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Abstract

The Internet is a global interconnection of networks representing nowadays one of the
most important telecommunication technologies. Born as an U.S. military project,
it has evolved in a worldwide communication system used by people every day. This
success is based on its “freedom” since no single organization or administration
entity governs or maintains it. This freedom also motivates the huge heterogeneity
of Internet services available today ranging from working activities (e.g., VoIP, e-
mail, etc.) to entertainment (e.g., video games, streaming, peer-to-peer, etc.) and
commerce (e.g., Amazon, eBay, etc.) just to name a few. The Internet is a fertile
and in constant evolution system. Every year new services and software platforms
are launched affecting not only the users’ activities (e.g. social networks) but also
the internal architecture of the networks (e.g., Content Delivery Network vs peer-
to-peer) or the devices used to access to the services (e.g., PC vs smartphones and
Internet tablets).

The richness of the Internet scenario is paid at the cost of its internal complexity.
Eric Schmidt, the CEO of Google, said: “The Internet is the first thing that humanity
has built that humanity doesn’t understand, the largest experiment in anarchy that
we have ever had.”1. At the origins, the Internet has been designed to operate on
few standardized services. None could have i) foreseen the success of this media and
ii) designed the network to cope with the plethora of nowadays services. If on the
one hand this diversity provides the Internet with a certain level of resiliency and
has driven innovation, on the other hand understanding its internal mechanisms is
a daunting task, made worse by the fast and constant deployment of new services
and applications.

However, behind what it could seem a chaotic scenario, the Internet is composed
by well defined markets in which big players participate having precise interests:

Users, representing the majority of the people which assess to the network. They
are interested in Quality of Experience - QoE, i.e., having good performance
when accessing to the network, avoiding for example long delay related to
the initial buffering when streaming a video. They are also interested in the

1http://www.brainyquote.com/quotes/authors/e/eric_schmidt.html
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Network Neutrality, preserving their freedom to use the Internet independently
from which service they are accessing;

Internet Service Providers - ISP, corresponding to organizations which provide
Internet access to the customers. They are interested in incrementing the
revenues through i) network engineering as to optimize the offered services
and ii) studying the users’ activity as to find new billing policies ;

Content providers, corresponding to organizations which sell a specific Internet
service, e.g., video streaming, file hosting, etc. As for ISPs, they are interested
in finding new way to make revenues. At the same time, they have to cope
also with illegal activities as content piracy, a common flaw since the early
days of peer-to-peer systems;

Government regulation agencies, corresponding to organizations which regu-
late some aspects of the Internet activities. For example, they study Service
Level Agreements - SLA between users and ISPs, comparing the quality of the
Internet access offered to the users with respect to the specifications written
in the contract signed.

Other activities as security are important for more than one player. Consider
for example malware and Denial of Service - DoS attacks. These can violate the
users’ privacy, damaging the network and violate some laws. Overall then, there are
several motivations to be interested in studying the Internet.

Since the early days, the scientific community has made giant steps toward un-
derstanding the Internet. We can generalize that two requirements have to be sat-
isfied. First of all, we need tools and methodologies as to inspect and characterize
the traffic at different granularities, i.e., per-packet, per-flow, per-port, per-user, etc.
In particular, traffic classification is one of most important activities performed by
network operators. It allows to identify which application has generated a given
communication and to study not only the whole network traffic aggregate but also
how different applications participate in the composition of the total traffic.

Leveraging on these tools and methodologies, we can further drill into performing
users and network characterization. For example, monitoring the traffic over long-
term periods, we can study the applications’ popularity trends and identify the rise
of new technologies. We can perform anomaly detection, i.e., study unexpected
network condition that might be related to either security issues of malfunctioning
hardware. We can optimize routing policies, study inter-ISP traffic, investigate the
energy consumption of the network elements or work on caching schemes related
social network content, just to name a few of the huge amount of research studies
recently conducted in the literature.
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In this thesis, we present our contributions in studying the Internet discussing
the tools and methodologies developed to characterize the network traffic. The
thesis is divided in two parts. In the first part we focus on traffic classification
methodologies starting from the problem definition and the available solutions in
the literature as reported in Chapter 1. In the remaining of the first part we focus on
KISS, a novel traffic classification technique we propose based on Stochastic Packet
Inspection (SPI) analysis. In particular, in Chapter 2 we describe the framework
used by the classifier which is then validated in Chapter 3 and 4 for UDP and TCP
traffic respectively. Chapter 5 is about the comparison of KISS with other state of
the art traffic classifier while in Chapter 6 we extend the KISS framework with some
clustering techniques.

Overall, KISS allows to reach a high level of accuracy in traffic classification which
is comparable or even better with respect to other traffic classifiers. It presents a
flexible structure which is able to identify a rich set of applications with a limited
amount of resource requirements.

In the second part of the thesis we study YouTube, the famous video streaming
system. Leveraging on Tstat, a passive traffic analyzer, we developed a methodol-
ogy to identify the YouTube video downloads and we conduct an in depth analysis
of many aspects of YouTube. In Chapter 7 we start presenting an overview of the
system and its components showing the internal mechanisms adopted. Chapter 8
reports an analysis of the available methodologies in the literature to study YouTube
and presents our methodology based on monitoring the real users’ activities consid-
ering different location, access technologies and devices. In the remaining chapters
we present the results of our analysis grouped in four different areas of interest:
video content properties (Chapter 9), internal load balancing and caching policies
(Chapter 10), users’ habits and behaviours (Chapter 11), and download performance
(Chapter 12).

Results show that YouTube is a complex system where several components in-
teract with precise policies used to control the communications. Besides its great
success, the system is far from being perfect and there is space for further optimiza-
tion. For example, mobile devices suffer more impairments during the download with
respect to PCs. Users stick to the default video resolution and are not interested
in changing the quality during the playback. Instead, it is common the abruptly
abort of the download. This behaviour is particularly critical because, coupled with
aggressive buffering policies used to ensure continuity in the playback, it leads to
waste a non negligible amount of traffic, i.e., the users download a portion of the
video which it is never played.

3
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Part I

Traffic Classification





Chapter 1

Introduction to Traffic
Classification

In this chapter we introduce the reader to the traffic classification. We start defin-
ing the problem, underlining the importance of this activity for the modern data
networks and the components of a traffic classifier. Then, we present a dissertation
on the available solutions in the literature starting from the early beginning to the
newest technologies. We conclude defining the metrics used to assess the quality of
a classification tool.

1.1 Problem definition

The traffic classification is the process of associating to a given data communication
the application that has generated it. Given a traffic aggregate composed by com-
munications generated by a mix of users using different applications, through the
traffic classification we group the communications based on some similarity concept.

In a complex scenario as the nowadays Internet, this is a strategic activity es-
pecially for Internet Service Providers (ISP) since it allows to obtain important
information on both the users’ behaviour and the network state. Consider for ex-
ample the popularity of the Internet services. Knowing how much a service is used
is important as to define billing policies or to optimize Quality of Service - QoS
policies. Starting from the traffic classification, we can perform important analysis
as anomaly detection, identifying unexpected conditions associated to malware or
Denial of Service (DDoS) attacks. Similarly, we can operate at security level as to
identify illegal activities like content piracy, particularly critical since the raise of
P2P systems.

Through continuous monitoring, all the analysis previously mentioned can be
extended identifying trends. For example, from the evolution of the application

7



1 – Introduction to Traffic Classification

popularity we can identify the raise or drop of some service. This information might
crucial for an operator leading to network re-engineering. Consider for example High
Definition (HD) video streaming services which require a huge amount of bandwidth
both at the last mile and (possibly) in the backbone. A sudden increase in the de-
mand of these services could be reflected in the need of an internal restructure of the
operator’s network. New commercial partnership might be suggested as well. For
example the deploy of local Content Delivery Network (CDN) caches can improve
the Quality of Experience (QoE) perceived by the users or Service Level Agreement
(SLA) between different operators. Overall then, the traffic classification is a fun-
damental step toward the characterization of a data network.

1.1.1 Classification objects and phases

The traffic classification is typically used by network providers or administrators
interested in study the traffic that is going to or coming from a set of internal hosts.
It requires to access to aggregates of traffic either in real time or with traffic traces.
In the first case, we are analysing the actual traffic flowing in the network, while
in the second case the traffic is collected in data files for later process. Both the
approaches are useful with respect to the type of analysis we are interested in. For
example, real time processing is useful for monitoring activities and to study the
traffic trends, while traffic traces can be used to investigate on specific activities.

As to classify the traffic, we need to define which are the classification objects.
A traffic classifier can elaborates three different type of objects:

• flow, corresponding to a directional communication in which an host A sends
traffic to a specific host B. Formally, this means all the packets sharing the
tuple (IPA, IPB, L4portA, L4portB);

• connection, corresponding to a non directional communication, in which we
are grouping two flows having opposite directions. Formally, we are grouping
the flows with either (IPA, IPB, L4portA, L4portB) or (IPB, IPA, L4portB, L4portA);

• endpoint, corresponding to all the flows and connections generated by a
single host. Formally this means all the communications sharing the tuple
(IP, L4port).

The three objects allow to inspect the traffic at different levels of granularity and
have to be used depending on the type of applications we are interested in. For
example, one can be interested in identifying a single flow (as in the case of a VoIP
stream), or in detecting an endpoint and therefore all packets sent/received from it
(as in the case of a P2P application).

Once the classification object is defined, then three phases are required as to
classify the traffic:

8



1.2 – State of the art

• Feature extraction, the process of characterizing the traffic. In this phase,
we extract a subset of information called features which characterize the com-
munications of a given application;

• Decision process, the process of modeling and defining the application la-
bel. In this phase, we exploit algorithms elaborating the traffic features and
creating a mathematical model. The classification then is performed checking
if a data communication match the generated model;

• Accuracy evaluation, the process of verifying the goodness of the classifica-
tion performed.

The feature extraction and the decision process correspond to the core of each
classifier. These two phases are orthogonal and in the literature there is a wide
range of approaches which can be used, as we will see in Sec. 1.2. As to evaluate the
classification accuracy, some standard metrics are available as detailed in Sec. 1.3.

1.2 State of the art

As to classify the traffic, a proper characterization of each application’s protocol is
needed. This requires a deep domain knowledge of the internal mechanisms exploited
by each applications. Unfortunately, it is difficult to acquire such knowledge since
the majority of the applications are not “open” i.e., they do not expose neither the
protocol specifications nor the other mechanisms exploited in the communications.
This scenario is further exacerbated by the adoption of encryption and tunneling
mechanisms as to protect the users’ privacy and increase the complexity of the
classification task. Moreover, the classifiers need to cope with the increase of the
traffic volume and higher bandwidth rates. Overall then, traffic classification is a
daunting task: it requires lightweight, scalable and accurate algorithms which do
not expose sensible information of the users’ activity.

Given this complexity, traffic classification is a hot topic for the networking
research community. A rich set of methodologies has been developed in the last
decade [5, 6, 16, 17, 21, 25, 26, 32, 38, 54, 40, 48, 51, 55, 53, 59, 64, 69, 73, 53, 37, 39]
but the “perfect oracle” is still far from being developed. In the following, we present
a dissertation on the most important methodologies, comparing keys aspects of
different solutions. We aim not to a complete survey on the subject but rather
to introduce the reader to the several aspects related to the traffic classification.
To better structure this overview, we divide the methodologies in a few categories
according to the information on which the classification is based.

Port-based classification: in the early days, only few services were available
on the Internet and most of the them run on a specific transport-layer port.

9
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In such a scenario, port-based classification was the most straightforward ap-
proach: each TCP/UDP port is mapped to a specific application (e.g., TCP:80
= HTTP, UDP:53 = DNS). Unfortunately, in the nowadays Internet such
mechanism has become unreliable [36, 53] due to i) the proliferation of ap-
plications using random ports (e.g., P2P or VoIP); ii) tunneling mechanisms
based HTTP and adopted by the applications as to easily traverse middle-
boxes such as NAT or firewall. Overall, port-based mechanisms fail because
of their too naive mapping strategy which do not capture the specific nature
of each application.

Deep Packet Inspection - DPI: Deep Packet Inspection (DPI) tools exploit
pattern matching and regular expression looking for keywords inside the packet
payload. For example, if the payload starts with the string ’BitTorrent’ than
it is very likely that the flow has been generated by the BitTorrent application.
In this case, the feature extraction process is represented by the definition of
the matching rules which are collected in a dictionary. Instead, the decision
process is based on checking the list of rules until a match is found.

This mechanism can be extended with more complex rules that require the
analysis of a sequence of packets correlating also the two directions of com-
munication. For example, considering the HTTP protocol, the GET command
sent by a client is expected to be followed by a reply (e.g., 200 OK) sent by
the server contacted. In this case the classification mechanism corresponds
to a Finite State Automaton - FSA that reflects the internal states of the
application’s protocol.

DPI tools represent the most used technology today with several solutions
either commercial [56, 65, 57, 18] or Open Source [72, 58, 43]. However, despite
this popularity they present important limitations:

• the identification of the classification rules requires a complex reverse en-
gineering of the application mechanisms and the robustness of the rules
can be weak. In fact, application’s update can introduce modifications
at protocol level or new features can be added compromising the iden-
tification rules and the classification accuracy. It follows that DPI tools
require a continuous maintenance;

• packet inspection is not able to cope with protocol encryption or obfus-
cation since in this case the payload corresponds to a random sequence
of number;

• payload inspection techniques are hardly scalable. In fact, they require
too much memory and computation resources to be deployed on backbone
links;

10
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• the packet payload usually contains sensible information about the users’
activity. Given the possible privacy violation, this methodology rise some
questions about the validity of the approach by the Internet users.

Statistical classifiers: this class of methodologies leverage on a statistical char-
acterization of the traffic of each application without the need of payload
inspection or complex reverse engineering operations. The rationale behind
this approach is that different Internet services present different traffic pat-
terns. Compare for example generic web traffic and a VoIP call. In the first
case the traffic is composed by shorts and irregular communications where
the majority of the volume is downloaded from the Web server. A VoIP call
instead presents packets of specific size with a proper interleaving, while the
volume is usually symmetrical.

A statistical classifier is based on the analysis of protocol feature i.e., a statisti-
cal representation of both the protocol characteristics and the dynamic of the
application’s communications. This characterization is then further processed
using different techniques

• Unsupervised Machine-Learning: Unsupervised Machine-Learning
algorithms, from which clustering and neural networks are the most fa-
mous, are data mining techniques used very often in the field of traffic
classification [4, 51, 6, 19, 22]. They allow to group communications look-
ing for a hidden structure of unlabeled data. In this case, the decision
process in based on a training which operates without any knowledge of
the mix of applications to classify. For example, given an aggregate of
traffic obtained from 5 different applications, in the best case an algo-
rithm is able to split the communications in 5 groups. The quality of the
classification is related to the homogeneity of each group i.e., the more it
contains only points of a single application, the better the accuracy.

Even if these algorithms can easily group the communications, they can-
not identify which application is related to each group. As such, to eval-
uate the accuracy of the classification we need a ground truth. Moreover,
tuning the parameters can be tricky since it is difficult to map them with
respect to the expected output;

• Supervised Machine-Learning: in this class we can find techniques as
Naive Bayes [54] classifiers, C4.5 and other Decision Trees algorithms [41]
or Support Vector Machines [5, 25]. As for the previous class, also this
family of algorithms is borrowed from the data mining research field.
Differently from unsupervised techniques, in this case the training process
requires that the flows are pre-labeled i.e., the flows have to be already
divided is classes. This pre-process allows to gain an higher classification

11



1 – Introduction to Traffic Classification

Oracle Classification
True False

Classification
Result

Positive True Positive False Positive
Negative False Negative True Negative

Table 1.1. Definition of False/True Positive and False/True Negative

accuracy but it also represents the major drawback of these techniques
requiring tedious manual inspection of the traffic or to rely on DPI tools
as to have a ground truth.

• Behavioural classifiers: behavioural classification techniques [38, 37,
73] target the classification of Internet hosts on the sole basis of the
transport layer traffic patterns they generate. For example, P2P hosts
contacts many different hosts typically using a single port, whereas a Web
server is contacted by different clients with multiple parallel connections.
This description can be obtained with different level of granularity, from
the simple count of the distinct ports used by each application [73, 37] to
more complex solutions in which graphs are used to track the connections
between endpoints [33, 35].

Compared to DPI tools, these class of algorithms are less “intrusive”, more
automated, and require less resources. Anyway, they usually have a lower accuracy
which justify the very slow adoption process of these technologies.

1.3 Testing methodology and metrics

Once a classifier has been designed, its performance must be evaluated and proper
metrics must be defined. Assessing the performance of Internet traffic classifiers
is not a trivial task due to the difficulty in knowing the ground truth, i.e., what
was the actual application that generated the traffic [53]: for the ground truth,
an oracle is needed. Testing the classification engine by means of artificial traffic
(e.g., by generating traffic in a testbed) solves the problem of knowing the ground
truth (you are the oracle), but reduces the representativeness of the experiments,
since synthetic traces are hardly representative of real world traffic. Assessing the
performance against traffic traces collected from operative networks is therefore
mandatory. To extract the ground truth from real traces we can exploit ad-hoc
classifiers (usually DPI) or inspecting manually the traffic connections. However,
the oracle may still be fooled.

To quantify the accuracy of the classification, we can measure False Positive (FP)
and True Positive (TP), and the False Negative (FN) and True Negative (TN). A
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1.3 – Testing methodology and metrics

test is said “True” if the classification result and the oracle are in agreement. A
test is said “False” on the contrary. The result of a test is “Positive” if the classifier
accepts the sample as belonging to the specific class. On the contrary a test is
“Negative”. For example, consider a flow. The oracle states that this flow is an
eMule flow. If the flow is classified as an eMule flow, then we have a True Positive.
If not, then we have a False Negative. Consider instead a flow which is not an eMule
flow according to the oracle. If the flow is classified as an eMule flow, then we have
a False Positive. If not, then we have a True Negative. Table 1.1 summarizes the
definitions.

The corresponding percentages must be evaluated as

• False Positive Percentage (%FP) is the percentage of negative samples that
were erroneously reported as being positive:

%FP = 100 ·
FP

Total Number of Negative Samples
(1.1)

• False Negative percentage (%FN) the proportion of positive samples that
were erroneously reported as negative:

%FN = 100 ·
FN

Total Number of Positive Samples
(1.2)

• True Positive Percentage (%TP) is 100 - %FN;

• True Negative Percentage (%TN) is 100 - %FP;

Other two important quality indexes are usually considered:

• Recall, representing the completeness of the classification, an defined as %TP;

• Precision, corresponding to exactness or fidelity of the classification and de-
fined as

Precision =
True Positives

True Positives+ False Positives
(1.3)

These two measures complement each other. In fact, a precision of 1.0 for a class C
means that every item labeled as belonging to C does indeed belong to C. It however
says nothing about the number of items from class C that were not labeled correctly.
A Recall of 1.0 means that every item from class C was labeled as belonging to class
C. It however says nothing about how many other items were incorrectly labeled as
belonging to class C.

Results are often expressed by means of a Confusion Matrix. In the field of
artificial intelligence, a confusion matrix is a visualization tool typically used in
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1 – Introduction to Traffic Classification

Classifier
Emule Bittorrent Recall

Oracle
Emule 90 10 90/(90+10)=0.9

Bittorrent 50 50 50/(50+50)= 0.5
Precision 90/(90+50) = 0.64 0/(0+10) = 0

Table 1.2. Example of confusion matrix.

machine-learning. Each column of the matrix represents the instances in a predicted
class as stated by the oracle, while each row represents the instances in an actual
class. One benefit of a confusion matrix is that it is easy to see if the system is
confusing two classes (i.e., commonly mislabeling one as another). In fact, in the
best case all the samples are correctly classified, the matrix presents values only
on the main diagonal. Consider for example Table 1.2 where a simple confusion
matrix is reported for the classification of 100 flows of Emule and BitTorrent. We
can observe that the classifier present some errors since there are values outside
the main diagonal. In particular, while for Emule traffic the classification is very
accurate (Recall=90%), this is not true for BitTorrent traffic (Precision=0.64).

The example reported allows to highlight an important difference between Recall
and Precision. While Recall is applied to each specific class of traffic measuring the
homogeneity of the classification, Precision measures how different types of traffic
are classified with respect to a specific class. In other words, since Recall is applied
to the rows of the table, the number of samples in each class can be different. This
instead cannot be true if we want to measure the Precision, otherwise the results
are biased.
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Chapter 2

KISS: Stochastic Packet
Inspection

2.1 Introduction

In the previous chapter we introduced the traffic classification. We have seen that,
despite the effort devoted to this activity and the significant progress in the field [69,
53, 48, 64, 54, 10, 6, 16, 38, 73, 5], the ultimate and definitive solution is still far from
being available. DPI tools are still regarded as the state of the art and deployed in
practice, even if it is well known that the proliferation of proprietary and evolving
protocols and the adoption of strong encryption techniques are deemed to make DPI
ineffective. Conversely, alternative solutions based on a statistical characterization
of the traffic solve some of the issues of DPI classifiers but are usually less precise
or target a limited set of applications.

In this chapter we focus on Stochastic Packet Inspection (SPI), a new method-
ology which try to fuse the benefits of the payload inspection used by the DPI
with the flexibility of a statistical classifier. The intuition behind SPI is that an
application-layer protocol can be identified by statistically characterizing the values
observed in a stream of packets. Consider for example the problem of identifying
foreign languages. One may try to differentiate the languages based on a dictio-
nary of known words (e.g., “Thanks” for English, “Merci” for French, “Grazie” for
Italian and so on). This is the typical approach used by DPI where we inspect the
packet payload looking for keywords related to different application-layer protocols.
A different approach instead can be based on the analysis of the cacophony of the
conversation e.g., observing the frequencies and the position of symbols like “x”, or
“h”, or “i” in the communication. In this case we exploit syntax properties of the
language while ignoring the semantic.
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2 – KISS: Stochastic Packet Inspection

The application of SPI has been already proved successful in assisting the iden-
tification of particularly tricky traffic such as Skype [10]. In this work, we push this
intuition further generalizing the methodology to the identification of any applica-
tion running on both UDP and TCP. This is achieved by statistically characterizing
the frequencies of observed values in the packet payload, by performing a test similar
to the Pearson’s χ2 test. The results of the test are then used to compactly represent
application fingerprints, which we call Chi-Square Signatures - ChiSS (pronounced
as KISS).

While KISS fingerprints stem from packet inspection, they have several advan-
tages over classical DPI signatures:

• they can be automatically derived, i.e., no cumbersome and tedious reverse
engineering is required;

• they can be quickly updated, so that they are well apt to the context of fast-
evolving Internet applications;

• they are easily portable across different network settings, since fingerprints
depend solely on the L7-protocol format;

• they are robust to routing asymmetry, packet loss or sampling, retransmission,
or any possible strange packet arrival pattern, since they build over a statistical
characterization of protocol format rather than on a deterministic description;

• they are suitable to both per-flow and per-endpoint classification;

• their computational and memory requirements are limited, so that they are
suitable for on-line classification.

However, KISS shares with DPI classifiers the need to look at application layer
messages. As a drawback, in case of encrypted payload, both approaches become
ineffective.

After fingerprints have been extracted, proper classification must be achieved,
i.e., individual items should be placed into the most likely class. A huge set of
methodologies are available from the literature, from simple threshold based heuris-
tics [38], to Naive Bayesian classifiers [10, 54], to advanced statistical classification
techniques [15]. In this work, we compare a simple geometric decision process based
on Euclidean distance with Support Vector Machines (SVMs) [15], which are well
known in the statistical classification field, but have been rarely exploited in the
context of Internet traffic classification.

In the remaining of the chapter, we detail the KISS framework. We start present-
ing the internal workflow of the classifier, showing how the classification is achieved
starting from some traffic. Then we focus on the feature extraction process and
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Figure 2.1. Schematical representation of the KISS workflow.

the decision process, detailing the mathematical formulation and the methodologies
exploited as to describe the Internet traffic.

2.2 KISS workflow

The components of the KISS workflow are reported in Figure 2.1. As we can see,
the internal structure of the classifier is complex and some steps are required as to
obtain the classification.

Oracle: starting from an aggregate traffic trace, the Oracle split the traffic is sub
traces, one for each application we are interested in the classification. This
process can be done manually, but it more common to rely on an ad-hoc DPI.
Beside the sub traces, when the splitting process is concluded, the Oracle gen-
erates a report specifying the application associated to each communication.
This report corresponds to the ground truth that will be used to assess the
classification performance;

Feature extraction: a statistical analysis is applied to the streams of packets
contained in the sub-traces obtained from the Oracle. This process allows to
extract the features that characterize each application which are collected in
the KISS signature;

Learning phase and decision process: a subset of the signature are used as
training set for a supervised machine-learning algorithm that generate the
KISS classification model. This model is then used to classify the remaining
portion of the signatures obtaining then a classification report;

17



2 – KISS: Stochastic Packet Inspection

Classification performance: the classification report obtained from the Oracle
is compared with the report obtained from KISS and a confusion matrix is
generated detailing the classification performance.

2.3 Feature extraction

A traditional DPI classifier inspects packet payload looking for deterministic pat-
terns, such as particular strings which are compared to those in a signature database.
The process of defining the signatures is a complex task that requires a deep knowl-
edge of the protocols that need to be identified. As such, any changes in a protocol
can invalidate the signature, which becomes outdated and must manually redefined.

The goal of KISS is instead to automatically discover application-layer header
format, without caring about specific values of the header fields: we aim at auto-
matically let the protocol format emerge. In fact, considering a protocol header, we
can identify a specific layout of fields such as constant identifiers, counters, words
from a small dictionary (message/protocol type, flags, etc), or truly random values
coming from encryption or compression algorithms. These coarse classes of fields
can be easily distinguished through a simple statistical characterization of the val-
ues observed in a sequence of packets (identifiers are constant, counters increments
according to step, etc.).

Let’s suppose that each packet payload starts with an application protocol header.
Focusing on the first bytes of the payload, we can create statistical fingerprint of the
protocol header with a number of different metrics, such as the Entropy measure,
the Pearson’s χ2 measure, the Kullback-Leibner divergence, etc. In particular KISS
is based on the application of a simple Chi-Square like test. The test originally
estimates the goodness-of-fit between observed samples of a random variable and a
given theoretical distribution. Assume that the possible outcomes of an experiment
are K different values; and Ok are the empirical frequencies of the observed values,
out of C total observations (

∑

k Ok = C). Let Ek be the number of expected obser-
vations of k for the theoretical distribution Ek = C · pk with pk the probability of
value k. Given that C is large, the distribution of the random variable

X =
K
∑

k=1

(Ok − Ek)
2

Ek

(2.1)

that represents the distance between the observed empirical and theoretical distribu-
tions, can be approximated by a Chi-Square, or χ2, distribution with K − 1 degrees
of freedom. In the classical goodness of fit test, the values of X are compared with
the typical values of a Chi-Square distributed random variable: the frequent occur-
rence of low probability values is interpreted as an indication of a bad fitting. In
KISS, we build a similar experiment analyzing the content of groups of bits, called

18



2.3 – Feature extraction

Figure 2.2. Scheme of signature extraction process for UDP traffic

chunks, taken from the packet payload we want to classify. Intuitively, if the group
of bits corresponds to a constant value, than the distribution is far from being uni-
form. Conversely if only some bits are constant, then the distribution is closer to
be uniform.

As to perform such analysis, we need to identify the application protocol header.
inside the packet payload. This process is strictly related to the transport protocol
adopted by the application. In fact, since UDP is a connectionless protocol, the
first bytes of the payload of each UDP packet typically contain application layer
protocol header. Conversely, in case of TCP, the segmentation introduced at the
transport layer reduces the chances that a TCP segment carries the application
protocol header. However, we can expect that the very few segments after the
TCP handshake carries information that are specific to each protocol (e.g., as in
behavioral classification approaches [6, 16] that exploit the size and arrival time of
the first few packets of a flow).

2.3.1 KISS Signature for UDP Traffic

Figure 2.2 reports the scheme of the process used to generate the KISS signatures
for UDP traffic. We start considering a stream of packets corresponding to either
a specific flow or endpoint (see Chapter 1.1.1). The first N bytes of each packet
payload are divided into G groups of b consecutive bits. Each group g corresponds to
a chunk and can take integer values in [0,2b − 1]. From packets of the same stream,
we collect, for each group g, the number of observations of each value i ∈ [0,2b − 1]
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2 – KISS: Stochastic Packet Inspection

denoted as O
(g)
i . We then define a window of C packets, in which we compute

Xg =
2b−1
∑

i=0

(

O
(g)
i − E

(g)
i

)2

E
(g)
i

(2.2)

and collect them in the vector

X = [X1, X2, · · · , XG ] (2.3)

which is the KISS signature.

Suppose for example, to consider chunks of 4 bits (b = 4) and to consider the
first chunk of the payload. For a window of C packets, we are extracting the first
chunk and counting how many times it assumes value 0,1,. . . ,15. In the end, Eq.(2.2)
measure the distance between the empirical distribution of the observed values with
the expected one. One possibility to characterize a given protocol is to estimate
the expected distribution {E

(g)
i } for each group g, so that the set of signatures are

created by describing the expected distribution of the protocols of interest. During
the classification process then, the observed group g distribution {O

(g)
i } must be

compared to each of the {E
(g)
i } in the database, for example using the Chi-square

test to select the most likely distribution. However, this process ends up to be
complex since there should be too many distribution to compare. Moreover, it
presents the same rigidity of a DPI classifier. Suppose for example that the protocol
has a “flow ID” in group 1. Consider now two flows, one used for training and one
for testing, generated by the same application. Let the training flow take the value
12 in group 1 while the test flow take instead the value 1 in the same group. Clearly,
the comparison of the two observed distributions does not pass the Chi-square test,
and the test flow is not correctly classified as using the same protocol as the training
flow.

For the above motivations, we propose to simply check the distance between
the observed values and a reference distribution, which we choose as the uniform
distribution, i.e., E

(g)
i = E = C

2b
. In the previous example, the group randomness of

the two flows has the sameX1 values, that identify a “constant” value, independently
of the actual value. In other terms, we use a Chi-Square like test to measure the
randomness of groups of bits or as an implicit estimate of the source entropy.

To give an intuition of how (2.2) evolves versus C, consider the case in which
a deterministic group of bits is observed. Since for a deterministic group only one
value is possible, the value of Xg becomes

Xg =
2b−1
∑

i=0

(

O
(g)
i − E

(g)
i

)2

E
(g)
i

(2.4)
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=
2b−1
∑

i=0

(O
(g)
i − E)2

E
(2.5)

=
(C − E)2 +

(

2b − 1
)

E2

E
(2.6)

= C
(

2b − 1
)

(2.7)

Then, Xg linearly increases with C.
In general, for a block in which b0 bits are constant, it can be shown that

Xg = C
(

2b0 − 1
)

+ 2b0χ2
A (2.8)

where χ2
A is the Chi-Square with A degrees of freedom. In this case, A = 2b−b0 − 1.

To provide an example of the evolution of Xg, left plot in Figure 2.3 reports
the value of two 4-bit long chunks belonging to two streams of two different traffic
protocols, namely DNS and eMule, versus the number of collected packets C. The
steep lines corresponding to groups taken from the eMule stream refer to fields that
are almost constants. In this case, the longer the experiment is (larger C), the
larger the distance from the uniform distribution is, i.e., the bits are far from being
uniformly distributed. In the same plot, observe the lines referring to DNS traffic.
The lowest one has a very slow increase with C, its behavior is almost perfectly
random, the values of X3 being compatible with those of a Chi-Square distribution.
The bouncing line, instead, corresponds to the typical behavior of a counter. The
computation of Eq. (2.2) over consecutive bits of a counter cyclically varies from
very low values (when all the values have been seen the same number of times) to
large values. The periodicity of this behavior depends on the group position inside
the counter, while increasing the number of packets observed the distribution decays
because the differences between the observed frequencies are less important.

While randomness provides a coarse classification over individual groups, by
jointly considering a set of G groups through the vector X the fingerprint becomes
extremely accurate. Observe right plot in Figure 2.3. Each point in the figure
corresponds to a different stream. A window of C = 80 packets is used to derive the
signatures using the couple of features (X2,X3) as coordinates. Points obtained from
DNS streams are displayed in the low left corner of the plot; points from eMule are
spread in the top part of the plot. Notice also that signatures of the same protocol
class are not identical. This is due to both the behavior of each application, and
to different implementations of the same protocol. For example, some eMule clients
can be downloading, uploading, or waiting, therefore exchanging different types of
messages. Similarly, different implementations of a DNS server can use different
random number generators to extract the query identifier. It is the scope of the
decision process to define the areas where points of the same protocols are expected.
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Figure 2.3. Evolution in time (left) and dispersions in space (right) of X of two
groups of 4 bits extracted from the second byte of UDP payloads.

Figure 2.4. SPI signatures of TCP traffic: G groups of b-bits long chunks are
extracted from the first P packets of F different flows (with C = F · P ) originated
from (or destined) to the same endpoint (IP, TCPport).

Intuitively, different protocols fall in different areas that are clearly identified and
easily separable: a simple straight horizontal line can effectively separate the two
regions considering this example. In general, more complex surfaces have to be
found.

2.3.2 KISS Signature for TCP Traffic

Differently from UDP, when considering TCP traffic only endpoints can be used as
classification objects. In fact, even if the application deliver packets with an appli-
cation header, because of the fragmentation operated by TCP it very complex to
retrieve such information. We can exploits only the first few packets after the end of
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(a) (b)

Figure 2.5. Example of SPI signatures of HTTP (a) and SMTP (b) protocols,
server endpoint is the destination.

the handshake which are very likely to carry an application header. This means that
a single flow is not enough to compute a KISS signature and we need to aggregate
different flows generated from or destined to the same endpoint (IP, TCPport). We
assume to be at the edge of the network, where all the endpoint traffic transits, and
separately consider the two traffic directions, i.e., the traffic directed to, and the
traffic originated from the endpoint (IP, TCPport). As reported in 2.4, signatures
are computed by observing the G groups of chunks over the first P packets of F
consecutive flows originated from (or destined to) the same endpoint, where P and
F satisfies C = P · F .

An example of KISS signatures for two different protocols, namely HTTP and
SMTP is given in 2.5. The classical header representation is adopted, representing
chunks in network order from left to right, top to bottom. Four bytes are reported
on each row (i.e., 8 chunks) and, for reference, bit offsets are reported at the top.
Each chunk reports the Xg value normalized, which is also visually represented in a
gray scale. Lighter colors correspond to higher values of Xg, suggesting determin-
istic fields, while darker colors correspond to low values of Xg, hinting to random
fields. Comparing 2.5(a) and 2.5(b) we can confirm that, though the randomness
test provides only a coarse classification over individual groups, and expressive fin-
gerprints can be built by considering the whole set of G chunks. This allows to
clearly differentiate between protocols.

To grasp the KISS signatures expressiveness, let us first consider the case of
the Web service, implemented over the simple and stateless HTTP protocol. In
this case, requests directed toward the server often begins with “GET /”: the high
occurrence of this 5-characters string translates into the first 10 chunks to be almost
deterministic (high Xg values). Variability of the first chunks is due to the fact that
server can receive other HTTP methods than GET (e.g., POST, HEAD, PUT). Variability
of subsequent chunks is instead tied to the different resources that can be specified
after the method (e.g., URL in case of GET, parameters in case of POST, etc.).

Interestingly, HTTP uses an ASCII alphabet, which translates also into a reduced
set of values which each chunk can take. Given a byte, since we use b = 4 bits long
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chunks, an ASCII encoded character is split into two chunks, corresponding to the
most and least significant part of the byte respectively. The most significant chunk
shows higher determinism (Xg ≃0.6), while least significant chunk shows higher
randomness (Xg ≃0.3). For example, consider the ASCII uppercase letters {A,. . . ,Z}
which take hexadecimal values in {0× 41, . . . ,0× 54}. The most significant bits of
a character fall into a chunk that takes only values of 4 and 5. Conversely, least
significant bits falls into a chunk that takes any possible values from 0 to 15. This
leads to different Xg values, i.e., a different randomness. In Figure 2.5(a), the impact
of ASCII encoding can be appreciated by observing the alternation of lighter and
darker chunks.

Let us now consider the SMTP protocol signature reported in Figure 2.5(b).
Recall that an SMTP client contacts a server with the typical sequence of com-
mands EHLO, MAIL, RCPT, DATA. Notice that these commands are 4-characters long
(which correspond to 8-chunks) and, with the exception of the DATA command, are
followed by a space character and some parameters of variable length. Since several
commands are used during the same session, there is a larger number of observed
symbols, which therefore decrease Xg of corresponding chunks. Also in the SMTP
protocol case, commands are encoded using ASCII alphabet, causing a higher Xg

value for most significant chunks than for least significant chunks.1 The highly
probable space character at the 5th byte causes the 9th and 10th chunks to take
deterministic values, as the high Xg value observed in such position shows. Chunks
corresponding to characters after the 5th position may contain any symbol of the
ASCII alphabet, (e.g., angle brackets to enclose mail addresses, etc.) or user data,
which then decrease the Xg values of corresponding chunks.

2.4 Decision Process

When the feature extraction is completed, the KISS signatures have to be used to i)
create a classification model using a training phase; ii) classify the data communica-
tion using the model created. As suggested by the examples reported in Figure 2.3
and Figure 2.5, KISS signatures are better suited for a geometrical analysis. Con-
sidering the Xg values as geometrical coordinates, each signature corresponds to a
point in an hyper space. If two applications are different and the signature generated
are enough representative, they are associated to clouds of points in two different
areas of the hyper space. The classification model then should describe the geom-
etry of the clouds while the classification is straightforward: if a point fall in the
area of an application, then it is very likely that it is associated to that application.
Instead, if the point fall outside all the areas, then the flows it either forced to one

1The higher variability of the first 8 chunks is also due to other possible commands (e.g., VRFY),
the presence of old clients (e.g., HELO instead of EHLO), clients using lower case letters, etc.
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Figure 2.7. Schematic representation of KISS learning steps.

of the known classes (e.g., considering the closest cloud) or it left unlabeled (e.g., it
“noise” or correspond to unknown traffic). An schematic example of this process is
reported in Figure 2.6.

2.4.1 SVM Decision Process

Among the different machine-learning approaches available (see Chapter 1.2), KISS
is based on Support Vector Machine (SVM), a set of supervised learning methods
used for classification and regression. The key idea of SVM is to displace the training
samples (by means of a transformation from the original N-dimensional space to a
possibly infinite-dimensional space) so that samples belonging to different classes
can be separated by the simplest surface, i.e., an hyper-plane. This makes SVMs
very powerful:

• they are robust to the training set size and composition;

• their computational and memory requirements are very limited during the
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classification phase, even if the training phase can be computationally expen-
sive;

• they exhibit a very high discriminating power, so that they typically achieve
very high classification accuracy;

• there is a large number of efficient algorithms and implementations already
available. In particular, in this paper we adopted the LIBSVM [47] implemen-
tation.

The SVM learning process is used as reported in Figure 2.7. We start by consid-
ering some streams that belong to the set of applications we want to model. Streams
are then fed into a chunker, whose role is to derive the KISS signatures. Then, the
signature sets are randomly sampled by the sampler, so as to select the training set.
The training set is then fed to the learning system after which the KISS model is
produced. Notice that the output of the SVM training phase is a definition of a
number of regions equal to the number of classes defined during the training phase,
e.g., one for each protocol that is offered during the training phase. This implies
that a sample will then always be classified as belonging to one of the known classes.
Considering traffic classification, an additional region is needed to classify all sam-
ples that do not belong to any of the given protocols, i.e., to represent unknown
protocols. Thus, the training set must contain two types of signatures: i) the ones
referring to traffic generated by the applications to classify; ii) the ones representing
all the remaining traffic, which we refer to as background. It represents the set of
applications that we cannot classify or we are not interested in classifying.
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Chapter 3

Evaluating KISS on UDP Traffic

We aim at assessing KISS performance in the most difficult scenario, whenever pos-
sible. For most of the results we show, we consider real traffic traces, collected from
an operative, totally uncontrolled network. In addition, to evaluate the performance
of KISS when dealing with new protocols, we also selected, as a case study, P2P-TV
applications. Indeed P2P-TV systems have been recently introduced and they are
starting to became popular. They rely on proprietary design and protocols, they
preferentially use UDP as transport protocol, and they are expected to offer a large
amount of traffic to the network; thus, their classification is going to be the more
and more important.

3.1 Testing Data sets

Table 3.1 describes the traces used to test the classifier reporting the total amount
of bytes, packets, flows and endpoints, and the collection time and duration of each
trace.

We assume packets belonging to the same flow/endpoint are exposed to the KISS
engine, so that after digesting C packets, a classification decision is taken, and a new
observation window begins. Therefore, several classification decisions are possibly
taken about a single flow or endpoint. In this paper, we consider independent
classifications, so that the same flow/endpoint can be classified differently at each
window. Notice that some reconciliation algorithm can be easily designed to increase
the accuracy of the classification by considering the set of classifications involving
the same flow or endpoint, e.g., adopting a majority criterion.

Notice that considering UDP traffic i) no assumption about observing the first set
of packets is stated; ii) there is no need to observe bidirectional streams of packets;
and iii) not all packets belonging to the same flow/endpoint must be exposed to the
classifier; possible packet drops, reordering, sampling can be present.
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Bytes Packets Flows Endpnts Time period
RealTrace I 53.13G 321M 18.25M 1.72M 22h, May ’06
RealTrace II 31.33G 133M 5.25M 1.02M 12h, Jun ’07
NapaTraces 10.25M 14M 132K 48.5K 3h, Apr ’08
SkypeTraces 3.7G 24.7M 966 559 96h, May ’06

Table 3.1. Description of the UDP data traces

Real Traffic Traces (RealTrace): these traces were collected from the network
of an Italian ISP, offering converged services, in which data, native VoIP [9],
and IPTV services share a single broadband connection. This network is
a very heterogeneous scenario, in which users are free to use the network
without any restriction. It therefore represents a very challenging scenario for
traffic classification. A probe node based on high-end PC running Linux has
been installed in a PoP located in Turin, in which more than 500 users are
connected, using more than 2000 different IP addresses (e.g., VoIP phones,
set-top-boxes, PCs, etc.). All packets entering/leaving the PoP have been
captured. The measurements presented in this paper refer to two data sets
that we call RealTrace-I and RealTrace-II, collected in 2006 and 2007.

Both traces contain many popular applications generating UDP traffic, in
particular we selected: i) Emule, ii) VoIP (over RTP), and iii) DNS protocols.
Indeed, these three protocols account for more than 80% of UDP endpoints,
corresponding to 95% of the flows, and to more than 96% of the total UDP
volume. In the remaining traffic, nearly 2% of flows are related to BitTorrent
accounting for less than 1% of bytes. Skype communications instead present
the typical mice/elephant behavior since a negligible number of flows account
for more than 1% of the total volume in both traces. Being dated back to 2006
and 2007, no P2P-TV traffic is present;

P2P-TV Traces (NapaTraces): to assess the performance of KISS with P2P-TV
traffic, we selected, among the available P2P-TV applications, PPLive, Joost,
SopCast and TVants. Since none of the selected applications were available at
the time of real traffic trace collection, we are forced to rely on ad-hoc traces.
We used a set of traces collected in the context of Napa-Wine [46] project,
in which a large scale experiment was organized to observe the performance
of the above mentioned P2P-TV applications. We refer to this data set as
NapaTraces and consists of packet level traces collected from more than 45
PCs running P2P-TV applications in 5 different Countries, at 11 different
institutions. The data set includes traces collected from PCs in Campus LANs,
Corporate networks with restrictive policies, home ADSL connections, so that
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both nodes with public and private IP addressing are present. We are therefore
confident that the heterogeneity of this data set is representative of a wide
range of different scenarios;

Skype Traces (SkypeTraces): we also use a public available data set for the
Skype traffic [71]. The data set contains both Skype traffic identified in [10]
and traces collected in a controlled environment using PCs running different
versions of Skype and different operating systems such as Windows, Linux and
Pocket-PC.

3.2 The oracle definition

To obtain the ground truth from an aggregated trace we developed a DPI classifier
that was explicitly designed. It was implemented in Tstat [24, 72], an its performance
were manually fine tuned and double checked. In particular, DPI rules can be
summarized as follow:

• DNS: we rely on simple port classification removing flows with meaningless
values in the 4 counters of the protocol header;

• RTP/RTCP: we rely on the state machine described in [9]. It combines a DPI
signature and correlates the value of the fields in consecutive packets (e.g., to
check the validity of the counters).

• Emule/BitTorrent: we developed a DPI classifier based on [34, 42] adapting
it to the considered scenario.

• Skype: we rely on the Bayesian framework described in [10].

All the aggregated traffic that do not match any of the rules is placed in a
sub trace called Background since it represents all the unknown protocols. Since
the oracle itself can be unreliable, accurate manual inspection and pinpointing of
suspect cases are detailed in the performance results.

3.3 Results

In this section we report a complete description of the classification performance
obtained considering UDP traffic. We start from a simple example, showing the
goodness of the SVM decision process with respect to an Euclidean decision process.
Then, we present more complex scenarios in which many applications are considered.
Finally, we consider the parameter tuning and the resources required by KISS as to
operate.
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3.3.1 Comparing Euclidean and SVM Decision Process

As described in Sec. 2.4, KISS exploits SVM to model the protocol signatures.
However, other solutions are possible, for example using the Euclidean distance,
each protocol can be described with an hyper-spheres which identify the area in
which the point of an application are expected to fall. The classification process is
then straightforward: a point that falls inside a sphere is classified according to the
protocol associated to that sphere, while a point that does not fall into any sphere
is assumed to be of an unknown protocol.

For a given class A, the representative hyper-sphere is fully defined by its center
X̄(A) and its radius ρ(A). X̄(A) is simply computed, component by component, as
the arithmetic mean of each signature in the training set of class A. The identifica-
tion of the radius is more complex. Indeed, the hyper-sphere should be big enough
to include all the points of the training, but it has to be small enough to avoid to
include samples of other classes. Using machine learning terminology, one wants to
maximize the True Positive ratio while minimizing the False Positive ratio.

Formally, the following equation can be used to state the problem:

ρ(A) = argmax
ρ

(

%TP (ρ)−%FP (ρ)
)

(3.1)

Notice that %TP (ρ) is computed considering samples of class A, while %FP (ρ)
is computed considering samples of all other classes of the training set.

To evaluate the performance of the two decision process, we consider a small
subset of the RealTrace-I data set, corresponding to the first 5GBytes of data.
Tstat is used to split the trace into 4 sub traces: each sub trace includes only packets
classified as belonging to the same protocol, i.e., RTP, Emule, DNS and Background
traffic only. Each trace is fed to the KISS classifier, so that signatures are evaluated.
Both SVM and Euclidean decision processes are trained using 300 signatures for
each class, and the remaining signatures are used to assess the performance of KISS.
Recall that a signature is generated every C samples, so that a flow/endpoint can
be classified several times (i.e., every C packets).

Table 3.2 summarizes the results. Each row corresponds to a class of traffic
according to the oracle. The second column reports the total number of signatures
extracted from each sub trace while the remaining columns report the percentages
of True Positives and False Positives as defined in Chapter 1.3 for both Euclidean
and SVM decision process.

The SVM results are astonishing: the True Positives are always higher than 99%
while False Positives are negligible. The performance of the Euclidean classifier
are more variable, e.g., it performs very well for RTP but the accuracy decreases
when considering Emule and DNS protocols. This is related to the adoption of an
hyper-sphere as an approximation of the separation surface between classes. To this
extent, Figure 3.1 reports Eq. (3.1) as an example of optimization for RTP, Emule
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KISS-Euclidean KISS-SVM
Tot. %TP %FP %TP %FP

Tstat

RTP 8386 99.9 - 99.9 -
Emule 1527 84.3 0.12 99.3 -
DNS 8245 91.3 - 99.9 0.01

Backg 2579 99.1 5.31 99.6 0.15

Table 3.2. Comparison of Euclidean and SVM decision process on RealTrace I.
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Figure 3.1. Euclidean Decision Process: %TP - %FP for different values of
of the hyper-sphere radius ρ.

and DNS. For RTP, any choice of ρ(RTP ) ∈ [122, 280] allows to almost perfectly
identify RTP traffic. On the contrary, Emule class is not well represented by the
hyper-sphere surface, so that any choice of ρ(Emule) trades between %TP and %FP.
Similar reasoning applies for DNS traffic. This shows that a simple decision process
based on Euclidean distance is hard to design, while the adoption of SVM allows
to avoid this problem. Therefore, in the following we will consider only the SVM
classifier and we will investigate how KISS performance are affected by parameters
setting and different scenarios.

3.3.2 P2P-TV traffic traces

To prove the KISS flexibility with respect to different applications, we explore its
ability to identify traffic generated by P2P-TV applications. The design and engi-
neering of a DPI mechanism for proprietary and closed P2P-TV applications would
be daunting and extremely expensive. On the contrary, training KISS is quite
straightforward: a packet trace is captured simply running the application, and
then it is used to train the SVM. RealTrace-I instead is used as Background class.

31



3 – Evaluating KISS on UDP Traffic

Tot. Joost PPLive SopCast TVants Background

Joost 33514 98.1 - - - 1.9
PPLive 84452 - 100.0 - - -
SopCast 84473 - - 99.9 - 0.1
TVants 27184 - - - 100.0 -

RealTrace I 1.2M 0.3 - - - 99.7

Table 3.3. Confusion matrix considering P2P-TV applications.
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Figure 3.2. False Positive percentage variation versus time. The Background of
the classification model do not consider any of the target applications.

In this way, all traces from the NapaTraces data set are used to evaluate %TP while
RealTrace-I is instead used to evaluate the %FP, since we assume no P2P-TV traffic
could be present during 2006. The total amount of time required to complete this
task is less than 6 hours.

Results are summarized in Table 3.3, which reports percentages computed over
more that 1.2 millions of tests. Labels on the lines represents the ground truth. Also
in this case, results are amazing: KISS is able to correctly classify more than 98.1%
of samples as True Positives in the worst case, and only 0.3% of False Positives are
present.

3.3.3 Signature Robustness

We are first interested in quantifying KISS robustness with respect to a training
set independent from the test set. We thus perform an experiment in which the
SVM is trained using samples extracted from the initial part of the RealTrace-I. A 9
hour long subset of RealTrace-I is considered, but the training set includes samples
extracted from the first 30 minutes only. As in the experiment described in Sec. 3.3.1,
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Figure 3.3. Example of an endpoint that causes False Positives. Different classi-
fication windows over time.

only RTP, Emule, DNS are considered as known classes while the remaining traffic
is included in the Background class. Results are reported in Figure 3.2 showing only
Background False Positive percentages since the %TP is always higher than 99%.
The plot confirms the intuition that the characterization of the Background traffic
may be a problem, since there are peaks that clearly show that the SVM is fooled by
the sudden appearance of unknown protocols that were not included in the training
set.

Investigating further, we notice that the high percentage of Background traffic
classified as RTP traffic is due a single endpoint which is receiving traffic with the
same “format” of RTP protocol. However, the DPI based oracle did not classify this
endpoint as RTP, since a mismatch in the RTP field is present: it takes a values of
1 instead of 2. Apart from this difference, all other fields are in perfect agreement
with the RTP standard. Moreover, all packets received by this endpoint have 172B
of UDP payload, which is typical of VoIP streams using the ITU-T G.711 encoder [9]
used in the FastWeb network. We then claim that this is an actual RTP flow, but the
DPI oracle was fooled by the wrong version value. On the contrary, KISS correctly
classifies this flow as a RTP flow.

Similarly, investigating the samples that are misclassified as DNS (e.g., from
15:30 to 16:00) we notice that a single endpoint (listening to port number 9940) is the
only responsible for this behavior. We manually inspected this traffic, and verified
that it cannot be a DNS endpoint, so that the oracle is reliable. Interestingly, no
sample of this endpoint is included in the training set of Background traffic. Since
the SVM is always forced to classify the sample as one of the possible classes, it
resolves to classify it as DNS rather than Background. Considering this endpoint
only, Figure 3.3 shows the probability that the SVM evaluates it as a Background or
DNS sample versus time. It can be seen that some uncertainty is present. Repeating
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Figure 3.4. False Positive percentage variation versus time. The Background of
the classification model contains also traffic of the target classes.

the experiment by including some of these endpoint signatures in the Background
training set, KISS correctly classifies it. This is an example of “under-training” of
SVM.

Similar conclusions can be drawn investigating the Emule False Positives. They
all correspond to endpoints listening to port number 3074, possibly related to the
Xbox-Live protocol, which is sometimes confused by the SVM as Emule traffic,
since the SVM is “under-trained”. Also in this case, by adding some samples of
these endpoints to the training set, no more FP is detected.

We can conclude that KISS shows excellent performance, since in all cases the
True Positive percentages are higher than 99%. The training of the SVM is robust
considering the signature of known protocols, but it can suffer when the Background
training set is small or does not include all protocols that may be present in the
considered network scenario. This leaves room for improving the performance of
KISS by carefully selecting the training set samples. Notice that the accuracy of any
supervised machine learning decision process is strongly affected by the coverage and
accuracy of the training set. Intuitively, a limited or outdated training set performs
worse than an updated one.

3.3.4 Training with the Aggregate

A possible weakness of KISS is that the SVM must be trained with the Background
traffic, i.e., with actual traffic extracted from the network the classifier is used rep-
resenting the unknown protocols. While the adoption of actual traffic does not
pose particular issues, the extraction of “pure” Background is very questionable. A
possible solution to this issue is to use, during the SVM learning phase, the whole
aggregate of traffic as unknown traffic. This poses some problems, since samples of
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Tot. BitT. Emule RTCP RTP DNS Skype SopCast TVants PPLive Backg

BitT. 1268 100 - - - - - - - - -
Emule 57255 0.02 99.15 - - 0.03 - - - - 0.80
RTCP 2407 - - 99.96 - - - - - - 0.04
RTP 585647 - - - 99.79 - - - - - 0.21
DNS 2707 0.46 - - - 99.54 - - - - -

Skype 46600 - - - - - 99.61 - - - 0.39
SopCast 83460 - - - - - - 99.95 - - 0.05
TVants 25748 - - - - - - - 99.69 - 0.73
PPLive 27278 - - - - - - - - 99.24 0.76
Backg 84273 0.27 7.59 - 2.67 0.22 - - - - 89.25

Table 3.4. Confusion matrix considering P2P-TV, Real-Traces and Skype traffic.

a given class may be part of the aggregate traffic as well.
Figure 3.4 shows results obtained by running KISS in the scenario previously

described, but using the aggregate trace to train the SVM for the unknown traffic.
Also in this case the True Positive percentage remains higher than 99% (results are
not plotted for the sake of brevity). Considering FP, apart from the RTP endpoint
that the oracle misclassifies, we observe an increased percentage of samples being
classified as Emule (with an average %FP=4.5%). Nonetheless, results are very
good.

3.3.5 Training with many classes

All the results reported so far consider only 3 or 4 protocols. It is interesting to
analyze the performance of the classifier with a larger number of target protocols.
Using RealTrace-II, P2P-TV testbed and the Skype data sets we create a KISS
model including nine different classes, plus one for the Background traffic. Each
class has been characterized with 300 signatures randomly chosen from the initial
portion of each trace. Table 3.4 reports the confusion matrix of the classification
result. As before, labels on the lines represents the ground truth. The first column
reports the total number of signature, while the other columns show the agreement
between the ground truth and KISS. Again, results are impressive: KISS always
achieves more than 99% of True Positives, with less than 10% of False Positives
from the background class. Further analysis revealed that 7.59% of the false Emule
samples are related to a single endpoint, which generates lots of short flows directed
to an high number of different destinations. Unfortunately, we were not able to
identify which actual protocol was used. After the adding of some samples of this
endpoint in the background training set, all Emule False Positives disappeared. For
what concern the 2.67% of samples identified as RTP, more than the 90% of them
is generated by only two endpoints that use a RTP protocol with wrong version
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number as previously discussed in Sec. 3.3.3.

3.4 Parameters selection and Tuning

The signature creation approach previously presented is based on a number of pa-
rameters whose setting may be critical. These are the criteria we used to set them:

Bits per group, b = 4. The choice of b should trade-off two opposite needs. From
the one hand, we would like b to be the closest as possible to typical length
of protocol fields; since protocols dialogs are usually based on words whose
length is multiple of the byte or, sometimes, is half of a byte, b should be 4
or 8 or a multiple of 8. From the other hand, b should be small enough to
allow that the packet window C over which the Chi-Square test is statistically
significant is not too large, so that streams can be classified even if they are
not too long, they are classified in short time and live classification is possible.
Thus, we chose b = 4.

Number of bytes per packet, N = 12. In general, classification accuracy
increases with the number of considered bytes per packet. However, complexity
of the classification tool increases also with the N , in terms of both memory
and computational complexity. As a convenient trade-off we choose N = 12.
Given b = 4 this values corresponds to G = 24 groups. Another reason to
choose N = 12 bytes is that, this way, we collect 20 bytes of the IP packet
payload (12 bytes + 8 bytes of the UDP header) that is the minimum size of
the TCP header and the typical value used by measurement tools. Notice that
the optimal value of N depends on the targeted applications. For example,
DNS and Emule can be clearly identified by only considering (X2,X3) (see
Figure 2.3). However, when considering different protocols, possibly more and
different groups must be considered.

Packet window, C = 80. While we would like to keep the packet window as
small as possible, the estimation of the observed distribution is considered to
be statistically significant if the number of samples for each value is at least
5. Having chosen b = 4, in order to have Ei = C/2b equal to 5, we need C to
be equal to about 80.

However, since in KISS we are not performing a real Chi-square test, we are inter-
ested in the impact of smaller values of C, which would allow an earlier classification.
Figure 3.5 reports the True Positive percentages of well-known protocols, and the
False Positive percentages, without distinguishing among protocols. Confidence in-
tervals with a confidence level of 5% are evaluated over 250 different sub-traces from
RealTrace I, each comprising more than 100 samples. The Figure clearly shows that
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Figure 3.6. CDF of the flow/endpoints length in packets (on the left), and bytes
(on the right). The vertical line is in correspondence of 80 packets.

the %TP is almost not affected by the number of samples that are considered to
evaluate the observed frequencies in Eq. (2.1). Indeed, the format of the considered
protocols is very different and the SVM has little problems in distinguishing them
even if C is small. However, the %FP is much more sensitive to C, and only for
C > 80 it goes below 5%.

3.4.1 Coverage

The packet window size C plays an important role in the KISS design, and it may
affects the applicability of KISS. Indeed, given the connectionless characteristic of
UDP, one expects that UDP flows and endpoints last for few packets. Figure 3.6
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Figure 3.7. Classification accuracy versus training set size.

confirms this intuition reporting the Cumulative Distribution Function (CDF) of
flow length for both flow/endpoint packets and bytes. All incoming UDP traffic in
RealTrace-I is considered to derive the CDF. The left plot clearly shows that 40% of
flows and endpoints has only 1 packet, while only 0.2% of flows and 5% of endpoints
have at least 80 packets. However, these flows/endpoints respectively account for
more than 93.8% and 98.6% of the bytes carried by UDP, as reported in the right
plot. This clearly shows that, while KISS is not suitable for the classification of short
lived UDP flows/endpoints, it can however successfully target the small fraction of
them that generate the majority of the traffic, i.e., long-lived flows.

3.4.2 Trainset set size

It is interesting to observe how performance changes with training sets of different
size. Results are plotted in Figure 3.7, which reports the %TP and %FP for in-
creasing training set size with confidence intervals evaluated over 10 tests with a
confidence level of 5%. The plot shows that KISS classifies RTP, DNS and Emule
correctly even with only 25 samples (worst case is %TP>91.73% for DNS) but
at least 75 samples are needed to have excellent results. Also in this case, more
problematic is the correct classification of the Background traffic, since the False
Positive percentage goes below 5% only when the training set comprises at least
200 samples. The intuition behind this is that the Background traffic is far more
heterogeneous with respect to traffic of a given protocol, and a larger number of
samples are required to accurately describe it.
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Packet processing Feature Extraction

EP state = hash(IPd, portd)
for g = 1 to G do
Pg = payload[g]

EP state.O[g][Pg]++

end for

E = C/2b (precomputed)
for g = 1 to G do
Chi[g] = 0

for i = 0 to 2b do
Chi[g] += (EP state.O[g][i]-E)2

end for
Chi[g] /= E

end for

Table 3.5. Pseudo algorithm for packet processing (left) and feature extraction (right).

Cost Analytical Example (G = 24,b = 4)

Memory allocation G · 2b counters 384 bytes
Packet processing (2G+ 1)lup+Gsim 49 lup + 24 sim
Feature selection 2b+1G lup + G com + (3·2b+1)G sim 768 lup + 24 com + 1176 sim

Table 3.6. Numerical case study of the resource requirements of the classifiers.

3.5 Complexity

Finally, in this section we investigate on the resource requirements of KISS. We
start presenting a functional analysis, investigating on costs involved in the packet
processing and protocol signatures creation. Then we present some results on the
classification responsiveness and memory consumption obtained analysing packet
level traces.

3.5.1 Functional analysis

To provide an analysis of the resource requirement of KISS, we follow a theoretical
approach calculating the memory occupation and the computational processing from
the formal algorithm specification. In this way, our evaluation is independent from
specific hardware platforms or code optimizations. Table 3.5 reports the pseudo
algorithms for packet processing (left) and feature extraction (right). Instead, Ta-
ble 3.6 summarizes both the theoretical the numerical quantification of the costs
considering the default configuration of the classifier.

KISS framework extracts application protocol fingerprints applying statistical
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analysis on the packet payload (see Chapter 2.3). For each new packet, the classi-
fier retrieve the data structure related to that endpoint (flow) performing an hash
operation using IPs and ports. Then, the first bytes of the payload are divided in
g groups of bits and the associated values are stored in the endpoint (flow) data
structure. When enough statistics have been collected a new signature is computed
accessing to the whole endpoint (flow) data structure and applying Eq. (2.2) also
reported in the following:

Xg =
2b−1
∑

i=0

(

O
(g)
i − E

(g)
i

)2

E
(g)
i

(3.2)

where E
(g)
i = C/2b.

Memory footprint is mainly related to the data structures used to compute the
statistics. KISS requires a table of G · 2b counters for each endpoint to collect
the observed frequencies employed in the chi-square computation. Considering the
default parameters (i.e., G = 24 chunks of b = 4 bits) each endpoint requires 384
counters. A new signature is issued after a window of 80 packets (see Chapter 3.4
and Sec. 4.3) so each counter can be stored in a single byte and each endpoint (flow)
needs 384 bytes to store the statistics.

Instead, the computational cost are computed considering three classes of opera-
tions: lup for memory lookup operations, com for complex operations (i.e., floating
point computations), sim for simple operations (i.e., integer computations). Consid-
ering packet processing, memory lookup operations represent a critical cost for KISS
since we need to access to the packet payload without affecting the network card
speed while operating the classification in real time. In particular, KISS performs
2G+ 1 = 49 lookup operations for each packet, half of which are accesses to packet
payload. Then G integer increments are performed. Instead, the signature extrac-
tion process requires to access to the whole data structure of an endpoint (flow) for
a total of 768 lookup operations and to perform 24 floating point and 1176 integer
operations.

3.5.2 Example of resource consumption

As to better express the costs of the classification technique proposed, we performed
a simple example. We consider RealTrace-I, RealTrace-II and the NapaTraces data
set reported in Table 3.1. We create a classification model as described in the
previously described and we measure the actual resource consumption classifying the
packet traces on a common PC (Intel(R) Core(TM)2 Duo CPU T8300 @ 2.40GHz
with 4GB of Ram).

Overall, the traces are processed in less than 2 minutes with an average memory
consumption of 3MB. In Figure 3.8 we show the CDF of the amount of time needed
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Figure 3.8. Cumulative distribution function of time required by KISS to
generate a new signature.

to collect 80 packets for an endpoint. It can be observed that for the P2P-TV
applications a new signature is computed every 2 seconds while for the aggregated
traffic in RealTrace-I and RealTrace-II 90% of the endpoints need to wait less than
10 seconds.

The results obtained testify the goodness of the proposed technique and leave
space for further improvements through optimizations. For example, garbage col-
lections can be introduced as to better control the memory allocation while to I/O
primitives can be reduced as to speedup the classification process.
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Chapter 4

Evaluating KISS on TCP traffic

In this chapter we report the evaluation of KISS on TCP traffic. Recalling that
the classification overflow is the same for both TCP and UDP, (see Chapter 2.2),
the main difference in adopting TCP instead of UDP is on the process used to
extract the protocol signatures: only endpoints are considered, aggregating the first
P packets of F different flows.

In the remaining of this chapter, we start introducing the data set used. Then,
we present the classification results obtained and we conclude with a description of
the parameter tuning.

4.1 Data set

To evaluate KISS on TCP traffic we consider a data set collected during May 2008
at the egress router of Politecnico di Torino network. The traces correspond to a
one week long dataset, in which about 7000 internal hosts exchange data with more
than 3 million different hosts in the Internet. Details concerning the traffic volume,
in terms of number bytes, packets, flows, endpoints and signatures, are given in
Table 4.1. The table reports the total traffic volume, and the breakdown across the
most common application protocols considered, namely HTTP, FTP, IMAP, POP,
Skype, SMTP, SSH while the remaining are aggregated in the class “Other”.

We focus only on internal endpoints, i.e., servers whose IP address is internal to
the campus LAN (see Chapter 2.3.2). Moreover, we need to observe several flows
involving a single endpoint to gather a single signature, and thus take a classification
decision. In case of external endpoints, this means that several of our internal
hosts have to contact the same endpoint to collect enough packets to compute the
signature. While this is not an issue for popular external server and protocols
(e.g., popular Web sites), however it limits the number of protocols we could use
considering the dataset we use in this paper.
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Protocol Bytes (GB) Packets (M) Flows (k) Endpoints Signatures
HTTP 343.67 507.08 6531.19 177 114222
FTP 0.04 0.65 19.39 21 229
IMAP 0.73 1.34 2.49 10 66
POP 3.40 7.74 156.39 25 3551
Skype 1.95 20.38 145.22 322 2752
SMTP 61.00 126.61 4917.20 56 83677
SSH 8.84 19.47 31.64 141 304
Other 453.83 744.53 13400.98 1512 46773
Total 873.46 1427.80 25204.5 2246 251574

Table 4.1. TCP data set collected at Polito campus network.

Our dataset includes more than 250000 signatures, that refer to about 2250
endpoints. As expected, Web service constitutes the bulk of traffic, while a fairly
large amount of incoming SMTP traffic is present. The protocols we consider account
for more than 95% of the traffic (in terms of bytes, packets and flows), yielding to a
large fraction of the traffic to be labeled as “others”, which therefore includes other
unknown protocols.

Concerning the number of available signatures, notice that each internal endpoint
has to be contacted by F different hosts of at least P packets to compute the
signature. The number of signatures per protocol depends on the arrival pattern as
well as on the flow length as well.

4.1.1 The oracle definition

As already pointed out in [53], the definition of a reliable DPI oracle is a daunting
task, that we have to carry on due to the lack of a labeled dataset. Except for
the Skype protocol, for which we resort to [10], we devise a two-stages DPI oracle,
defined as follows.

• Port filter: we start considering TCP port number, focusing only on those
flows whose TCP destination port corresponds to well-known services, i.e., 80
for HTTP, 22 for SSH, and so on. By doing so, we forcibly miss some endpoint.
For example, HTTP servers running on port 8080 or on other non-standard
ports end-up in the “other” protocol sub-trace. However, this choice yields to
a conservative evaluation of the classification performance results;

• Protocol syntax check: the second phase involves application protocol
check, that is done using the Wireshark tool. Wireshark is a well-know sniffer
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Dst HTTP FTP SMTP IMAP Skype SSH POP Other

HTTP 94.94 0 0.06 2.58 0 0 0 2.39
FTP 0 98.59 0 0 0 0 0.03 0
SMTP 0 0 99.86 0 0 0 0 0
IMAP 0.02 0 0 90.97 0 0 0 0
Skype 0.01 0 0 0 100 0 0 0.05
SSH 0.05 0 0 0 0 100 0 0.03
POP 0.01 1.31 0.02 2.9 0 0 99.94 0
Other 4.97 0.1 0.06 3.55 0 0 0.03 97.53

Src HTTP FTP SMTP IMAP Skype SSH POP Other

HTTP 91.63 0 0.07 1.54 0 0 0 13.99
FTP 0.35 98.98 0.02 0 0 0 0 1.05
SMTP 0 0.03 99.45 0 0 0 0.03 0.03
IMAP 0 0 0 58.08 0 0 0 0
Skype 0.01 0 0 0 100 0 0 0.03
SSH 0.15 0 0 0 0 100 0 0.05
POP 0 0 0 0 0 0 99.59 0
Other 7.86 0.99 0.46 40.38 0 0 0.38 84.85

Table 4.2. Classification performance for traffic directed to (top) or originated
from (bottom) the server-side endpoint.

which is able to parse the headers of known protocols. In case during the pars-
ing Wireshark fails to identify the protocol, the flow is moved to a sub-trace
containing all the other protocols.

4.2 Performance evaluation

Evaluation of classification performance is conducted over the entire dataset, by
comparing the SVM labels to the DPI oracle labels for each signature. Results
reported in this section refer to a test in which the training set containing 5000
signatures, proportionally balanced across protocols. Instead, 1800 training signa-
ture are used to describe the “other” protocol set, since this set comprises possibly
several protocols and its proper description requires that such protocols are well
represented in the training set. A sensitivity analysis to the training set size is not
reported due to lack of space. Readers are referred to [44], which shows that, even
considering only 35 signatures per each of the known protocols the classification re-
sults are minimally compromised. This is a consequence of the discriminative power
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of SVM, whose performance are known to be highly robust even in presence of few
learning samples.

Each test is repeated 10 times, by randomizing the training set at each execution,
and validating the model on the remaining signatures. Average results over all 10
iterations are reported in Table 4.2. Each column corresponds to a sub-trace filtered
by the Oracle, which is fed to a trained SVM, whose output labels are reported on
each row. Thus, diagonal elements of the confusion matrix account for True Positive
classification (i.e., a protocol labeled as X by DPI is also labeled as X by SVM).
Conversely, cells outside the diagonal refer to misclassified signatures: a protocol
labeled as X by DPI is labeled as Y by SVM; this decision accounts for False
Positive classification of Y and False Negative classification of X.

Results considering the two different traffic directions are reported. Top (bottom)
portion of the table reports the case where traffic is destined to (originated from)
the internal server endpoints. Notice that, although classification results are very
good in both cases, best results are obtained when traffic is destined to the server
endpoints. This is visible for HTTP, IMAP and Other protocols. The intuition
behind this is that the client protocol requests are easier to characterize than the
server replies, which can be more variable. For example, HTTP requests use limited
set of protocol keyword as discussed in Sec. 2.3.2, while server answers can be much
more different.

Focusing on traffic destined to the server, we gather that true positive rate
classification always exceeds 90.97%, with an average of about 97.62%. Compared
to the UDP classification results presented in the previous chapter which yielded a
98% true positive rate in the worst case, the classification performance of TCP traffic
decreases. This is somehow expected: in the UDP case, application protocol headers
are present in each segment, yielding to very reliable KISS signatures; in the TCP
case, the TCP connection oriented service and segmentation algorithms affect the
KISS signatures, that are possibly computed over both application protocol headers
and actual data carried in the first 5 TCP flow segments.

4.3 Parameter Selection and Tuning

As for UDP Traffic, TCP signatures depend on a number of parameters, some of
which (b,C and N) pertain to the Xg metric while the remaining (P and F ) are
related to the description of the TCP endpoints. For the first group of parameters
are still valid the considerations reported while considering UDP traffic, i.e., b = 4
(chunks of 4 bits), N = 12 (consider the first 12 bytes of the payload) and C = 80
(80 packets to extract the χ2 from each chunk).

For the remaining parameters are valid the following observations:

Number of packets per flow (P = 5). The segmentation imposed by TCP yields
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an upper bound on P , the maximum number of packets at the beginning of a
flow carrying application header at the beginning of the payload. As far as the
number of packets per flow is concerned, we employ P = 5 which was observed
to be a good value in [6, 16]. Sensitivity analysis to P is provided in [44].

Number of flows per endpoint (F=C/P=16). Constraints on C and P yield
a lower bound on F = 16, the minimum number of flows to observe before an
endpoint classification decision can be taken. This translates into a constraint
on the classification timeliness, i.e., how fast and frequently the classification
can be taken, since the start of F different flows have to be observed prior that
a classification decision can be taken. Notice however that, the more active
the endpoint, the quicker the identification (which is beneficial since operators
are interested in classifying volumes of traffic, and should pose no problem in
discriminating between active endpoints such as server vs P2P).
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Chapter 5

Comparing P2P-TV Traffic
Classifiers

Internet Television is perhaps the most important emerging application in these
days. While services based on traditional client-server technologies such as Hulu,
Miro or (in a broader sense) YouTube are currently widely used, new applications
are emerging that exploit the peer-to-peer (P2P) paradigm to broadcast television
over the Internet. However, network operators fear the potential impact that these
applications may have on the network, since they can offer a significant load on the
system, which can cause network congestion and possibly collapse, with the failure
of the P2P-TV service itself [46]. Therefore, there is lot of interest in new techniques
capable to monitor the complex traffic patterns generated by these systems, which
unfortunately use proprietary and undocumented protocols, and are therefore harder
to identify than their open standard counterparts.

In Chapter 3 we already proven the accuracy of KISS with respect to P2P-TV
traffic. In this chapter we extend this analysis comparing KISS with other two traffic
classifiers focusing on on UDP traffic, which is currently the most part of the traffic
generated by P2P-TV applications. pDPI [63], the first classifier we consider, is
based on a traditional per-packet Deep Packet Inspection (DPI) which identifies the
traffic according to a set of application-layer regular expressions. IPSVM [23] instead
is a statistical classifier using feature extracted from the transport-layer headers.

The three classifiers are tested considering a common data set of traces that
include ground truth information, captured using either the GT suite [29] or setting
up experiments in controlled environments. This allows us to test the classification
accuracy of each technique, and its robustness with respect to different protocols,
trace capture time and location. Overall, the three approaches show strengths and
weaknesses in different areas.

The rest of this chapter is structured as follows. We start giving a brief descrip-
tion of pDPI and IPSVM. Then, we present the methodology used to collect the
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pDPI IPSVM KISS
Technique Deep Packet Inspection Transport layer statistics Stochastic Packet Inspection
Feature Regular expressions

on L7 payload
Length of packets Stochastic description of L7

payload
Aggregation Flow Flow Endpoint
Decision Pattern matching SVM SVM
Training Manual, difficult Automatic Automatic
Support
Encryption

No Yes No

Pros Well accepted
Higher completeness

Easy training Easy training;
High true positives

Cons Require application pro-
tocol reverse engineering

Higher false negatives Require training for
the “unknown” class

Table 5.1. Main properties of the classifiers.

traffic describing the data collected. Finally, we conclude comparing the results and
detailing the strength and weakness of each technique.

5.1 Traffic Classification Techniques

Since the three classifiers we are considering exploit different approaches, in this
section we summarize the key elements required to understand their operations.
For a complete description of pDPI and IPSVM we refer the reader to [63, 23].

Table 5.1 reports an overview of the main properties of the three classifiers.
We start observing that they operate on different classification objects (see Chap-
ter 1.1.1): pDPI and IPSVM operate on a per-flow basis, while for this work KISS
operates on endpoints. As introduced in Chapter 2, KISS can classify both flows
and endpoints. However, in this work we show the benefits of using the endpoints as
classification object as to achieve a better coverage of the traffic classified. Given the
different type of classification object, KISS applies a simple strategy to propagate
the endpoint labels at flow level: given a flow, when the same label is associated
to both the source and destination endpoints, the flow is tagged with such label.
In case a different label is associated to the two endpoints, the flow is marked as
unknown (implementing then a conservative algorithm).

5.1.1 pDPI

A DPI classifier relies on the observation that each application uses specific protocol
headers to initiate and/or control the data exchange, which can be captured by a
signature usually corresponding to a regular expression.
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Among the several flavors of DPI classifiers, the most common implementations
operate either on packets or on application-layer messages. While the message-
based variant appears to be more precise (and in fact it is extensively used in network
security applications), it is more complex because it may require an additional phase
of segments reassembly and IP de-fragmentation to rebuild the original application-
layer message. Furthermore, some studies [53, 63] suggest that its results are roughly
equivalent to the ones obtained by a simpler packet-based approach in case of regular
traffic. For this reason this paper considers a traditional packet-based DPI classifier
(in short pDPI ).

5.1.2 IPSVM

IPSVM [23] is based on a single-class SVM as proposed in [68]. This classifier
requires a training phase to automatically derive statistical models, one for each
application, which are then used during the classification phase.

The general workflow of this classifier is similar to the one used by KISS but there
are two important differences. First of all, the feature extraction process exploits
the packet dimension instead of a Stochastic Packet Inspection. Given a flow, the
classifier extracts a vector X = (x1,x2,...,xd) of d values corresponding to the length
of the UDP payload of the first d packets. Positives and negatives values are used to
represent the direction of communication. During the training phase, for each target
application, a given number v of vectors X is fed to a SVM machine, obtaining a
set of binary models. The optimal values of d and v are automatically calculated in
the training phase. For the work presented in this chapter, they were set to d = 2
and v = 1000.

Instead, during the classification phase, a vector X is fed to the generated models
and a rejection threshold (specific for each model and derived during the training
phase) is used to access the optimal classification. If the similarity index of the clas-
sification falls below all the thresholds, then the sample is assigned to the unknown
class. Differently from KISS, IPSVM do not need “Background” traffic during the
training phase.

5.2 Data sets

In this work we evaluate three of the most widespread P2P-TV applications as
benchmarking data set: PPLive, SopCast and Tvants. We focus only on UDP
traffic since most of P2P-TV traffic relies on UDP, e.g., in our traces UDP accounts
for 88%, 100% and 30% of bytes for PPLive, SopCast and Tvants respectively.

We compared the three classifiers using four data sets of traffic traces, whose
main characteristics are summarized in Tab. 5.2.
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Name Duration Flows Bytes Endps

VMware (VM) 75 h 6.1 M 65.5 G 606 k
napa-IT (N1) 3 h 68 k 1 G 19 k
napa-PL (N2) 3 h 61 k 1 G 17 k
operator (OP) 10 m 101 k 478 M 17 k

Table 5.2. Data sets used in the experiments (UDP traffic only).

Software Napa-Wine VMware

PPlive 1.9.21 2.16
Tvants 1.0.0.59 1.1
SopCast 3.0.3 3.0.3

Table 5.3. P2P-TV data sets software versions.

VMware (VM): this data sets was collected between Dec. 2008 and Jan. 2009
using a set of VMware virtual machines running Windows XP on which the
three target applications were scheduled synchronously: every hour all the
machines run the same application tuned on the same TV channel for 45
minutes followed by 15 minutes of silence to purge all opened connections.
Using this approach, we obtained 8 captures per application every day. In
addition, all the virtual machines had the Skype client turned on, while Emule
and BitTorrent clients (with protocol obfuscation enabled) were active only on
one machine. The virtual machines were installed on a single server inside the
Politecnico di Torino network while the aggregated traces were collected at
the border gateway that connects the campus LAN to the Internet.

napa-IT (N1) and napa-PL (N2): these traces have been collected on the 4th of
April, 2008 at the Politecnico di Torino and Warsaw University of Technology
respectively, in the context of the Napa-Wine project [46]. Napa-Wine is an
European project in which large scale experiments are periodically organized
to study the behavior of the P2P-TV applications. Similar to the previous case,
several (real) Windows XP hosts were used to run each P2P-TV applications
in isolation, and to collect traffic.

operator: this trace contains real traffic collected in May 2006 at a large ISP
PoP located in Turin, Italy1. The PoP aggregates more than 2000 users using
different technologies, e.g., VoIP phones, set-top-boxes, PCs, etc., and running
any applications, e.g., file sharing applications, web browsing, gaming, viruses,

1The name of the ISP is not reported for privacy reasons.
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Figure 5.1. The GT architecture.

etc. Since at that time P2P-TV applications were not popular at all in Italy,
these traces do not contain P2P-TV traffic and hence they can be used to
analyze the capabilities of the classifiers in terms of false positives. We verified
this assumption by a manual inspection of the traces.

Since the VMware and Napa-Wine experiments are spaced by eight months and
both PPLive and Tvants automatically update theirs clients to the last released
version, different versions of the software (and possibly protocols) are present in the
data sets. This characteristic was used to determine the robustness of the various
techniques with respect to an application update. Table 5.3 reports the precise
application version number used. As we can see, in the VMware data set PPLive
and Tvants has been updated with respect to Napa-Wine data sets.

5.2.1 The oracle definition

The availability of the ground truth for each data set is perhaps the most critical
problem when analyzing traffic classifiers [53]. The ground truth for the VM traces
has been derived using the GT framework [29, 30], which is a software that associates
accurate ground truth information to traffic traces. Figure 5.1 depicts the config-
uration schema used to extract the ground truth. It requires three components:
a GT daemon running on each monitored host a SQL database and the splitting
tool ipclass [30]. The daemon running on the host is able to identify the cre-
ation/destruction of a socket and associates it to the application that has generated
it. The identification process is not synchronous and each 100 ms the demon polls
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VM napa-IT (N1) napa-PL (N2)
flows bytes flows bytes flows bytes

PPlive 1.0 M 24.5 G 27 k 168 M 30 k 592 M
Tvants 3.5 k 1.1 G 8 k 249 M 8 k 189 M
SopCast 201 k 30.4 G 34 k 626 M 24 k 297 M
Emule 183 k 55 M - - - -
Skype 4.1 M 2.4 G - - - -
BitTorrent 33 k 14 M - - - -
nolabel 422 k 8.1 G - - - -

summary 6.1 M 65.5 G 69 k 1.0 G 62 k 1.1 G

Table 5.4. Data sets ground truth.

the system looking from modifications in the socket table2. The collected data (IP
addresses, UDP ports, application name, and some timestamps) are then stored into
a SQL database while a packet capture engine co-located with the network’s border
gateway creates dump traces at the same time. When the capture is completed,
using the information stored in the SQL database the ipclass [30] tool splits the
aggregated traffic in sub-traces with respect to the applications.

Since the GT framework was not yet available when the Napa-Wine traces were
captured, the ground truth for these traces has been obtained by removing all the
standard protocols (DNS, NTP, . . . ) from the traces. Since each machine had no
daemons (except for unavoidable systems services) or other applications running
in background and a single P2P-TV application was executed at each time, all
remaining traffic has been assumed as generated by the target applications. We
verified this speculation by manually inspecting a set of randomly selected flows
and by further analyzing this trace with a pDPI classifier.

Table 5.4 details the result of the splitting of the traces containing P2P-TV
traffic. The operator traces instead, since they do not have any P2P-TV traffic, are
used as unknown to check the accuracy of the classifiers with respect to other type
of traffic.

5.3 Classifiers comparison

We compare the traffic classifiers considering two different aspects: coverage and
accuracy. In the first case we analyze how much traffic the classifier is able to elabo-
rate, while in the second case we assess the accuracy of the classification. Both these

2 Due to the polling mechanism used by GT, a limited amount of traffic (7% of flows and the
12% of bytes) is not labelled and is therefore excluded from our analysis.
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IPSVM KISS
%Flows %Bytes %Flows %Bytes

VMware

PPlive 47.6 0.3 0.2 -
Tvants 1.3 - - -
SopCast 3.0 - 0.1 -

napa-IT
PPlive 76.7 2.4 0.2 -
Tvants 1.2 - 1.3 -
SopCast 3.6 - 1.2 -

napa-PL
PPlive 55.5 0.7 - -
Tvants 0.2 - 2.9 0.1
SopCast 1.7 - - -

operator other 33.6 0.8 9.4 0.7

TOTAL 7.1 0.1 0.4 -

Table 5.5. Traffic that IPSVM and KISS cannot classify.

analysis are obtained using diffinder [14], a tool that we created which is capable
of generate either aggregated statistics (e.g. number of concordance/discordance
between two classifiers) or produce the complete list of flows classified differently for
further analysis. Since the classifiers may have different granularity (e.g., a DPI can
differentiate between HTTP 1.0 and 1.1) and in general the name of the application-
layer protocol may be different in the various classifiers, the tool uses a mapping file
to compare the results.

Since all the classifiers require some tuning to properly address the target ap-
plication, we used part of the collected data sets for this purpose. In particular,
the P2P-TV signatures used by pDPI have been derived by reverse engineering the
Napa-Wine traces (the oldest with respect to applications’ versions). Vice versa,
the statistical model for IPSVM and KISS has been generated using the VMware
data sets.

5.3.1 Coverage

While the pDPI classifier is potentially able to classify a flow by inspecting the
first packet, IPSVM and KISS may require a larger number of packets. In fact,
for each flow, IPSVM uses the features extracted from the first d packets of the
flow itself, with d = 2 in our case. Consequently, all flows lasting only one packet
cannot be classified. Instead, KISS needs 80 packets per each endpoint to create
its signature. If on the one hand endpoints generating less then 80 packets cannot
be classified, on the other hand, once properly trained, KISS can classify incoming
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flows as soon as it analyzes the first packet, provided that the associated endpoint is
already known. Moreover, KISS can classify established sessions, while both pDPI
and IPSVM cannot because they analyze the first packets of the session.

Table 5.5 reports the amount of traffic (in terms of flows and bytes) that remains
unclassified in IPSVM and KISS because of these limitations. While the percentage
of unclassifiable traffic is definitely limited with both techniques, it is interesting to
note that PPLive has a large amount of short sessions that last only one packet,
which generate a fair high number of unclassifiable flows with IPSVM but whose
impact in terms of bytes is negligible. This does not affect KISS thanks to its
peculiar endpoint aggregation, although the constraint of having 80 packets seems
to be more sensible in case of the operator trace, which contains many endpoints
generating less than 80 packets. Also in this case, however, the impact in terms of
bytes is definitely limited.

5.3.2 Accuracy

Table 5.6, Table 5.7 and Table 5.8 detail the classification accuracy of pDPI, IPSVM
and KISS respectively for the considered data sets. Columns report the percentages
of flows (%f) and bytes (%b) classified with respect to the target classes while labels
on the rows correspond to the ground truth. The percentages in bold correspond to
the true positives and the true negatives correctly associated by the classifiers.

The column labeled as “Unknown” refers to traffic that does not match any
signature for the pDPI, or the traffic whose statistical fingerprint is different from
the target classes of IPSVM and KISS. The pDPI has one more column labeled as
“Other”, which reports the traffic that has been classified3 but it does not belong
to the three P2P-TV protocols under examination.

Consider Table 5.6. The accuracy of pDPI in case of Napa-Wine traces was high
for PPLive and TVants, while the result with SopCast is less satisfying. Further
analysis revealed that this traffic was mostly associated to Skype, suggesting that a
refinement of both signatures is needed. Results are different when considering the
VMware traces, which show a dramatic decline in the accuracy for PPLive. The
reason is that the two data sets have been generated using two different versions
of the PPLive client and the protocol resulted so different that the precision of
the pDPI signature was compromised. Interesting, this effect was not noticeable
in case of TVants traffic, although we used two different versions of the TVants
client as well. This underline the need to continuously update of the matching rules
exploited by DPI classifiers and the complexity of such process since is based on
reverse engineering and manual inspection of the applications’ traffic.

3The pDPI classifier used the June 2009 version of the NetPDL protocol database that included
72 application-level protocols (39 over TCP, 25 over UDP and 8 that operate with both TCP and
UDP).
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pDPI

PPLive TVants SopCast Other Unknown

%f %b %f %b %f %b %f %b %f %b

VMware

PPLive 12.8 0.3 - - - - 9.1 98.2 78.1 1.5
TVants - - 100 100 - - - - - -
SopCast - - - - 91.7 96.0 4.5 3.9 3.8 0.1
Emule - - - - - - 63.0 62.3 37.0 37.7

Skype - - - - - - 98.9 97.8 1.1 2.2

BitTorrent - - - - - - 99.7 99.8 0.3 0.2

napa-IT
PPLive 99.6 100 - - - - 0.4 - - -
TVants - - 94.1 100 - - 5.7 - 0.2 -
SopCast - - - - 85.4 90.7 11.2 9.3 3.5 -

napa-PL
PPLive 100 100 - - - - - - - -
TVants - - 100 100 - - - - - -
SopCast - - - - 60.8 80.5 36.5 19.4 2.7 -

operator Others - - - - - - 93.2 99.3 6.8 0.7

Table 5.6. Classification accuracy for pDPI.

IPSVM

PPLive TVants SopCast Unknown

%f %b %f %b %f %b %f %b

VMware

PPLive 92.1 89.8 - - - - 7.8 10.2
TVants - - 98.7 99.7 - - 1.3 0.3
SopCast - - - - 87.9 96.3 12.1 3.7
Emule - - - 0.1 - - 100 99.9

Skype 0.2 0.2 - - - - 99.8 99.7

BitTorrent 1.4 3.9 - - - - 98.6 96.1

napa-IT
PPLive 72.0 7.6 0.1 - 0.2 0.3 27.7 92.0
TVants 0.3 - 95.0 94.2 - - 4.7 5.8
SopCast - - - - 98.1 99.3 1.8 0.7

napa-PL
PPLive 83.6 3.5 0.1 0.1 - - 16.3 96.4
TVants - - 98.9 96.2 - - 1.1 3.8
SopCast - - - - 99.2 99.9 0.8 0.1

operator Other 0.2 - 0.1 0.1 - - 99.7 99.9

Table 5.7. Classification accuracy for IPSVM.
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KISS

PPLive TVants SopCast Unknown

%f %b %f %b %f %b %f %b

VMware

PPLive 100 100 - - - - - -
TVants - - 100 100 - - - -
SopCast - - - - 100 100 - -
Emule - - - - - - 100 100

Skype - - - - - - 100 100

BitTorrent - - - - - - 100 100

napa-IT
PPLive 97.3 4.4 - - - - 2.7 95.6
TVants - - 98.3 100 - - 1.7 -
SopCast - - - - 99.8 100 0.2 -

napa-PL
PPLive 95.6 4.2 - - - - 4.4 95.8
TVants - - 100 100 - - - -
SopCast - - - - 100 100 - -

operator Other 24.9 1.3 0.2 34.0 0.4 0.2 74.5 64.5

Table 5.8. Classification accuracy for KISS.

The accuracy of IPSVM reported in Table 5.7 is very high for the VMware data
sets, with correct results always above 89.8% (in terms of bytes) and a limited
number of False Positives. Although the training was done on the VMware data
set, the accuracy is high also on the Napa-Wine traces except for the PPLive traffic;
the two versions generate traffic with different statistical properties that lead to
misclassify the vast majority of traffic (in bytes). Interestingly, results are better in
terms of flows, which seems to suggest that at least some signalling portions of the
protocol are roughly equivalent in the two clients. Finally, the very limited amount
of False Positives (in all traces) suggests that the classifier is robust with respect to
non-P2P-TV applications.

Finally, KISS appears to produce the best results among the classifiers under
testing. It reaches 100% accuracy on the VMware data set and nearly 100% also
on the NapaWine data sets except for the PPLive traffic, similarly to IPSVM (i.e.
many flows, but limited amount of bytes correctly classified). However, it appears to
be the worst classifier on the operator trace, with a non-negligible number of False
Positives. This is due to a peculiar characteristic of KISS, which defines an explicit
class for the unknown traffic. Since the training was completed on the VMware
traces and the unknown class included only eMule, Skype and BitTorrent (which
represent a limited subset of the protocols present in real traffic), the completeness of
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this class is limited and influences the accuracy when the traffic under examination
is substantially different from the training set.

5.4 Overall comparison

The three classifiers are extremely different, starting from the classification method
(either exact or statistical), the different information used in the classification (from
packet sizes to application-level data), and the different base units (flows and end-
points).

In particular, the “traditional” pDPI is still very effective thanks to the fact that
these applications do not use encryption or obfuscation techniques. Its main prob-
lem is the process of deriving the signatures that is still manual, time-consuming
and error-prone. IPSVM and KISS replace the signature database with a more con-
venient automatic training phase and they guarantee excellent results if the training
set is appropriate.

Problems appear when the training set differs from the inspected traffic (e.g.
the case of KISS on the operator traffic, or both KISS and IPSVM with PPLive
on the NapaWine traces), but this is in principle similar to the pDPI case when
signatures need to be updated because of a change in the application-layer protocol.
On the other hand, statistical approaches such as IPSVM that do not use topology-
dependent features such as inter-arrival times have shown that they can perform
reasonably well even when training information derived on one network is then
applied to a different one.

Our tests show that KISS is the best classifier with respect to UDP P2P-TV
traffic. This is due both to the statistical signatures and the adoption of endpoint-
based algorithm (using an approach similar to [3]), that reveals to be particularly
appropriate for P2P traffic in which many short flows appear from/to the same end-
point over time. However, similarly to DPI techniques, Stochastic Packet Inspection
fails in case proper encryption is used by the applications, because all the bits in
the payload will assume random values. Another problem is related to the usage of
a multi-class SVM classifier, which requires the unknown class to be trained with
samples representative of all the possible protocols. As shown in the operator trace,
this could originate a large amount of False Positives when the protocol mix in the
unknown class changes. IPSVM proves to be effective too, although its accuracy is
mined by the higher percentages of False Negatives considering per-flow classifica-
tions. On the plus side, since only packet size and transmission direction are used
as features, in principle it should be applicable also to encrypted traffic.
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Chapter 6

Mining unclassified traffic using
automatic clustering techniques

In the last years, several traffic classification techniques have been proposed ranging
from port-based, DPI or statistical analysis (see Chapter 1.2). All these classifiers
share some key aspects. On the one hand a deep domain knowledge is required to
correctly train and periodically update these classifiers. An example of this has been
shown in Chapter 5 where different release of the same application can be identified
with a different accuracy. On the other hand, the classifiers can identify only the
specific applications they have been trained for; all other traffic is aggregated in a
single class labeled as “unclassified”. The classifiers are therefore typically tuned to
identify the prominent classes but they completely miss the dynamics of the rest of
the traffic. For example, they cannot identify the introduction of a new application,
or changes in the users’ behavior or in the applications protocols.

Classification can happen at different degrees of granularity: packet, flow, or
endpoint, with significant differences on the number of objects to be considered.
However, when mining the subset of unclassified traffic, the number of objects to
be analyzed is still large even when considering higher aggregation levels. For in-
stance, for moderate traffic aggregates, the even small fraction of unclassified traffic
is typically built by thousands of endpoints, each aggregating tens of flows made of
hundreds of packets. How to practically reduce the number of unknown objects to
analyze is therefore a key problem.

In this chapter, we focus our attention on the inspection of the unclassified traf-
fic. Exploiting the KISS framework which is able to generate very representative
application protocol signatures, we propose an unsupervised technique that, having
no knowledge of the applications that generate the traffic, partitions a traffic ag-
gregate into “clusters” that are distinguished based on common features, i.e., they
exhibit a common treat. A simple clustering methodology based on the K-means
algorithm is augmented with the capability to effectively determine the number of
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traffic clusters K. The result is a simple algorithm that can reduce the number
of objects to analyze to few tens, even if the total traffic amounts to several tens
of megabits per seconds. By being completely automatic and unsupervised, the
proposed methodology can be engineered to: i) identify new classes of traffic by
exploiting the network administrator domain knowledge when inspecting a traffic
cluster; ii) monitor the traffic evolution by highlighting the birth of traffic clusters
corresponding to traffic of previously unobserved applications; iii) design anomalies
detection techniques by observing the evolution of traffic clusters over time.

To test and validate our methodology, we consider some UDP traffic traces of
which we already have a deep knowledge on, achieved through a combination of
DPI and statistical techniques, as well as the results of some active experiments.
We consider UDP traffic since today its importance is steadily increasing [78], and
few works explicitly targeted it in the past. We apply the proposed technique to
the traces and check the coherence of the automatic classification with our ground
truth.

This chapter is organized as follow. We start recalling the mathematical formu-
lation of the KISS signatures and we adapt it as to better operate in a linear space.
Then, we present the aggregate clustering algorithm created and the results obtained
from the considered data sets. Finally, we present some examples of classification
of unknown traffic we were able to identify.

6.1 KISS Signatures Linearization

KISS signatures are computed over the packets directed to or originated from a
given endpoint. They aim at measuring the randomness of the first bytes of the
packet payload that are those usually carrying application header. In particular,
the first 12 bytes of the packet payload are divided into groups of b = 4 bits, for a
total of G = 24 groups. For each group, the statistic of the occurrence of each of the
2b = 16 possible values is computed over N = 80 packets. Then, the randomness of
each group g, denoted by Xg, is measured as the Chi-Square distance of the group
statistics with respect to the uniform distribution,

Xg =
2b−1
∑

i=0

(Og
i − Ei)

2

Ei

(6.1)

where Og
i is the observed occurrence of the value i for the g group, and Ei = N/2b

is the expected occurrence for the uniform distribution.

From the mathematical formulation we can evince that Xg grows exponentially
with the number of deterministic bits in the group. Since we are interesting in using
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this features in a linear space, the signature are linearized using

bg = log2

(

Xg

N
+ 1

)

(6.2)

where bg represents then the number of constant bits in group g. The vector
{b1,b2, . . . ,bG} represents the KISS signature used in the rest of this work.

6.2 Clustering Methodology

KISS signatures can be used to map the traffic generated by applications into points
in an hyper-space. To partition the space into pure clusters where points are gen-
erated by the same application, we leverage on the K-means algorithm, a classic
unsupervised technique [4]. Given a set of K “centroids”, the K-means algorithm
iterates over two steps: it first assigns each point to the closest centroid, defining a
cluster; then, each cluster centroid is re-computed as the arithmetic mean among all
points of the cluster. The algorithm ends either after a predefined number of itera-
tions or if centroids do not change at a given iteration. At the beginning, centroids
are randomly picked.

The major drawback of K-means is that it assumes the a-priori knowledge of
the number K of clusters one is interested in. The proposed algorithm tries to
overcome this limitation using an agglomerate approach. We start by decomposing
the hyper-space in a large number of clusters, K0. Then, we incrementally merge
the two closest clusters until one cluster only remains. A similar technique was
successfully applied to the network measurement context in [7]. The pseudo-code of
the algorithm is:

K = K0

centroids, labels = K-means(K, data)

while (K > 1)

c1, c2 = closest_centroids(centroids)

centroids = merge_centroids(centroids, c1, c2)

labels = redo_labeling(data, centroids)

K = K - 1

We start running K-means with K0 = 100 randomly chosen centroids, i.e., we
force the partitioning of the hyper-space in a large number of small clusters that are
extremely pure. The algorithm then iterates merging at each step the two closest
clusters: at step K, the algorithm looks for the two closest centroids c1,c2, it merges
them into a new centroid positioned at the geometric barycenter of c1 and c2; then
points are reassigned to the new set of K − 1 centroids. The algorithm continue the
aggregation until 2 clusters only remain.

63



6 – Mining unclassified traffic using automatic clustering techniques

The rationale behind the algorithm is that two centroids which are very close
are likely to be associated to the same final cluster. By monitoring the value of
the closest distance between centroids at each iteration step, and using this as an
indicator function, it is possible to decide the optimal value of K, namely Kc, to
stop at.

In our scenario, Kc represents the estimated number of protocols that are present
in the data set. Let the smallest distance between centroids be defined as

γK = (dK − dK−1)
2 (6.3)

where dK is the Euclidean distance between the two closest centroids at step K
of the algorithm. γK defines our indicator function. Since the distance between
points (and clusters) that correspond to the same protocol is expected to be smaller
than the distance between points that correspond to traffic generated by different
applications, large values of γK suggest that the algorithm is artificially enforcing
the merging of two clusters that are quite different from each other.

Notice that only a single run of K-means is executed at the beginning to ob-
tain the initial set of clusters. At each iteration, the algorithm works only on the
centroids, and this has two main benefits. First, we can better control the modifi-
cation on the space due to aggregation. In fact, the K-means algorithm is subject
to “oscillation effect”, i.e., small modifications in the centroid position could lead to
large transformations in the cluster geometry. By using centroids only we avoid to
re-assign samples to centroids, so that the quality of the initial clustering is better
preserved.

In addition, by acting only on the centroids we reduce the computational cost
by several order of magnitudes, we handle O(K0) centroids instead of O(N) samples
(N >> K0). Moreover, the K-means complexity depends on the maximum number
of iterations I (which in our case we set to 100), so that its complexity is O(I ·N).
In our experiments on an AMD Athlon-64 X2 Dual Core Processor 4200+, we elab-
orated several thousands of points present in a 15 minute long traffic traces in less
than 3 minutes, the largest majority of the time being devoted to the initial K-Means
run. Given that the code used can be further optimized, the result is promising and
suggests that the algorithm might be applied to real-time monitoring.

Finally, K-means is known to suffer from the choice of the initial centroid po-
sition. Usually initial centroids are randomly chosen so that different starting con-
ditions can lead to different clustering. In our scenario, since we select a large
number K0 of clusters, the bias introduced by the selection of the initial centroids is
minimal. We performed some tests by running the algorithm with different initial
random seeds and the results show that there is practically no influence on the initial
choice.
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ISP-Trace

Protocol #flows ×103 (%) Mbytes (%) #endp. ×103 (%) #sign. ×103(%)

BitTorrent 217 (3.39) 40 (0.19) 34 (4.14) 22 (0.33)
DNS 260 (4.05) 185 (0.88) 153 (18.79) 31 (0.47)
eMule 5200 (80.96) 936 (4.43) 476 (58.56) 61 (0.91)
RTCP 8 (0.13) 46 (0.22) 6 (0.73) 25 (0.38)
RTP 9 (0.14) 18244 (86.26) 7 (0.86) 6222 (92.14)
Unclassified 728 (11.34) 1698 (8.03) 137 (16.92) 390 (5.78)

tot 6422 (100.00) 21149 (100.00) 813 (100.00) 6751 (100.00)

P2PTV-Trace

Protocol #flows ×103 (%) Mbytes (%) #endp. ×103 (%) #sign. ×103(%)

PPLive 27 (78.52) 1585 (32.96) 184 (38.90) 23 (28.30)
SopCast 5 (14.87) 2282 (47.43) 176 (37.21) 48 (57.46)
TVants 2 (6.61) 943 (19.61) 113 (23.89) 12 (14.24)

tot 34359 (100.00) 4810 (100.00) 473 (100.00) 83 (100.00)

Table 6.1. Data sets descriptions.

6.3 Data sets

The results presented in this paper refer to data sets extracted from two traces,
called ISP-Trace and P2PTV-Trace described in Table 6.1.

ISP-Trace: this trace corresponds to real traffic collected from the network of an
Italian large ISP which offers converged services, in which data, native VoIP,
and IPTV share a single broadband connection. This data set is representative
of a very heterogeneous scenario, in which users are free to use the network
without any restriction. It therefore is a very challenging scenario for traffic
classification. In this paper we present results considering a data set obtained
monitoring a PoP for 24 hours in October 2007, during which about 21GB
of UDP traffic and 813,000 endpoints were monitored. Some known protocols
(BitTorrent, eMule, RTP, RTCP and DNS) have been extracted from the
aggregated trace using Tstat [24], a traffic classifier that combines a number
of DPI mechanisms with statistical techniques. The classification has been
manually cross-checked to have a high confidence in the ground truth. These
protocols account for more than 90% of the total volume, as shown in Tab. 5.2.
The remaining 10% of traffic has been labeled as “unclassified”.

P2PTV-Trace: this trace was collected during ad-hoc experiments that were
organized to observe the performance of popular P2P-TV applications, namely
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Figure 6.1. Evolution of the clustering algorithm: the indicator function (a) and
classification accuracy in terms of precision and recall (b).

PPLive, SopCast and TVants. The resulting data set [13] consists of packet
level traces collected from more than 45 PCs running P2P-TV applications
in 5 different countries, and it is representative of a wide range of different
scenarios. Being the result of active experiments, the trace contains only a
single protocol at a time and we have a perfect knowledge about it.

The data sets extracted from the two traces are disjoint. In fact, there is no
P2P-TV traffic in the ISP-Trace. When needed, we can artificially “inject” P2P-TV
traffic from the P2PTV-Trace into the ISP-Trace as to increase the number of known
protocols when assessing the performance of the clustering algorithm.

6.4 Evaluation of the agglomerate clustering ap-

proach

Figure 6.1(a) shows the evolution of the indicator function during the application
of the algorithm to ISP-Trace considering a 10 minute long trace. The minimum
distance between clusters is very small for values of K > 20, suggesting that the
algorithm is merging clusters whose centroids are very close. Instead, for K ≤ 20,
the algorithm starts merging cluster centroids which are quite far from each other,
suggesting an improper and artificial merging.
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Figure 6.2. Example of indicator function for traffic aggregates with progressively
increasing number of classes.

To confirm this intuition, the homogeneity of each cluster is evaluated against the
endpoint classification obtained by Tstat (our ground truth). Figure 6.1(b) reports
the precision (top) and recall (bottom) performance indexes, defined as

Precision =
true pos

true pos+ false pos
Recall =

true pos

true pos+ false neg
(6.4)

for different values of K. Precision is a measure of exactness or fidelity, whereas
recall is a measure of completeness; these two measures complement each other (see
Chapter 1.3).

Consider Figure 6.1(b); two observations hold. First, for K > 20, the fidelity
and completeness of the identified clusters is very high, proving that the KISS signa-
tures accurately represent different protocols, and that traffic generated by different
applications can be easily clustered. Second, the abrupt decrease of both precision
and recall observed in Figure 6.1(b) for K ≤ 20 confirms that some clusters cor-
responding to different protocols are artificially merged, causing the formation of
impure clusters.

To further assess the goodness of the approach, we inspect the behavior of the
indicator function considering data sets in which we progressively add traffic of var-
ious applications. We start by considering a data set containing only SopCast and
TVants traffic; we then add, in sequence, the traffic of PPLive, RTP, BitTorrent,
DNS and eMule to the data set. For each traffic mix we run our algorithm. The
results are reported in Figure 6.2 for K ≤ 20, only. The figure shows that the indi-
cator function abruptly increases for values of K that are strongly related with the
number of traffic classes. A simple threshold mechanism on the indicator function
can be adopted to automatically detect the value Kc. As an example, the figure
reports a threshold of 0.15 that resulted very effective in our tests.
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Figure 6.3. Evolution of the clustering algorithm over different time
windows of the ISP-Trace.

The Table on the right of Figure 6.2 reports the suggested number of clusters
Kc obtained with the threshold γ = 0.15, the corresponding Recall and Precision
are also indicated. Results confirm that the value of Kc increases with the number
of traffic classes. The resulting Precision and Recall are extremely high, and a
marginal decrease is observed only when considering more than 5 protocols. This
is due to BitTorrent traffic which is sometimes confused with TVants traffic whose
KISS signatures result similar. Nevertheless, the performance are very good.

Interestingly, the number of identified clusters is larger than the actual number
of applications. This is due to single applications using multiple protocols with
different formats, e.g., signaling is different respect to data messages. The KISS
signatures are therefore different, and the clustering algorithm correctly identifies
separate clusters.
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Finally, we repeat the experiment considering other different 10-min-long traces
extracted from the ISP-Trace. The goal is to investigate if the indicator function
always correctly suggests the number of cluster to use. Figure 6.3(a) reports the
indication functions obtained for the three windows considering the aggregation of
the 7 considered traffic classes. No unclassified traffic is present. We can see that
the suggested Kc is consistent among all the experiments. Instead, Figure 6.3(b)
reports the indicator functions when unclassified traffic is present too. In this case,
since different traffic mixes are present during different periods of time, higher noise
is present with respect to the previous case and different values Kc are selected in
different windows. In conclusion, the indicator function suggests an optimal number
of clusters which changes depending on the actual traffic mix. Thus, a conservative
large number of clusters is preferable, especially when considering different time
windows. Moreover, note that in Figure 6.3(b) the number of suggested clusters is
never higher than 40.

6.4.1 Comparison with other clustering techniques

The automated selection of the optimal number of clusters is not new in literature.
Several score indexes have been proposed to precisely correlate the goodness of the
clustering with the number of used clusters. Examples of these indexes are: the
Bayesian Information Criterion (BIC) adopted by the XMeans algorithm [4] and
the Normalized Mutual Information (NMI) [6]. In this work, we are interested in
investigating the automated approaches which do not require the a-priori knowledge
of the points’ labels (that is instead required by the NMI). We evaluated the per-
formance of both XMeans and NMI; in addition, we considered also the DBScan
algorithm. XMeans shows similar performance as our algorithm in terms of Recall
and Accuracy. However, the number of identified clusters is typically much larger
than the one obtained by our algorithm. For example, XMeans accuracy is higher
than 95%, but at least 10 more clusters are identified, i.e., 50% more than with
our proposal. Considering NMI, the accuracy is lower than 95% when 25 clusters
are used, as suggested by the NMI technique. With 40 clusters, performance of
the NMI-based method is similar to the one of our algorithm. Finally, DBScan
performed poorly achieving only 85% of accuracy with the best parameter setting.

Notice also that all previous algorithms are computationally more expensive than
our proposal. In conclusion, the proposed algorithm is completely automated, does
not require any knowledge of the points labels and seems a good trade-off among
clustering accuracy, number of clusters and complexity.
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Figure 6.4. Cumulative distribution function of the distance between points and
centroid in each cluster (plot on the left) and a few additional data (table on the
right), obtained running the algorithm on ISP-Trace with K = 40.

6.4.2 Clusters distances

In this section, we investigate the geometry of the clusters of points identified by
our algorithm. The results presented in this section are obtained using K = 40 (a
conservative large value) and refer to a single time window of ISP-Trace. For the
other time windows, not shown here for the sake of brevity, we obtained similar
results.

We start by considering the size of each cluster. Figure 6.4 shows the cumulative
distribution function of the normalized Euclidean distance between each point and
its centroid. As we can see, half of the points in the data set are very close to theirs
centroid, with a distance smaller than 20% of the cluster space size. The table on
the right of Figure 6.4 reports some statistics about the clusters geometry according
to the DPI classification. In particular, the second column reports the number
of clusters identified for each application, the third column reports the number of
small clusters, i.e., clusters with a radius smaller that 0.2, and the last column
gives the number of not-dense clusters, i.e., clusters with less than 10 samples.
BitTorrent and RTP are mapped into a single cluster, while the “unclassified” is
composed of a set of small, often not-dense, clusters. Interestingly, eMule is highly
partitioned too. Investigating further, we noticed that each cluster corresponds to a
different protocol which eMule uses for different purposes, e.g., one protocol is used
to exchange messages with the server, another one is used to exchange traffic with
peers.

To better understand the possible overlapping between the clusters, Figure 6.5
reports the distance between pairs of centroids. The distance has been mapped onto
a gray scale in which the darker the color, the nearer the centroids. The image is
symmetrical with respect to the main diagonal, where all points have a distance of
0 by definition. Clusters are ordered based on their type of traffic so that clusters
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Figure 6.5. Distance between centroids of different clusters, for 40 clusters ob-
tained by running the algorithm on IPS-Trace with K = 40.

referring to the same application are nearby; dashed lines are used to delimit the
applications. The only blocks which include nearby clusters are related to the same
application.

In conclusion, we can say that the KISS signatures map different protocols in
different compact clusters of the hyper-space. The geometry of the clouds is strictly
related to the characteristics of the application, but the signatures are naturally
clustered in pure areas which do not overlap.

6.5 Mining the unclassified traffic

In this section we show how the proposed technique can be used to monitor the
traffic evolution in time and detect the presence or absence of traffic in different
periods. To do so, we measure the modifications of the clouds obtained by running
the algorithm over consecutive time windows. We consider 1 hours of traffic divided
into six 10-min-long traces and for each trace we run our algorithm using K = 40,
as previously described. The centroids obtained for each time window are then
compared with centroids identified in the previous time window. Each centroid
is associated to the closest cluster in the previous set according to their geometric
distance. This allows to detect changes between the current and the previous cluster
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placement.

Figure 6.6 reports some interesting examples; it shows the distance of some
selected centroids in consecutive time windows. For example, the position of centroid
A and centroid B is practically the same over time. Verifying the corresponding
clusters, we found out that samples of cluster A and cluster B are associated to
BitTorrent and RTP, respectively; since in the traffic traces those applications are
always present, the corresponding centroids are always present and more or less in
the same position.

Consider now the case of the cluster with centroid C. The minimum distance
among the centroid C in the first and the second time window is very high, suggesting
that in the second time window C is associated to a cluster of traffic that was not
present during the previous time window. When comparing centroid C to its closest
centroid at time window 3, we see that it moved very little. Similarly, considering
time windows 3 and 4, centroid C is still referring to the same cloud of samples.
Only in time window 5, the centroid C seems to disappear, since the closest centroid
is very far from its position during time window 4. This suggests that some new
traffic appears at the 2-nd time window, it is present during the 3-rd and 4-th time
window, when it disappears again. Investigating further, we discovered that the
traffic was generated by a Skype call that lasted for that period of traffic. Centroid
C then refers to Skype Voice protocol.

Similar conclusions can be drawn following centroid D and centroid E evolution.
Comparing their position during the 4-th and the 5-th window, we can observe that
they moved little, i.e., they refer to the same cluster. Manual inspection revealed
that the traffic of cluster-D corresponds to STUN protocol - Simple Traversal of
User Datagram Protocol that was initiated by some P2P client that was alive in
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time window 4 and 5. Centroid E refers, instead, to traffic between hosts that used
port 16567. This latter is composed by both short packets and much bigger packets,
which might be related to Battlefield2 protocol.

Beside these examples, the methodology identified other sets of clusters and cen-
troids which were always placed in the same zone across consecutive time windows.
Some of these clusters were due to long-lived, single connections carrying many bytes,
while others contained P2P-like flows, i.e. endpoints exchanging limited amount of
data with an large number of hosts. Unfortunately, because of the limited amount of
available payload, we are not able to further identify the application that generated
these flows.

These examples show how we could successfully employ our technique to get
insights into the unclassified traffic that Tstat DPI and behavioral classifiers cannot
identify. In terms of traffic volumes, we could correctly identify and clusterize more
than the 40% of unclassified traffic.

6.6 Conclusion

In this chapter we presented a clustering methodology to partition a traffic aggre-
gate in classes according to the generating application. Using statistical signatures
as those of KISS, one of our classifiers, the methodology (that is completely unsuper-
vised) is based on the K-Mean clustering algorithm enhanced through a mechanism
to detect the optimal number of clusters.

Results show that the traffic partitions are very accurate and confirm that the
statistical signatures are effective in capturing the differences among application
protocols. Moreover, our results prove that the methodology can be effectively used
in different contexts. First of all, it is helpful to mine the unclassified traffic, i.e.
the traffic that traditional DPI or a behavioral classifiers cannot recognize. Indeed,
it helped us revealing 40% of the traffic we could not classify with our classifiers.
Second, the algorithm can reveal the born of new applications, as well as the changes
of existing ones.
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Chapter 7

YouTube CDN overview

Created in 2005 and bought by Google in November 2006, YouTube is the most
popular and bandwidth intensive service of today’s Internet: it accounts for 20-35%
of the Internet traffic [27, 49, 45] with 35 hours of videos uploaded every minute
and more than 700 billion playbacks in 2010 [75, 77]. With such a high popular-
ity, it presents a challenge both for the system itself and for the Internet Service
Providers (ISP) that need to offer good quality of service for video streaming de-
mands. Therefore the YouTube phenomenon attracted the interest of the research
community, with several works [28, 79, 11, 12, 66] focusing on either video charac-
terization, infrastructure, or user behavior. A recent notable work [1] has greatly
contributed to the understanding of the YouTube Content Distribution Network
(CDN) through an in-depth analysis of traffic traces of a tier-1 Internet Service
Provider (ISP). However, much of this analysis has focused on the architecture prior
to the acquisition of YouTube by Google Inc. It is unclear to what extent these
observations continue to hold today.

A second recent change in the way people access the Internet is due to the ex-
ploding popularity of mobile devices. Smartphones and Internet tablets are today
commonly used both at home and at public places, and the phenomenon is still
growing in popularity. Recent estimates forecast that within a few years mobile
devices will be the users’ preferred choice for accessing the Internet [52] while ac-
cording to [49, 70] multimedia content represents already a big share of the mobile
traffic, with YouTube as the main contributor. Still, mobile operators are struggling
with the intrinsically limited capacity of mobile access technologies.

The mix of the two phenomena has serious implications for both content providers
and ISPs. Indeed, while YouTube is already commonly accessible on mobile devices
from 3G/4G networks, the video encoding rate (and quality) is, by design, much
more limited than the one offered to PCs. At the same time, mobile ISPs adopt
tariff plans with the explicit goal to limit the amount of traffic a device can consume,
a trend that is becoming popular among wired ISPs as well.

77



7 – YouTube CDN overview

front-end web

video server

local DNS

user client

video web page

request

HTML page

and contained

objects

(1)

(2)

query for IP

of the video server
(3)

video request

(4)

Figure 7.1. High level sequence of steps to retrieve a video.

In the remaining of this chapter, we give an overview of the YouTube CDN
presenting the elements that compose the system and the adopted video delivery
mechanisms. The resulting scenario is complex, with different entities interacting
while policies are used to control both the communications and the video delivery.

7.1 YouTube CDN elements

YouTube is a web-based service so users access to the videos through a web browser
which either has the Adobe Flash player installed or is HTML5 compliant. The client
interacts with three elements which compose the system as reported in Figure 7.1:

• Front-end web, serving the YouTube portal1;

• Video server, caching and serving videos;

• DNS, translating YouTube objects’ name into IP addresses with respect to
specific policies;

The videos are accessible from the YouTube portal, which is a common web
site where the users browse the videos organized in categories and channels2. Each

1www.youtube.com, m.youtube.com
2In YouTube terminology, a channel corresponds to all the videos uploaded by a user.

78



7.2 – Users devices

video has a video web page collecting a rich set of information, e.g., video rating,
number of views, comments, list of related videos, etc. When the user selects a
video, he is asking to the system a specific video web page performing the HTTP
query http://www.youtube.com/watch?v=videoID where videoID corresponds to
a 11 character long string uniquely identifying a video (step 1).

The web front-end contacted returns a HTML page containing several objects
(e.g., images, javascript files, etc.) which have to be retrieved in order to view the
web page. Among these object there is also the embedded Adobe Flash player that
takes care of the download and playback of the video (step 2). The name of the
video server that will provide the video is among the parameters provided for the
Flash object and it is encoded using a static URL. Then, the video server name is
resolved to an IP address by the client via a DNS query to the local DNS server
(step 3). Finally, the client will query the video server to get the actual video data
(step 4).

We can group the four steps in two phases: the interactions related with the web
front-end (step 1 and 2) are used for the content look-up; the interactions related
with the video server (step 3 and 4) are used for the content download and playback.
In fact, it is interesting to notice that, even if is the web-server that specify the video
server name while generating the video web page for the client, it is the DNS that
translate the name to an IP. This resolution is not arbitrary and it is exploited by
YouTube to route clients to appropriate servers according to some internal policies.
Moreover, suppose that the video server contacted cannot provide the requested
video. The client then has to retrieve it from another server and a redirection
occurs.

These hidden mechanisms represent the core of the system and have a key role
in assessing the download performance. Consider for example the case in which
the DNS forces to download a video from a “far” location. It is obvious than that
the download is more subject to sudden congestions and losses which can affect
the Quality of Experince (QoE) perceived by the user. Similarly, if the video server
contacted do not have the requested video, the user has to look for it somewhere and
the startup latency increases, i.e., the user have to wait longer before the playback
can start.

7.2 Users devices

YouTube can be accessed from a wide range of devices, each with different capabili-
ties and hardware constraints. Depending on the client device, two mechanisms are
used to retrieve the video content:

PC-player: the client is a regular PC running either a web browser with the
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Figure 7.2. YouTube video download mechanisms. Example of possible evo-
lution when accessing to youtube.com from a PC (top) and m.youtube.com

from a smartphone (bottom).

Adobe Flash plugin or HTML5 compliant browser3. We performed experi-
ments with several browsers and operating systems and found no difference
in the traffic they exchange during the second phase. Hence, we will refer to
them as PC-player without further distinction4.

Mobile-player: the client is a smartphone, an Internet tablet or a set-top-box
which uses a custom application5. Also in this case we tested different combi-
nation of devices running both Apple iOS, Google Android and other operating
systems. While several differences are found when considering the first phase,

3http://www.youtube.com/html5
4Notebooks and netbooks using regular browsers belong to the PC-player category.
5Even if set-top-boxes and TV appliances are hardly mobile, they use the same access mechanism

as smartphones, so we consider them in the Mobile-player category.
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they all behave similarly in the second phase [62]. Therefore, we will refer to
them as Mobile-player.

7.2.1 PC-player

Let us consider a client accessing the www.youtube.com web site from a regular PC
using a browser as shown in Figure 7.2 (top). We can split the interaction between
the browser and the YouTube servers in three steps: (1) video web page retrieval,
(2) video prefetch and (3) video download.

During (1), the client downloads the web page describing the video. The HTML
document contains a combination of text and other “objects” (e.g., the Adobe Flash
player) that the browser needs to fetch to properly display the page. Among the
different objects, a Javascript function triggers a generate204 request sent to the
video server that is supposed to serve the video. This starts the video prefetch (2),
which has two main goals: first, it forces the client to perform the DNS resolution
of the video server hostname. Second, it forces the client to open a TCP connection
toward the video server. Both help to speed-up the video download phase. In
addition, the generate204 request has exactly the same format and options of the
real video download request, so that the video server is eventually warned that a
client will possibly download that video very soon. Note that the video server replies
with a ‘204 No Content’ response, as implied by the command name, and no video
content is downloaded so far.

At this point, the browser handles the control to the Flash player which will
manage the actual video download (3). The player sends a HTTP videoplayback

request to get the video. Note that the same TCP connection previously opened
during (2) can be used if HTTP persistent capability is supported between the
browser and the Flash plugin. Because of server congestion or lack of content,
the server can redirect the client to other servers. In this case, the video server
replies with a HTTP ‘302 Found’ response which specifies the hostname of another
video server to contact. The player then resolves the hostname, and sends a new
videoplayback request. This process can repeat until a valid video server is found.
The final video server of the chain replies with the usual HTTP ‘200 OK’ response,
which initiates the stream of video data to the client.

We highlight that the generate204 request is a specific optimization that is
found only when accessing a video through www.youtube.com. YouTube videos
embedded in regular HTML pages do not exploit this, so the player have to resolve
the video server hostname yet before sending the first videoplayback request.
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Figure 7.3. Evolution over time of the download bitrate for a video
encoded at 540 kb/s.

7.2.2 Mobile-player

Mobile devices use a different protocol as shown in bottom part of Figure 7.2. First,
no prefetch message is sent in the content look-up phase. Second, differently from
the PC-player case, the video content is downloaded in “chunks”, each one requested
in a separate TCP connection, using the HTTP Range header field to specify the
requested portion of the video. The video server then replies with a ‘206 Partial

Content’ response.
This mechanism is possibly the result of a design choice that tries to cope with

the tighter constraints in terms of storage availability for mobile devices. In fact, the
mobile devices can hardly buffer the entire video so the player progressively requests
portions according to the evolution of the playback.

7.2.3 Example of video download

To illustrate the differences in the video delivery mechanisms, Figure 7.3 shows
the bitrate evolution obtained downloading the same video from a PC (top) and
a mobile device (bottom). In both cases, the server starts sending an initial burst
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of data at a very fast rate to quickly fill the play-out buffer at the player. This
mechanism is conventionally called “fast-start”. The server then starts shaping the
rate as observed in [2]. Note that this is a server-based shaping mechanism in which
the client has no role (neither application layer nor TCP flow control messages are
sent). For PC-player, after the initial burst, the download proceeds within the
same single TCP connection, whose throughput is practically equal to the average
video encoding rate (dotted line). Note that the average download rate is computed
discarding the initial burst.

For Mobile-player instead, the bitrate evolution is more bursty. This is a conse-
quence of leveraging different TCP connections to download chunks of video. Indeed,
from second 23 and on, the mobile terminal aborts the ongoing TCP connection,
and starts requesting chunks of video on separate TCP connections. They last about
1 second and are separated in time by about 2 seconds of silence. Since a new TCP
connection is used, the server enters the “fast-start” phase, which is early interrupted
when the client aborts the underlying TCP connection. We believe this mechanism
is due to a client-side buffer management policy which abruptly interrupts the TCP
connection when the play-out buffer is filled up. The client then re-starts the down-
load when the buffer depletes below a certain threshold. This results in an inflation
of TCP connections, and a possible inefficient download.

The early abortion of the TCP connection can be due to other causes as well. For
example, a resolution change or a fast-forward in the video are handled by aborting
the current download and starting a new one for both PC-player and Mobile-player.
Finally, the initial control messages possibly sent on separate TCP connections are
also fundamentals to capture the dynamics of the download.
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Chapter 8

Methodology and data collections

8.1 Introduction

In the previous chapter we have seen that YouTube is a complex system, with
elements interacting and controlled by hidden policies. To study such a system,
we can exploit active and passive approaches. In the first case, we create ad-hoc
experiments querying the system as to collect specific information. For example,
exploiting the YouTube API[74], we can retrieve information on the content served
(e.g., video title, popularity, ranking, etc.). In the second case instead, we monitor
the activity real network users accessing YouTube. In this case, an inspection tool
is required as to i) identify the YouTube traffic and ii) extract the semantic of the
user’s interactions with the system.

In the last years, several works have been published, focusing on different aspects
of the system or the users’ behaviour. We can group these works in three categories:

Video content: these works have focused on characterizing various aspects of
YouTube videos as well the usage patterns. On the one hand, [28] and [79]
characterized video popularity, durations, size and playback bitrate, as well
as usage pattern statistics such as day versus night accesses and volume of
traffic. On the other hand, [11] and [12] crawled the YouTube site for an
extended period of time and performed video popularity and user behavior
analysis. Further, [11] compares YouTube to other video providers such as
Netflix and [12] investigates social networking in YouTube videos;

Infrastructure: these works characterize the YouTube video delivery infrastruc-
ture [1, 66]. [66] shows that most YouTube videos are distributed from a single
data center in the U.S. [1] shows that a few data centers in the U.S. were in
charge of distributing the videos around the world.
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User Behavior on Mobile Devices: More recently, there have been several
works characterizing high level usage patterns of mobile devices [49, 27, 70].
[49] shows that the number of mobile devices doubled between 2009 and 2010
and that more than 80% of mobile devices traffic is HTTP, with multimedia
traffic alone accounting for more than 30% of HTTP. [27] compares the content
and flow characteristics of mobile devices and PCs traffic. Using a DPI tool,
the authors are able to show that YouTube alone accounts for more than 35%
of the Internet traffic.

Beside this strong effort, many aspects of the system are still unknown. The ma-
jority of the works refer to the “old” YouTube, i.e., before the acquisition by Google.
Very little is known about the system mechanisms with respect to the different type
of devices used to download the videos. Moreover, while active experiments are
very useful to investigate on the properties of content hosted in the system, these
information do not picture the real usage of the system. For example, when a user
upload a video, this is automatically converted in different video formats [76]. The
set of available resolutions can be easily retrieved interrogating the system with the
YouTube API but only through passive measurements we can actually know which
is the resolution used by the users.

Considering these motivations, we adopted mainly a passive approach, collecting
data from the real users activity while active measurements are used only to integrate
or crosscheck the results obtained from the collected data sets. Through an extensive
monitoring of the users’ activity, we aim at shed some light on YouTube covering
different aspects of the system ranging from the internal policies (e.g., Where the
video is coming from?), video properties (e.g., What is the typical size and duration
of the videos?), users behaviour (e.g., Do the users watch the whole video?) and
performance (e.g., How long the users wait before the playback can start?)

In the following, we present the passive monitoring tool used to collect YouTube
traffic. The data set are then described, characterizing the volumes and comparing
the results with respect to the different type of devices considered. Finally, we
conclude introducing the concept of video session which will be our key tool in the
following chapters to study both the architecture and the performance of YouTube.

8.2 Collection tool

To inspect the network traffic we relied on Tstat [24, 72], an Open Source packet
sniffer with Deep Packet Inspection (DPI) capabilities, which implements both traffic
classifiers and fine-grained flow-level statistics. Tstat identifies the application that
generates TCP/UDP flows using a combination of Deep Packet Inspection (DPI)
and statistical classifiers. Tstat was found to perform well in [60].
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Leveraging on this, we improved Tstat so as to identify the YouTube traffic
and we distinguish all possible HTTP messages that can be observed when a client
downloads a YouTube video both from the portal or third party sites such as news
sites or blogs where the video is “embedded”. By parsing the URL of the HTTP
messages, Tstat identifies PC-player and Mobile-player accesses1 and extracts spe-
cific video information, such as the videoID and the video format. We also extract
other video related information from the video header, such as the resolution, total
duration and size of the video.

Tstat identifies not only the control messages and the videos flows but also site
flows (search queries, download of thumbnails and others user’s interactions with
the YouTube website). However, for the results reported in the following chapters,
we mainly focus on the first two categories.

In addition to the video properties, Tstat also collects several TCP flow-level
statistics, such as the total number of packets and bytes transmitted and received,
the total flow duration and the average RTT2. Further information on Tstat capa-
bilities as well as the source code can be obtained from [24, 72].

8.2.1 Data sets

Using Tstat, we collected data sets corresponding to flow-level logs where each line
reports a set of statistics related to each YouTube flow. Among other metrics, the
source and destination IP addresses, the total number of bytes, the starting and
ending time and both the videoID and the resolution of the video requested are
available.

We collected data sets from five locations spread across three countries including
Points-of Presence (PoP) in nation-wide ISPs and University campuses. In all cases,
a high-end PC running Tstat was installed to analyze in real time all the packets
going to and coming from all the hosts in the monitored PoPs. We performed
two separate collections of one week time period, the first between September 4th
and September 10th, 2010 (YT-2010) and the second one on February 25th, 2011
(YT-2011). From all vantage points we started the collection at 12:00am, local time.

Table 8.1 summarizes the characteristics for both data sets, reporting the name,
the type of users and the volumes of flows and bytes collected. The last three
columns instead correspond to the number of distinct IP addresses considering both
YouTube servers and clients in the PoP, and the number of distinct videos requested.

The two collection are quite heterogeneous, covering different type of users, lo-
cations and technology access. In particular, we can identify

1URL requests from mobile devices contain app=youtube gdata or app=youtube mobile. We
do not make any further distinction on the type of browser or mobile device used.

2RTT is estimated by leveraging TCP acknowledgements [24, 72]
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(a) YT-2010

Name Type Flows Vol. [GB] Servers SrcIP Videos

US-Campus Campus 874649 7061 1985 20443 332146
EU1-Campus Campus 134789 580 1102 1113 40437
EU1-ADSL Home 877443 3709 1977 8348 259627
EU1-FTTH Home 91955 463 1081 997 30290
EU2-ADSL Home 513403 2834 1637 6552 173280

(b) YT-2011

Name Type Flows Vol.[GB] Servers SrcIP Videos

US-Campus Campus 2172250 10898 1889 20455 446870
EU1-Campus Campus 173024 714 1275 1203 50205
EU1-ADSL Home 740330 2615 2538 8154 189788
EU1-FTTH Home 135907 480 1648 1136 33762
EU2-ADSL Home 830476 3688 2043 5826 205802

Table 8.1. YouTube data sets description

ISP Networks: the data sets have been collected from nation-wide ISPs in two
different European countries. EU1-ADSL and EU1-FTTH refer to data col-
lected from two distinct PoPs within the same ISP. The two PoPs differ in the
type of Internet access technology of their hosted customers. In EU1-ADSL,
all customers are connected through ADSL links and in EU1-FTTH, all cus-
tomers are connected through FTTH links. The EU1 ISP is the second largest
provider in its country. The EU2 data set has been collected at a PoP of the
largest ISP in a different country.

Campus Networks: The data sets have been collected using a methodology
similar to the ISP setting. The Tstat PC is located at the edge of each campus
network, and all incoming and outgoing traffic is exposed to the monitor. We
collected data sets from two University campus networks, one in the U.S. and
one in a European country.

Comparing the size of the data set, they are very similar. The main difference
between the collections is in the Tstat capabilities to track YouTube traffic. In fact,
in the older data set YT-2010, Tstat was tuned to identify only a specific subset of
control messages (mainly redirection messages) and it was not able to distinguish
between PC-player and Mobile-player downloads. The two collections are then used
for two different purposes: YT-2010 has been used mainly to study the internal
system architecture while YT-2011 to study similarity and differences with respect
to different users’ devices.
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Figure 8.1. Distribution of the TCP flow size in YT-2011.

8.2.2 Video and control flows

In Chapter 7.1, we have seen that part of the interaction between the client and
YouTube are related to control messages. Considering the YT-2011 data collection,
Figure 8.1 reports the Cumulative Distribution Function (CDF) of TCP flow sizes,
i.e., number of bytes (B) received by the client in a flow. Let us focus on the
PC-player traffic (top plot). Steps in the CDF clearly show the presence of flows
of typical size corresponding to specific HTTP messages: ‘204 No Content’ flows
(prefetching) are about 120 B long, ‘302 Found’ flows (redirections) are in the
[800-1000] B range, while flows containing the 200 OK responses are typically longer
than 80 kB since they contain the actual video data. Interestingly, the initial part of
the distribution is different for different probes, with EU1-Campus and EU2-ADSL
suffering a higher fraction of redirections (‘302 Found’) messages. However, the tail
of the distribution looks rather similar, suggesting that the size of videos downloaded
in the networks monitored is similar. We will detail this better in Chapter 9.

Looking at results for Mobile-player (bottom plot), we observe that the flow
size is similar across data sets, with EU1-Campus and EU2-ADSL still exhibit-
ing higher fraction of redirection messages. However, comparing PC-player and
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PC-player Mobile-player

Data set 200 204 206 302 200 206 302

US-Campus 44.1 49.2 2.5 4.2 2.9 89.9 7.2
EU1-Campus 39.6 44.3 4.7 11.4 2.1 80.5 17.4
EU1-ADSL 45.5 46.2 3.6 4.7 1.4 92.4 6.2
EU1-FTTH 46.1 47.4 2.4 4.1 1.1 92.3 6.6
EU2-ADSL 40.8 40.8 4.3 14.1 14.8 66.1 19.1

200 OK (normal condition)
302 Found (redirection)
204 No Content (empty control message)
206 Partial Content (delivery of a chunk)

Table 8.2. Distribution of HTTP return code in YT-2011.

Mobile-player we observe interesting differences: (i) the absence of the prefetch-
ing phase causes the ‘204 No Content’ responses, of size 120B, to disappear in
Mobile-player; (ii) the abundant presence of the HTTP requests using the Range

header field causes the flows carrying the video data to be one order of magnitude
shorter than in PC-player. This is a direct artifact of the video chunking mecha-
nisms and not a difference in the actual video duration and size (see Figure 9.1 and
Figure 9.2). Interestingly, the 500B long flows are due to ‘206 Partial Content’

replies to the first videoplayback request using the ‘Range: bytes 0-1’ header
which Mobile-player uses to discover the actual video size from the HTTP response
field (see Sec. 7.2.2).

The differences in the methodologies are visible also considering the HTTP re-
sponse codes reported in Table 8.2. For each PC-player download there is always a
204 No Content (related to the generate204) and a 200 OK (related to the video
query), while for Mobile-player all the flows usually associated to a 206 Partial

Content (related to a chunk of the video). Some mobile device can also receive a 200
OK messages 3. Instead, the fraction of 206 Partial Content related to PC-player
is the result of an optimization of the system and occurs when the user reload the
page before having completed the download. In this situation, the player have al-
ready buffered a portion of the video so it only requests the remaining part. We can
also notice that the redirections are not negligible and are more frequent for mobile
devices.

The effect of the chunking mechanism adopted by Mobile-player has clearly an

3Apple’s products receives always 206 Partial Content while other devices receive also the
200 OK
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Name %Flows %Bytes

US-Campus 32.5 3.5
EU1-Campus 15.6 2.8
EU1-ADSL 27.2 3.9
EU1-FTTH 42.2 6.6
EU2-ADSL 4.2 1.6

Table 8.3. Fraction of flows and bytes due to mobile terminals in YT-2011.

impact on the number of flows generated by mobile devices to download the content.
Table 8.3 quantifies this by reporting the fraction of flows and bytes that are due to
Mobile-player for the different data sets. We can notice that, while Mobile-player
traffic is a small fraction of the total volume, it accounts for a much larger fraction
of flows. This might pose performance issues on flow-based devices, like NAT boxes
or full-state firewalls which keep per-flow state.

Consider now the volume of bytes. Unexpectedly, only less than 6% of YouTube
traffic is due to users from mobile devices. The networks we consider offer both
wired and WiFi access with large penetration of smartphones, especially in the
campus networks. Therefore, one would expect that a large fraction of YouTube
accesses is done from such terminals. Our measurements contrast this intuition.
Moreover, some recent studies [27, 49] show that multimedia content is responsible
for more than 40% of the total volume due to wireless terminals, with YouTube as
the main contributor. Our results show that this traffic is little compared to the
volume generated by wired networks. A possible explanation for this is the fact that
wireless users in our networks still prefer to access YouTube videos from standard
PC browsers, because of the better user experience compared to smartphones.

8.3 Video session definition

Tracking single flows is not enough to capture the whole evolution of a YouTube
video download. As seen in Chapter 7.2, in the normal scenario each YouTube video
request corresponds to a HTTP message exchanged between the Flash plugin and a
video content server. If the request succeeds, then the content server starts to deliver
the video inside the opened connection. It is possible however that the server may
not serve the content. In such a case, it would simply redirect the user to another
content server and close the connection. For Mobile-player instead multiple TCP
connections are used, each one carrying a portion of the video. Moreover, whenever
the user perform a action on the player controls, e.g., a resolution switch, a new
TCP connection is initiated abruptly aborting the current one.

To capture such a variety of behaviors, we use the concept of video session, i.e.,
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a mechanism to group all connections related to the download of the same content.
More specifically, a video session corresponds to the set of TCP connections that

• share the same source IP address and videoID;

• are separated by a silence period shorter than T seconds. For instance, two
connections c1 and c2 belong to the same session if the difference in time
between the beginning of c2 (time of the TCP SYN packet) and the end of c1
(time of the last packet observed) is smaller than T .

The value of the threshold T is related to the type of analysis we are interested
in. Small values are suited to study system interactions triggered automatically
(e.g., redirections), while large values of T may also group flows generated by user
interactions with the video player, (e.g., resolution switch).

Inside each session, we can further distinguish between video flows, i.e., long
connections carrying the requested video, and control flows, i.e., short connections
carrying signaling messages. As to distinguish the flow type we used a simple heuris-
tic based on the HTTP return codes and the flow size as reported in Figure 8.1:
flows smaller than 1000 bytes and not associated to a 200 OK correspond to control
flows, while the remaining corresponds to video flows. We have conducted manual
experiments which have confirmed that flows smaller than 1000 bytes are indeed
control messages. Knowledge of control flows associated with a video flow can help
provide important insights for our analysis. For instance, a video flow from a user
to a given server preceded closely (in time) by a control flow to another server is an
indication of redirection. In contrast, an isolated video flow not preceded by other
control flows is an indication that the request was directly served by the contacted
server.
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Chapter 9

Video content

9.1 Introduction

In this chapter we study the properties of the video hosted in the YouTube CDN.
Some works [28, 27, 79] have already analyzed properties as the video size and
duration. [11] and [12] crawled the YouTube site for an extended period of time and
performed video popularity and investigate on social networking activities related
to the videos. Our work anyway goes in a different direction, aiming at a deeper
knowledge of the properties of the videos. Taking advantage of the YT-2011 data
sets (see Chapter 8.2.1), we do not simply measure the video size, duration, average
bitrate and video formats, but we consistently compare the video properties with
respect to different type of users, locations, access technologies and type of device
used to access to the video.

Results show that the size and duration of the videos in the system is independent
from users location. More surprisingly, this is true also considering the type of
device used to access to the system. As expected, the average video bitrate instead
is directly related to the video resolution. However, if on the one hand 1 Mb/s is
enough to cope with the most common resolution (360p), on the other hand High
Definition (HD) resolutions (720p and 1080p) request up to 6 Mb/s representing
then a challenge due to the high bandwidth requirements of the streaming. Finally,
PC-player and Mobile-player downloads have by design two different default video
formats.
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Figure 9.2. CDF of video size for YT-2011.

9.2 Video duration and size

Figure 9.1 reports the duration, in time, of videos for both PC-player (left) and
Mobile-player (right). Note that this corresponds to the duration of the com-
plete video and not to the portion of video watched by the user1. Considering
the PC-player scenario, and comparing the measurements from the different data
sets, we notice that there is great similarity across vantage points so that it is im-
possible to distinguish among them. For example, in all vantage points, 40% of the
videos last less than 3 min, and less than 5% of the videos last more than 10 min.

Consider now the Mobile-player case. We observe a slightly moderate difference
among the video duration accessed from different probes (notice the log-scale on the
x-axis). Still, 40-50% of all videos accessed from mobile terminals are shorter than

1This information is extracted from the video metadata.
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ID Video Codec Audio Codec Container Res. Name

13 H.263 AMR 3GP
144p

others
17 MPEG-4 ASP AAC 3GP others

5 FLV1 MP3 FLV
240p

240p-Fl
36 H.264 AAC 3GP others

34 H.264 AAC FLV
360p

360p-Fl*
18 H.264 AAC MP4 360p-Mp+

43 VP8 Vorbis WebM others

35 H.264 AAC FLV
480p

480p-Fl
44 VP8 Vorbis WebM others

22 H.264 AAC MP4
720p

720p-Mp
45 VP8 Vorbis WebM others

37 H.264 AAC MP4 1080p others

38 H.264 AAC MP4 3072p others

(*) PC-player default format , (+) Mobile-player default format

Table 9.1. YouTube supported video formats.

3 minutes, and 5% of videos last more than 10 minutes. Indeed, the Mobile-player
and the PC-player CDFs are very similar among them too.

This result shows that people with very different cultural bias (e.g., Europeans
vs Americans, students vs residential users), using very different terminals (smart-
phones vs PCs) and with different Internet access bandwidth (ADSL vs FTTH vs
WiFi vs Ethernet) produce and consume the same type of content: short videos
which can be quickly watched from YouTube. At the aggregation level that we
study, this reflect the distribution of video duration of the YouTube service.

Figure 9.2 reports the total video size in bytes of the videos that have been seen
in our data sets. We find very similar results across traces and devices. This is
counterintuitive, since we would expect the distribution to be more variable, e.g.,
due to the availability of videos with different resolutions, and different encoding
formats. In addition, intuition would suggest that the video size would be larger for
PC-player than for Mobile-player, to better accommodate the limited resources of
smartphones. But this is also not clear in the graph. To understand this better, in
the next section we dig into the impact of video codecs and resolutions.

9.3 Video formats

A “video” is a complex object that multiplexes encoded video and audio streams.
Encoding is done according to different algorithms, and the result is then organized
into a container of different type. The combination of the encoding algorithm, video

95



9 – Video content

 0

 0.2

 0.4

 0.6

 0.8

 1

240p-Fl 360p-Fl* 480p-Fl 360p-Mp+ 720p-Mp others

Fr
ac

t. 
of

 v
id

eo
s

PC-player

US-Campus
EU1-Campus

EU1-ADSL
EU1-FTTH
EU2-ADSL

 0

 0.2

 0.4

 0.6

 0.8

 1

240p-Fl 360p-Fl* 480p-Fl 360p-Mp+ 720p-Mp others

Fr
ac

t. 
of

 v
id

eo
s

Mobile-player

US-Campus
EU1-Campus

EU1-ADSL
EU1-FTTH
EU2-ADSL

Figure 9.3. Fraction of videos for popular video format for YT-2011.

resolution, and the type of container defines the video format. A plethora of video
formats are available, some of which are proprietary while others are standard.

YouTube supports the formats listed in Table 9.1. Each format is identified by
a unique ID corresponding to the itag parameter in the video request. Each ID
corresponds to a unique combination of video codec, audio codec, container and
resolution. The last column shows the naming convention we used in this paper to
identify each format. A marker highlights the YouTube default video format.

The variety of formats reflects the evolution of the system and technology over
the last years. In the early days, only Flash Video (FLV) content was supported
only at 240p resolution. In 2007 the MP4 container was introduced along with
resolution 360p. This switch was driven by the introduction of new devices that
did not support FLV videos (e.g., Apple iOS devices). There are also 3GP formats,
which are specific for mobile devices, and the more recent WebM formats [75], which
are part of the HTML5 specifications. As of today, H.264 video codec is the most
widely adopted standard. Note that when the user uploads a new video, the system
automatically generates the different video formats and makes them available to
download [76].

At playback time, the user can eventually choose among multiple resolutions
via the player graphical user interface. For PCs, the Adobe Flash player presents
a menu button listing the available resolutions, e.g., 240p, 360p and 480p. Some
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Mobile-players instead present a toggle button with the choices of “high” and “low”
quality, without explicit indication of the resolutions.

The supported formats do not have the same popularity. Figure 9.3 reports the
breakdown of video formats considering PC-player and Mobile-player data sets on
top and bottom plots, respectively. There is a clear difference respect to the device
used to access the video: Flash based formats are largely preferred by PC-player,
while MP4 is the preferred container for Mobile-player. This is not surprising con-
sidering that Apple iOS products (e.g., iPhone, iPad, iPod touch) cannot handle
FLV content. The higher fraction for Flash based formats in the Mobile-player
data sets in EU1-Campus and EU2-ADSL may be related to different popularity
of devices among certain users (e.g., students) to prefer smartphones running the
Android operating system or Windows Mobile which support Flash content.

The default video resolution offered to PC-player is 360p, while Mobile-players
tries to retrieve the best available quality according to the network/device capabil-
ities. This causes 720p format (also known as High Definition - HD) to be more
popular for Mobile-player than PC-player and this difference is the result of a system
design choice.

The previous findings hold true independent from the vantage point, showing
the ubiquitousness of the YouTube service. We expect this to change in 3G/4G
networks, where the 3GP formats are known to be used and low resolution videos
are offered by default.

9.3.1 Video encoding bitrate

Given a codec and a video resolution, the video quality has a strict relation with the
video encoding bitrate. It is therefore interesting to observe what is the typical en-
coding bitrate of YouTube videos. Figure 9.4 reports the CDF of the video encoding
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bitrate for the most important video formats. Each curve aggregates statistics from
all videos of the data sets (each single data set presents the same distribution, being
this a system choice). MP4-based formats are highlighted by line-points patterns.
In general, the actual encoding bitrate is the minimum between the maximum al-
lowed bitrate, and the bitrate that allows to achieve the desired quality. The latter
depends on the video content, e.g., more static video sequences allow to reach lower
encoding bitrate. This is reflected in the curves. For example, consider 240p-Fl
(FLV) videos. The sharp knee around 300 kbps is the effect of the maximum bitrate
limit, which is reached by 70% of videos. About 30% of videos are instead quality
limited. Similarly, 360p-Mp (MP4) videos are configured to not exceed 600 kb/s,
with most of the videos being quality limited. In some cases, the maximum bound of
the video encoding rate can be violated as shown for example for the 10% of 240p-Fl
videos. This can be due to a change in the encoding parameters that happened at
some time.

It is known that the higher is the resolution, the higher is the bitrate. For
example, the 360p videos (currently the default choice) do not exceed 1 Mb/s video
rate, while 480p video bitrate goes up to 1.5 Mb/s. 720p and 1080p require up to
3 Mb/s and 6 Mb/s respectively. This allows to speculate on the impact of YouTube
switching to higher resolution by default. For example, defaulting to 480p would
correspond to almost double the amount of traffic due to YouTube, with possibly
large impact on both the YouTube CDN and on ISP networks. Going to 720p as
the default choice would correspond to multiply by a factor of 4 the offered traffic.
Given that YouTube already accounts for more than 20% of Internet traffic and
assuming the user demand remains the same, this would correspond to a critical
traffic surge that might impair the YouTube service itself.
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Chapter 10

Video server selection strategies

10.1 Introduction

In this chapter, we focus on the YouTube infrastructure aiming at exploring the
various factors that can influence the video delivery process, such as user proximity
to data centers, server load, and popularity of video content. Recently, a few works
analyzed the YouTube video delivery infrastructure [1, 66]. However, both these
works focus on the “old” YouTube infrastructure. In [1], the authors discovered
eight data centers around the U.S. that provided most videos to clients around the
world. Further, they found that the YouTube server selection algorithm does not
consider geographical location of clients and that requests are directed to data cen-
ters proportionally to the data center size. In [66] the authors perform PlanetLab
experiments to download YouTube videos and measure user performance. The au-
thors found that most videos are being sent from a few locations in the U.S. and
that YouTube pushes popular videos to more data centers.

Conversely, our work focuses on the “new” YouTube infrastructure. Based on the
analysis of YT-2010 data set (see Chapter 8.2.1), a much robust and heterogeneous
data set with respect to the cited works, and the usage a state-of-the-art geolocal-
ization algorithm, we found several differences with respect to previous works. First
of all, 33 different data centers have been found serving YouTube videos all around
the world. Analyzing RTT distances, we found that the video delivery is location
aware, i.e., most videos are being delivered from a preferred data center, typically
the closest one. However, a combination of different causes related to DNS and
caching policies can redirect the download to non-preferred data centers.

The remaining of this chapter is organized as follows. We start studying the
video server geolocation, introducing the problem, the state-of-the-art tools and
the methodology we developed to group the servers in data centers. Leveraging
on this information, we then analyze the server selection strategies dissecting the
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Data set
AS 15169 AS 43515

Same AS Others
Google Inc. YouTube-EU

servers bytes servers bytes servers bytes servers bytes

US-Campus 82.8 98.96 15.6 1.03 0 0 1.4 0.01
EU1-Campus 72.2 97.8 20.3 1.6 0 0 7.5 0.6
EU1-ADSL 67.7 98.8 28 0.94 0 0 4.3 0.26
EU1-FTTH 70.8 99 24.2 0.83 0 0 5 0.27
EU2-ADSL 62.9 49.2 28.6 10.4 1.1 38.6 7.4 1.8

Table 10.1. Percentage of servers and bytes received per AS for YT-2010.

possible causes of redirection: DNS resolvers, cache miss, load balancing, and video
popularity.

10.2 Video server geolocation

In this section we study the video server geolocation. The goal is to later use
this information to analyze the video server selection policies. We start the analysis
showing how the traffic is split with respect to Autonomous Systems (AS). Then, we
introduce the geolocalization problem and the developed methodology to aggregate
IP addresses in data center. Finally, we present the results obtained.

10.2.1 AS location

We start our analysis studying the Autonomous System (AS) in which YouTube
video servers are located. We employ the whois tool to map the server IP address
to the corresponding AS. Table 10.1 presents our findings for each data set. The
second group of columns shows the percentage of servers and bytes sent from the
Google AS (AS 15169). Not surprisingly, most servers are hosted in the Google AS.
For instance, for the US-Campus data set, 82.8% of the servers are located in the
Google Inc. AS, serving 98.66% of all bytes. The third group of columns shows
that a small percentage of servers (and an even smaller percentage of bytes) are still
located in the YouTube-EU AS (AS 43515). We therefore have an evidence that since
2009 Google has migrated most content from the YouTube original infrastructure
(that was based on third party CDNs) to its own CDN. The traffic served from
the YouTube networks is probably because of legacy configurations. This contrasts
with earlier studies such as [66, 1], according to which the majority of servers were
located in the YouTube AS (AS 36561, now not used anymore).

The fourth group of columns in Table 10.1 shows the percentage of servers and
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Figure 10.1. RTT to YouTube content servers from each vantage point
considered in YT-2010.

bytes received from within the same AS where the data set have been collected.
Note that the values are 0 for all data sets except EU2-ADSL. The EU2-ADSL data
set indeed shows that a YouTube data center is present inside the ISP network. This
data center serves 38.6% of the bytes in the EU2-ADSL data set. This results in
the EU2-ADSL data set having fairly different performance than other data sets, as
our analysis will reveal later.

Finally, the last groups of columns aggregates the percentage of servers and bytes
sent from other ASes, among which CW (AS1273) and GBLX (AS3549) are the most
likely one. This confirms therefore that YouTube servers can be both present inside
an ISP, or in the Google network.

In the rest of this chapter, we only focus on accesses to video servers located in
the Google AS. For the EU2-ADSL data set, we include accesses to the data center
located inside the corresponding ISP.

10.2.2 Limitations of IP-to-location databases

One common way to find the geographical location of an IP address is to rely on
public databases [66]. While such databases are fairly accurate for IPs belonging to
commercial ISPs, they are known to be inaccurate for geolocation of internal IPs of
large corporate networks. For example, according to the Maxmind database [50],
all YouTube content servers found in the data sets should be located in Mountain
View, California, USA. To verify this, we perform RTT measurements from each of
our vantage points to all content servers found in our data sets. Figure 10.1 reports
the Cumulative Distribution Function (CDF) of the minimum RTT obtained to each
server. We clearly observe that there is a lot of variation in the measurements, and
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Figure 10.2. Radius of the CBG confidence region for the YouTube
servers found in YT-2010.

in particular, many of the RTT measurements for the European connections are too
small to be compatible with intercontinental propagation time constraints [61]. This
indicates that all servers cannot be located in the same place.

We note that Maxmind was useful in [66], probably because most YouTube
servers in the old infrastructure were reported as located in San Mateo and Mountain
View, California, USA. Further, a recent work [1] adopts a different approach, where
the location of the server is obtained directly from the server name. However, this
approach is not applicable to the new YouTube infrastructure, where DNS reverse
lookup is not allowed. Therefore we decided to adopt a measurement-based approach
to systematically localize YouTube servers.

10.2.3 Measurement based geolocation mechanism

CBG [31] is a well-known geolocation algorithm that is based on simple triangula-
tion. A set of landmarks is used to measure the RTT to a target. A simple linear
function is then used to estimate the physical distance between each landmark and
the target. This distance will become the radius of a circle around the landmark
where the target must be located. The intersection among all circles is the area in
which the target can be located.

We obtained the CBG tool from Gueye et al. [31] for our evaluations. We used
215 PlanetLab nodes as landmarks: 97 in North America, 82 in Europe, 24 in Asia,
8 in South America, 3 in Oceania and 1 in Africa. Then, we run RTT measurements
from each landmark to each of the YouTube servers that have been found in our
data set, and identified the area in which they are placed.

In Figure 10.2 we evaluate the confidence region of CBG, i.e. the area inside
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Data set N. America Europe Others

US-Campus 1464 112 84
EU1-Campus 82 713 1
EU1-ADSL 518 769 51
EU1-FTTH 90 631 44
EU2-ADSL 233 815 0

Table 10.2. Google servers per continent on each data set in YT-2010.

which the target IP should be located. The picture shows the CDF of the radius
of the confidence region for all servers found. Separate curves are shown for IPs
in U.S. and Europe. Note that the median for both U.S. and European servers is
41km, while the 90th percentile is 320km and 200km, respectively. This is in the
ballpark of the PlanetLab experiments presented in [31], where the 90th percentile
for U.S. and Europe was about 400km and 130km. We can therefore consider the
results provided by CBG to be more than adequate for our analysis.

10.2.4 Geolocation results

Table 10.2 details the result of using CBG to identify the location of all the desti-
nation IPs found in the data sets. The table shows the number of servers that are
located in North America, Europe and other continents. Interestingly in each of the
data sets, at least 10% of the accessed servers are in a different continent.

Finally, since several servers actually fall in a very similar area, we consider all
the YouTube servers found in all the data sets and aggregate them into the same
“data center”. In particular, servers are grouped into the same data center if they
are located in the same city according to CBG. We note that all servers with IP
addresses in the same /24 subnet are always aggregated to the same data center
using this approach. We found a total of 33 data centers in our data sets, 14 in
Europe, 13 in USA and 6 in other places around the world. These results may not
cover the complete set of YouTube servers since we are only considering those servers
that appeared in our data set.

10.3 Evaluating YouTube’s server selection algo-

rithm

In the previous section, we have shown how IP addresses of YouTube servers may be
mapped to the appropriate YouTube data centers. Armed with such information,
we now try to understand how user video requests are mapped to YouTube data
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Figure 10.4. Number of flows per session for all data sets using T=1
second in YT-2010.

centers. We are interested in exploring the various factors that can influence the
decision, such as user proximity, server load, and popularity of content. We begin
by discussing the various types of flows in a YouTube session, and then discuss how
content servers are selected.

10.3.1 Video sessions tuning

As introduced in Chapter 7.2, when a user attempts to download a video, the overall
interaction may include a group of distinct flows, not all of which involve transfer
of video. To group the flows in sessions, we need to select the value of the threshold
T which defines if two flows are overlapped or not (see Chapter 8.3). Since we are
interested in capturing interactions triggered by the system (e.g., redirections), we
want to use a small value of T , but that is large enough to avoid artificially separated
flows. Hence, we perform sensitivity to the value of T in our traces. We show results
for the US-Campus data set in Figure 10.3 and note that other traces show similar
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Figure 10.5. Fraction of the total YouTube video traffic served by a data center
with an RTT less than a given value in YT-2010.

trends. Results indicate that values of T equal to 10 seconds or less generate similar
number of sessions. So we pick the smallest value of T in our evaluations, T = 1
second.

Figure 10.4 reports the CDF of the number of flows per session for each data set,
assuming T = 1 second. It shows that 72.5−80.5% of the sessions consist of a single
(long) flow. Therefore, normally there is no need to iterate over different servers to
download the video data. However, 19.5 − 27.5% of the sessions consist of at least
2 flows, showing that the use of application-layer redirection is not insignificant.
This is also confirmed by the sharp knees in the [800-1000] B range in Figure 10.3
corresponding to the ‘302 Found’ messages which are triggered when a redirection
occurs.

10.3.2 Understanding server selection strategy

In Table 10.2 we have shown that the users in each data set contact video servers
all over the world. It is now interesting to investigate how the volume of traffic
downloaded is spread across the different data centers. Figure 10.5 reports the
fraction of traffic served by each data center versus the RTT between the vantage
points and the data centers itself. In particular, we consider the minimum RTT seen
by pinging all servers in each data center from the probe PC installed in the PoP.
We observe that except for EU2-ADSL, in each data set one data center provides
more than 85% of the traffic. We refer to this primary data center as the preferred
data center for that particular trace and other data centers will be labeled as non-
preferred. At EU2-ADSL, two data centers provide more than 95% of the data, one
of them located inside the ISP and the other outside in the Google AS. We label
the data center with the smallest RTT in EU2-ADSL as the preferred one. We give
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Figure 10.6. Fraction of the total YouTube video traffic served by a data center
with a distance less than a given value in YT-2010.
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Figure 10.7. Variation of the fraction of video flows directed to a non-preferred
data center over time. One hour long time periods are considered in YT-2010.

a closer look to the EU2-ADSL case in Chapter 10.4.1.

Further, we notice that the data center that provides most of the traffic is also
the data center with the smallest RTT for each data set. This suggests that RTT
does play a role in the selection of YouTube servers. However, we have reason to
believe that RTT is not the only criteria and that the preferred data center may
change over time. For example, in a more recent data set collected in February
2011, we found that the majority of US-Campus video requests are directed to a
data center with an RTT of more than 100 ms and not to the closest data center,
which is around 30 ms away.

Figure 10.6 considers the distance (in kilometers) between users and the data
centers they are mapped to. In most cases, the data centers with the smallest delay
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to the customers are also the physically closest ones. This is not the case for the US-
Campus data set, where the five closest data centers provide less than 2% of all the
traffic. Coupled with previous observations about RTT, this is an indication that
geographical proximity is not the primary criterion used in mapping user requests
to data centers.

The final observation we make is that although most traffic comes from the
preferred data center that is typically very close to the customers, there are some
exceptions in all data sets. For the US-Campus and the EU1 data sets, between
5% and 15% of the traffic comes from the non-preferred data centers. However, in
EU2-ADSL, more than 55% of the traffic comes from non-preferred data centers.
We now are interested to see the variation over time of the fraction of traffic coming
from non-preferred data centers. One hour-long time slots are considered, and the
fraction of traffic served by non-preferred data centers in each of these time slots is
determined. Figure 10.7 plots a CDF of these fractions. The results indicate that the
fraction varies across time for most data sets, the variation being most prominent
for the EU2-ADSL data set. In particular for this data set, 50% of the samples have
more than 40% of the accesses directed to the non-preferred data center.

10.3.3 Mechanisms resulting in accesses to non-preferred
data centers

We have seen that a non-negligible fraction of video flows are downloaded from
non-preferred data centers. There are at least two possible causes for this. A first
possibility is that the DNS mechanisms direct a request to the non-preferred data
center. A second possibility is that the request was redirected to another data center
by the preferred data center server.

To disambiguate the two cases, we consider the video session associated with
each flow, as discussed in Chapter 10.3.1. In the case that DNS maps a request to
a non-preferred data center, the video session must consist of a single video flow to
a non-preferred data center, or must begin with a control flow to the non-preferred
data center. In the other scenario, the session must begin with a control flow to the
preferred data center (indicating the DNS mapping was as expected), but subsequent
flows in the session must be to non-preferred data centers.

To better understand the effectiveness of DNS in mapping requests to the pre-
ferred data center, consider Figure 10.8(a). Each bar in the figure shows the fraction
of sessions that involve only one flow. Further, each bar shows a break down of the
requests sent to the preferred and non-preferred data centers. For instance, for
US-Campus, 80% of the sessions involve a single flow; 75% are then served by the
preferred data center while 5% of sessions are directly going to the non-preferred
data center. Interestingly, about 5% of the single-flow sessions are directly served by
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Figure 10.8. Breakdown of sessions based on whether flows of the session are sent
to preferred data center in YT-2010.

the non-preferred data center for EU1 data sets too. For EU2-ADSL however, over
40% of the single flow sessions are served by the non-preferred data center. Over-
all, these results show that DNS is in general effective in mapping requests to the
preferred data center. Still DNS mapping mechanisms do account for a significant
fraction of video flow accesses to non-preferred data centers.

We next try to understand the extent to which users downloaded video from a
non-preferred data center, even though they were directed by DNS to the preferred
data center. Figure 10.8(b) presents the breakdown of sessions involving 2 flows.
These sessions group a control flow followed by a video flow. Based on whether each
flow involves the preferred or non-preferred data center, we have four possible cases:
(i) both preferred; (ii) both non-preferred; (iii) the first preferred and the second
non-preferred; and (iv) the first non-preferred and the second preferred. Each bar
in Figure 10.8(b) presents the breakdown among these patterns. For all the EU1
data sets, we see a significant fraction of cases where the DNS did map requests to
the preferred data center, but application-layer redirection mechanisms resulted in
the user receiving video from a server in a non-preferred data center. For the EU2-
ADSL data set, we note that a larger fraction of sessions has both flows going to the
non-preferred data center, meaning that the DNS is still the primary cause for the
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Figure 10.9. Fraction of the total YouTube video traffic served by the preferred
data center (top graph) and total number of video flows (bottom graph) as a
function of time for the EU2-ADSL data set in YT-2010.

user downloading videos from non-preferred data centers. We have also considered
sessions with more than 2 flows. They account for 5.18 − 10% of the total number
of sessions, and they show similar trends to 2-flow sessions. For instance, for all
EU1 data sets, a significant fraction of such sessions involve their first access to the
preferred data center, and subsequent accesses to non-preferred data centers.

10.4 Causes underlying non-preferred data center

accesses

10.4.1 DNS-level load balancing

As shown in the previous Section, the EU2-ADSL data set exhibits very different
behavior compared to other data sets. Over 55% of the video traffic is received from
the non-preferred data center, and a vast majority of accesses to non-preferred data
centers is due to the DNS mapping mechanisms.

To understand this better, consider Figure 10.9. The top graph presents the
evolution over time of the fraction of video flows served by the preferred data center.
One hour time slots are considered. The bottom graph shows the total number of
video flows seen in the EU2-ADSL data set as a function of time. Note that time 0
represents 12am on Friday. We can clearly see that there is a day/night pattern in
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Figure 10.10. Fraction of all video flows, and video flows to non-preferred data
centers for each internal subnet of the US-Campus in YT-2010.

this set of requests. During the night, when the total number of accesses from EU2-
ADSL is small, the internal data center handles almost 100% of the video requests.
However, during the day, when the number of requests per hour goes up to around
6000, the fraction of requests handled by the local data center is always around
30% across the whole week. Results for other data sets are not shown for the sake
of brevity. Still, all data sets exhibit a clear day/night pattern in the number of
requests. However, there is less variation over time of the fraction of flows served
by the preferred data center, as already seen in Figure 10.7. Furthermore, there is
much less correlation with the number of requests.

We believe the reason for this is the unique setup in the EU2-ADSL network.
In this network, the data center inside the network serves as the preferred data
center. While this data center located inside the ISP is the nearest to the users,
it is unable to handle the entire load generated by users inside the EU2-ADSL
ISP during busy periods. There is strong evidence that adaptive DNS-level load
balancing mechanisms are in place, which results in a significant number of accesses
to the non-preferred data centers during the high load period of traffic.

10.4.2 Variations across DNS servers in a network

Our results from the previous section indicate that for the US-Campus data set
most of the accesses to the non-preferred data center are caused by DNS. Deeper
investigation indicates that most of these accesses may be attributed to clients from a
specific internal subnet within the US-Campus network. Those clients indeed request
significantly higher fraction of videos from non-preferred data centers than clients
in other subnets. To see this, consider Figure 10.10. Each set of bars corresponds
to an internal subnet at US-Campus. The bars on the left and right respectively

110



10.4 – Causes underlying non-preferred data center accesses

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10  100  1000

C
D

F 
of

 V
id

eo
s

Number of Requests

US-Campus
EU1-Campus

EU1-ADSL
EU1-FTTH
EU2-ADSL

Figure 10.11. Number of requests for a video to the non-preferred data
centers in YT-2010.

show the fraction of accesses to non-preferred data centers, and the fraction of all
accesses, which may be attributed to the subnet. Net-3 shows a clear bias: though
this subnet only accounts for around 4% of the total video flows in the data set, it
accounts for almost 50% of all the flows served by non-preferred data centers.

Further investigation shows that hosts in the Net-3 subnet use different DNS
servers that map YouTube server names to a different preferred data center. In other
words, when the authoritative DNS servers for the YouTube domain are queried
by the local DNS servers in Net-3, the mapping provided is to a different preferred
data center than the other subnets on US-Campus. We believe this behavior is not a
misconfiguration in the YouTube servers or the Net-3 servers, but we rather hypoth-
esize that this is the result of a DNS-level assignment policy employed by YouTube,
probably for load balancing purposes, which can vary between DNS servers and thus
subnets that belong to the same campus or ISP network.

10.4.3 Investigating redirection at the application layer

We now consider cases where users download video from non-preferred data centers,
even though DNS mapped them to the preferred data center.

To get more insights into this, consider Figure 10.11 which reports the CDF
of the number of times a video is downloaded from a non-preferred data center.
Only videos that are downloaded at least once from a non-preferred data center
are considered. The results show two trends. First, a large fraction of videos are
downloaded exactly once from the non-preferred data center. For example, for the
EU1-Campus data set, around 85% of the videos are downloaded only once from the
non-preferred data center. Second, there is a long tail in the distributions. In fact,
some videos are downloaded more than 1000 times from non-preferred data centers.
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Figure 10.12. Load related to the top 4 videos with the highest number of accesses
to the non-preferred data centers for the EU1-ADSL in YT-2010.
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Figure 10.13. Average and maximum number of requests per server in the pre-
ferred data center of EU1-ADSL in YT-2010.

We consider the impact of popular and unpopular videos on server selection in the
next few paragraphs.

Alleviating hot-spots due to popular videos: Let us focus first on the tail in
Figure 10.11. Figure 10.12 considers the four videos with the highest number of
accesses to the non-preferred data centers for the EU1-ADSL data set. Each
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Figure 10.14. Number of video sessions per hour seen by the server handling video1
in the preferred data center of the EU1-ADSL in YT-2010. A breakdown of sessions
based on whether flows are directed to preferred data centers is also shown.

graph corresponds to one of the videos, and shows (i) the total number of
accesses to that video; and (ii) the number of times the video is downloaded
from the non-preferred data center, as a function of time. We see that there
are spikes indicating that some videos are more popular during certain limited
periods of time. Most accesses to non-preferred data centers occur during these
periods. In particular, all these videos were played by default when accessing
the www.youtube.com web page for exactly 24 hours, i.e., they are the “video
of the day”.

Those are therefore very popular videos, which possibly generate a workload
that can exceed the preferred data center capacity. Therefore, application-
layer redirection is used to handle the peaks. As further evidence, Figure 10.13
shows the average and the maximum number of requests served by each server
(identified by its IP address) in the preferred data center as a function of time.
The figure shows that at several times, the maximum number of requests a
single server has to handle is by far larger than the average load. For instance
at time 115, the average load is about 50 video flows, but there is one server
that answers more than 650 requests. Interestingly, we note that the servers
suffering the peak loads are those serving the majority of the top videos of
Figure 10.12.

Further investigation reveals that DNS correctly forwards the request to a
server in the preferred data center, but since its load is too high, the server
redirects part of the requests to another server in a non-preferred data center.
Consider Figure 10.14, which shows the load in terms of sessions, handled
by the server receiving the requests for video1 for the EU1-ADSL data set.
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Figure 10.15. Variation over time of the RTT between a PlanetLab node and the
content servers for requests of the same test video.

Different colors are used to show the breakdown of the total number of sessions
according to the preferred/non-preferred patterns. For example, we can see
that in the first 6 days, the majority of the sessions involves only flows served
by the preferred data center. On the last day however, a larger number of
requests is received, which leads to an increase in application-layer redirections
to a non-preferred data center. Overall, these results show that local and
possibly persistent overload situations are handled by the YouTube CDN via
application-layer redirection mechanisms.

Availability of unpopular videos:

Consider again Figure 10.11. Let us now focus on the observation that several
videos are downloaded exactly once from the non-preferred data center. Fur-
ther analysis indicated that for most data sets, over 99% of these videos were
accessed exactly once in the entire data set, with this access being to non-
preferred data centers. However, when the videos were accessed more than
once, only the first access was redirected to a non-preferred data center.

This observation leads us to hypothesize that downloads from non-preferred
data centers can occur because of the limited popularity of the videos. In
particular, videos that are rarely accessed may be unavailable at the preferred
data center, causing the user requests to be redirected to non-preferred data
centers until the video is found.

Since our data sets only contain a limited view of the accesses seen by a data
center, it is difficult to validate this claim using only our data sets. We there-
fore conducted controlled active experiments using PlanetLab nodes. In par-
ticular, we uploaded a test video to YouTube. The video was then downloaded
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Figure 10.16. Reduction in RTT from PlanetLab nodes to the content servers
when a test video is downloaded twice. The first access may incur a higher RTT
due to unavailability of content in the preferred data center.

from 45 PlanetLab nodes around the world. Nodes were carefully selected so
that most of them had different preferred data centers. From each node, we
also measured the RTT to the server being used to download the content. We
repeated this experiment every 30 minutes for 12 hours.

Figure 10.15 shows an example of the variation of RTT samples considering a
PlanetLab node located in California. Observe that the very first sample has
an RTT of around 200 ms. In contrast, later samples exhibit RTT of about
20 ms. Further investigations showed that the first time, the video was served
by a data center in the Netherlands while subsequent requests were served by
a data center in California.

Figure 10.16 shows the CDF of the ratio of the RTT to the server that handled
the first video request (RTT1) to the RTT to the server that handled the
second video request (RTT2) for all the PlanetLab nodes. A ratio greater
than 1 means that the video was obtained from a closer data center in the
second attempt than in the first attempt. A ratio with a value close to 1
shows that the first request went to the same server or a server in the same
data center as the second request. For over 40% of the PlanetLab nodes, the
ratio was larger than 1, and in 20% of the cases the ratio was greater than 10.
Interestingly, we have also found the RTT of subsequent samples is comparable
to the RTT of the second sample. Overall, these results indicate that the first
access to an unpopular video may indeed be directed to a non-preferred data
center, but subsequent accesses are typically handled from the preferred data
center.

115



10 – Video server selection strategies

10.5 Conclusion

The YouTube CDN has been completely redesigned compared to the one previously
analyzed in the literature. In the new design, most YouTube requests are directed
to a preferred data center and the RTT between users and data centers plays a role
in the video server selection process. More surprisingly, however, our analysis also
indicates a significant number of instances (at least 10% in all our datasets) where
videos are served from non-preferred data centers. In most datasets at least 10% of
requests were not served from the preferred data center. In one of our datasets, up to
55% of video requests were not served from the preferred data center, while in most
datasets at least 10% of requests were not served from the preferred data center.
In many of our datasets, there were some time periods when a much larger fraction
of requests to non-preferred data centers was observed. Across all datasets, a large
fraction of videos are downloaded no more than once from the non-preferred data
center, however there is a long tail with videos being downloaded more than 1000
times from non-preferred data centers. We identified a variety of causes underlying
accesses to non-preferred data centers including: (i) load balancing; (ii) variations
across DNS servers within a network; (iii) alleviation of load hot spots due to popular
video content; and (iv) availability of unpopular video content in a given data center.
Overall these results point to the complexity of factors that govern server selection
in the YouTube CDN.

The adoption of video sessions is crucial to capture the complete evolution of a
download and we identified a variety of causes underlying accesses to non-preferred
data centers. In some cases DNS mechanisms resulted in requests being directed to
non-preferred data centers for reasons including (i) load balancing; (ii) variations
across DNS servers within a network; to handle variations in system load due to
the day/night patterns in YouTube usage; and (ii) variations across DNS servers
within a network. Interestingly, we found other cases where videos were served from
a non-preferred data center because of redirections at the application layer. videos
were served from a non-preferred data center, even though DNS directed the user
to the preferred data center. The common causes underlying such cases included
(i) alleviation of load hot spots due to popular video content; and (ii) accesses to
unpopular video content that may not be available in a given data center. Overall
these results point to the complexity of factors that govern server selection in the
YouTube CDN.
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Chapter 11

User behaviour and implications

In this chapter we focus our attention on the way people watch videos from the
YouTube system. In the literature, the majority of the works characterizing the
users’ behaviour are focused on the activities related to the YouTube portal. For
example, using crawling methodologies, [12] study the social network related to the
videos, while [8] characterizes the different type of uploaders. However, very little is
known on the interaction of the users with the YouTube player, if the users perform
resolution switches or watch the whole video.

Considering mobile devices, recently there have been several works characterizing
high level usage patterns [49, 27, 70]. [49] shows that the number of mobile devices
doubled between 2009 and 2010 and that more than 80% of mobile devices traffic
is HTTP, with multimedia traffic alone accounting for more than 30% of HTTP.
[27] compares the content and flow characteristics of mobile devices and PCs traffic.
Using a DPI tool, the authors are able to show that YouTube alone accounts for
more than 35% of the Internet traffic. Anyway, these works do not specifically
address the YouTube system.

In this work we aim at a much deeper characterization of the users’ behavior ac-
cessing YouTube from both PCs and mobile devices. We are interested in observing
if they interact with the player’s GUI, e.g., switching resolution or going in full screen
mode, and which portion of the video people actually watches. Both have interesting
implication on the workload the system has to handle and the efficiency it achieves
in serving the requests. We take advantage of the YT-2011 data set and we con-
ducted an in depth analysis of the users’ behaviour and the implications related to
the users’ actions. Moreover, we consistently compare PC-player and Mobile-player
download and we highlight problems caused by the YouTube infrastructure when
delivering videos to mobile devices.

Results show that users stick to the default playback parameters and they are not
interested in changing the resolution during the playback. Moreover, typically they
consume just a portion of the video. Given the aggressive buffering scheme adopted
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Figure 11.1. Sensitivity of the number of TCP connections per session for different
values of T . EU1-ADSL data set in YT-2011.

by YouTube, this behaviour leads to waste a non negligible amount of bandwidth.

In the remaining of this chapter, we start from the methodology we used to
study the traffic and the tuning the T threshold to define the video sessions. We
then focus on the resolution switch, investigating on at which time it is performed
and which are the most common resolutions used in the switch. Finally, we study
the fraction of video downloaded and the implications with respect to the buffering
policies used by YouTube.

11.1 Video session tuning

To study the evolution of the downloads, we need to properly tune the threshold
T as obtain the video sessions (see Chapter 8.3). Respect to Chapter 10, where we
were interested in studying the automatic interactions generated by the system, in
this case we work at user-level so T > 1 sec is appropriate. Figure 11.1 reports the
number of connections per session for different values of T . The EU1-ADSL data
set is considered, but other data sets show identical results. The choice of T is not
critical for PC-player, while T > 5 s is required to properly aggregate Mobile-player
connections. In the following, we set T = 60 s, a conservative choice to better
capture users actions that could happen after the download has been completed but
while the playback is still running.

Figure 11.1 also shows the impact of the Mobile-player mechanisms in the number
of connections per session. While for PC-player, only 2% of the sessions have more
than 6 connections, for Mobile-player more than 4% of the sessions involve more
than 100 connections.
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PC-player Mobile-player
Data set 0 1 >1 0 1 >1

US-Campus 95.10 4.60 0.30 99.75 0.19 0.05
EU1-Campus 96.62 3.12 0.27 99.28 0.61 0.10
EU1-ADSL 95.27 4.45 0.28 99.63 0.28 0.09
EU1-FTTH 95.73 3.99 0.28 99.39 0.42 0.19
EU2-ADSL 95.14 4.40 0.46 98.07 1.36 0.57

Table 11.1. Percentage of resolution switch in YT-2011.

11.2 Resolution switch

In Chapter 9.3 we have seen that YouTube supports different resolution, each as-
sociated to a standard numerical code (360p, 480p, etc.) which is specified by the
client interacting with the video server. These codes are listed in a menu of the
player GUI and the user can change resolution during the playback. Intuitively, the
higher the value, the better the resolution. When a resolution switch occurs, the
current video flow is aborted and a new one with the new resolution specified is
initiated. It follows that, given a video session, a resolution switch is easily detected
by observing requests with the same videoID, but different video format.

Note that, as described in Chapter 9.3, the same resolution can be served with
both Flash and Mpeg container. This characteristic is hidden to the user which
receives the format according to the characteristics of the device he is using (e.g.,
Flash for PC-player and Mpeg for Mobile-player). However, as to disambiguate
these cases, we label each video format appending the first two letter of the video
container to the standard resolution code. For example, 360p-Fl corresponds to a
360p resolution with the Flash container.

Table 11.1 reports the percentage of sessions involving zero, one or more than
one resolution switch for both PC-player and Mobile-player. Surprisingly, results
show that a resolution switch happens for less than 5% of PC-player sessions. This
is an example of inertia, where users stick with the default video format. This also
shows that users are possibly not interested in this feature or they are unaware of
it. For Mobile-player the choice of resolution is either hidden or not available, and
a marginal fraction of users exploit it.

Since resolution codes can be sorted, we can further classify the resolution
changes in “Low-to-High” and “High-to-Low” considering the involved video res-
olution. Table 11.2 reports this breakdown. We can see that the Low-to-High
resolution switch is largely predominant, with more than 80% (for all traces) being
a 360p-Fl to 480p-Fl switch. Interestingly, when the full screen playback is enabled,
the Flash player automatically switches from 360p-Fl to 480p-Fl (the converse is not
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Data set Low-to-High High-to-Low

US-Campus 95.7 4.3
EU1-Campus 86.1 13.9
EU1-ADSL 93.9 6.1
EU1-FTTH 90.5 9.5
EU2-ADSL 83.6 16.4

Table 11.2. Percentage of resolution switch breakdown for PC-player in YT-2011.
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Figure 11.2. Time at which Low-to-High resolution switch happens in YT-2011.

true). Combining Tables 11.1 and 11.2, we can conjecture that full screen mode is
not popular, but it is the main cause of resolution switch.

As final note, the largest majority of High-to-Low switch are 360p-Fl to 240p-
Fl. This suggests that those are triggered by the user because of bad performance.
EU2-ADSL and EU1-Campus show a slightly larger High-to-Low switch fraction.
As we will see in Chapter 12 that these are the two vantage points with slightly
worse performance.

To complete the analysis, we investigate when the resolution switch is triggered.
Figure 11.2 shows the CDF of the time between the session start and Low-to-High
resolution switch. Due to buffering at the player, this is an overestimate of the
actual switch time. 50% of these events happens in the first 10 seconds, while only
10% of users trigger them after 1 minute. In terms of video size, more than 80%
of the switches happens in the first 20% of the video data download while only 5%
occurs in the second half of the video. The same consideration holds for High-to-Low
changes. Overall we can conclude that resolution changes are usually performed at
the very beginning of the playback.

We find surprising that results are practically identical in all data sets despite
differences in users habits and cultures.
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Figure 11.3. CDF of the fraction of downloaded video bytes. EU1-ADSL
data set in YT-2011.
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Figure 11.4. Fraction of video downloads having η < 0.25 and η < 0.50 in YT-2011.

11.3 Fraction of watched video

We now focus our attention on the time a user spends watching a video. To measure
this, we leverage the fact that the player abruptly aborts the video download if the
user changes the web page on the browser (or custom player). Let η be the fraction
of downloaded video within a session with respect to the actual video size. If η < 1,
then the user did not watch the entire video1.

Figure 11.3 shows the CDF of η for EU1-ADSL data set. Two observations hold:
i) about 80% of video sessions are abruptly interrupted; ii) Mobile-player results

1 By checking the Range header field for requests, we filter out those sessions in which the user
fast-forward the playback to a position outside the already buffered portion of the video.
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Figure 11.5. CDF of absolute (left) and relative (right) portions of watched videos
for sessions with incomplete downloads. EU1-ADSL in YT-2011.

show that the player can download more data than the video size (η > 1). We will
investigate this better next.

To better compare results, Figure 11.4 details the fraction of video downloads
having η < 0.25 and η < 0.5 for different data sets. Interestingly, results are similar
for all vantage points, with users on Mobile-player consistently aborting earlier than
users on PC-player. Figure 11.5 details the absolute and relative time at which the
user stops watching the video on the left and right plots, respectively. It shows that
people tend to abort the playback very soon, with 60% of videos being watched
for less than 20% of their duration. This can be due to a mismatch between the
users’ interests and the content they find on YouTube. Notice that this is also an
interesting fact that could be exploited to better handle the content distribution
among the CDN nodes, e.g., caching only some portion of each video. The impact
of Mobile-player versus PC-player is very limited, testifying that the probability of
aborting the playback is not biased by the device but it is related to users’ habits.

11.3.1 Impact of buffering policy and user early abort

Consider now all video data already buffered at the player at the time the user
aborts the playback. That data has been downloaded in vain. Figure 11.6 precisely
quantifies this by reporting the ratio among downloaded bytes and the amount of
bytes possibly consumed by the player. The latter is evaluated as session duration∗
average encoding bitrate, assuming that the playout started immediately after the
first byte has been received, and that data is consumed at the video encoding bitrate.
Since the initial buffering is neglected, our estimation can be considered as a lower
bound. Notice also that we cannot evaluate the amount of wasted data for sessions
which already have completed the download.

In spite of this, results are dramatic for PC-player: 40% of sessions download
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Figure 11.7. Fraction of sessions downloading more than the entire video in YT-2011.

more than two times the amount of data that was possibly watched. This is the
result of aggressive buffering policies adopted by YouTube servers (recall that server-
side shaping is adopted) [2]. Even worse, the Mobile-player waste is higher, with
20% of sessions downloading more the 5 times the amount of possibly watched data.

This waste could be reduced by implementing better streaming policies, e.g., the
server sends chunks of the video by explicitly request by the client. Alternatively, a
more accurate prediction of the fraction of the video that a user will watch can be
leveraged to avoid transferring useless data.
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Data set PC-player Mobile-player

US-Campus 39.17 47.9
EU1-Campus 36.91 38.1
EU1-ADSL 24.93 38.7
EU1-FTTH 38.43 53.5
EU2-ADSL 29.27 35.6

Table 11.3. Average percentage of wasted bytes considering peak hour with respect
to useful data in YT-2011.

11.3.2 Sessions downloading more than the video size

Let us now focus on sessions where η > 1. Intuitively, those should be very limited,
since one would expect that the player should not download more data than the
total video size. Figure 11.7 shows the fraction of sessions for which this happens.
Only sessions with no resolution switch are considered. For PC-player, less than 2%
of sessions show this phenomenon. We have found that the exceeding amount of
volume is possibly related to users watching the same video multiple times causing
the player to re-download the video. Overall, this effect is marginal.

For Mobile-player instead we observe that 15-30% of sessions download more than
the actual video size. Performing some active experiments, we have confirmed at
least two causes for this: 1) in case of backward seeks, the player has to re-download
the same content because it has been already discarded from the player’s local buffer.
This does not happen for PC-player which caches the entire video; 2) the aggressive
chunk-based download mechanism is source of inefficiency: the Mobile-player often
requests chunks bigger than needed, i.e., requesting from a desired position x up
to the end of the video. The server then sends data from position x at a high
rate, quickly filling up the Mobile-player buffer, e.g., up to position y. Being the
buffer full, the player application abruptly closes the underlying TCP connection.
However TCP had already received some data at the transport-layer receiver buffer
up to position y′ > y. The data y′ − y is thus discarded. When the application
buffer depletes, the player requests data from position y and not from position y′.
Considering the download of y′ − y, the aggressive server buffering policy coupled
with player limited buffering capabilities is thus origin of inefficiency.

To quantify the waste of traffic due to this, Figure 11.8 reports the CDF of the
ratio of downloaded data versus nominal video size for sessions with η > 1. 50% of
sessions download 25% more data, and 4% of the sessions downloads more than the
twice of the video size.
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11.3.3 Wasted video data

Table 11.3 quantifies the overall percentage of wasted bytes with respect to useful
data. It includes both the effect of aggressive buffer management and of chunk
based video retrieval mechanisms. Measurements refer to the peak-hour time, when
YouTube traffic peaks to several hundreds of Mb/s in most vantage points. Results
show that the amount of traffic downloaded by clients but not used by players is com-
parable with the useful data traffic. For example, for US-Campus, the wasted traffic
in a single hour amounts to 28.8 GB and 1.5 GB for PC-player and Mobile-player,
respectively, corresponding to more than 67 Mb/s of constant waste. This is a large
amount of wasted bandwidth both from the perspective of the ISP and the YouTube
CDN.

We have performed experiments on mobile devices connected to a 3G network
using both iOS and Android devices. The problem shows up exactly in the same
way, with clients downloading a lot more data than the video played and the video
size. We did not observe differences among different devices or operating systems.
More recently, a study conducted in the AT&T cellular network [20] shows that this
behaviour do not only affects YouTube but several others streaming systems. This
suggests that the problem might be to a sort of “bug” in the playback framework and
it would be critical given the increasing popularity of streaming services in 3G/4G
networks.

11.4 Conclusion

Despite the rich set of video formats supported by YouTube, users are not interested
in changing the resolution. Only 5% of the download from PC-player present the
resolution switch mainly because of using the fullscreen feature, while this fraction
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is negligible for Mobile-player downloads.
If one the one hand aggressive buffering policies are used to guarantee a conti-

nuity in the playback, on the other hand lead to unnecessary data transfer given
that users watch just a portion of the video. This call for a future optimization of
the system. First of all, more controlled streaming schemes can be used to i) limit
the amount of data downloaded and not played back and ii) avoid the transmission
of duplicated data for mobile devices. Moreover, CDN caching schemes can be im-
proved by leveraging the fact that only a fraction of videos are actually watched by
users.
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Chapter 12

Streaming performance

In this chapter we focus on the YouTube streaming performance considering two
metrics that reflect the user experience: startup latency and bitrate ratio. The
first metric captures the initial delay experienced by the user before the playback
starts. The second instead compare the speed of the download and the speed of the
playback.

Both these indexes have been already presented in the literature [28, 67]. How-
ever, in our study we introduce more rigorous definitions and taking advantage of
the YT-2011 data collection, we conducted a much deeper and complete characteri-
zation consistently comparing the performance with respect to the different type of
devices used. Overall, the results show that, even if the download performance are
good, the system is more optimized for PC-player downloads and there is space for
future optimizations.

The remaining of this chapter is organized as follow: for each metric considered,
we start presenting the definition and the measurements obtained. Then, we further
drill into trying to assess the causes of performance impairments.

12.1 Startup latency

Recalling the description of the video download mechanisms reported in Chapter 7.2,
to start the streaming the client performs a videoplayback request to a video server.
We define the startup latency as the time elapsed between the videoplayback re-
quest and the first received packet containing actual video payload. This corresponds
to a lower bound of the total delay experienced before the actual video playback
starts since the initial buffering time at the player is ignored. Knowing the exact
delay it is hard and implementation dependent. In the literature other definitions of
the startup latency have been proposed measuring the time needed to retrieve the
first MBs of the video [67]. However, we prefer to focus on a simpler, more precise
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Figure 12.1. Fraction of sessions with high startup latency in YT-2011. Note the
different y-axis across plots.

and accurate measure even if conservative.
Figure 12.1 reports the fraction of sessions with the startup latency higher than

a certain threshold. Given that we are interested in studying the user experience,
we selected threshold values that can be appreciated by the user, i.e., 1, 5 and
10 s. Results show that the performance is heterogeneous across the data sets, with
Mobile-player suffering larger delays. For example, in the US-Campus less than 5%
of sessions suffer a startup latency higher than 1 s. In the EU1-Campus instead,
more than 10% of sessions start after 1 s with 2% of them suffering a startup latency
higher than 5 s.

We found that the delay is due to a combination of causes.

Redirections: video sessions can suffer from a different number of redirections.
Each redirection involves i) a DNS query to resolve the hostname of the next
video server, ii) the opening of a new TCP connection, iii) a new video query.
The network distance between the client and the server plays also a significant
role, since YouTube CDN is likely to direct clients to video servers with the
closest RTT. However, in case of redirections, the final server may not be the
closest one in RTT (see Chapter 10).

Figure 12.2 reports the fraction of sessions affected by redirections. More
than 70% of PC-player sessions do not suffer from redirections in all data sets,
while Mobile-player sessions are more likely to be redirected. Understanding
why this is happening is difficult. A possible cause of redirection is due to
cache miss. In Chapter 10 we already showed that a cache miss at the closest
data center, may cause a redirection to a farther away data center. However,
following requests for the same content are directly served by the closest cache.
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Figure 12.2. Fraction of sessions suffering redirections in YT-2011. Note the
different y-axis across plots
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EU1-ADSL in YT-2011.

This hints to a caching mechanism based on pull schemes and it is confirmed by
PlanetLab experiment reported in Chapter 10.4.3. Since Mobile-player videos
are less frequently requested than PC-player videos because of the different
video format adopted, a cache miss is possibly more likely to happen. Thus
more redirections can occur.

Figure 12.3 depicts the impact of the redirections on the startup latency. We
can see that the higher is the number of redirections in the video session, the
higher is the startup delay. Considering PC-player (left plot), 92% of sessions
that do not suffer redirections exhibit a startup latency smaller than 500 ms.
When one redirection is faced, only 50% of sessions start within 500 ms. If
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Figure 12.4. CDF of the video query processing time. EU1-ADSL in YT-2011.

more than 1 redirection is faced, more than 82% of sessions have a startup
latency of at least 500 ms, with 10% of sessions suffering a latency higher than
5 s. Trends are similar for mobile player (right plot) where in general startup
latencies are higher than in the case of PC-player.

Video request processing time: another possible cause of large startup time
can be the server processing time, i.e., time needed by the video server to
process a video request. To estimate it, we compute the time between the last
videoplayback request sent by the client and the first video packet sent by
the server. To eliminate the network delay we subtract the RTT1

Figure 12.4 reports the CDF of the estimated processing time for both PC-player
and Mobile-player in the EU1-ADSL data set. Other data sets show similar
trends. We can see that 50% of the requests are served within < 50 ms. A
sharp knee around 30 ms is present and a heavy tail is found with processing
time growing up to 5 s. The distribution reflects the time required by the
cache to retrieve the requested content from the back-end before serving it.
Very low latencies can be related to the video being already cached in the
server memory; values in [30,300] ms can be related to disk access latency;
finally values larger than 300 ms can be due to congestion in the back-end or
to packet loss recovered by lengthy TCP timeout, or to rare content that has
to be fetched from some slower storage system. The fact that Mobile-player
responses require higher processing time can again be explained by the less
frequent requests of Mobile-player video content. Note also that the prefetch-
ing mechanism implemented by PC-player could also speed-up the content
retrieval (see Chapter 7.2).

1Tstat estimates the RTT by leveraging TCP acknowledgements [24, 72].
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Figure 12.5. Fraction of sessions with bitrate ratio < 1 in YT-2011.

12.2 Bitrate ratio

The download bitrate of the video has a fundamental role in defining the quality of
the video playback. In fact, if data is not received fast enough, buffer “under-run”
events will be suffered, causing the video playback to pause. To measure the smooth-
ness of the playback, we define the bitrate ratio as the ratio between the average
session download bitrate and the video encoding bitrate. The first corresponds to
the total amount of bytes downloaded aggregating flows of the same video session,
divided by the time between the first and the last video packet. According to this
definition, a bitrate ratio smaller than 1 is a clear sign of impaired performance.

Figure 12.5 reports the fraction of sessions with a bitrate ratio lower than one.
Some interesting observations hold: first, the access technology has a clear impact
on the performance with the ADSL networks performing worst for more than 10%
of the downloads with respect to the other networks. For instance, compare EU1-
ADSL and EU1-FTTH (the latter offers 10Mb/s full duplex access capacity). Both
refer to customers of the same ISP in the same city. Still, EU1-ADSL customers
suffer worse performance. Unexpectedly, EU1-Campus performs also quite bad.
Further investigation revealed that this is the result of a local University network
policy that limits the bandwidth of subnets of some dorms. Most of the sessions
having poor performance are indeed coming from those subnets. Figure 12.5 shows
that Mobile-player presents consistently lower performance than PC-player. This
can be due to the presence of a WiFi network that is used by Mobile-player devices.
The shared WiFi connection can indeed impair the download throughput. This is
the case for US-Campus.
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EU2-ADSL in YT-2011.

Other causes of reduced performance can be related to the YouTube infrastruc-
ture performing worst when serving Mobile-player requests. Consider EU2-ADSL,
in which more than 32% of Mobile-player sessions are performing poorly versus less
than 13% of PC-player sessions. We pinpoint that Mobile-player impaired perfor-
mance is related to the YouTube system. Consider Figure 12.6. It reports the CDF
of the fraction of bytes downloaded by different video servers respect to the RTT
to the EU2-ADSL vantage point. Each point in the figure aggregates video servers
that belong to the same CDN data center as seen in Chapter 10. We found that
EU2-ADSL clients can use a data center which is very close to the vantage point
(RTT < 1 ms). However, it can only serve 35% of the PC-player sessions. The
majority of sessions are indeed served by a second data center which is 20 ms far
from the vantage point. For PC-player, these two data centers handle 96% of video
requests. However, due to the lower popularity of Mobile player accessed content,
35% of Mobile-player sessions are served by other data centers, 10% of which are
found outside Europe and suffer RTT > 100 ms. These sessions can be impaired
by network congestion and can exhibit lower download bitrate. Finally, recall the
Mobile-player chunking mechanism. The cost of opening a new TCP connection to
request a new chunk becomes significant when the RTT is in the order of hundreds
of ms, impairing the download bitrate too.

In Chapter 11.2 we have seen that EU1-ADSL and EU2-ADSL presented an
higher number of High-to-Low resolution switches. Interestingly, both these data
sets present also lower download performance. This suggest that the users react to
the performance impairments reducing the video resolution.
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12.3 Conclusion

The measurements presented in this chapter show that Mobile-player performance
result generally less efficient than PC-player. We think that this is the result of
a design choice motivated by the intrinsically smaller popularity of Mobile-player
accessed videos. Anyway, several studies forecast a strong increase in the volume
of traffic for mobile devices [52, 49, 70]. This call for a better optimization of the
resources, posing additional challenges to the YouTube CDN infrastructure.

In particular, we can speculate on different caching schemes that try to better
address the caching of the videos with respect to the different format requested. If on
the one hand Flash content represents the common type of video in the caches, on the
other hand mobile devices prefer Mpeg content. Finding the proper balance between
the two needs is fundamental. Moreover, other elements as the video popularity
might be important as well defining better caching algorithms. Unfortunately, YT-
2010 and YT-2011 data collections do not allows to measure these effects so we leave
these analysis as future work.
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