complementary this latter, since it focuses on chunk scheduling algorithms and their
performance, assuming the overlay topology to be a full mesh.

The overlay topology design has been investigated less deeply and the system
performance has been typically analyzed assuming the overlay topology to be either
a fully connected mesh or an homogeneous random graph. In [33] the problem of
building an efficient overlay topology, taking into account both latency and band-
width, has been formulated as an optimization problem; however, the complex inter-
actions between overlay topology structure and the chunk distribution process are
completely ignored in [33], where continuous streams of information are distributed
(in a purely push fashion) among peers.

In [16] a theoretical investigation of optimal topologies is formulated, considering
latency and peer bandwidth heterogeneity; scaling laws are thus discussed. In [17],
a distributed and adaptive algorithm for the optimization of the overlay topology
in heterogeneous environments has been proposed, but network latencies are still
ignored. The authors of [34] propose a mechanism to build a tree structure on which
information is pushed. They combine two ideas: good topological properties are
guaranteed by means of prefixes based on peers identifiers (similarly to what is done
in other structured P2P systems) and latency awareness is used to select a specific
peer between those with the same prefix. Similar in spirit, but in unstructured
systems, we propose in this chapter an overlay topology design strategy that, taking
into account latency and peer heterogeneity, aims at creating an overlay with good
properties and low chunk delivery delays. In highly idealized scenarios, [35, 36]
show with simple stochastic/fluid models that overlay topologies with small-world

41

7 – Network Awareness in P2P Streaming Applications

N Set of peers; |N | = N

Kp Set of p selected neighbors; |Kp| = Kp

Dp Set of neighbors desirable by p;

Bp Peer p upload capacity [bit/s]
lpq RTT between peer p and q [s]
hpq Number of IP hops between peer p and q

Dmax Playout delay [s]
rs Average video rate [bit/s]
L Average chunk size [bit]

α Probability of selecting a peer at random
Tbw Bandwidth preference threshold [bit/s]
TRTT Latency preference threshold [s]
Thop Hops preference threshold

δ Topology scaling factor - relates Kp to Bp

β Signaling scaling factor - relates Np to Bp

λp Offer rate of peer p [1/s]

Table 7.1. Notation and formalism adopted.

properties can be effectively exploited to support chunk distribution in P2P-TV
systems. In some sense the findings in [35, 36] provide a theoretical foundation to
our strategies, but the scenarios considered there are far from being realistic.

At last it is worth to mention [37], where the authors experimentally compare
the performance of unstructured systems and structured, multiple-tree based sys-
tems. Results in [37], indicates that unstructured systems tends to outperform
tree-based systems in highly dynamic scenarios as well as in scenarios characterized
by bandwidth limitations.

This chapter shows that in P2P-TV systems localizing traffic actually improves
network friendliness like shown in [25], but focusing also on users’ side, we prove
that not only quality of experience of users is not reduced due to localization, but
it is even improved.

7.3 System Description

As already seen before in this document, we consider a system in which a single
source peer encodes and seeds the content into the P2P network. The video stream
is chopped into “chunks” according to some policy, and chunks are exchanged among
peers without a predefined structure. Table 7.1 summarizes the notation we use
throughout this chapter. Let N be the set of peers, with cardinality N . Since
the application satisfies near real-time constraints, every generated chunk must be

42

7 – Network Awareness in P2P Streaming Applications

received within a deadline from the moment it is emitted by the source; let this
deadline be the playout delay,Dmax. After the playout delay expires, the chunk is not
traded anymore. Our goal is the design of a configurable, network-aware application
that exploits peer-based measurements of network state, e.g., bandwidth, delay and
number of IP-level hops, to reduce the overall network load while possibly increasing
the high end-user quality. RTT and number of hops are easy to measure; the upload
bandwidth can be estimated with some collaborative approach as recently proposed
in [38].

Chunks are exchanged among peers that are neighbors to each other. The peer
neighborhoods determine the structure of the overlay topology, which can be rep-
resented as an undirected graph G(V,E), where (p,q) ∈ E if and only if p ∈ N and
q ∈ N are neighbors to each other. The overlay topology evolves dynamically, but
its dynamics are slower than chunk distribution dynamics (seconds to minutes versus
tens/hundreds of ms). Overlay topology changes are driven mainly by peer churning
and by the algorithm that peers implement to dynamically select neighbors. Cen-
tral authorities that support the overlay maintenance as the one proposed by the
IETF [39] are compatible with this scenario, but not essential. We envision a fully
distributed mechanism in which peers can actively measure network characteristics
and then evolve their neighborhood based on those as in [17, 40].

Turning our attention to the chunk trading mechanism, we propose an offer/select
protocol, where peers explicitly signal to one neighbor the availability of chunks
through offer messages; the neighbor explicitly selects the chunk to be transferred.
This two-way handshake is required to avoid peers to receive multiple copies of the
same chunk as already discussed in Part I.

Again, we assume the main system bottleneck to be constituted by the upload
bandwidth of peers. Indeed, in today Internet the popularity of ADSL access tech-
nology offers end-users a large amount of download capacity, but a much limited
upload bandwidth.

7.4 Design Choices

Given a system as described in Sect. 7.3 there are many design options open to define
the strategy to build. These are discussed in the following sections.

7.4.1 Overlay topology design

The overlay topology design should take into account three different aspects: i) peers
with small RTTs should be connected with each other to reduce the offer/select sig-
naling delay; ii) contrasting the goal above, random choices help building robust
graphs, limiting the risk of building highly clustered topologies with poor diameter

43

7 – Network Awareness in P2P Streaming Applications

properties; iii) as already shown in [15, 36], high upload bandwidth peers should
be highly connected to each other and to the source, so that they can effectively
contribute to the chunk distribution. Based on these principles, we consider RTT,
IP-hop count and upload capacity as key measurements to define the overlay topol-
ogy formation strategy.

In particular, a peer p selects a subset Kp of neighbors mixing a fraction of
desired peers with a fraction of randomly selected peers. Let Kp be the number of
neighbors peer p will choose. Let Dp the set of “desired peers” according to p:

Kp = {qi} ∪ {qj} (7.1)

qi ∈ Dp ∧ |{qi}| = min(|Dp|,⌈(1− α)Kp⌉) (7.2)

qj ∈ N \ ({qi} ∪ {p}) ∧ |{qj}| = Kp − |{qi}| (7.3)

where α ∈ [0,1] is a coefficient that selects the randomness of the topology: α = 1
means a totally random topology and α = 0 means a topology just following the
“desirableness” of the peers. For the sake of simplicity (7.3) assumes that p knows
all the peers in the system, but in actual implementation its “view” will be limited
by some peer sampling procedure.

Note that to make the overlay an undirected graph, the neighborhood of peer p
must be completed including in it all peers that have selected p as neighbor. This
means that the actual neighborhood of P composed by two components: i) Kp, i.e.,
the peers that p has selected and ii) the peers that have selected p as neighbor.
Dp is built following a set of criteria based on network measurements. We envis-

age a simple, but configurable selection formally expressed as:

q ∈ Dp : (Bq ≥ TBWBp) ∧ (lpq < TRTT) ∧ (hpq < Thop) (7.4)

where Bq is the upload bandwidth of peer q, lpq is end-to-end latency between peers
p and q, and hpq is number of IP hops between p and q. TBW , TRTT and Thop are
thresholds that define what is a desired peer to connect to. They represent tuning
parameters of the system. Basically, the idea is to make each peer connect to a
fraction (1− α) of “good” peers, and a fraction α of random peers.

7.4.2 Chunk trading

Chunks are transmitted from peer p to q after p offers to q a set of possessed chunks
and q selects one of them.

The negotiation phase is sketched in Fig. 7.1: signaling exchanges are represented
by the arrows over the time line in the figure and data transmissions are at the
bottom. The negotiation happens through the exchange of offer and select messages.
This trading phase have been comprehensively been described in Part I, in particular

44

7 – Network Awareness in P2P Streaming Applications

Time

Offer
Offer

Select

Offer

SelectSelect

Peer p

q

q'

q''

Chunk

p -> q
Chunk

p -> q''
ACK ACK

Offer TimeOut

Figure 7.1. Schematic representation of the peer chunk trading mechanism.

in Section . In this case, however, the system is entirely asynchronous so that offers
are sent by peer p at a fixed rate λp (with exponentially distributed inter-offer times).

Several design choices impact the performance of the trading protocol. In par-
ticular: i) carefully selecting the value λp is essential to efficiently exploit the upload
resources while maintaining the transmission queue length small – as described in
Chapters 3 and 4; ii) the criteria to select peer q to send the offer to; iii) the strategy
according to which q selects the chunk to download.

In what follows we discuss these choices.

Setting λp

Given the average chunk size L, Bp/L is the average number of chunks that can be
transmitted between two consecutive offers. To effectively use the peer bandwidth
when the system is near overload, it must be:

λp ≥
Bp

L
(7.5)

i.e., the number of offers sent by p must be larger than the chunks it can transmit
since not all offers will be followed by a positive select.

Assuming Kp is never a limitation as the topology is well connected, and respect-
ing (7.5), a good selection criterion is

λp = βBp/L (7.6)

where β ≥ 0 (typically close to 1) is the signaling scaling factor.

Peer selection

The choice of q, the peer to send offers to, can follow different strategies. One simple
approach is to select q among neighbors uniformly at random, as proposed in [7].

45

7 – Network Awareness in P2P Streaming Applications

Chunk selection

For what concerns chunk selection at the receiver, many strategies have been pro-
posed and analyzed in idealized scenarios, like random chunk [5], latest chunk [7],
and dynamic deadlines [29]. In this chapter, we use a random chunk selection strat-
egy for its simplicity and robustness and because this is also the choice for many
implemented solutions [8, 41]. Moreover, we are focusing on the selection of peers
to communicate with based on their attributes, thus keeping the chunk selection
strategy simple avoids mingling effects and making results difficult to interpret.

7.5 Performance Evaluation by Simulation

In this section we present a thorough performance evaluation of bandwidth based
tuning of the system via simulation, as using bandwidth for real system tuning
in PlanetLab experiments is unreliable as explained in Sect. 7.8. All results are
obtained with P2PTV-sim [18], an open source event driven simulator developed
within the NAPA-WINE project.

7.5.1 Network scenario and assumptions

Table 7.2. Characteristics of peer classes.
Class 1: B1 = 5Mb/s ± 10%
Class 2: B2 = 1.6Mb/s ± 10%
Class 3: B3 = 0.64Mb/s ± 10%
Class 4: B4 = 0Mb/s, i.e., free riders

Peers are partitioned in four classes according to their upload bandwidth as
shown in Table 8.3. We consider four different bandwidth scenarios. Let the pa-
rameter H denote the fraction of large bandwidth peers (Class 1 peers). The higher
H is, the larger the overall bandwidth heterogeneity will be. The fraction of free-
riders (Class 4 peers) is constant and equal to 20%. Fraction of Class 2 and Class 3
peers is then derived by imposing that the system-wide average upload bandwidth is
E[Bp] = 1.3Mb/s in all cases. Table 7.3 reports for every scenario the distribution
of peers.

The transport network is transparent: it introduces a delay equal to lpq/2 to all
the datagrams from p to q. The RTTs lpq are measured at the application layer
and are proportional to the geodetic distance between peers. Peers are distributed

46

7 – Network Awareness in P2P Streaming Applications

Table 7.3. Percentage of peers per class for different scenarios.

Class 1 2 3 4
H = 0.01 1 76.7 2.3 20
H = 0.05 5 58.5 16.5 20
H = 0.10 10 35.8 34.2 20
H = 0.15 15 13.2 51.8 20

over the Earth surface according to a synthetic model that emulates the distribu-
tion of the Internet user population1. In particular, peers are scattered over seven
domains representing continental/sub-continental geographical regions: Asia (Far
East), Europe, Africa, Middle East, Oceania, North America and South America.

Each domain is modeled with disks placed in the center of mass of the rela-
tive geographical region (through latitude and longitude coordinates). Their radius
are differently calibrated to match the extension of the corresponding geographical
region. The mean RTT is E[lpq] = 182ms.

We consider scenarios comprising N = 2000 peers, if not otherwise indicated.
All results are averaged over at least eight independent simulation runs.

7.5.2 Video parameters

In most of the P2P-TV literature so far, a very simplistic synthetic model for the
video stream has been adopted according to which the source generates fixed length
chunks at a fixed rate. However, compressed video streams are known to exhibit
variable and bursty encoding rate, and this can deeply impair the system. Similarly,
frames have different importance in the sequence. For example, “intra” frames carry
very valuable information (and are therefore bigger), while “inter” frames carry only
differential information (and are much smaller). Furthermore, the paramount per-
formance index streaming applications should be the actual Quality of Experience
(QoE), which can only be evaluated including the video coding and decoding pro-
cesses in the simulation. In other words the loss of a frame can have a very variable
impact on the QoE, depending on the type of the frame itself. In this chapter we
therefore explicitly model the streaming of actual video streams over the P2P-TV
system, and evaluate the system performance using a direct measurement of the
QoE users get.

The already employed video sequence Pink of the Aerosmith is used as bench-
mark. In this case the length has been cut to 40s, corresponding to 1000 chunks.
The spatial resolution is 352 × 240 pixels, while the time resolution is 25 frame/s.

1This distribution has been derived from http://www.internetworldstats.com/stats.htm

47

7 – Network Awareness in P2P Streaming Applications

Table 7.4. Characteristics of the encoded video sequences.

Pink
Frame type Num Avg. size [kb] Std. dev
IDR+I 40 79.2 6.43

P 285 57.0 17.10
B 225 38.2 15.3
b 450 27.6 21.7

We selected the H.264/AVC protocol for encoding video sequences. A hierarchical
type-B frames prediction scheme has been used, obtaining 4 different kinds of frames
that, in order of importance, are: IDR, P, B and b. GOP structure has been set to
IDR×8 {P,B,b,b}, which can however be violated if the encoder detects a sudden
scene change that forces the insertion of a IDR frame. The nominal video rate of
the encoder rs is a free parameter that we vary to enforce different values of the
system load defined as ρ = rs/E[Bp].

Given the highly structured video stream organization, a natural question is how
to chop the video data into chunks. We have selected a simple one to one mapping
according to which every chunk contains exactly one video frame. The source node
then generates a new chunk at regular time, i.e., every new frame. This mapping
scheme also allows a stricter real-time streaming.

A limit of this scheme is that it is not possible to control the chunk size. As
a result, the chunk size distribution is highly variable. As an example, Table 7.4
reports the frame size statistics for the video benchmarks when rs =1Mb/s.

To assess video quality at the receiver we start from the classical Peak Signal-
to-Noise Ratio (PSNR) metric [22, 42]. PSNR is a widely adopted objective video
quality index that provides the mean square error between the original video and the
received one. Note that the PSNR scale is logarithmic in dB, so that a difference
of 2dB corresponds to a very large improvement of the QoE. For example, from
Fig. 7.6 doubling the encoder rate from rs = 780kb/s to rs = 1410kb/s improves
the PSNR by 2.5dB only (from 42.91dB to 45.45dB).

For each peer, the computation of the PSNR is done on a frame by frame basis,
comparing the original image to the one that is reconstructed at the receiver. The
obtained values are then averaged over all frames, obtaining the “PSNR per peer”.
Finally, the “overall average PSNR” is obtained by averaging the PSNR over all
peers. The computation of the PSNR cannot be done in correspondence of a missing
frame. In this latter case, we assume that the receiver uses the last correctly decoded
frame as reference to compute the PSNR. The PSNR at the receivers includes both
the effect of the encoder and of chunk loss occurred during the P2P-TV distribution,
so it must always be compared with the Encoded Video Quality (EVQ), i.e., the

48

7 – Network Awareness in P2P Streaming Applications

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [
d

B
]

α

Fixed Kp = 20

Dmax=6s
Dmax=5s

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [
d

B
]

α

Fixed Kp = 20

Dmax=4s
Dmax=3s

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [
d

B
]

α

Fixed Kp = 20

EVQ

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [
d

B
]

α

Var Kp

Dmax=6s
Dmax=5s

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [
d

B
]

α

Var Kp

Dmax=4s
Dmax=3s

 25

 30

 35

 40

 45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
S

N
R

 [
d

B
]

α

Var Kp

EVQ

Figure 7.2. Average PSNR versus α for different values of the playout delay with
ρ = 0.9 and H = 0.10 for fixed and variable Kp.

PSNR of the encoded sequence.

7.5.3 Results

First, we wish to assess the effectiveness of the proposed latency/bandwidth-aware
overlay topology design. We set TRTT = Eq[lpq]/2 (half the mean RTT), and TBW =
1/2 (peers are desired by p only if they have at least half the upload bandwidth of
p itself). Thop = 0 is not used since the simulator does not represent such details.

Impact of the neighborhood size Kp

The value of Kp (number of connected peers) can be conveniently set based on the
upload bandwidth of p, as only high bandwidth peers need large neighborhoods to
effectively exploit their bandwidth. Given the absence of peer sampling protocol in
the simulator, and the fact that every peer knows all other peers’ characteristics,
the topology is built letting each peer select

Kp = max (3,⌈δBp/rs⌉) (7.7)

peers at random following Eqs. (7.3) and (7.4) and opens bidirectional links with
them. Another possibility is setting simply Kp constant.

Fig. 7.2 compares the two possible policies of static Kp and bandwidth aware Kp,
plotting the average PSNR versus the overlay construction parameter α, for different
choices of the playout delay Dmax buffer. The simulations refer to a network scenario
with H = 0.10. The Pink video sequence encoded at rate rs = 1168kb/s, so that
the average offered load is ρ = 0.9.

The left plot refers to Kp = 20 fixed for every peer in the network. In this case
the actual neighborhood size is on average equal to 40 as the inbound selection of

49

7 – Network Awareness in P2P Streaming Applications

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2 0.4 0.6 0.8 1

N
e

tw
o

rk
 s

tr
e

s
s
 [

s
]

α

Dmax=3s
Dmax=4s
Dmax=5s
Dmax=6s

Figure 7.3. Network stress versus α, for different topologies and values of
the playout delay, ρ = 0.9.

p by other peers leads to a geometric distribution with average Kp. The right plot,
instead, refers to the case in which Kp is set based on the bandwidth as in (7.7)
with δ = 10 and β = 2. In this case, the average neighborhood size is measured a
posteriori equal to 28.3, but it varies greatly with the bandwidth class. The Encoded
Video Quality (EVQ) at the source is reported as reference. The effects introduced
by the distribution system on the perceived quality can be grasped by comparing
the received PSNR with the PSNR at the source. The advantage of dynamic Kp

is evident. This confirms that exploiting upload capacity of high-bandwidth peers
plays a key role as already shown in [15].

Impact of α

The parameter α (that represents the randomness in choosing neighbors) has an
impact on the video perceived by users. Always referring to Fig. 7.2, the performance
of the system is quite good for all α ∈ [0.1,0.5]. Values of α closer to 1 worsen the
performance for effects of the larger latencies among neighbor nodes, especially in
the case of fixed Kp and/or when a tight play-out buffer is enforced.

Turning our attention on the underlying transport network cost, Fig. 7.3 reports
the network stress, i.e., the average distance covered by chunks expressed in terms
of delay between transmitter and receiver. This metric can be taken as the cost paid
by the transport network for carrying traffic related to the P2P-TV service.

The network stress is monotonic increasing and almost linear with respect to α.
By decreasing α, i.e., better localized neighborhoods, the stress for the underlying
network is reduced.

Fig. 7.4 explores the effect of α in different bandwidth scenarios. The curves refer
to the case of variable Kp with play-out delay Dmax = 5 s. In all cases performance

50

7 – Network Awareness in P2P Streaming Applications

 41

 41.5

 42

 42.5

 43

 43.5

 44

 44.5

 45

 45.5

 46

 0.025 0.22 0.415 0.61 0.805 1

P
S

N
R

 [
d

B
]

α

H=0.01
H=0.05
H=0.10
H=0.15

EVQ

Figure 7.4. Average PSNR versus α for different values of H with Dmax = 5s.

consistently improves by reducing α from 1 to about 0.7, then it remains substan-
tially flat until α = 0.2 and then slightly decrease until the topology degenerates for
α = 0 (not shown because the topology is disconnected).

Given these results, a choice of small values of α is highly supported. In the
following, we choose α = 0.1 as a good trade-off between overlay robustness and
performance benefits.

Fig. 7.5 reports the overall PSNR versus Dmax, considering a scenario with
N = 2000 and N = 7000 peers. Results show the beneficial impact of reducing
α, which is consistent for several playout delays. As expected, to achieve similar
PSNR performance, the playout delay needs to be increased when the number of
peers in the system increases. This is due to the larger overlay topology diameter
(recall that the number of hops chunks have to be transmitted grows logarithmi-
cally with N), which translates into higher delay. Therefore, the benefit of a smart
overlay design is higher for large N too.

7.5.4 Impact of rs and β

We consider only the location/bandwidth-aware policies with variable degree and
α = 0.1, since these choices achieve globally the best performance.

Fig. 7.6 reports the received average PSNR versus the network load ρ (on the
bottom x-axis) or equivalently the video source rate rs (on the top x-axis). Different
values of β are shown to calibrate λp. First, notice that the PSNR increases ini-
tially for increasing video rate, reflecting the higher quality of the encoded stream.
However, for rs ≥ 1.03Mb/s (i.e., ρ ≥ 0.8), dramatic performance degradations are
suffered: the increased system load causes larger chunk loss rates.

Considering the impact of β on the system performance, we notice that too
small values of β limit the high bandwidth peers ability to exploit their upload

51

7 – Network Awareness in P2P Streaming Applications

 36

 38

 40

 42

 44

 46

 4 5 6 7 8

P
S

N
R

 [
d

B
]

Dmax

EVQ
N=7000
N=2000

 36

 38

 40

 42

 44

 46

 4 5 6 7 8

P
S

N
R

 [
d

B
]

Dmax

α=0.1
α=1.0

 36

 38

 40

 42

 44

 46

 4 5 6 7 8

P
S

N
R

 [
d

B
]

Dmax

Figure 7.5. Average PSNR for different values of the playout delay and number
of peers with ρ = 0.9 and H = 0.10.

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0.6 0.7 0.8 0.9 1 1.1

0.78 0.90 1.03 1.16 1.29 1.41

P
S

N
R

 [
d

B
]

ρ

rs [Mb/s]

β=1
β=1.5

β=2
β=2.5

β=3
β=3.5

β=4
EVQ

Figure 7.6. Average PSNR versus ρ for different values of β with Dmax = 5s,
α = 0.1. The corresponding video rate rs is reported on the top x-axis.

capacity, causing undesirable chunk losses independent of the playout delay which
is set Dmax = 5s. Too large values of β make on the contrary chunk delivery delay
increase due to queuing at the transmitter peer, causing losses due to inadequate
playout delay. In our setting, the best choice of β is 2.

7.6 System Implementation

All algorithms presented through this part of the document have been implemented
in a real P2P-TV client that have been successfully developed in the NAPA-WINE
project, the so called PeerStreamer [14].

PeerStreamer is a general client for unstructured P2P-TV systems. It has been

52

7 – Network Awareness in P2P Streaming Applications

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

FFMPEG
or equiv.

PEER
SAMPLER

SCHEDULER

AND MEASURES

MONITORING

FFMPEG
or equiv.

CHUNKIZER

Overlay Management

CHUNK BUFFER

DE−CHUNKIZER

MESSAGING, TCP, UDP, NAT TRAVERSAL, ...

Chunk Trading Protocol

MAIN
LOOP

OFFERS

MANAGER
TOPOLOGY

Content Playout or generation

Figure 7.7. PeerStreamer peer architecture.

designed and developed starting from GRAPES [43], a set of C libraries imple-
menting basic building blocks for P2P streaming applications which allow to easily
develop and prototype different algorithms. In this chapter, we explicitly focus
on the implementation of the system described in Sect. 7.3 and 7.4 using a fully
distributed solution.

Fig. 7.7 sketches the logic and modular organization of PeerStreamer. A gossiping
protocol maintains the overlay network among peers; the overlay is the support for
negotiation and chunk transmission. All communications are over UDP, due to the
real time nature of the application.

The source peer implements the Chunkiser to process the media stream (e.g.,
an encoded file, or a live MPEG TS stream coming from a DVB-T card, or the raw
video of a webcam) and produces the sequence of chunks according to the simple one-
frame → one-chunk mapping (this choice can be changed with a simple parameter
obtaining larger chunks and less signaling overhead). The Chunkiser is implemented
using the ffmpeg2 libraries, so that several different codecs (for example, MPEG
video, theora, H.264, ...) are supported.

The chunks obtained from the Chunkiser are pushed in the Chunk Buffer, be-
coming available to the Chunk Scheduler and to the Chunk Trading Protocol to be
redistributed among the neighbors.

PeerStreamer main loop implements the global application logic it is responsible
for: i) handling the chunk buffer, ii) triggering state information exchange with

2http://ffmpeg.org

53

7 – Network Awareness in P2P Streaming Applications

the neighbors, iii) sending and receiving chunks, iv) running the main protocols
needed for the streaming. Some of these activities are performed in a cyclic way,
while some other activities are performed reacting to external events (such as the
arrival of a network packet). As a result, the main loop implements two distinct
(but interacting) execution flows, corresponding to an active behavior (the activities
which are cyclically executed) and a passive behavior (the activities executed in
response to external events). The combination of the active thread and the passive
thread allows to implement the offer-select protocol, which defines the actions taken
at the peer during the whole streaming session. In the implementation, the offer-
select protocol and the chunk trading mechanisms strictly follow the one described
in Sect. 7.4.2.

Finally, the PeerStreamer architecture allows each peer to obtain a set of mea-
surements thanks to the “Monitoring and Measures” module. It has two modes of
operation: passive measurements are performed by observing the messages that are
exchanged anyway between two peers, e. g., when exchanging video chunks or sig-
naling information; active measurements, in contrast, craft special probe messages
which are sent to other peers at the discretion of the monitoring module. The design
of this monitoring module is one of the most innovative goals of NAPA-WINE since
it exposes vital information to design network friendly P2P applications. Measure-
ments are available at the chunk and packet levels. Several network layer metrics
are monitored: i) delay between peers (e.g., RTTs, Delay Jitter), ii) loss probability,
iii) path capacity and available bandwidth, iv) number of hops traversed. Thanks to
a simple and modular architecture, measurements can be added as (compile-time)
plug-ins, and activated on demand. The monitoring layer is implemented at every
peer, and information it collects is made available to the all peers via signaling prim-
itives. In this chapter, we rely on both RTT and upload capacity measurements.
The upload capacity estimation is performed using packet-pair based technique,
i.e., by passively observing the inter-packet gap distribution of packets received by
neighboring nodes. RTT estimation is simply achieved by timestamping signaling
messages.

7.7 Overlay Management

To demonstrate the feasibility of the overlay topology design algorithms described
in Sect. 7.4, we explicitly adopted a fully distributed solution. While this choice
makes the problem more challenging, it permits to prove that the proposed policies
can be implemented in a fully decentralized manner as typically requested in purely
P2P systems.

In more detail, peers establish contacts with several other peers by means of a
gossipping protocol based on Newscast [44]. Each peer periodically advertises to

54

7 – Network Awareness in P2P Streaming Applications

one of its neighbors the list of peers he knows and their estimated upload capacity.
The reception of a Newscast message allows to discover other peers i) identity, and
ii) upload capacity. Thanks to the monitoring module, the peer passively estimates
the RTT with any neighbor when some signaling information is exchanged, so that
Dp is build. The selection of peers to include/exclude in the neighborhood Kp is
done targeting a fraction α of desired neighbor peers.

7.8 Performance Evaluation by Experiment

Running experiments of video streaming over the Internet with a large number of
peers requires setting up a proper environment which is not an easy task. We
decided for a mixed environment where some peers are in our University Campuses
and others are run on the public PlanetLab nodes scattered around the world. We
selected about 400 PlanetLab nodes choosing the one with the highest uptime. The
video source is at the University of Trento Campus, and it is responsible to seed the
swarm by injecting 3 copies of each video chunk, sending them to randomly chosen
peers within the neighborhood. For the experiment, we used the same Pink video
encoded at 600 kb/s to avoid the bandwidth limitation imposed by the PlanetLab
policies. The source is looping through the video and it is always up and running.

For each experiment, each peer enters the swarm at a random time in the first 30s.
Then, it participates to the swarm for a period of time uniformly distributed between
[300 : 360]s, then it leaves the swarm and reconnects again after a uniform random
idle time in [50 : 80]s. The churning level is therefore quite high. Measurements
reported in the following have been collected considering a period of time of 5min
after an initial transient of 10min.

7.8.1 Bandwidth and delay measurements in the experi-
ments

Fig. 7.8 reports the RTT (on left plot) and upload capacity (on right plot) measured
among peers during one experiment. About 30% of all peer-to-peer pairs are present
in this dataset, since peers do not exchange packets with all other peer. Considering
RTT, the tail of the distribution beyond 1 s is very long, showing that communication
with PlanetLab nodes is often impaired. Measurements reflect the typical worldwide
distribution of PlanetLab nodes, i.e., nodes in the same or different network, region
or continent exhibits different RTT according to the propagation delays. Upload
capacity measurements confirm that nodes involved in the experiment can exploit
high capacity connectivity. However, 65% of paths shows that the end-to-end upload
capacity is smaller than 10Mb/s, with 19% of paths suffering severe congestion so
that upload rate is negligible (and possibly RTT is very large). Note that the network

55

7 – Network Awareness in P2P Streaming Applications

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 0.2 0.4 0.6 0.8 1

F
re

q
u
e
n
c
y

RTT [ms]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Peer to Peer upload rate [Mb/s]

Figure 7.8. Histogram of the pair-wise RTT (left plot) and CDF of end-to-end
upload capacity (on the right) measured during experiments.

-80

-60

-40

-20

 0

 20

 40

 60

 80

-150 -100 -50 0 50 100 150

L
a
ti
tu

d
e

Longitude

Overlay World Map

-80

-60

-40

-20

 0

 20

 40

 60

 80

-150 -100 -50 0 50 100 150

L
a
ti
tu

d
e

Longitude

Overlay World Map

Figure 7.9. Example of overlay topologies for α = 10 and α = 100 for TRTT = 50ms.

scenario augmented by the typical random load observed in PlanetLab nodes (which
are used for many experiments at a time) poses critical condition to the experiment.

7.8.2 Experimental results

With reference to (7.4), we selected TBW = 0.1, Thop = 30 and TRTT ∈ {50,100,150}.
This choice mitigates the peculiarity of the scenario we consider in which the upload
capacity of nodes is normally not related to physical limitation but either to con-
gestion or to explicit shaping, while the hop count distance among nodes is either
very large or very very small due to nodes in the same institution, thus we practi-
cally exclude the hop count based selection (this is also coherent with the simulation
scenario).

Fig. 7.9 compares two topology snapshots that have been obtained considering
α = 0.1 and α = 1 on the left and right plot, respectively. In particular, it shows

56

7 – Network Awareness in P2P Streaming Applications

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
y
te

s
 r

e
c
e

iv
e

d
 (

C
D

F
)

Round trip time [s]

TRTT=50 ms

α=0
α=0.1
α=0.3
α=50

α=0.7
α=1

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
y
te

s
 r

e
c
e

iv
e

d
 (

C
D

F
)

Round trip time [s]

TRTT=100 ms

α=0
α=0.1
α=0.3
α=0.5
α=0.7

α=1

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
y
te

s
 r

e
c
e

iv
e

d
 (

C
D

F
)

Round trip time [s]

TRTT=150 ms

α=0
α=0.1
α=0.3
α=0.5
α=0.7

α=1

Figure 7.10. Number of bytes received by peers as a function of observed
RTT on the overlay connection

the 5% of the overlay link that carried the largest amount of traffic. Albeit not
extremely evident, the topology localization can be observed even on this qualitative
representation.

To quantify the intuition above, Fig. 7.10 reports the fraction of bytes down-
loaded by all the peers in the swarm as a function of the RTT measured between
the peer sending the chunk and the peer receiving the chunk. The upper left plot
is for TRTT = 50ms, the upper right one for TRTT = 100ms and the lower one for
TRTT = 150ms. Curves for α =0, 0.1, 0.3, 0.5, 0.7, 1 are plotted using different
lines. Consider first the case TRTT = 50. Larger fractions of bytes received from
nearby (small RTT) peers means more localized traffic and hence a smaller cost for
the network.

Results show that for smaller values of α the amount of traffic received from
peers with small RTTs is larger: by increasing the fraction of “desired” peers in the
neighborhood the traffic is more and more local. Considering results for different
choice of TRTT , the qualitative behavior remains the same, but the distribution
weight moves toward larger RTTs, with the distribution ‘knee’ correlated with the
value of TRTT .

57

7 – Network Awareness in P2P Streaming Applications

 0.1

 0.2

 0.3

 0.4

 0.5

 0.7

 1

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 10

 20

 30

 40

a
v
e
ra

g
e
 c

h
u
n
k
 r

e
c
e
iv

e
 d

e
la

y
 [
s
e
c
]

P
S

N
R

Peers rank

α=0
α=0.1
α=0.3
α=0.5
α=0.7

α=1

Figure 7.11. average receive delay of chunks (left axis, increasing curves) and
PSNR of received video (right axis, decreasing curves) for TRTT = 100ms and
different values of α.

Fig. 7.11 presents instead the perspective of the users, presenting the average
PSNR and the chunk delivery delay together in the same plot. The PSNR curves
(right y axis) show that the quality of the received video is very good for nearly
80% of peers, regardless of the localization parameter α. Given the uncontrolled
experimental setup, it is impossible to analyze the reason why the remaining 20% of
peers have bad quality. However, looking at the delivery delay of chunks (the average
is reported here) it is clear that these peers experience also very high delivery delays,
so that this can be ascribed, with high probability to the high RTTs measured and
reported in Fig. 7.8, due either to host overload or to Internet congestion. The curves
relative to the delivery delay also show that more localized neighborhoods improve
performance and not only reduce network costs, with the exception of α = 0 where
the overlay topology has bad connectivity characteristics. Moreover, we can observe
exceptionally good delay performance, with nearly 80% of the peers (in practice all
the peers that receive all the video) receiving chunks with an average delay of less
than 1 s, which can easily empower playout delays at the application level smaller
than 4–5 s.

7.8.3 Further experiments in an emulated context

In addition to the results on PlanetLab we decided to run some experiments in an
controlled scenario having full control of the network parameters. The experimental
set-up is composed of around 1000 PCs running our PeerStreamer in labs at Po-
litecnico di Torino. The network is using TC, the standard Linux Traffic Controller
daemon. We added both upload bandwidth constraints to every peer as well as

58

7 – Network Awareness in P2P Streaming Applications

delays. The scenario we consider is similar to the one considered in Sect.7.5, in
which peers are partitioned in four classes according to their upload bandwidth (see
Table 8.3)3. The average bandwidth in the system is about 1.5Mbit/s. Similarly
to the simulated scenario peers are grouped in four logical domains comprising a
different number of PCs; latencies between peers are set to few tens of ms when
both peer lie in the same logical domain, and to more than 100ms when the peers
lie in different logical domains. The overall average latency is E[lpq] = 70ms. In the
experiments we have used an absolute bandwidth threshold Tbw = 1.0 Mbit/s and a
RTT threshold TRTT = 60 ms.

Fig. 7.12 (left plot) shows the fraction of video-bits received by every individual
peer for different values of α in the case in which average video with rate is 1 Mbit/s.
Observe that the network load is rather high in this scenario (around ρ = 0.85
considering the signaling too).

Observe how the performance dramatically depends on α. For intermediate
values of α = 40,60,80 we get the best performance. Values of α which are too small
leads to poor performance, because in these cases the topological properties are poor.
The totally random topology also performs rather poorly, because in this case the
system is penalized by the long latencies and by the fact that large upload bandwidth
of class 1 peers not efficiently exploited. In this critical bandwidth scenarios the
beneficial impact of a smart topology management based on measurements is even
more significant in the emulated scenario with respect to what we have observed in
simulation. At last Fig. 7.12 (right plot) shows the effect of α on traffic localization.
The plot refers to the case in which the average rate of the distributed video is
reduced to 0.8 Mbit/s, and losses are negligible for all the selected values of α.
This permits to fairly compare plot for different values of α. Observe as already
intermediate values of α such as α = 60 permit a significant reduction of the network
cost with respect to network unaware solution.

3we notice, however, that the upload bandwidth of free loaders has been set to 200 kbit/s to
allow them to exchange signalling messages.

59

7 – Network Awareness in P2P Streaming Applications

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c
ti
o

n
 o

f
v
id

e
o

Peer rank

α=0
α=0.2
α=0.4
α=0.8

α=1

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

B
y
te

s
 r

e
c
e

iv
e

d
 (

C
D

F
)

Round trip time [s]

VR0.8Alpha0
VR0.8Alpha10
VR0.8Alpha20
VR0.8Alpha40
VR0.8Alpha60
VR0.8Alpha80

VR0.8Alpha100

Figure 7.12. Fraction of received bits for different values of α (left plot), and CDF
of received bytes as a function of observed RTT for different values of α in the
emulated scenario (right plot).

60

Chapter 8

Experimental comparison of
neighborhood filtering strategies

8.1 Introduction

As already said in Chapter 6 a large body of research work has focused on the
design and analysis of efficient algorithms for the overlay topology construction and
maintenance. Most of the previous works, however, have mainly a theoretical flavor,
thus performance analysis of different proposed strategies have been carried out in
rather idealized scenarios exploiting simulations or mathematical models. Few works
undergo implementation and present actual experiments, and even those are usually
limited to few tens of peers. A detailed discussion of related work is presented in
Sec. 8.2.

What is still missing is a systematic comparison of different algorithms in an
actual and known environment. Indeed, only an actual implementation allows to
fully evaluate the different policies, assessing the impact of signaling, measurements,
implementation issues, etc. This chapter tries to fill this gap, providing a comprehen-
sive and purely experimental comparison of different strategies for the construction
and the maintenance of the overlay topology for P2P-TV systems.

The algorithms we investigate are all based on the process of selection of neigh-
bors which is run by every peer, keeping the system fully distributed and without
the need for external help, or a centralized ‘oracle’ to help peers. Algorithms are
based on a selection and replacement criteria, according to which each peer chooses
the peers he would like to have as parents (i.e., peers from which download chunks).
Blacklisting feature allows to avoid cycling among bad parents. Overall, we explore
12 different combination of criteria (24 if blacklisting is enabled), based on metrics
such as Round Trip Time (RTT), peer upload capacity, number of received chunks,

61

8 – Experimental comparison of neighborhood filtering strategies

etc. Intuitively, these are metrics that are known to either i) favor traffic localiza-
tion, e.g., choosing peers with smaller RTT, or ii) improve system performance, e.g.,
choosing peers with larger upload capacity.

We test these algorithms in three network scenarios in which we control peer
upload capacity, end-to-end RTT and packet loss. In the simplest scenario, peer
upload capacities are heterogeneous among peers, while RTT forms 4 clusters, with
inter-cluster RTT being smaller than intra-cluster RTT. Then we consider a biased
upload capacity distribution, where high capacity peers are all in the same cluster.
Next, we add the impact of eventual packet loss on long-distance paths among
clusters, facing an almost adversarial scenario.

Results show that policies that select peers based on network distance coupled
with policies that drop peers based on their contribution are performing well in all
scenarios.

Finally, we wish to emphasize that, for the first time to the best of our knowl-
edge, we present reproducible experimental results for a fully controlled and publicly
available real implementation of a P2P-TV system referring to a rather large scale
set-up comprising 1000 peers. All the software we have developed is Open Source
and released under the (L)GPL.

8.2 Related Work

Many popular commercial applications such as PPLive, SopCast, Octoshape were
proposed in recent years, but their creators did not publish any information about
their internal implementation, making impossible any statement about their overlay
topology design strategies. Focusing on available literature on purely mesh-based
P2P-TV streaming systems, many solutions can be found, but also in this case, to
the best of our knowledge, none of them provides general and detailed guidelines
for the overlay topology design process. An early solution called GnuStream was
presented in [45]. Based on Gnutella overlay, GnuStream implemented a simple load
distribution mechanism: peers were expected to contribute to chunks dissemination
in a way proportional to their current capabilities. A more refined solution called
PROMISE was introduced by Hefeeda et al. in [46]. Even if PROMISE proposed an
improved seeder choice based on network tomography techniques, peers were inter-
connected through Pastry overlay topology which implements - as many others P2P
substrates like Chord [47] or CAN - some naive location awareness based on number
of IP hops. DONet (or Coolstreaming) [11] is a successful P2P streaming system
implementation. This system employs a scheduling policy based on chunk rarity
and available bandwidth of peers, but its data-driven overlay topology does not ex-
ploit any information coming from underlying network levels. In [48] the brand new
implementation of Coolstreaming application is presented. Many new features were

62

8 – Experimental comparison of neighborhood filtering strategies

introduced to improve the streaming service and, in particular, authors proposed a
new neighbor re-selection heuristic based only on peers uplink bandwidth. In [49],
authors showed the design aspects related to their application called AnySee. Even
if partially based on multicast, this hybrid mesh-based system relies on an over-
lay topology that aims at matching the underlying physical network while pruning
slow logical connections. However, no deep investigation about performance of their
overlay design strategy is provided. In [50] authors presented a study about some
key design issues related to mesh-based P2P-TV systems. In particular they fo-
cused their attention on understanding what are the real limitations of this kind of
applications and presented a system based on a directed and randomly generated
overlay. Some fundamental improvements were introduced: e.g., the degree of peers’
connectivity proportional to their available bandwidth.

Turning our attention on more theoretical studies about the overlay topology
formation and maintenance, in [33] the problem of building an efficient overlay
topology, taking into account both latency and bandwidth, has been formulated
as an optimization problem; however, the complex interactions between overlay
topology structure and the chunk distribution process are completely ignored in [33],
where continuous streams of information are distributed (in a purely push fashion)
among peers.

In [16] a theoretical investigation of optimal topologies is formulated, considering
latency and peer bandwidth heterogeneity; scaling laws are thus discussed. In [17],
a distributed and adaptive algorithm for the optimization of the overlay topology
in heterogeneous environments has been proposed, but network latencies are still
ignored. The authors of [34] propose a mechanism to build a tree structure on
which information is pushed. They combine two ideas: good topological properties
are guaranteed by means of prefixes based on peers identifiers (similarly to what
is done in other structured P2P systems) and latency awareness is used to select a
specific peer between those with the same prefix. Similar in spirit, but in unstruc-
tured systems, we propose in this chapter an overlay topology design strategy that,
taking into account latency and peer heterogeneity, aims at creating an overlay with
good properties and low chunk delivery delays. In highly idealized scenarios, [35]
shows with simple stochastic/fluid models that overlay topologies with small-world
properties can be effectively exploited to support chunk distribution in P2P-TV
systems.

Finally, it is worth to mention [37], where the authors experimentally compare the
performance of unstructured systems and structured, multiple-tree based systems.
Results in [37], indicates that unstructured systems tends to outperform tree-based
systems in highly dynamic scenarios as well as in scenarios characterized by band-
width limitations, which strengthen our choice of exploring topology management
policies for mesh-based streaming systems.

63

8 – Experimental comparison of neighborhood filtering strategies

8.3 PeerStreamer Description

Empowering this work is the already cited PeerStreamer [14]. PeerStreamer is an
Open Source P2P-TV client that stems from the developments and research of the
NAPA-WINE EU project [13] whose overall architecture and vision are briefly de-
scribed in Section 7.6 and detailed in
citenapa-arch10.

The logic and modular organization of PeerStreamerhas already been described
earlier in this document in Section 7.6 and in Fig. 7.7. However, some specific
modules have been modified with respect to the implementation shown in Section
7.6. For briefness, in following sections (Sections 8.3.1 and 8.3.2) we only report the
main modifications we applied:

• we introduced in this implementation Hose Rate Control (HRC) scheme that
has been presented in Chapter 4;

• the overlay management module (detailed in Sect. 8.3.2), has been deeply mod-
ified to enable a more effective and flexible neighbors selection mechanism.

8.3.1 Hose rate control

PeerStreamer is based on a chunk-based stream diffusion. Peers that own some
chunks offer a selection of them to some destination peers in their neighborhood.
The receiving peer acknowledges the chunks he is interested into, thus avoiding
multiple transmissions of the same chunk to the same peer. The negotiation and
chunk transmission phase is sketched in Fig. 8.1: signaling exchanges (Offer/Select
messages) are represented above the time line and chunk transmissions (colored
blocks) are below the time line. The number of offers per second a peer sends plays
a key role in performance. Intuitively, it should be large enough to fully exploit
the peer upload capacity, but it must not be so large to cause the accumulation
of chunks to be transmitted adding queuing delay before to chunk transmissions.
In Chapter 4 we proposed Hose Rate Control (HRC) to automatically adapt the
number of offers to both peer upload capacity and system demand. For this set of
experiments we adopt HRC: simpler trading schemes are less performing and can
hide the impact of the overlay on the overall performance of the system.

For chunk scheduling, offers are sent to neighbors in round-robin. They contain
the buffermap of the recent chunks the peer possesses at that time. After receiving
an offer, a peer selects one chunk based on a “latest useful” policy sending back
a select message. The latest useful policy means the peer selects the most recent
chunk it does not have. This has been proven optimal for streaming systems with
centralized scheduling in [51].

64

8 – Experimental comparison of neighborhood filtering strategies

TimeOffer OfferSelect Offer Select

Peer a

b

c

dRTTab

Select

Figure 8.1. Pictorial representation of chunk exchanges from one peer with the
offer-select protocol used by PeerStreamer.

The source acts as a standard peer, but it does not participate in the offer/select
protocol. It simply injects one or more copies (5 in our experiments) of the newly
generated chunk into the overlay.

8.3.2 Overlay management

The approach for building the overlay topology in PeerStreamer is fully distributed:
each peer builds its own neighborhood following only local measures, rules and peer
sampling. The overlay topology is represented by a directed graph in which the peer
at the edge head receives chunks from the peer at the edge tail, which is the one
sending offers. Each peer p handles thus an “in-neighborhood” NI(p) and an “out-
neighborhood” NO(p). NI(p) collects all peers that can send chunk to p (p parents);
NO(p) collects all peers that can receive chunks from p (p children). Alternatively,
NI(p) is the set of peers that offer p new chunks; while p offers its chunks to peers in
NO(p). Distinguishing between NI(p) and NO(p) guarantees a greater flexibility in
topology management than algorithms that impose the reciprocity between peers.
The overlay topology TS is the union of all the in-neighborhoods

TS =
⋃

p∈S

NI(p) (8.1)

where S is the set of all the peers in the swarm1.
Referring again to Fig. 7.7, the topology management is split into two separate

functions. The peer sampler has the goal of providing p with a stochastically good
sample of all the peers in S along with their properties; PeerStreamer implements
a variation of Newscast [44] for this function. The neighborhood manager realizes
the task of filtering the peers that are deemed the most appropriate for interaction.
Filtering is based on appropriate metrics and measures and it is the main focus of
this chapter.

1Notice that since NO(p) are built passively, they do not contribute to construction of the
swarm topology.

65

8 – Experimental comparison of neighborhood filtering strategies

8.4 Neighborhood and Topology Construction

In PeerStreamer every peer p selects other peers as in-neighbors and establishes a
management contact with them. Thus each peer p actively selects parents to possibly
download chunks when building the setNI(p). Similarly, p passively accepts contacts
from other peers that will form the set NO(p) of children. There is no limitation to
NO(p)

2.

Every peer p manages a blacklist of peers in which it can put peers that were
perceived as very poorly performing parents. Peers in the blacklist cannot be selected
for inclusion inNI(p). Blacklisted peers are cleared after the expiration of a time-out
(set to 50 s in the experiments).

The size NI of NI(p) is equal for every peer p: its goal is to guarantee that p
has enough parents to sustain the stream download with high probability in face of
churn, randomness, network fluctuations, etc. The size NO(p) of NO(p) is instead a
consequence of the filtering functions of the peers that select p as parent. The goal
is to let the dynamic filtering functions of peers q ∈ {S \ p} select NO(p) in such a
way that the swarm performances are maximized. For example, peers with higher
upload capacity should have larger number of children than peers with little or no
upload capacity.

The update of neighborhoods is periodic, maintaining the topology dynamic and
variable, so that churn impairment is limited, and the swarm can adapt to evolving
networking conditions. In particular, every Tup seconds each peer p independently
updates NI(p) dropping part of the old in-neighbors while adding fresh new parents.
Two parameters are associated to this scheme: the update period Tup and the
fraction Fup of peers in NI(p) that is replaced at every update. The add operation
guarantees NI(p) has size NI (if at least NI peers are known). If not otherwise
stated NI = 30, Tup = 10 s and Fup = 0.3. The latter two values result in a good
compromise between adaptiveness and overhead. Their choice is robust and we omit
sensitivity analysis due to lack of space.

8.4.1 Metrics driving the neighborhood selection

At every update, NI(p) is the result of two separate filtering function: one that
selects the peers to drop, and another one selecting parents to add. For these filtering
function we essentially consider both simple network attributes such as peer upload
bandwidth, path RTT or path packet loss rate, and some application layer metrics,
such as the peer offer rate3 or number of received chunks from a parent.

2In the actual implementation NO(p) is limited to 200 peers, but the limit is never reached.
3HRC adapt the peer offer rate to peer upload capacity. It can thus be seen as an indirect

measure of its available upload bandwidth.

66

8 – Experimental comparison of neighborhood filtering strategies

Some metrics are static peer metrics: once estimated, they can be broadcast
with gossiping messages and are known a-priori. Other metrics instead are path
attributes between two peers and must be measured and can only be used as a-
posteriori indicators of the quality of the considered parent as perceived by p.

Both add and drop filtering functions are probabilistic to avoid deadlocks and
guarantee a sufficient degree of randomness. Considering any metric, we assign a
selection probability wq to every candidate q as

wq = mq/
∑

s∈NS(p)

(ms)

where mq is the metric of q and NS is either NI for drop filtering or the set of
candidate parents for add filtering.

8.4.2 Add filters

We consider the following four criteria to add new parents:
RND: Candidate neighbors are selected uniformly at random. ∀q,mq = 1;
BW: Candidate neighbors are weighted according to their upload bandwidth Cq.
∀q,mq = Cq;
RTT: Candidate neighbors are weighted according to the inverse of the RTT be-
tween p and q. ∀q,mq = 1/RTTq(p); If RTTq(p) is still unknown, wq = 1s4.
OFF: Candidate neighbors are weighted according to the rate they send offer mes-
sages Rq. ∀q,mq = Rq;

8.4.3 Drop filters

For what concerns the criteria to select neighbors to be dropped, we consider:
RND: Neighboring peers are dropped uniformly at random. ∀q,mq = 1;
RTT: Neighboring peers are dropped with a probability directly proportional to the
RTT between p and q. ∀q,mq = RTTq(p);
RXC: Neighboring peers are dropped with a probability proportional to the inverse
of the rate at which it transferred chunks to p. ∀q,mq = 1/RXCq(p). This metric
essentially assigns a quality index related to the parent ability to successfully transfer
chunks to p.

8.4.4 Blacklisting policies

Finally a peer in NI(p) is blacklisted if one of the following criterion is met:

4RTTq(p) are locally cached at p so that they may be available a priori. Active measurements
could also be used to quickly estimate the RTT.

67

8 – Experimental comparison of neighborhood filtering strategies

Table 8.1. Number of PCs per subnet.

Subnet 1 2 3 4
Number of PCs 43 63 60 38

Table 8.2. RTTs in ms between areas of peers.

1 2 3 4
1 20 ± 10% 80 ± 10% 120 ± 10% 160 ± 10%
2 80 ± 10% 20 ± 10% 140 ± 10% 240 ± 10%
3 120 ± 10% 170 ± 10% 20 ± 10% 200 ± 10%
4 160 ± 10% 240 ± 10% 200 ± 10% 20 ± 10%

CMR: the ratio of corrupted/late chunks among the last 100 chunks received by p
from q exceeds a threshold of 5%;
PLOSS: the packet loss rate from q to p exceed a threshold of 3%; measured over
the last 300 packets received;
RTT: RTTq(p) is greater than 200ms.

Combining add and drop criteria we define 12 different overlay construction and
maintenance filters. In the following, we name them stating the “ADD”-“DROP”
policies, e.g., BW-RTT for add BW and drop RTT. Sect. 8.6 report results for dif-
ferent resulting combinations. Blacklisting can be applied (or not) to all of them,
and its impact will be studied selectively. We tested also other metrics and combi-
nations, but we only report interesting ones. RND-RND is used as a benchmark, as
it is a policy based on pure sampling of the swarm.

8.5 Testbed Configuration

Following the scientific approach, we need to benchmark the different algorithms in
a known and reproducible scenario. To this aim, we run experiments in a possibly
complex but fully controlled network to avoid fluctuation and randomness due to
external impairment. The test-bed is built in labs available at Politecnico di Torino
with 204 PCs divided in four different subnets. Table 8.1 shows the number of PCs
available in each subnet. We used tc, the standard Linux Traffic Controller tool,
together with the netem option to setup RTTs among subnets and packet dropping
probability when needed. The RTT distribution is described in Table 8.2. The
upload bandwidth is limited by the application itself, exploiting the feature of a
simple leaky bucket (its memory being 10MB) to limit the application data rate
to a given desired value. Peer upload capacities Cp are shown in Table 8.3. Each

68

8 – Experimental comparison of neighborhood filtering strategies

Table 8.3. Characteristics of peer classes.

Class Bandwidth Percentage of Peers
1 5Mb/s ± 10% 10 %
2 1.6Mb/s ± 10% 35 %
3 0.64Mb/s ± 10% 35 %
4 0.2Mb/s, ± 10% 20 %

PC is running 5 peers (5 independent instances of PeerStreamer) simultaneously,
thus, a swarm of 1020 peers is considered in every experiment. The source peer run
in an independent server (not belonging to any of the subnets). It injects in the
swarm 5 copies of each newly generated chunk, corresponding to roughly 6Mbit/s
(see below).

The well known Pink of the Aerosmith video sequence has been used as bench-
mark. The nominal sequence length corresponds to 200s, its spatial resolution is
352 × 240 pixels, while the time resolution is 25 frame/s. The sequence is looped
for a total stream duration of about 15min. After the initial 12min of experiment,
each peer starts saving on local disk a 3min long video that we use to compute QoE
metrics.

We selected the H.264/AVC codec for encoding the video sequence. A hierarchi-
cal type-B frames prediction scheme has been used, obtaining 4 different kinds of
frames that, in order of importance, are: IDR, P, B and b. The GOP structure is
IDR×8 {P,B,b,b}. The nominal video rate of the encoder rs is 1.2Mb/s if not other-
wise specified. This corresponds to a system load ρ = 0.9 – defined as ρ = rs/E[Cp]
where E[Cp] = 1.324Mbit/s is the average upload bandwidth of peers.

The source node generates a new chunk at regular time, i.e., every new frame, also
enabling a stricter real-time streaming. The chunk size is instead highly variable.
Each peer implements a chunk buffer of 150 chunks. Given the one-frame⇔one-
chunk mapping, and 25 fps of the video, this corresponds to a buffer of 6s, i.e., the
playout deadline is only 6s.

8.5.1 Network scenarios

The general networking scenario sketched above is declined in three different flavors
that allow the exploration of different significant situations. The first scenario,
G Homo hereafter, is geographically homogeneous: the distribution of the peers of
different Cp classes is the same in any areas, so that there is the same distribution
of bandwidth everywhere. This scenario is useful to understand the fundamental
behavior of different neighborhood filtering strategies.

The second scenario, G Bias hereafter, assumes that bandwidth rich peers (class

69

8 – Experimental comparison of neighborhood filtering strategies

1) are all concentrated in a single subnet. This situation is particularly challeng-
ing for a topology management system that tries to localize traffic and reduce the
network footprint of the application.

The third and final scenario, Lossy hereafter, is again geographically homoge-
neous, but the long-haul connections between the subnets 1–3, 1–4, 2–3, 2–4 are
subject to packet loss with probability p = 0.05, while only the intra-subnet links
and the links between 1–2 and 3–4 are lossless. This situation is particularly useful
to understand if black-listing can really help in building better topologies, or if its
use should be limited to isolate misbehaving and malicious nodes.

8.6 Performance Evaluation

As performance indices to assess the QoE, for each peer p, we consider the frame
loss probability, Floss(p), and the SSIM (Structural Similarity Index) Sssim(p), a well-
known method for measuring the similarity between two images in the multimedia
field [20]. Given the highly structured organization of the video streams, the degra-
dation of the received video quality become typically noticeable for values of Floss(p)
higher than 1%, while loss probability of few percent (3-4%) significantly impair the
QoE. In the following, we report both average frame loss, Floss = Ep[Floss(p)], and
the percentage of peers that suffer Floss(p) larger than 1% and 3% respectively.

Performance however should also take into account the cost for the network to
support the application. As network cost ζ we consider the average of the distance
traveled by information units. Formally, let bq(p) the number of bits peer p received
from peer q; the peer p network cost ζ(p) is computed as

ζ(p) =

∑
q RTTq(p)bq(p)∑

q bq(p)
(8.2)

while the average network cost is ζ = Ep[ζ(p)]

8.6.1 G Homo scenario

We start considering the case in which the distribution of Cp is geographically ho-
mogeneous.

The top plot in Fig. 8.2 shows the average frame loss probability experienced by
different policies, while center and bottom plots report, respectively, the percentages
of peers that experienced Floss(p) > 0.01 and Floss(p) > 0.03.

RND-RND is the reference, and we immediately observe that the other algo-
rithms modify the loss distribution, i.e., they can have a different impact on different
percentiles. For instance BW-RTT improves the average loss rate and the percent-
age of peers with Floss(p) > 0.01, but at the expense of the percentage of peers with

70

8 – Experimental comparison of neighborhood filtering strategies

 0

 1

 2

 3

Add RND Add BW Add OFF Add RTT

L
o
s
t

C
h
u
n
k
s
 %

Drop RND
Drop RXC
Drop RTT

 0

 2

 4

 6

 8

 10

Add RND Add BW Add OFF Add RTT

P
e
e
rs

 o
v
e
r

1
%

 L
o
s
s
e
s
 % Drop RND

Drop RXC
Drop RTT

 0

 1

 2

 3

Add RND Add BW Add OFF Add RTT

P
e
e
rs

 o
v
e
r

3
%

 L
o
s
s
e
s
 % Drop RND

Drop RXC
Drop RTT

Figure 8.2. Frame loss for different strategies in G Homo scenario: Floss (average)
(top), percentage of peers whose Floss(p) > 0.01 (center), percentage of peers
whose Floss(p) > 0.03 (bottom).

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000

O
u

t
D

e
g

re
e

Peer

Class 4 Class 3 Class 2 Class 1

BW - RXC
BW - RND

RND - RXC
RND - RND

Figure 8.3. Out-degree distribution of peers, G Homo scenario.

bad quality (Floss(p) > 0.03), while RTT-RTT improves the number of peers with
Floss(p) > 0.01, but both the average and the percentage of peers with bad quality
(Floss(p) > 0.03) are worse.

In general adding policies sensitive to peers bandwidth (BW and OFF for adding

71

8 – Experimental comparison of neighborhood filtering strategies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Network Cost [ms]

RTT - RTT
RND - RTT
RTT - RXC
RND - RXC
BW - RND

RND - RND

Figure 8.4. CDF of the distance traveled by information units, G Homo scenario.

and RXC for dropping) appears to be the more affective in reducing the losses. How-
ever the behavior of BW-RXC for which Floss tops to 2.5% indicates that using a
single metric for selecting the neighborhood can be dangerous. BW-RXC biases
too much the choices toward high bandwidth peers, which become congested and
are not able to sustain the system demand. To better grasp these effects, Fig. 8.3
reports the smoothed5 histogram of the out-degree NO(p). Observe that NO(p) of
peers belonging to different classes is significantly different as long as bandwidth
aware policies are adopted; out-degrees are instead independent for RND-RND as
expected. In principle it would be desirable to have an out-degree of a peer pro-
portional to its up-link bandwidth. This is roughly achieved by adopting BW-RND
policy. Under BW-RXC, instead, the degree distribution depends too much on Cp.
As a result, high bandwidth peers tends to be oversubscribed while medium and low
bandwidth peers may be underutilized.

Policies sensitive to RTT perform well in the considered scenario, with the ex-
ception of RTT-RTT, which is again too aggressive in strictly selecting the closest
parents. Indeed, as already observed in [36], policies that force a too strict lo-
calization of traffic may induce significant performance degradations due to poor
topological properties of the swarm. To complement previous information Fig. 8.4
reports the CDF of network cost ζ(p). As expected, RTT aware policies tends to
significantly reduce this index thanks to their ability to select parents within the
same area.

As a first consideration, we can say that: i) bandwidth aware policies improve the
application performance; ii) RTT aware policies reduce the network cost without en-
dangering significantly the video quality; iii) the preference toward high bandwidth

5The distribution of NO(p) inside classes is binomial as expected from theory. This distribution
results in a large noisiness of the plot, so we apply a smoothing window of length 30 in plotting,
basically showing the average NO in each class.

72

8 – Experimental comparison of neighborhood filtering strategies

 0

 1

 2

 3

 4

 5

 6

 7

 8

Add RND Add BW Add OFF Add RTT

L
o
s
t

C
h
u
n
k
s
 %

Drop RND
Drop RXC
Drop RTT

 0

 2

 4

 6

 8

 10

Add RND Add BW Add OFF Add RTT

P
e
e
rs

 o
v
e
r

1
%

 L
o
s
s
e
s
 % Drop RND

Drop RXC
Drop RTT

 0

 2

 4

 6

 8

 10

Add RND Add BW Add OFF Add RTT

P
e
e
rs

 o
v
e
r

3
%

 L
o
s
s
e
s
 % Drop RND

Drop RXC
Drop RTT

Figure 8.5. Frame loss for different strategies in G Homo scenario with NI = 20:
Floss (average) (top), percentage of peers whose Floss(p) > 0.01 (center), percent-
age of peers whose Floss(p) > 0.03 (bottom).

peers/nearby peers must be tempered to achieve good performance. For instance a
policy like RTT-RXC improves quality and reduces the network cost at the same
time.

Next, we consider the same network scenario but we set NI = 20. This is a more
critical situation and we expect that choosing the good parents is more important
and expect RND policies to suffer more. Notice that the value of NI is related
to the total number of peers, so that for actual global broadcasting to millions of
peers having a policy that performs well with a small NI is very important, as the
signaling overhead increases with NI .

Results are plotted in Fig. 8.5 (the y-scales in Figs. 8.2 and 8.5 are different
for readability reasons, and this is the reason why at first sight some policies seem
to perform better with a smaller NI). The performance of RND-RND significantly
degrades in this case. The reason is that the out degree of Class 1 peers under
RND-RND is often not enough to fully exploit their bandwidth. Bandwidth aware
strategies, instead, successfully adapt NO(p) to Cp maintaining high performance.
Also RTT-RND and RTT-RTT, which are bandwidth unaware, perform better than
RND-RND, since RTT-aware selection policies reduce the latency between an offer

73

8 – Experimental comparison of neighborhood filtering strategies

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Chunk Loss Probability

BW - RND
RND - RXC
RTT - RXC
RND - RND
RND - RTT
RTT - RTT

Figure 8.6. CDF of the frame loss probability for four different strate-
gies, G Bias scenario.

and the actual chunk transmission that follows it, helping in exploiting the peer’s
bandwidth. Results for network cost are similar to those in Fig. 8.4 and are not
reported for the sake of brevity.

Random selection policies, which are widely employed by the community, are
robust, but perform well only if the number of peers in the neighborhood is fairly
large, which, for live streaming applications, implies a large overhead for signaling.
As already seen with NI = 30, also in this case the policy that combines band-
width and RTT awarenesses (RTT-RXC) definitely improves both performance and
network costs.

8.6.2 G Bias scenario

Maintaining unchanged the Cp distribution, we localize all Class 1 peers in geograph-
ical area 1. This scenario, in principle, constitutes a challenge for the policies that
try to localize traffic. Indeed as side effect of the localization we can potentially have
a “riches with riches”, “poors with poors” clusterization effect that may endanger
the video quality perceived by peers in other geographical regions than 1.

Fig. 8.6 reports the CDF of Floss(p) for the five strategies performing better in
the G Homo scenario, plus the benchmark RND-RND. In this case if RTT is the
only metric used as in RTT-RTT, the performance degrades unacceptably, and peers
in area 1 are in practice the only one receiving a good service. However, observe
that strategy RTT-RXC performs as well as RND-RXC and BW-RND, but it can
also reduce the network cost, as shown in Fig. 8.7 that reports the CDF of ζ(p).

This result essentially proves that also in G Bias conditions it is possible to
partially localize the traffic without endangering the video quality perceived by the
user, as long as RTT awareness is tempered with some bandwidth awareness.

74

8 – Experimental comparison of neighborhood filtering strategies

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
D

F

Network Cost [s]

RTT - RTT
RND - RTT
RTT - RXC
RND - RXC
BW - RND

RND - RND

Figure 8.7. CDF of distance traveled by information units, G Biasscenario.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Chunk Loss Probability

RTT - RXC w BL
RTT - RXC w/o BL

BW - RND w BL
BW - RND w/o BL
RND - RND w BL

RND - RND w/o BL
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

Chunk Delivery Delay [s]

RTT - RXC w BL
RTT - RXC w/o BL

BW - RND w BL
BW - RND w/o BL
RND - RND w BL

RND - RND w/o BL

Figure 8.8. CDF of chunk loss probability (top) and CDF of chunk delivery de-
lays (bottom) for three different strategies with and without adopting blacklist
mechanism in Lossy scenario.

8.6.3 Lossy scenario

We consider another challenging scenario in which large bandwidth peers are uni-
formly distributed over the four subnets, but packet losses are present in some long
haul connections. In this case, we expect that blacklisting can play a significant role
to avoid selecting lossy paths. Indeed, exploiting the blacklist mechanism every peer
should identify and abandon poorly performing parents, biasing the neighborhood
toward good performing peers. This effect should reinforce policies that naturally
bias the selection of neighbor peers employing peer quality. We only plot the re-
sults for RND-RND, BW-RND and RTT-RXC as these latter have emerged as the
most promising criteria and RND-RND is the benchmark. The performance of other
policies did not show any really interesting behavior in this scenario.

Fig 8.8 plots the CDF of frame losses (top) and the CDF of chunks delivery

75

8 – Experimental comparison of neighborhood filtering strategies

Table 8.4. Average fractions of incoming traffic for Cluster 2.

1 - good 2 - local 3 - bad 4 - bad + far
RND - RND w/o BL 0.23 0.32 0.28 0.15
RND - RND w BL 0.28 0.34 0.24 0.12
BW - RND w/o BL 0.22 0.35 0.27 0.14
BW - RND w BL 0.23 0.36 0.24 0.13

RTT - RXCH w/o BL 0.12 0.68 0.11 0.07
RTT - RXCH w BL 0.13 0.70 0.09 0.05

delays (bottom) for the selected policies. Blacklisting improves the performance
of every policy. RTT-RXC emerges again as the most performing policy and with
blacklisting practically all peers are able to receive all chunks. This is an excellent
result, since the system is facing a very challenging scenario while working with a
load of 0.9.

Benefits of the blacklisting mechanism are confirmed by Table 8.4 that reports the
normalized volume of incoming traffic for peers in cluster 2 from peers in all clusters.
Keeping in mind that in Lossy scenario peers belonging to cluster 2 experience lossy
paths from/towards peers in cluster 3 and 4 (as explained in Sec. 8.5), it is easy to
see that volumes of incoming traffic from cluster 3 and 4 are nicely reduced thanks
to blacklisting mechanism.

8.6.4 Video performance versus load

In the previous sections we have benchmarked the system versus increasingly difficult
scenarios, showing the benefits and drawbacks of overlay topology filtering strategies.
Now we summarize the results by depicting the actual average QoE by reporting
Sssim for different policies and different system loads. We consider the final Lossy
scenario, and we increase the video rate from 0.6 Mb/s to 1.4 Mb/s. Recall that
E[Cp] = 1.324 Mb/s.

Fig. 8.9 shows Sssim considering RND-RND, BW-RND and RTT-RXC with and
without blacklisting. Sssim is a measure of the distortion of the received image
compared against the original source (before encoding and chunkization). It is a
highly non linear metric in decimal values between −1 and 1. Negative values
correspond to negative images, so are not normally considered at all. Values above
0.95 are typically considered of good quality. Sssim has been computed considering
video frames received by 200 peers (50 for each class), and then averaging among
all of them. The initial 12min of the video have been discarded to focus on steady
state performance. The Sssim is computed for 1min of the video given the enormous
computational burden of this task.

76

8 – Experimental comparison of neighborhood filtering strategies

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

S
S

IM

rs [Mbps]

EVQ
RTT - RXC w BL

RTT - RXC w/o BL
BW - RND w BL

BW - RND w/o BL
RND - RND w BL

RND - RND w/o BL

Figure 8.9. Sssim index when varying video rate rs in Lossy scenario.

The EVQ (Encoded Video Quality) curve in the plot is the reference value for
the encoding level and it obviously increases steadily as rs increases. When the
system load ρ < 1, Sssim increases for increasing rs thanks to the higher quality of
the encoded video. As soon as the system is overloaded, the Sssim rapidly drops due
to missing chunks which impair the quality of the received video. Notice how RTT-
RXC scheme outperforms RND-RND and BW-RND for every value of rs. Fig. 8.9
also shows the benefits of the blacklist mechanism for every scheme.

77

Chapter 9

Conclusions

The design of P2P systems so as to minimize their impact on the network has been
invoked and studied in the past few years, but most studies remains theoretic or
based on simulations.

In the context of P2P-TV systems, Chapter 7 presented a complete work that,
starting from simple heuristic considerations, design a network-aware topology man-
agement system based on distributed measurements. The topology management
system is first evaluated in simulations, so as to verify the performances in a sim-
plified and controlled environment. Then, building on a P2P-TV system already
developed within the NAPA-WINE project, a fully distributed implementation of
the system named PeerStreamer, which includes the topology management as well
as real video distribution, has been presented and tested over the Internet, with a
mix of peers running on normal hosts and peers running in PlanetLab nodes in order
to increase the size of the distribution swarms.

In Chapter 8 we evaluate the impact of P2P-TV overlay topologies through ex-
tensive benchmark campaigns in large scale test-beds. Leveraging the PeerStreamer
application developed within the framework of the EU NAPA-WINE project, we
have implemented a flexible algorithm which lets us drive the strategies for building
neighborhoods of peers and, hence, the overall topology, without changing other
sub-systems of the application, thus isolating the impact of topology management
from other effects. In a controlled networking environment, we have run a large cam-
paign of experiments measuring the impact of different filtering functions applied
to the management of peer neighborhoods. Confirming considerations presented in
Chapter 7, Chapter 8 shows that proper management, based on simple RTT mea-
surements to add peers, coupled with an estimation of the quality of the peer-to-peer
relation to drop them, leads to an optimal situation where the performance of the
application is improved while the network usage is reduced.

In our evaluation the P2P-TV system performance we considered not only net-
work level metrics, but also the quality of experience (QoE) of users based on the

78

9 – Conclusions

reconstruction of the average PSNR or SSIM of the video itself at playback. This
procedure enabled us to verify that a topology built following a network-aware,
localization-oriented metric can not only reduce the network costs, but also increase
the QoE of users, leading to a win-win situation that can be the driver for the
adoption of such a technology.

9.1 Future Directions

Given the good the results obtained in a controlled environment and presented in
Chapter 8, we aim at replicating the same experiments in an Internet-wide scenario
such as the one offered by PlanetLab system. Confirming in such scenario the
benefits of network-aware policies would be an excellent result.

79

Appendix A

Acronyms

ACK acknowledgement

ASP Adaptive Signalling Protocol

CDF cumulative distribution function

DVB-T Digital Video Broadcasting - Terrestrial

EVQ encoded video quality

FIFO first in first out

GOP group of pictures

HD-TV high definition signal

HRC Hose Rate Control

IDR instantaneous decoder refresh

LEDBAT Low Extra Delay Background Transport

MPEG TS Moving Picture Experts Group Transport Stream

MSE Mean Squared Error

NAPA-WINE Network-Aware P2P-TV Application over Wise Networks

NTP Network Time Protocol

P2P peer-to-peer

P2P-TV peer-to-peer streaming

80

A – Acronyms

PSNR Peak Signal-to-Noise Ratio

QoE quality of experience

RTT round trip time

SSIM Structural Similarity Index

STREP Specific Targeted Research Projects

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

81

Bibliography

[1] “Meridian, http://www.cs.cornell.edu/people/egs/meridian/.”

[2] “PPLive, http://www.pptv.com/en/.”

[3] “CoolStreaming, http://www.coolstreaming.us/.”

[4] “SopCast, http://www.sopcast.org/.”

[5] L. Massoulié, A. Twigg, C. Gkantsidis, and P. Rodriguez, “Randomized decen-
tralized broadcasting algorithms,” in IEEE INFOCOM, Anchorage, AK, May
2007.

[6] S. Sanghavi, B. Hajek, and L. Massoulié, “Gossiping with multiple messages,”
in IEEE INFOCOM, Anchorage, AK, May 2007.

[7] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg, “Epidemic live
streaming: optimal performance trade-offs.” in SIGMETRICS, Annapolis, MD,
June 2008.

[8] M. Zhang, L. Zhao, Y. Tang, J. Luo, and S. Yang, “Large-scale live media
streaming over Peer-to-Peer networks through global Internet,” in P2PMMS,
Singapore, November 2005.

[9] Y. Liu, “On the minimum delay peer-to-peer video streaming: how realtime
can it be?” in ACM Multimedia, Augsburg, DE, September 2007.

[10] D. Ciullo, M. A. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi, M. Telek,
and P. Veglia, “Network awareness of P2P live streaming applications: a mea-
surement study,” IEEE Transanctions on Multimedia, vol. 12, no. 1, pp. 54–63,
January 2010.

[11] X. Zhang, J. Liu, and T. Yum, “Coolstreaming/donet: A data-driven overlay
network for peer-to-peer live media streaming,” in IEEE INFOCOM, Miami,
FL, March 2005.

[12] F. Picconi and L. Massoulié, “Is there a future for mesh-based live video stream-
ing?” in IEEE P2P, Aachen, DE, September 2008.

[13] “NAPA-WINE, http://www.napa-wine.eu,” 2008-2011.

[14] “PeerStreamer, http://peerstreamer.org.”

[15] A. C. da Silva, E. Leonardi, M. Mellia, and M. Meo, “A bandwidth-aware
scheduling strategy for P2P-TV systems,” in IEEE P2P, Aachen, DE, Septem-
ber 2008.

82

Bibliography

[16] T. Small, B. Liang, and B. Li, “Scaling laws and tradeoffs in Peer-to-Peer
live multimedia streaming,” in ACM Multimedia, Santa Barbara, CA, October
2006.

[17] R. Lobb, A. P. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo, “Adap-
tive overlay topology for mesh-based p2p-tv systems,” in ACM NOSSDAV,
Williamsburg, Virginia, June 2009.

[18] “P2PTV-Sim, http://www.napa-wine.eu/cgi-bin/twiki/view/public/p2ptvsim.”
[19] S. Shalunov and G. Hazel, “Low Extra Delay Background Transport (LED-

BAT),” IETF, Internet Draft draft-ietf-ledbat-congestion-02, July 2010.
[20] Z. Wang, A. C. Bovik2, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[21] A. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo, “Exploiting Hetero-
geneity in P2P Video Streaming,” IEEE Transactions on Computers, December
2010.

[22] E. Setton, J. Noh, and B. Girod, “Low latency video streaming over peer-to-
peer networks,” in IEEE ICME, Toronto, CA, July 2006.

[23] Z. Liu, Y. Shen, K. W. Ross, S. S. Panwar, and Y. Wang, “Layerp2p: using
layered video chunks in p2p live streaming,” IEEE Transaction on Multimedia.,
vol. 11, no. 7, pp. 1340–1352, 2009.

[24] H. Xie, R. Y. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz, “P4P:
provider portal for applications,” in SIGCOMM, Seattle, WA, August 2008.

[25] Z. Shen and R. Zimmermann, “Isp-friendly peer selection in p2p networks,” in
ACM Multimedia, Beijing, China, October 2009.

[26] C.-H. Lai, Y.-W. Chan, and Y.-C. Chung, “A construction of peer-to-
peer streaming system based on flexible locality-aware overlay networks,”
in Advances in Grid and Pervasive Computing, ser. Lecture Notes
in Computer Science, S. Wu, L. Yang, and T. Xu, Eds. Springer
Berlin / Heidelberg, 2008, vol. 5036, pp. 296–307. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-68083-3 30

[27] X. Cheng, F. Wang, J. Liu, and K. Xu, “Collaborative delay-aware scheduling
in peer-to-peer ugc video sharing,” in Proceedings of the 20th international
workshop on Network and operating systems support for digital audio and
video, ser. NOSSDAV ’10. New York, NY, USA: ACM, 2010, pp. 105–110.
[Online]. Available: http://doi.acm.org/10.1145/1806565.1806591

[28] R. Fortuna, E. Leonardi, M. Mellia, M. Meo, and S. Traverso, “Qoe in pull
based p2p-tv systems: Overlay topology design tradeoffs,” in IEEE P2P 2010,
Aug. 2010, pp. 1–10.

[29] L. Abeni, C. Kiraly, and R. Lo Cigno, “On the optimal scheduling of streaming
applications in unstructured meshes,” in IFIP Networking, Aachen, DE, May
2009.

83

Bibliography

[30] ——, “Scheduling P2P multimedia streams: Can we achieve performance and
robustness?” in 3-rd IEEE International Conference on Internet Multimedia
Systems Architecture and Applications (IMSAA-09), 2009, pp. 1–6.

[31] A. Russo and R. Lo Cigno, “Delay-Aware Push/Pull Protocols for Live Video
Streaming in P2P Systems,” in IEEE International Conference on Communi-
cations (ICC’10), May 2010, pp. 1–5.

[32] C. Liang, Y. Guo, and Y. Liu, “Investigating the scheduling sensitivity of P2P
video streaming: An experimental study,” IEEE Transactions on Multimedia,
vol. 11, no. 3, pp. 348–360, april 2009.

[33] D. Ren, Y. T. H. Li, and S. H. G. Chan, “On reducing mesh delay for peer-to-
peer live streaming,” in IEEE INFOCOM, Phoenix, Arizona, April 2008.

[34] T. Locher, R. Meier, S. Schmid, and R. Wattenhofer, “Push-to-pull peer-to-peer
live streaming,” in Lecture notes in computer science, Berlin, DE, 2007.

[35] J. Chakareski, “Topology construction and resource allocation in p2p live
streaming,” in Intelligent Multimedia Communication: Techniques and Appli-
cations, ser. Studies in Computational Intelligence, C. Chen, Z. Li, and S. Lian,
Eds. Springer Berlin / Heidelberg, 2010, vol. 280, pp. 217–251.

[36] A. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo, “Chunk Distribution
in Mesh-Based Large Scale P2P Streaming Systems: a Fluid Approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 3, pp. 451–463,
March 2011.

[37] J. Seibert, D. Zage, F. S., Nita-rotaru, and C., “Experimental comparison of
peer-to-peer streaming overlays: An application perspective,” in 33rd IEEE
Conference on Local Computer Networks, Proceedings, 2008, pp. 1–6.

[38] J. Douceur, J. Mickens, T. Moscibroda, and D. Panigrahi, “Collaborative mea-
surements of upload speeds in p2p systems,” in IEEE INFOCOM, San Diego,
CA, March 2010.

[39] J. Seedorf, S. Kiesel, and M. Stiemerling, “Traffic localization for p2p-
applications: The alto approach,” in IEEE P2P, Seattle, WA, September 2009.

[40] L. Abeni, C. Kiraly, and R. Lo Cigno, “Robust scheduling of video streams in
network-aware p2p applications,” in IEEE ICC 2010, May 2010, pp. 1–5.

[41] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr, “Chain-
saw: Eliminating trees from overlay multicast,” in IPTPS, Ithaca, NY, February
2005.

[42] E. Setton, J. Noh, and B. Girod, “Congestion-distortion optimized peer-to-peer
video streaming,” in IEEE ICIP, Atlanta, Georgia, October 2006.

[43] L. Abeni, C. Kiraly, A. Russo, M. Biazzini, and R. Lo Cigno, “Design and im-
plementation of a generic library for P2P streaming,” inWorkshop on Advanced
Video Streaming Techniques for Peer-to-Peer Networks and Social Networking,
2010, Florence, Italy, October 2010, pp. 1–6.

84

Bibliography

[44] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with newscast,” in Pro-
ceedings of the 15th International Euro-Par Conference on Parallel Processing,
ser. Euro-Par ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 523–534.

[45] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “Gnustream: a P2P media stream-
ing system prototype,” in Proc. of the 2003 International Conf. on Multimedia
and Expo - Volume 1. Washington, DC, USA: IEEE Computer Society, 2003,
pp. 325–328.

[46] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “Promise: peer-to-
peer media streaming using collectcast,” in Proc. of ACM MULTIMEDIA ’03.
New York, NY, USA: ACM, 2003, pp. 45–54.

[47] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” SIGCOMM
Comput. Commun. Rev., vol. 31, pp. 149–160, August 2001.

[48] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang, “Inside the
new coolstreaming: Principles, measurements and performance implications,”
in IEEE INFOCOM, 2008, pp. 1031–1039.

[49] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Peer-to-peer live
streaming,” in IEEE INFOCOM, 2006.

[50] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-based
streaming,” in INFOCOM 2007. 26th IEEE International Conf. on Computer
Communications. IEEE, may 2007, pp. 1415 –1423.

[51] Y. Liu, “On the minimum delay peer-to-peer video streaming: how realtime
can it be?” in ACM Multimedia, Augsburg, DE, September 2007.

85

