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Abstract 

Whispering gallery (WG) mode resonators were studied since 1980s for 

precision clock oscillators and for cavity quantum electrodynamics studies. They are a 

kind of stable, high Q, microwave resonators where a symmetric dielectric medium, 

such as a cylinder or a disk, is suspended in the centre of a metal cavity. A coaxial 

cable or a waveguide are used to couple the EM field in the microwave region and 

thus to excite the system resonant frequencies. WG modes are resonant modes of 

higher-order azimuthal number (m) having most of the EM energy concentrated on 

the dielectric surface. 

Within the temperature range of -196 °C to 500 °C the most commonly used 

industrial thermometer is platinum resistance thermometer (PRT) with the 

uncertainties of 10 mK. The PRT offers high accuracy, low drift, a wide operating 

range; however, it is very sensitive to mechanical shock in handing and shipping. 

Besides, an AC resistance bridge which is typically required as a readout device for 

PRT is very expensive. Accordingly, there is a great need for a stability-improved, 

resistant to mechanical shock, potential lower uncertainty and cost-effective industrial 

thermometer.  

WGMR thermometer (WGMRT) is a new kind of thermometer which offers 

greater vibration immunity, improved stability, smaller uncertainty in temperature 

measurement and potential lower cost than platinum resistance thermometry. 

An innovative sapphire whispering gallery thermometer (SWGT) was first 

explored at the National Institute of Standards and Technology (NIST) in 2007 by 

Strouse [1] with the uncertainty less than 10 mK. Five WGMs with nominal resonant 

frequencies ranging from 14.4 GHz to 19.1 GHz and with Q-factors, respectively, 

ranging from 20,000 to 90,000 were measured within the temperature range of 0 °C to 

100 °C. The accuracies of his WGMTs were in the range of ± 0.02 °C and ice point 

repeatability was better than 2 mK. 

The thesis reports the tests performed on several WGMR thermometers which 

have different shapes of crystals to evaluate their stability, resolution and repeatability 

in the temperature range of -40 °C to 85°C. Thermal cycle experimental results 
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showed a Q in excess of 100000 for the mode with the highest azimuthal number, 

making it possible to achieve a potential temperature resolution of 0.1 mK.  

Besides, different specimens of crystals with the same nominal specification and 

reassemble for the same specimen were both tested to check the reproducibility of the 

thermometer.  

The birefringence of the sapphire was also studied to make an innovative 

thermometer. The ratios of two doublet frequencies are sensitive to the temperature-

dependent birefringence of the crystal and relatively insensitive to surface 

contamination and changes in the shape of the cavity. Besides, it can have an external 

shape that closely approximates the shape of conventional platinum resistance 

thermometers.  
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Chapter 1  Introduction 

1.1 Introduction to WGM 

Whispering Gallery Mode (WGM) is named after the whispering gallery at St. 

Paul’s Cathedral in London. In this domed cathedral it was found that if the sound 

source and the listener were positioned appropriately, hushed voices and whispers can 

be heard even in great distances; interestingly, the effect does not work if one speaks 

normally. The reason for this is that the sound bounces along the wall of the gallery 

with very little loss, and so can be heard at a great distance, while if you speak 

normally the increased amplitude of the noise allows it to circulate the gallery 

multiple times so all the sounds get mixed up and can no longer be heard properly. It 

can be viewed that there is a narrow region near the edge of the dome where the 

waves propagate most efficiently, and this is known as a 'whispering gallery mode' in 

honour of gallery where it was discovered. 

Like atomic bound states, an individual WGM is labelled by n, l, m which 

respectively represents radial component, polar component and azimuthal component. 

Spherical Bessel functions describe standing waves in the radial direction of spherical 

coordinates [2], while polar component follows spherical harmonics, and equatorial 

field variation is sinusoidal [3]. Specifically, n (= 1,2,...) gives the number of maxima 

in the radial field pattern of a particular WGM, while l (= 0,1,...) and m (= -l,...,0,...,l) 

is half the number of equatorial nodes of the field, see Figure 1.1 [4]. Azimuthal mode 

number m is a positive or negative integer which depends on the sense of rotation of 

the ray. For isotropic dielectrics, resonant frequencies are the same for + m and – m 

which can also be said degenerate modes. Modes with the same l but different m are 

degenerate for a perfect sphere but a small ellipticity removes the degeneracy and 

induces m dependent frequency shift.  

The basic propagation mechanism is shown in Figure 1.2 in total reflection 

mechanism at the dielectric-air boundary. The smaller circle of radius ai which is 

tangential to the total reflection ray is called modal caustic [5-7]. WGM has most of 

the energy confined between the resonator boundary and the modal caustic to within a 
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small region in an axial direction. From a wave-optics point of view, m is the number 

of wavelengths around the cylinder, as Figure 1.3 shows m is independent of radius 

even though the phase velocity of azimuthal mode increases in proportion with radius.   

 
Figure 1.1 Schematic of WGM field components in a spherical 

resonator (not to scale)[4] 
 

 
Figure 1.2 Whispering-gallery modes by ray optics[5] 

 

 
Figure 1.3 Schematic representation for field at azimuthal mode number m=3[6] 

WGMs were studied by Lord Rayleigh since 1910 and have attracted great 

interests to researchers since 1980s in optical and microwave field. 

It was first observed by elastic light scattering from spherical dielectric particles 

in liquid resonators. Since the dimension of the resonator should be comparable to the 
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wavelength optical WGM is too small to be used in the thermometry, however, the 

microwave WGM resonator (WGMR) can be few or tens millimetres which makes 

lots potentials in industry.  

In most cases the dielectric cylinder or disk or sphere is suspended in a metal 

cavity and at least one microwave cable is coupled to the resonator to excite the 

resonant frequencies of which the resonant modes that have higher-order azimuthal 

number(expressed by m) and most of the energy is concentrated on the dielectrics are 

called WGM. It is a certain mode that has high Q and travels along the surface of the 

resonator by total reflection. 

Whispering gallery mode has great advantages over other resonant modes. The 

WGM resonators are “oversize” for millimetre wavelength and it offers good 

suppression to spurious mode, very high Q factor and insensitivity to the metal cavity 

surface.  

1.2 Research review and applications of WGM 

1.2.1 Optical WGM 
The studies of WGMs start almost a century ago by work of Lord Rayleigh who 

studied propagation of sound over a curved gallery surface [8-10]. On the other hand, 

in 1908 Mie published his theoretical studies on the scattering of plane 

electromagnetic waves by spheres in [11]. Later on, in 1909 Debye derived equations 

for the resonant eigenfrequencies of free dielectric and metallic spheres which can 

also be deduced from [11] and it naturally takes into account WGMs [12].  

In optics, the first observations of WGMs can be attributed to solid state WGM 

lasers. Garrett et al. [13] observed stimulated emission into optical whispering modes 

of a spherical sample of CaF2: Sm++ and they found that light produced by the 

stimulated emission is radiated tangentially form each point on the surface of the 

sphere which can be interpreted in terms of the electromagnetic analogue of the 

Rayleigh theory of the whispering gallery. Walsh et al. [14] observed microsecond-

long transient laser operation with a several millimetres ruby ring at room temperature. 

WGMs were first observed by elastic light scattering from spherical dielectric 

particles in liquid resonators in 1970s [15, 16]. Then the WGM of dielectric 
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microspheres have received considerable attention. In 1980s Benner et al. discovered 

WGM has strong influence on fluorescence [17-19] and Raman scattering [20-22]. 

The radiative coupling of a microsphere and a beam of light is described in 

generalized Lorentz-Mie scattering theory by Barton et al. [23-25] and in modified 

ray theory by Serpenguzel et al. [26, 27]. 

The ideal microsphere WGM coupling device includes the following 

characteristics:  

(1) Efficient WGM excitation performance with little potential for Q-spoiling 

(2) Simple sphere-to-coupler alignment 

(3) Clearly defined ports 

(4) Robust and integrable structure 

(5) A consistent and inexpensive fabrication process 

A single prism has been used to simultaneously couple light into and out of an 

optical waveguide, with a guiding length of 1 cm. The method, which is simple and 

reproducible, utilizes two optimized gaps for the coupling regions. Coupling 

efficiencies in excess of 90% have been achieved. 

Prism-waveguide coupling which is simple and reproducible can have a 

coupling efficiency of more than 90% [28, 29]. Lots of investigations were done for 

prism coupling to WGMs [30-35] and the best efficiency reported was 80% [31]. 

Prism-to-sphere coupling is among the earliest concepts and requires only relatively 

inexpensive hardware [30]. 

Besides, side-polished fiber couplers [36-38] (having limited efficiency owing to 

residual phase mismatch), fiber tapers [39-46] (almost ~100% coupling achieved), 

hollow fibers[47], “pigtailing” technique [48, 49] and special technique of coupling of 

the cavities and semiconductor lasers [50, 51]. 

Planar waveguides are used to couple to ring and disk WGRs[52, 53]. Strip-line 

pedestal anti-resonant reflecting waveguides are for robust coupling to microsphere 

resonators and for microphotonic circuits [54, 55]. 

The tapered fiber [39] is a very powerful and efficient coupling tool. The 

efficiency of tapered fiber couplers reaches 99.99% for coupling fused silica 

resonators [44]. Unfortunately, fiber tapers as unclad, unsupported waveguides, are 

very fragile and only applicable to resonators with refractive index similar to silica. 

They cannot be used with higher index glass and crystalline WGRs. 
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Take tapered fiber as an example, the light travel in the fundamental mode along 

the waveguide formed by the dielectric waist or taper surrounded by air. If the waist is 

small, the fundamental mode will have an evanescent tail extending significantly out 

into the free space surrounding the taper, see Figure 1.4 [56].                                                            

 

Figure 1.4 Schematic of the coupling between the fiber taper and the microsphere (not to 
scale) 

Some examples of whispering gallery are given as follows see Figure 1.5. In the 

first row, they are high Q whispering gallery which have Qs of few or tens thousand 

while on the second row they have ultrahigh Q which can render the magnitude of 108 

or 109 with the diameter less than 1 mm nonetheless.  

 
Figure 1.5 Examples of optical whispering gallery 

The WGMs were found applications in measurements of spherical particle size, 

shape, refractive index. Chylek et al. [57, 58] deduced the refractive index and 
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diameter with relative errors of  10-5~10-6 using the wavelength dependence of 

backscattering data from optically levitated particles. 

WGM can also be used to determine the diameter of the optical fiber [59]. 

Highly accurate determination of the outer diameter of unclad glass fibers has been 

achieved by analysing, at fixed scattering angle, the wavelength dependence of 

elastically scattered radiation. The positions of resonance peaks in the scattering 

spectrum are strongly dependent on fiber diameter. 

Besides, tunable filters [60-66] can also be realized by WGM. An all-optical 

tunable filter design based on a WGM resonance technique was proposed theoretically 

[66]. The filters are tuned by varying the refractive index or the length of the 

waveguide forming the ring or the cavity. Selectivity and tuning range are controlled 

by the coupling coefficient of the couplers, the order of resonance in the rings and the 

reflection coefficient of the discontinuities.  

WGR-based biosensor [67-74] is one of the stages in the sensor development. 

An evanescent wave within the waveguide interacts with analytes on the waveguide 

surface in the evanescent field sensors. Surface treatments such as antibodies or 

oligonucleotide strands can provide specificity for the analyte; the sensor then detects 

only those bound to the surface. In the recent years, WGM was proved theoretically 

for the detection of a single virion below the mass of HIV[75] and Boyd et al. [76] put 

them into practice for the detection of biological pathogens. 

High-Q WGMs result in the increase in sensitivity of various mechanical 

experiments. Mechanical sensors [77-79] for the measurement of strain in optical 

fibers [80, 81] were achieved based on WGM. A twin-ball sensor of small 

displacements was proposed in [81]. The predicted ultimate sensitivity in terms of 

displacement per unit phase shift is 8 × 10-12 cm/rad at a wavelength λ=1.55 μm 

(minimum of losses in fused silica), higher than in best Fabry-Pérot interferometers. 

Moreover, optical WGRs can be used as efficient and compact optical switches 

and modulators [82-85] and so on. 

1.2.2 Microwave WGM 
In 1973 Braginsky, Panov et al. [86] discovered that sapphire resonators have 

extremely low electro-magnetic loss at cryogenic temperatures. Then in the middle of 
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1970s Dobromyslov and Vzyatyshev did theoretical analysis of WGM in dielectric 

disk resonators [87]. The first application of WGMR for frequency stabilisation of 

microwave oscillators was developed by Tsarapkin, Ivanov et al. in 1980 [88]. Due to 

its high frequency stability sapphire WGM was broadly applied for maser and 

oscillator [6, 89-102].  

Extremely high short-term frequency stability has been realized in oscillators 

based on liquid helium cooled sapphire resonators with a modified mounting structure 

by Chang et al. [92]. The cryogenic sapphire oscillator has demonstrated an Allan 

deviation of about 5.4×10-16 τ-1/2 for integration time of 1 to 4s and a minimum Allan 

deviation of 2.4×10-16 at 32s. For integration times longer than 100s the oscillator 

frequency stability degrades approximately as 3×10-17 τ1/2.  

The observation of above-threshold maser oscillation in a WGM resonator, 

whose quasi-TM is at a frequency of approximately 12.038 GHz, is supported on a 

cylinder of monocrystalline sapphire with a loaded Q of several hundred million. 

Preliminary measurements demonstrate an Allan deviation of a few times 10-14 for 

sampling intervals up to 100 s [91], until now the first whispering gallery mode maser 

oscillator became possible at FEMTO-ST. 

The frequency stability measurement of a new kind of secondary frequency 

standard, the whispering gallery mode maser oscillator, is reported in [89] and a 

preliminary result of 10-14 frequency instability at 1 s integration time was 

accomplished.  

New results on a cryogenic high power solid-state sapphire WGM maser was 

presented by Daniel et al. [90] and a new Schawlow-Townes thermally limited 

fundamental frequency stability on the order of 1×10-17/√τ was estimated. 

Before WGM was used, short-term fractional frequency stability was achieved 

only less than in the magnitude of 10-14 at microwave frequencies with oscillators 

incorporating cryogenic electromagnetic resonators [103, 104]. J.G. Hartnett et al. [93] 

presents the long-term frequency stability of the WGM oscillator 2×10-17 for an 

integration time τ>103 s.  

Furthermore, WGMs were used for very accurate permittivity and dielectric loss 

measurements of ultralow loss isotropic and uniaxially anisotropic single crystals 

[105-113]. Krupa et al. [105] measured several materials including sapphire, YAG, 
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quartz, and SrLaAlO4. The total absolute uncertainty in the real part of permittivity 

tensor components was estimated to be ±0.1%, limited principally by the uncertainty 

in sample dimensions. Imaginary part of permittivity was measured with uncertainties 

of about 10%, limited by the accuracy of Q-factor measurements of whispering 

gallery modes.  

Moreover, WGM technique has the highest resolution for dielectric loss tangent 

measurements [106, 108, 114] and a minimum variation of 6.5×10-5 in tanδ can be 

detectable[115].  

In 2007 Strouse published a paper “Sapphire Whispering Gallery Thermometer” 

[1], an innovative sapphire whispering gallery thermometer (SWGT) was first 

explored at the National Institute of Standards and Technology (NIST) with the 

uncertainty less than 10 mK, see Figure 1.6. Three dimension of cavity were designed 

and five WGMs for the biggest cavity with nominal resonant frequencies ranging 

from 14.4 GHz to 19.1 GHz and with Q-factors, respectively, ranging from 20,000 to 

90,000 were measured within the temperature rang from 0 °C to 100 °C. The 

accuracies of his WGMTs were in the range of ± 0.02 °C and ice point repeatability 

was better than 2 mK. 

 

Figure 1.6 (a) Open SWGT with the mounted α-Al2O3 disk, microwave cables, and the 0mm 
length antenna, and (b) sealed SWGT with the added vacuum line 

Surely, the stability of the thermometry system depends on the following factors: 

 (1) Stable support of the dielectric crystal inside the cavity 

(2) Minimization of the effect of thermal expansion on the positioning of crystal 

(3) Short length of the antennas communicating with crystal 

(4) Weak coupling between the antennas and the crystals 
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(5) Tight seal or vacuum created in the chamber and  

(6) Thermal conductivity of each of the elements in the resonator 

Of course these factors needn’t all be present in each thermometer. It is known 

to everyone that calibrating an industrial thermometer is extremely expensive so the 

WGMRT is much more cost efficient than the conventional platinum resistance 

thermometer. 

During the experiments Moldover et al. [116] also found the possibility of using 

WGMR to measure other environmental factors, such as humidity. Because the 

dielectric permittivity is also affected by humidity then the resonant frequency of the 

dielectric resonator will change with the humidity.    

1.3 Microwave WGM theoretical framework 

At least one microwave guide is coupled to the dielectric to provide signals for 

propagation at a resonant frequency around the annular area around the equator and 

receives the signal from the dielectric. WGMs are selected such that microwave 

energy is concentrated on the periphery of the crystal so it provides a low energy 

density at the sidewall of the metal cavity and at the centre of the crystal along axial 

direction, as illustrated in Figure 1.7 [117].  

 
Figure 1.7 Basic principles of WGMR 

A temperature determination unit is needed for receiving the signal from the 

output microwave guide, measuring the centre frequency of the resonance to 
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determine the temperature of the dielectrics based on a predetermined relationship 

between resonance frequency and temperature of the dielectrics which may be 

determined by calibrating the WGMRT against a suitable thermometer. Pumping the 

WGMRT to vacuum can give a better signal and at the same time get rid of the 

disturbance of the frequency pressure dependence. So far, a network analyser is used 

to get the resonant modes between 10 MHz and 20 GHz. Lorentzian fitting 

programme written by Labview or VB can get the centre frequency and Q of the 

resonances. The approximate schematic drawing for experiment system is given in 

Figure 1.8. Of course, knowing the nominal WGM values, it is possible to build an 

SWGT measurement system at a fraction of the cost of a network analyser.   

 

Figure 1.8 Schematic diagram of the measurement system 

WG electromagnetic modes can be divided into families depending on their field 

configuration and further characterized by the number (m) of full waves around the 

perimeter of the sapphire ring or disk. It is characterized by two polarizations, 

transverse electric modes (TM-modes) and transversal magnetic modes (TE-modes) 

[118]. For TM modes, E is radial so it can be excited by a straight antenna directed 

along the radial direction. While for TE modes, E is axial so the mode is most 

conveniently excited by a loop antenna whose axis is oriented along the azimuthal 

direction [107]. In other words, if straight probes are used, only electric modes can be 
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excited while loop probes could excite more modes: both electric and magnetic modes. 

However, loop probes produce stronger perturbation to be taken into account and the 

reproducibility of the thermometer becomes worse.  Besides, the strength of the cavity 

coupling could be changed by altering the vertical distance between the probe and the 

resonator. 

For transmitting electromagnetic energy with low loss waveguide and coaxial 

lines can be relied. Waveguide has the advantage of high power-handling capability 

and low loss but is bulky and expensive [119]. Coaxial line has very high bandwidth 

and is convenient for test application. So in the microwave WGM resonators coaxial 

lines are used broadly.   

As seen in Figure 1.9, it is an electrical cable  with an inner conductor 

surrounded by a flexible, tubular insulating layer, surrounded by a tubular conducting 

shield. The advantage of coaxial design is that the electric and magnetic fields are 

confined to the dielectric with little leakage outside the shield. On the contrary, 

electric and magnetic fields outside the cable are largely kept from causing 

interference to signals inside the cable.  

 

Figure 1.9 Coaxial cable cutaway 

There are different kinds of coaxial lines depending on the flexibility, flexible 

coaxial lines, semi-rigid coaxial lines and rigid coaxial lines. Actually, for the 

thermometer semi-rigid or rigid coaxial lines are used because of the temperature 

resistance of the jacket materials. 

The characteristic impedance  of the cable (Z0) is a very important parameter for 

coaxial line because the source and load impedance should be matched to ensure 

maximum power transfer and 50 ohm is mostly used.  

http://en.wikipedia.org/wiki/Cable�
http://en.wikipedia.org/wiki/Leakage�
http://en.wikipedia.org/wiki/Leakage�
http://en.wikipedia.org/wiki/Characteristic_impedance�
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  Assuming there are no paramagnetic impurities in the crystal, frequency–

temperature dependence due to changes in permittivity of the sapphire crystal can be 

expressed as[120, 121][113]:  

      1 1 1
// //2 20

f
p p p pD D h hf T

dimensional contributiondielectric contribution

α α α αε ε ε ε
∂ ∗ ∗ ∗ ∗= − − − −

⊥ ⊥∂ 
 

              (1-1) 

Where pε⊥
 and 

//
pε are the electric energy filling factor perpendicular and 

parallel to the crystal axis, pD and ph  are the radial and axial energy filling factor, αε
∗  

is the temperature coefficient of permittivity, Dα
∗  and hα

∗  are radial and axial thermal 

expansion coefficient respectively.    

     The frequency-temperature dependence is about 40~70 ppm/K as a result of 

the permittivity-temperature change of 80~140 ppm/K at room temperature [122], 

while the frequency change due to the thermal expansion of the sapphire is only 5~6 

ppm/K, see Figure 1.10 [121, 123].  

0 100 200 300 400
T/K  

Figure 1.10 Sapphire expansion coefficients and temperature coefficient of permittivity from 
4 K to 400 K 

Besides, thermal expansion of the copper cavity is a significant factor. Because 

microwave energy density at the walls is greatly reduced, typically 100 to 10000 
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times, to enable a high Q, the frequency sensitivity to copper expansion is reduced by 

the same factor. Thus the 15 PPM/Kelvin copper expansion is reduced to 0.15 

PPM/Kelvin or smaller [123], as given in Figure 1.11. 

Temperature/K

PP
M

/K

Temperature/K

PP
M

/K
pp

m
/K

 

Figure 1.11 Thermal expansion coefficients for copper and sapphire [123] 

1.3.1 Q factor  
The Q factor (quality factor) of a resonance frequency can be defined via energy 

storage and resonance bandwidth. According to the energy storage Q can be defined 

as: 

       2
Stored Energy

Q
Energy Lost Per Optical Cycle

π=                          (1-2) 

What is most commonly used is the definition of Q via resonance bandwidth: 

                          0
2

f
Q

g
=                                                       (1-3) 

Where g is the half-width defined as the width of f for which the energy is half 

the peak of centre resonance frequency f0. As seen in Figure 1.12, Q factor is partially 

dependent on the frequency. The high Q modes reduce sensitivity to changes in cable 

properties and external electronics. The higher the Q factor the greater the energy in 

the signal output from the dielectric and the greater the signal to noise ratio (SNR) of 

the output signal. The greater SNR of the output signal allows the resonant frequency 

to be detected easily and more precisely [116].  
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Figure 1.12 Q-factor determination for a resonance 

Associated with different kinds of losses of the resonator, the total Q factor can 

be expressed as [111]: 

                   1 1 1 1 1Q Q Q Q Qc rd coupling
− − − − −= + + +                            (1-4) 

Here Qd, Qc, Qr and Qcoupling represent the Q factor due to dielectric losses, 

conduction losses, radiation losses and coupling losses respectively, of which for a 

loaded resonator the dielectric losses and conduction losses are the main sources 

which are related as [108, 111, 113, 124, 125]: 

                        1 tan
1

I
Q pei id i

δ− = ∑
=

                                                 (1-5) 

                       1 /Q R Gc s
− =                                                            (1-6) 

Where pei is the electric energy filling factor for the ith dielectric region (the 

ratio of the electric energy stored in the DR to the total electric energy stored in the 

resonant system); tanδ is the loss tangent of the dielectrics; Rs is the surface resistance 

of the metal shield at a given resonant frequency; G is the geometric factor of the 

shield. Permittivity is actually a complex number, so “epsilon” is made up of two 

parts: 

                      ' ''jε ε ε= −                                           (1-7) 

Then the loss tangent can be given by: 
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''

tan
'

ε
δ

ε
=                                                (1-8) 

In a WGMR the resonant frequency is smaller than that for the empty cavity and 

the frequency shift depends on the real permittivity and thickness of the sample while 

the Q factor due to dielectric losses exhibits very characteristic behaviour as a 

function of the imaginary part of the permittivity.  

1.3.2 Resonator losses and dielectric materials 
For a dielectric unloaded cavity, the electromagnetic (EM) energy is stored both 

within the volume of the cavity itself and the evanescent field surrounding the cavity.  

The radiation loss and dielectric loss are the main factor limiting the Q factor of the 

resonator. While for a dielectric loaded cavity, the metallic cavity shields and confines 

the EM inside the cavity, radiation loss becomes negligible but conduction loss 

becomes a new factor to think about [95, 125-127]. However, WGMR has most of the 

energy concentrated on the dielectrics so the conductor loss is also insignificant. 

Then, finding a kind of dielectric which has very low dielectric loss is in great need. 

Besides, the coupling loss may reduce the Q unless it is made very low. 

In order to minimize the conduction loss and maximize the thermal conductivity 

as a thermometer, cavity materials are very important. The electric current flows 

mainly at the "skin" of the conductor, at an average depth called the skin depth. The 

skin effect causes the effective resistance of the conductor to increase at higher 

frequencies where the skin depth is smaller, thus reducing the effective cross-section 

of the conductor. The skin depth is thus defined as the depth below the surface of the 

conductor at which the current density has fallen to 1/e (about 0.37) of surface current 

density [118]: 

                           2δ
µσω

=                                              (1-9) 

Where σ  is the conductivity of the conductor; ω is angular frequency of current; 

μ is absolute magnetic permeability of the conductor. 

For microwave, silver, copper and gold are three best conductors whose skin 

depth at 10 GHz are respectively 0.64 μm, 0.65 μm and 0.79 μm. Therefore, most of 

http://en.wikipedia.org/wiki/Electrical_resistance�
http://en.wikipedia.org/wiki/Frequencies�
http://en.wikipedia.org/wiki/E_(mathematical_constant)�
http://en.wikipedia.org/wiki/Resistivity�
http://en.wikipedia.org/wiki/Angular_frequency�
http://en.wikipedia.org/wiki/Magnetic_permeability�
http://en.wikipedia.org/wiki/%CE%9Cm�
http://en.wikipedia.org/wiki/%CE%9Cm�
http://en.wikipedia.org/wiki/%CE%9Cm�
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the current flows in an extremely thin region near the surface. The resonant cavity can 

be made of copper with gold plated in which way the thermal conductivity of copper 

is very high and at the same time the gold plating can prevent the oxidation. In 

microwave band a layer of 3 μm gold is thick enough. 

In order to make a good thermometer, dielectric constant, quality (Q) factor 

(Q 1/ tanδ∝ ), and temperature coefficient of the dielectrics must be carefully 

controlled. Plenty kinds of ceramics were studied by researches by using the WGM 

method. R Ratheesh et al. [127] found that BMT can obtain the highest Q factor of 

25000 at 13.2 GHz and the temperature coefficient of BMT ceramics is only 10 

ppm/K. Quartz [95, 105, 110]and YAG [95] whose loss tangent are in the magnitude 

of 10-5 for RF at room temperature drew lots of attention too. Zychowica et al.[95] 

discovered that for most ceramic materials like single crystal YAG the product of 

frequency and Q factor is almost constant due to dielectric losses while for single 

crystal quartz and some low loss plastics like polyethylene or Teflon dielectric loss 

tangent increases much slower than linearly. Pure quartz (Si02) single crystal was 

known as a good microwave dielectric which presents low dielectric losses and slight 

permittivity anisotropy. Moreover, due to the extensive use of quartz in piezoelectric 

transducers and resonators, high purity, well orientated and low cost single crystals 

are easily available. In 1999 V. Giordano et al. developed quartz WGMRs with the Q 

factor in the order of 50000 at l6GHz at 300K [107]. Moreover, Strout et al. showed 

in his paper “The temperature coefficient of quartz crystal oscillators” the temperature 

coefficient of frequency of quartz is about 20 ppm/K at room temperature. For higher 

permittivity materials such as YAG and sapphire, in an unloaded resonator the 

radiation losses drastically decrease with increasing the azimuthal number m. Rutile is 

a mineral composed primarily of titanium dioxide TiO2 which renders high 

permittivity and low loss were studied by Tobar et al. [128, 129].  

Afterwards, sapphire attracts people’s attention because of its low loss (in the 

magnitude of 10-6 or even lower), higher dielectric constant and higher temperature 

sensitivity (about 40 ppm/K-70 ppm/K) since 1970s [117]. Moreover, because rutile 

has an opposite temperature coefficient of permittivity (TCP) it is often used to design 

a zero TCF resonator. A comparison of frequency sensitivity of quartz and sapphire 

was given by Lajoic et al.[96] in Table 1.1. Material properties comparison between 

sapphire and rutile are also given in Table 1.2. 

http://en.wikipedia.org/wiki/%CE%9Cm�
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Table 1.1 Frequency sensitivity of quartz and sapphire 

 1 z

z T
ε

ε
∆
⋅
∆

 
1 t

t T
ε

ε
∆
⋅
∆

 Tα  1 f for WGH
f T

∆
⋅
∆

 
1 f for WGE
f T

∆
⋅
∆

 

Quartz 300 K 22 14 13.6 25 -21 

77K < 1 < 1 5.6 -6 -6 

Sapphire 300 K 125 107 5 -70 -55 

77K 20 22 0.1 -10 -10 
 

Table 1.2 Material properties of sapphire and rutile at 270 K 

Material 
/ /ε  ε⊥  / /tanδ  tanδ⊥  

Sapphire 11.5458 9.3733 4.18×10-6 6.69×10-6 

Rutile 169.041 87.6482 9.05×10-5 7.20×10-5 

Due to excellent chemical stability, good thermal conductivity, high heat 

resistance and light transmission sapphire plays an ever-increasingly important role as 

a material for high reliability Opto-Electrics today. Sapphire is a single crystal 

aluminium oxide (Al2O3) whose softening point is around 1800 °C. Because of its 

hexagonal crystalline sapphire exhibits anisotropy in many optical and physical 

properties, see Figure 1.13. Sapphire has the same atomic composition as pure 

alumina (Al2O3) but alumina is amorphous while sapphire is crystalline. The exact 

characteristics of an optical component made from sapphire depend on the orientation 

of the optic axis or c-axis relative to the element surface. Moreover, sapphire exhibits 

birefringence, a difference in index of refraction in orthogonal directions. 

 
Figure 1.13 Sapphire unit cell 

http://www.microwaves101.com/encyclopedia/alumina995.cfm�
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Figure 1.14 shows two sets of measurements of the dielectric constants of 

sapphire from Krupka et al. [105]. The smooth curves fit to the data of Shelby et al. 

[122]. As seen in two figures, the permittivity of the sapphire doesn't change linearly 

with the temperature but in polynomial function. Mehl [130] did fitting to these two 

sets of data and the corresponding equations are given as follows (the unit of the 

temperature in the following equations are given in Kelvin).  

99.2676 ( 0.000238995 (0.0000029 ( 2.4 10 )))T T Tε −
⊥ = + − + + − ×                  (1-10) 

                      
9

// 11.347 ( 0.00046 (0.00000591 ( 5.6 10 )))T T Tε −= + − + + − ×        
                

(1-11) 
 

εpara

εperp

 
Figure 1.14 Dielectric parameters of sapphire, from Krupa et al. [105] and Shelby et al. [122] 

Figure 1.15 illustrates three sets of measurements of the loss tangent of sapphire 

from Krupka et al. so the Q of the resonator will become lower and lower when the 

temperature goes higher. 
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Figure 1.15 Loss factor for sapphire from Krupka et al. [105], Le Floch et al. [131], and 

Tobar et al. [128] 

The sapphires used in this thesis have two kinds of orientations; one has c-axis 

aligned with z-axis of the sapphire (0° orientation sapphire) and the other one has the 

c-axis perpendicular to the a-axis (90° orientation sapphire). The modes for 0° 

orientation sapphire are doubly degenerate with azimuthal phase of the two submodes 

differing by 90°, while for 90° orientation sapphire azimuthal mode degeneracy is 

lifted greatly.  

1.4 Research motivation  

Among various types of industrial thermometers exist today Platinum 

Resistance Thermometer (PRT) is the most commonly used within the temperature 

range of -196 °C to 500 °C with the uncertainties of less than 10 mK. PRT offers not 

only great accuracy, stability and repeatability but also benefits from low drift, wide 

operating range and its suitability for precision applications.  

However, platinum resistance thermometers are very delicate instruments. 

Shock, vibration, or any other form of acceleration may change the physical state of 

the annealed, loosely supported platinum resistance element.  It is empirically well 

known that even a little mechanical shock causes easily the resistance change 

equivalent to more than some tenth of millikelvins in temperature and that strong 

shock causes the change of some millikelvins. Careless day-to-day handing of a 

thermometer over one year can increase its resistance at the triple point of water by an 
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amount equivalent to 0.1 K [132]. Depending on the reason for this change in Rtp’ 

unless calibrated it could lead to temperature errors as high as 10 mK. Similar changes 

may be caused by an apparatus that transmits vibrations to the thermometer or by 

shipping the thermometer in an unsuitable container. 

Furthermore, an AC resistance bridge is typically required as a readout device 

for standard platinum resistance thermometers which is very expensive ($50 000~$75 

000). 

Under these circumstances a new industrial thermometer WGMRT which offers 

greater vibration immunity, improved stability, potential lower uncertainty and lower 

cost than PRT emerges.  

1.5 The possible development tendency 

In order to be used broadly in industrial, the dimensions of the sapphire 

WGMRT should be at least comparable to PRT. However, the WGM gets higher and 

higher when the diameter of the sapphire becomes smaller and smaller. Besides, the 

dielectric loss tangent limits the intrinsic performance of the resonator and the 

network analyzer presently works only at frequency lower than 20 GHz. Very high Q 

factor at relatively low frequency can be achieved by Bragg reflection technique in a 

small compact resonator [133-135].  

Strouse and Moldover [116] proposed the future tendency of the resonator 

thermometer will be like Brag Reflector as shown in Figure 1.16. In this thermometer 

there is less cross talk between spurious modes and whispering gallery modes and 

great possibility to be made smaller. But because of the complexity of the dielectrics 

the machining and mode calculation will be big problems.  

 

Figure 1.16 Brag reflection mode thermometer 
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1.6 Conclusion and main contents of thesis 

The Ph.D. thesis aims to develop a new kind of industrial thermometer that can 

render both shock resistance and high performance at the same time. This thesis 

consists of most of the researches about WGMT done during my Phd since 2009 at 

INRIM and NIST.  

Chapter 1 described some basic knowledge about WGM and talked about the 

theory feasibility of the research. The state of the art of the WGMRT and the 

applications were also reported. Besides, the motivation of the research and the 

possible development dependency was presented too. 

Chapter 2 introduces cylindrical sapphire WGMRT which has similar 

dimensions to one of the NIST SWGTs [1]. Three series of experiments were done at 

INRIM within the temperature range of -40 °C to 85 °C based on two sapphires. Ice 

melting point repeatability and stability will also be specified in this chapter. The 

frequency response with temperature between 15 °C and 25 °C was logged to 

compare with PRT. After three sets of experiments, reproducibility of the WGMRT 

will be analyzed. Comparisons between the calculation and experiments will be 

carried on too. 

A new shape of sapphire, spherical sapphire which is new to now, was 

illustrated in Chapter 3. Series of experiments were done at INRIM within the 

temperature range of -40 °C to 85 °C. Ice melting point repeatability and stability will 

also be specified in this chapter for WGMRT based on spherical sapphire. The 

frequency response with temperature between 15 °C and 25 °C was logged to 

compare PRT with cylindrical sapphire WGMRT. All the specifications of this new 

thermometer will be compared with cylindrical one referred in last chapter. Four 

different samples with the same nominal specification and reassemble for one of the 

specimen were all tested to check the reproducibility of the thermometer.  

In Chapter 4, my research done at NIST which were focused on the sapphire 

rods will be described. At the same time Mehl did the calculation by finite element 

method to match with my experiments. Moreover, dimensions optimizations were 

done to decrease the size of the thermometer with highest Q factor based on handy 

sapphires. Furthermore, two kinds of orientations of sapphire rods were tested and 
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birefringence of the 90° orientation sapphire was used to make a new kind of 

thermometer. After the agreements of the experimental results and calculations in 

certain accuracy a newly sapphire resonator capsule thermometer was designed. This 

part contributes a lot for making the WGMT smaller and compact. 

Two appendixes were enclosed at the end of the thesis. They listed all my 

experiments results corresponding to the figures shown in the former chapters and the 

schematic drawing of my WGMRTs. 
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Chapter 2 Cylindrical Sapphire WGMRT  

2.1 Introduction  

As a result of the easy machining and assembling of the cylindrical sapphire, a 

cylindrical sapphire WGMRT was first developed by Strouse [1]. Three kinds of 

dimensions were fabricated and only one of the dimensions was reported. The overall 

accuracy of the system was in the range of ± 0.02 °C and its ice melting point stability 

was less than 1 mK with a frequency resolution equivalent to 0.05mK.  

Based on Strouse’s work in paper “Sapphire Whispering Gallery Thermometer” 

[1], cylindrical sapphires which have the same nominal dimensions as one of them 

referred in his paper were machined. Cavity sizes are also the optimized dimensions 

but with two antennas soldered on one side. All the experiments in this chapter were 

carried out in INRIM. 

The sapphire was used in this experiment was purchased from Crystal Systems 

Inc. and it is HEMEX sapphire disk with 12 mm ∅  by 12 mm thickness and a 2  mm 

∅  center hole goes through. The C-axis of the sapphire is aligned with z axis within 

±6’, see Figure 2.1, the drawing and the picture of the sapphire are given.      

D=12 mm

d=2 mm

H=12 mm

 
Figure 2.1 Drawing and picture of 0° orientation sapphire used in the experiment  

A brass screw through the hole holds the sapphire inside a gold-plated copper 

cavity. Spacers between the sapphire and the cavity cap keep it in the preferred 

position where the EM field coupling is maximum with respect to the relevant WGMs 
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but minimum to the neighbor modes. Since the WGMs have the advantage that most 

of the EM energies are concentrated to the equatorial circle of the spherical crystal, 

the central hole, the screw and the small spacers do not affect the performance of the 

WGM resonator thermometer. Viton o-rings were used to seal the cavity which was 

continuously vacuumed in order to prevent humidity condensation into the cavity 

through a vacuum line. Two microwave coaxial cables were tin-brazed to the top cap 

of the cavity where the sapphire sphere was located. The central conductors of the 

coaxial cables were trimmed so the lengths of the probes penetrate into the cavity are 

0 mm. In this way the Q factor of the resonance modes are greatly enhanced and the 

spurious modes are greatly reduces; in addition, it improved the reproducibility, 

stability and shock resistance of the thermometer. 

Pictures of the cylindrical sapphire WGMRT are given as follows. Figure 2.2a 

shows the top cap of the cavity where the mounted cylindrical sapphire, the 

microwave cables, and the antennas are fixed. Figure 2.2b represents the polished 

gold plated bottom cap, the cavity body with o-ring seals and the vacuum line. The 

schematic drawing for the cavity are given in Figure B 1, Figure B 2 and Figure B 3. 

 

Figure 2.2 (a) Top cap of the cavity with the cylindrical sapphire and antennas; (b) polished 
gold plated bottom cap, cavity body with o-rings seals and the vacuum line. 

2.2 Cylindrical Sapphire WGMRT Calculation 

Before starting the experiments, Finite Element Method (FEM) analysis was 

carried out to locate the WGMs. There are three WGMs near 12.4070 GHz (WGM3), 

15.1471 GHz (WGM4) and 17.8404 GHz (WGM5) respectively with azimuthal 

number m equal to 3, 4 and 5. Table 2.1 presents the calculation result of three WGMs. 

The Q improves with the increase of the azimuthal number. In the analysis all the 

metal surfaces were treated as perfect electric conductor and the sapphire was treated 
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as lossless too. Thereby, the practical Q will be much lower than the calculated one. 

In the calculation, the permittivity of the sapphire is used as: 

ε = ε = ε =9.391, ε = ε =11.5869x y z //⊥  which come from Mehl’s [130] fits to two sets 

of measurements of Krupka et al. [105] and Shelby et al. [122]. 

Table 2.1 The calculated WGMs and Qs for cylindrical sapphire WGMRT 

Mode  m fcal/GHz Qcal 

1 3 12.4046 298420 

2 4 15.1471 1513100 

3 5 17.8411 4717600 

Figure 2.3 shows the patterns of the electric energy density for three WGMs. As 

expected, the WGM has most of the energy concentrated near the edge of the sapphire 

so the central hole and screws have negligible perturbation to the energy distribution.   

 

 

 

Figure 2.3 3D and 2D electric energy densities for WGMs 
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2.3 Experiments on Cylindrical Sapphire 

WGMRT  

Experiments in this chapter were carried out at INRIM. Series of experiments 

were performed within the temperature range of -40 °C to 85 °C with a standard 

deviation of better than 3 mK based on two cylindrical sapphires which have the same 

nominal specifications. The corresponding characteristics of the WGMRT will be 

reported based on two sapphires. The uncertainty, repeatability, stability, hysteresis 

error, frequency temperature sensitivity and frequency response with temperature of 

the cylindrical sapphire WGMRT will be reported. Moreover, two sapphires which 

have the same nominal specification and the reassemble for one of them (sapphire 2’) 

will be tested respectively to explore the reproducibility of the thermometer. 

Experiments were performed in a Hart Scientific 7381 bath with an INRIM 

calibrated PRT read by 1560 Black Stack bridge. The center frequencies and Qs at 

each temperature were logged by an Agilent E5071C Network Analyzer and 

corresponding Labview programme. A picture of measurement system is given in 

Figure 2.4 (computer is not included). 

Experimental measurements showed a Q in excess of 170000 for the mode with 

the highest azimuthal number, making it possible to achieve a potential temperature 

resolution of 0.05 mK. 

 

Figure 2.4 Picture of measurement system 
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2.3.1  Thermal Cycling Experiments 
Thermal cycling experiments were carried out in the temperature range of -

40 °C to 85 °C. Two sapphires were tested respectively and then repeated for one of 

the sapphires. Three sets of experiment results based on two sapphires are enclosed 

respectively in appendix in Table A 1, Table A 2 and Table A 3. The frequency and Q 

factor decrease with the ascending of the temperature see Figure 2.5 and Figure 2.6, 

take WGM5 as an example.  
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Figure 2.5 Frequency change with the temperature of the cylindrical sapphire WGMRT 
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Figure 2.6  Q factor change with the temperature of the cylindrical sapphire WGMRT 
 

In order to know how the WGMs change as a function of temperature, cubic fit 

was first employed to the thermal cycle experiments data, see Figure 2.7 and Figure 

2.8 and they both show the suggestions of using quartic fit.   
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Figure 2.7 Cubic fit residuals for three WGMs(sapphire 1) 
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Figure 2.8 Cubic fit residuals for three WGMs(sapphire 2) 
 

Figure 2.9 illustrates the quartic fit residuals of three WGMs based on sapphire 1 

and significant improvements are expected from around ± 25 mK, 15 mK and 15 mK  

to ± 25 mK, ± 4 mK and ± 2 mK respectively for WGM3, WGM4 and WGM5 and 

they are not totally correlated as a function of the increasing azimuthal mode. The 

standard deviation of the residuals also decreases from 10.6 mK, 9.0 K and 7.7 by 

cubic fit to 10.1 mK, 1.8 mK and 0.8 mK by quartic fit. Besides, there is not 

significant hysterisis error can be seen from sapphire1-based WGMRT for three 
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WGMs except that WGM5 shows a hysterisis error of 2.3 mK around 5 °C and 50 °C, 

see Figure 2.10.  
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Figure 2.9 Quartic fit residuals for three WGMs (sapphire 1) 
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Figure 2.10 Quartic fit residuals for WGM5 (sapphire 1) 

Figure 2.11 illustrates the quartic fit residuals of three WGMs based on sapphire 

2 and significant improvements are also expected from around ± 15 mK to ± 8 mK, ± 

3 mK and ± 3 mK respectively for WGM3, WGM4 and WGM5. The standard 

deviation of the residuals decreases from 8 mK, 9 mK and 8 mK by cubic fit to 3 mK, 

1 mK and 1 mK by quartic fit. Furthermore, a maximum of 16 mK hysteresis error for 

WGM3 was also shown which should mainly come from the property of the bath. 
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WGM4 doesn’t have significant hysterisis error like sapphire 1 based WGMRT and 

WGM5 shows a maximum hysterisis error of 3.2 mK, see Figure 2.12 and Figure 2.13. 
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Figure 2.11 Quartic fit residuals for three WGMs (sapphire 2) 
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Figure 2.12 Quartic fit residuals for WGM4 (sapphire 2) 
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Figure 2.13 Quartic fit residuals for WGM5 (sapphire 2) 

 

As illustrated in Figure 2.14 the WGM resonator temperature sensor has a 

fractional frequency temperature sensitivity (Δf/f/ΔT) ranging from -59 ppm/K at -

40 °C to -72 ppm/K at 85 °C. Besides, it is also obvious that the fractional frequency 

temperature sensitivity changes as a function of the increasing azimuthal mode i.e. the 

higher the azimuthal number the more sensitive the frequency to the temperature.  
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Figure 2.14 Fractional frequency temperature sensitivity for three WGMs 

2.3.2 Ice Melting Point Repeatability and Stability 
The cylindrical sapphire WGMRT was immersed into the ice melting point 

dewar at a depth of 30 cm for three days. The picture of the measurement systems are 

given in Figure 2.15. 
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Figure 2.15 Ice melting point repeatability and stability measurement systems 

The ice melting point repeatability for WGMRT based on sapphire 1 is shown in 

Figure 2.16 and it shows a repeatability of better than ± 0.5 mK. There isn't significant 

drift can be seen from Figure 2. 16. While the WGMRT based on sapphire 2 has a 

repeatability of ± 5 mK which is mainly limited by the ice temperatures, see Figure 

2.17. The ice melting point temperature for WGMRT based on sapphire 2 has a 

standard deviation of more than 3 mK, see the enclosed in Table A 4 and Table A 5. 
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Figure 2.16 Ice melting point repeatability for three WGMs (based on sapphire 1) 
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Figure 2.17 Ice melting point repeatability for three WGMs (based on sapphire 2) 

The ice melting point stability of the temperature sensor was also explored in 

more than one hour. The calibrated PRT and the WGM resonator temperature sensor 

values were both logged during the same time period and the comparisons are given 

respectively in Figure 2.18, Figure 2.19 and Figure 2.20 for three WGMs.  
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Figure 2.18 Ice melting point stability for WGM3 
 

Figure 2.18 illustrates WGMRT based on WGM3 has an ice melting point 

stability of about 0.54 mK with comparison to 5.7 mK of PRT. WGM3 shows a 

temperature range from 14.4 mK to 14.9 mK during the experiment time period while 
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PRT displays a temperature range from -1.20 mK to 4.50 mK. There is a shift of 15 

mK from 0 °C which is mainly due to the measurement accuracy of the sapphire1-

based WGMRT is around ± 25 mK based on WGM3.  
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Figure 2.19 Ice melting point stability for WGM4 

Figure 2.19 describes WGMRT based on WGM4 has an ice melting point 

stability of about 0.3 mK with comparison to 6.5 mK of PRT. WGM4 shows a 

temperature range from 4.51 mK to 4.79 mK during the experiment time period while 

PRT reads a temperature range from -2.0 mK to 4.5 mK. There is still a shift of 

around 4.5 mK from the ice melting point temperature.  
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Figure 2.20 Ice melting point stability for WGM5 
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Figure 2.20 illustrates WGMRT based on WGM5 has an ice melting point 

stability of about 1.1 mK with comparison to 5.3 mK of PRT. WGM5 shows a 

temperature range from 0.15 mK to 1.22 mK during the experiment time period while 

PRT reads a temperature range from -1.5 mK to 3.8 mK. A shift of about less than 1 

mK can be seen from the reading.  

2.3.3 Frequency Temperature Response Time 
Several thermal cycles between 15 °C and 25 °C were tested to explore the 

frequency temperature response of the cylindrical sapphire WGMRT with temperature 

change, see Figure 2.21. The WGM increases with the descending of the temperature 

and for clarity, a zoom in of part of the response was shown in Figure 2.22. As 

illustrated in Figure 2.22 the WGM resonator temperature sensor responses very 

quickly with the temperature change with only several minutes delay due to the big 

mass and vacuum state of the cavity compared to PRT. Nevertheless, the bath power 

is not high enough to change the temperature quickly may limit the response time of 

the PRT.  
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Figure 2.21 Frequency response of the WGM resonator temperature sensor with the 

temperature change 
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Figure 2.22 Response time of the WGM resonator temperature sensor 

2.3.4 Reproducibility Experiments  
Two cylindrical sapphires that have the same nominal specifications were 

explored to investigate the reproducibility of the WGMRT. Besides, the reassemble 

for one of the sapphire (sapphire 2’) was tested too.  

The quartic fit functions for WGMRT are given in the format of:   

4 3 2
4 3 2 1 0i i i i if a T a T a T a T a= ⋅ + ⋅ + ⋅ + ⋅ +                       (2-1) 

Table 2.2 shows the quartic fitting coefficients for three sets experiments of 

which a0 is the one that should be calibrated for every specific WGMRT. Take the 

coefficients for sapphire 1 as the basic one, the calibrated fit residuals for the 

experiments data based on sapphire 2 (and 2’) are shown respectively in Figure 2.23, 

Figure 2.24 and Figure 2.25.  

Table 2.2 Quartic fit coefficient for three sets of experiments for all WGMs 

WGM Sapphire a4×e12 a3×e9 a2×e7 a1×e4 a0 

3 
1 1.82464 1.55201 -5.85634 -7.84381 12.42753617 

2 -4.56204 1.88662 -5.70431 -7.84705 12.42973833 

2’ -5.38857 2.02139 -5.71849 -7.84739 12.42728680 

4 
1 -6.43598 2.38884 -7.07795 -9.38200 15.20827530 

2 -6.43631 2.39286 -7.10113 -9.83201 15.21018041 

2’ -6.01304 2.36334 -7.11649 -9.82862 15.20950557 

5 
1 -6.72068 2.77616 -8.46959 -1.17857 17.95882628 

2 -7.43343 2.83470 -8.46514 -1.17870 17.96084597 

2’ -4.70421 2.51608 -8.41938 -1.17831 17.96061369 
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Figure 2.23 Reproducibility of the cylindrical sapphire WGMRT based on WGM3 of 

sapphire 2 (and 2’)  

As illustrated in Figure 2.23, the reproducibility of the WGMRT based on 

WGM3 is about ± 50 mK. It is also noticed that at 50 °C the reproducibility is the 

worst temperature which should relate to the bath because during the experiments, 

50 °C always has the worst stability.  
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Figure 2.24 Reproducibility of the cylindrical sapphire WGMRT based on WGM4 of 

sapphire 2 (and 2’) 

Figure 2.24 also shows that the WGMRT renders a reproducibility of about ± 15 

mK based on WGM4 in the temperature range of -40 °C to 85 °C.  
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Figure 2.25 Reproducibility of the cylindrical sapphire WGMRT based on WGM5 of 

sapphire 2 (and 2’) 

WGMRT can offer a reproducibility of about ± 20 mK (mostly better than ± 10 

mK) based on WGM5 as described in Figure 2.25. 

In fact the residuals given in three aforementioned figures are from not only 

different sapphire samples but also their assemble status, like the force put on 

sapphire and the real distances between antenna and sapphire and so on.  

Comparisons between sapphire 2 and 2’ (reassembled sapphire 2) were also 

carried on to study about the reproducibility of the WGMRT based on the same 

sapphire limited by underlying assemble conditions of different people each time. 

By fitting the experiment data based on sapphire 2’ with the equation of 

sapphire 2, the WGMRT reproducibility is shown in Figure 2.26, Figure 2.27 and 

Figure 2.28. Figure 2.26 describes a reproducibility of better than ± 40 mK for the 

calibrated WGMRT based on WGM3 while Figure 2.27 illustrates a reproducibility of 

about ± 20 mK (except one temperature) based on WGM4. Furthermore, a 

reproducibility of better than ± 20 mK (mostly better than 10 mK) based on WGM5 is 

obtained as shown in Figure 2.28. 
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Figure 2.26 Fit residuals for WGM3 of sapphire 2’ based on fitting equation of sapphire 2 
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Figure 2.27 Fit residuals for WGM4 of sapphire 2’ based on fitting equation of sapphire 2 
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Figure 2.28 Fit residuals for WGM5 of sapphire 2’ based on fitting equation of sapphire 2 
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Combing two series of experiments forementioned, the reproducibility of the 

WGMRT is mainly limited by the assemble status each time for the sapphires which 

have the same nominal specifications. Moreover, during the second reassemble test, 

for some reason the inside surface of the cavity was remachined therefore there is 

another factor that may bring about reproducibility problem. However, as shown in 

the analysis results, WGMs are not sensitive to the cavity size and polishing status in 

certain range.  

2.4 Calculation and Experiments Comparisons 

As shown in equation (1-1), the resonant frequency of the thermometer changes 

with the temperature is mainly due to the permittivity changes. The corresponding 

permittivity at each temperature can be calculated according to equation (1-10) and 

(1-11) based on Figure 1.14. The corresponding WGMs at each temperature are 

calculated in Table 2.3. 

Table 2.3 Permittivity calculation results at corresponding temperatures 
 

T/ °C ε⊥  / /ε  

-40 9.3391 11.4900 

-30 9.3464 11.5041 

-20 9.3540 11.5184 

-10 9.3618 11.5332 

0 9.3698 11.5482 

5 9.3738 11.5558 

15 9.3821 11.5712 

25 9.3905 11.5868 

50 9.4122 11.6265 

75 9.4346 11.6669 

85 9.4437 11.6831 

Based on the permittivity calculation results shown in Table 2.3, three WGMs 

were calculated at each temperature by FEM analysis. Comparisons between the 

calculation and the experiments frequencies are carried on, see Table 2.4. 
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Table 2.4 Comparisons between the calculated and the experimental frequencies 
T 

/ °C 
f3exp 

/GHz 
f3cal 

/GHz 
Δf3/f3 

/% 
f4exp 

/GHz 
f4cal 

/GHz 
Δf4/f4 

/% 
f5exp 

/GHz 
f5cal 

/GHz 
Δf5/f5 

/% 
85 12.3601 12.3606 0.00 15.1230 15.0979 0.17 17.8563 17.7703 0.48 
75 12.3686 12.3684 0.00 15.1336 15.1077 0.17 17.8690 17.7820 0.49 
50 12.3895 12.3879 0.01 15.1597 15.1322 0.18 17.9004 17.8105 0.50 
25 12.4099 12.4071 0.02 15.1853 15.1563 0.19 17.9311 17.8405 0.51 
15 12.4179 12.4146 0.03 15.1954 15.1658 0.20 17.9431 17.8519 0.51 
5 12.4259 12.4221 0.03 15.2053 15.1752 0.20 17.9550 17.8631 0.51 
0 12.4297 12.4258 0.03 15.2102 15.1799 0.20 17.9608 17.8687 0.52 

-10 12.4376 12.4331 0.04 15.2200 15.1890 0.20 17.9726 17.8797 0.52 
-20 12.4452 12.4403 0.04 15.2296 15.1890 0.27 17.9841 17.8906 0.52 
-30 12.4527 12.4473 0.04 15.2390 15.2069 0.21 17.9953 17.9011 0.53 
-40 12.4600 12.4541 0.05 15.2482 15.2155 0.21 18.0064 17.9115 0.53 

As illustrated in Table 2.4, the experimental frequencies are very close to the 

calculated ones with accuracies better than 1% and the frequency differences are in 

the same magnitude for the modes that have the same azimuthal mode number.  

2.5 Uncertainty Budget  

The uncertainty budget of the cylindrical sapphire WGMRT was calculated 

based on the former experiments and documents at hand. There are two uncertainty 

source components; one is from the measurement sensor and the other one is from the 

calibration components used during the experiments. The analysis results are given in 

Table 2.5.  

As seen in Table 2.5, the sensors render only a standard uncertainty of 0.9 mk 

while the calibration components which is necessary for the experiments give a 

standard uncertainty of 4.6 mk. Combining these two components, the expanded 

uncertainty (95%) for the each measurement can be less than 10 mK. 

 

 

 

 

 

 

 



 42 

Table 2.5 Uncertainty budget of the cylindrical sapphire WGMRT 

Uncertainty source Estimate Unit 
Unc. 
 type Distribution Divisor 

Std.  
Unc. Unit 

                
Sensor components               
Network analyzer resolution 0.05 mK B Rectangular 3.46 0.0 mK 
Lorentzian fit of f_peak 0.03 mK B Rectangular 3.46 0.0 mK 

Repeatability of f_peak 0.5 mK A Normal 1.96 0.3 mK 
Fitting curve residuals  3 mK B Rectangular 3.46 0.9 mK 
            0.9 mK 
Calibration components               
Bath stability 5 mK A Normal 1.96 2.6 mK 
Temperature gradient 7 mK B Rectangular 3.46 2.0 mK 
Bridge calibration 4 mK B Normal 1.96 2.0 mK 
PRT calibration 5 mK B Normal 1.96 2.6 mK 
            4.6 mK 
                
Combined standard 
deviation           4.7 mK 
Expanded uncertainty 
(95%)           9.2 mK 

2.6 Conclusions 

This chapter describes the details of the cylindrical sapphire WGMRT made in 

INRIM which is designed based on Strouse’s paper “Sapphire Whispering Gallery 

Thermometer” [1]. 

Before starting the experiments, calculations were firstly done to check the 

feasibility of the design and locate the WGMs. Three WGMs exist in the range of 

3GHz to 20 GHz theoretically which lie near to 12.4046 GHz, 15.1471 GHz and 

17.8411 GHz with azimuthal mode number equals to 3, 4 and 5 respectively. 

Thermal cycle experiments in the temperature range of -40 °C to 85 °C were 

performed based on two pieces of sapphires which have the same nominal 

specifications with Q in excess of 170000 at -40 °C. Quartic fit was carried on and an 

accuracy of ± 8 mK, ± 3 mK and ± 3 mK respectively for WGM3, WGM4 and 

WGM5 with corresponding standard deviation of 3 mK, 1 mK and 1 mK. Besides, 

WGM3 shows a maximum hysteresis error of 16 mK while WGM4 and WGM5 have 

a much smaller hysteresis for both sapphires. 
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The fractional frequency  temperature sensitivity ((Δf0/ΔT)/f0) increases from -

56 ppm/K at -40 °C to -67 ppm/K at 85 °C as a function of the increasing azimuthal 

mode. 

Sapphire 1 can has an ice melting point repeatability of better than 0.4 mK while 

sapphire 2 renders a repeatability of 5 mK which is mainly limited by the ice 

temperatures and an ice melting point stability in one hour better than 1.1 mK was 

achieved based on two sapphires for three WGMs 

Frequency response to the temperature change was also checked. A temperature 

step from 15 °C to 25 °C was conducted to compare with PRT and it turns out that the 

cylindrical sapphire WGMRT can response fast enough even though it has big mass. 

The reproducibility of the WGMRT is ± 50 mK, ± 15 mK and ± 20 mK (mostly 

better than ± 10 mK) based on three WGMs in the temperature range of -40 °C to 

85 °C which are from not only different sapphire samples but also distinct assemble 

status, like the force put on sapphire and the real distances between antenna and 

sapphire and so on. However, by reassembling the same sapphire it shows a 

reproducibility of ± 40 mK, ± 20 mK and ± 20 mK (mostly better than 10 mK) 

respectively which is similar as before. Therefore, the reproducibility of the WGMRT 

is mainly limited by the assemble status each time based on the sapphires with the 

same nominal specifications but insensitive to the cavity size and polishing status in 

certain range.  

Comparisons between calculation and experiments were done and with 

accuracies of better than 1%. Furthermore, the frequency differences are in the same 

magnitude for the modes that have the same azimuthal mode number.  

Uncertainty budget analysis results show that the measurement uncertainty 

mainly comes from the calibration components used for the experiments measurement. 

The combined uncertainty (95%) can be less than 10 mK. 

In conclusion, the cylindrical sapphire WGMRT is accessible for the industrial 

thermometer based on the previous experiment results. However, for extensive 

application a much compact WGM resonator thermometer capsule whose size is 

similar to PRT is one of the major research directions. 
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Chapter 3 Spherical-sapphire-based WGM 

resonator thermometer 

3.1 Introduction  

A novel microwave WGM resonator based on a spherical sapphire crystal was 

developed at INRIM and the feasibility of a WGM thermometer was proved. One of 

the WGM near to 13.6 GHz was investigated over the temperature -40 °C to 85 °C 

with Q-factor as large as 100000. This paper reports the stability, repeatability, 

resolution, frequency temperature sensitivity and frequency response with temperature 

change for spherical-sapphire-based WGM resonator thermometer prototype and 

comparisons with NIST SWGT made with cylindrical sapphire are implemented too. 

Four sapphires with the same specifications were experimented separately and one of 

them was also repeated to explore the repeatability and reproducibility of the 

thermometer. 

Nowadays, most of the work on the microwave WGM resonator and their 

application as a thermometer are focused on the cylindrical sapphire because of the 

easy mounting and machining. The authors in this paper developed a WGM resonator 

thermometer with spherical sapphire. Spherical-sapphire-based WGM resonator are 

mostly studied in the optical wavelength range for tunable filters,  optical biosensors, 

mechanical sensors, switches and modulators et al. as referred in Chapter 1, 

nevertheless this is new in the field of microwave resonator thermometer applications. 

The stability, resolution, repeatability and frequency temperature sensitivity for this 

INRIM WGM resonator thermometer will be reported in the paper. Moreover, 

comparisons with conventional whispering gallery mode thermometer with cylindrical 

sapphire are carried out. 

The spherical-sapphire-based WGM resonator thermometer is designed based on 

the NIST SWGT [1] with nominal sapphire diameter of 12 mm and the cylindrical 

cavity sizes are similar to the optimized dimension for cylindrical sapphire with cavity 

radius and height twice the sapphire radius values.  
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The sapphire sphere, purity of material 99.996%, is a single crystal synthetic 

sapphire (α-Al2O3) with its c-axis aligned with the geometric z-axis within ± 1°, a 

hole of 2 mm in diameter was drilled along z-axis.  A brass screw goes through the 

hole to fix the sapphire sphere inside the gold plated copper cavity.  Species keep it in 

the preferred position where the EM field coupling is maximum with respect to to the 

concerned WGMs but maximum to the neighbor modes. Since the WGMs have the 

advantage that most of the EM energies are concentrated to the equatorial circle of the 

crystal, the central hole, the screw and the small species do not affect the performance 

of the WGM resonator thermometer. Viton o-rings are used to seal the cavity which 

was continuously pumped to eliminate the humidity in the cavity through one 

soldered vacuum line. Besides, two microwave coaxial cables were both soldered to 

the top cap of the cavity where the sapphire sphere was located. The central 

conductors of the coaxial cables were trimmed so the lengths of the probes penetrate 

into the cavity are 0 mm. In this way the Q of the resonance modes are greatly 

advanced and spurious modes are greatly reduces; what's more, it improves the 

reproducibility, stability and shock resistance of the thermometer. 

Figure 3.1a shows top cap of the cavity with mounted spherical sapphire, 

microwave cables, and two flush antennas. Figure 3.1b represents polished gold 

plated bottom cap, cavity body with o-rings and the vacuum line.  

(a) (b)

 

Figure 3.1 (a) Top cap of the cavity with mounted spherical sapphire and (b) polished gold 
plated bottom cap, cavity body with o-rings and the vacuum line 

3.2 Theoretical analysis results 

FEM analyses were carried out based on the INRIM WGM resonator 

thermometer in last part. The permittivity at room temperature used in the calculation 
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is as follows: 9.391, 11.5869x y zε ε ε= = =  which come from Mehl’s fits to two sets of 

measurements of Krupka et al. [105] and Shelby et al. [122] 

In the frequency range from 300 MHz to 20 GHz, three WGMs exist near 

13.5362 GHz (WGM1), 16.3446 GHz (WGM2) and 19.0684 GHz (WGM3) 

respectively with corresponding azimuthal mode numbers m equal to 3, 4 and 5. The 

patterns of the electric energy densities for WGMs are given in Figure 3.2. 

 

Figure 3.2 The patterns of the electric energy densities for WGMs 
 

As discussed before, the WGMs concentrate most of the energy in the crystal in 

a region that is close to the surface, so the central hole, the supporting screw that goes 

through and the bolts have negligible perturbations to the WGMs.   

All the metal materials are treated as perfect electric conductors (PECs) which 

means lossless; the dielectric is also taken as lossless. So the ideal calculated Qs are 

much higher than the value actually reached in practical resonators. The calculated 
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WGMs and the corresponding Qs are given in Table 3.1, where m is the azimuthal 

mode number; Q factors improve with the increasing of the azimuthal number m.  

Table 3.1 WGMs and Qs calculation results for INRIM WGM resonator thermometer 

Mode  m f/GHz Q 

24 
 

3 13.5362 
 

309610 
 46 

 
4 16.3446 

 
2057200 

 71 
 

5 19.0684 6148800 

3.3 Experimental measurements 

In order to fix the spherical sapphire inside the cavity, a long brass screw with 

two bolts is employed. Since the coupling strength of WGMs changes with the 

temperatures[136], different distances from the antennae are tried to get lower 

coupling to the neighour modes and high enough coupling strength to WGMs. In this 

paper only one of the WGMs around 13.5362 GHz (named WGM1) is experimented 

and reported because at this fixed position antennas have strong enough coupling to 

this mode and low coupling to the neighbours at the same time. The other two WGMs 

should have better performance than WGM1 theoretically. 

The INRIM WGM resonator thermometer measurement systems are mainly 

composed of five parts, Agilent E5071C network analyser, pumping systems, an 

INRIM ITS-90 calibrated PRT with a readout device 1560 Black Stack bridge for 

measuring the bath temperature of an ethanol bath whose experimental stability turns 

out to be better than 3 mK above -40 °C up to 85 °C. Besides, a Labview program was 

used for logging and analyzing center frequencies and Qs for f0 determination of 

better than 0.2 mK from the network analyzer whose resolution can be smaller than 

0.2 mK for the mode with Q higher than 50000. The measurement systems are the 

same as shown in Figure 2.4. 

All the resonant frequencies f0 and half-width g is determined by fitting with the 

resonant line shape function and one example of the fitting residuals are given in 

Figure 3.3. On the basis of average of a fit to WGM1 the uncertainty in determining f0 

is less than 0.03 mK. 
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Figure 3.3 Fit residuals of the determination of f0 for one mode 

3.3.1 Thermal cycling measurement 
Thermal cycling experiments are performed between -40 °C and 85 °C at -40 

°C, -30 °C, -20 °C, -10 °C, 0 °C, 5 °C, 15 °C, 25 °C, 50 °C, 75 °C and 85 °C 

respectively. Four sapphires are named as sapphire 1, sapphire 2, sapphire 3 and 

sapphire 4 respectively and the one that was repeated is named as sapphire 1’. The 

center frequency and Q factor at each temperature based on sapphire 1 are provided in 

Table 3.2.  

As seen in Table 3.2 the temperature uncertainty of the bath is smaller than 1.5 

mK (k=1) from -40 °C to 85 °C. The Q factor of the WGM increases with the 

temperature decreases. Figures for resonant frequency and Q changes with 

temperatures are presented in Figure 3.4 and Figure 3.5. 
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Table 3.2 Thermal cycling experiment results (sapphire 1) 

Nominal T/ °C Real T/°C Std Dev/°C WGM1/GHz Q1 
-40 -39.88386 0.00103 13.643696 107620 
-30 -29.88818 0.00099 13.635947 100224 
-20 -19.89965 0.00076 13.628037 93756 
-10 -9.90244 0.00119 13.619971 87409 
0 0.00154 0.00091 13.611845 82481 
5 5.09074 0.00100 13.607616 81152 

15 15.09538 0.00120 13.599225 77315 
25 25.09465 0.00130 13.590732 74169 
50 50.10045 0.00111 13.569082 65213 
75 75.11768 0.00115 13.546928 58607 
85 85.12865 0.00114 13.537945 56030 
75 75.11186 0.00119 13.546934 58615 
50 50.08646 0.00111 13.569097 66443 
25 25.08480 0.00143 13.590741 73486 
15 15.08684 0.00117 13.599234 76748 
5 5.08554 0.00112 13.607623 80183 
0 0.00190 0.00098 13.611845 82073 

-10 -9.91082 0.00132 13.619979 85626 
-20 -19.90646 0.00119 13.628044 92283 
-30 -29.89110 0.00080 13.635950 99127 
-40 -39.88496 0.00136 13.643700 107775 
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Figure 3.4 Resonant frequency f0 change with temperatures 
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Figure 3.5 Q change with temperatures 

Based on the experimental data in Table 3.2 cubic and quartic fit for f0 and T 

were implemented and the corresponding fitting residuals are given as follows, see 

Figure 3.6 and Figure 3.7.  
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Figure 3.6 Cubic fit residuals of WGM resonator thermometer based on spherical sapphire 

 



 52 

Quartic fit residuals

-4

-3

-2

-1

0

1

2

3

4

-60 -40 -20 0 20 40 60 80 100

T/°C

R
es

id
ua

ls
/ m

K

 

Figure 3.7 Quartic fit residuals of WGM resonator thermometer based on spherical sapphire 
 

Figure 3.6 shows a structure that suggests the use of a quartic fit function and as 

illustrated in Figure 3.7 quartic fit residuals are improved significantly from ± 20 mK 

to ± 4 mK. Compared to cylindrical-sapphire-based SWGT in NIST [1] this spherical-

sapphire-based WGM resonator thermometer is much more accurate. Besides, the 

standard deviation of the quartic fitting residuals is only 1.7 mK and shows great 

improvement with comparison to 8.7 mK by cubic fitting for sapphire 1.  

For the other four sapphires (sapphire 1’, 2, 3, 4), the measurement uncertainties 

are different from one to another. Sapphire 1’ shows a cubic fit residual of ± 20 mK 

and with no significant improvements after the quartic fit while the standard 

deviations were improved from 10.5 mK to 8.5 mK. Sapphire 2 offers a cubic fit 

residual of ± 20 mK and no improvements can be seen from the quartic fit and the 

standard deviation are improved insignificantly from 8.9 mK to 8.4 mK. A cubic fit 

residual of ± 20 mK was significantly improved to ± 8 mK based on quartic fit for 

sapphire 3 and the standard deviation of 8.0 mK to 4.2 mK was gained. Lastly, 

sapphire 4 demonstrates a cubic fit residual of ± 25 mK and a quartic fit residual of ± 

15 mK with standard deviation improves from 10.8 mK to 6.7 mK. Overall, the 

spherical-sapphire-based WGM resonator thermometer can have an accuracy of better 

than ± 20 after appropriate fit. 
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Moreover, as seen in Figure 3.7 hysterisis error based on sapphire 1 was also 

discovered in the thermal cycle with a maximum of 4 mK at 50 °C. For the other four 

sapphires, hysterisis error can also be seen of which sapphire 1’ has the maximum 

value of 25 mK at 5 °C. All the experiments data based on the other four sapphires are 

enclosed in Table A 6~Table A 9. 

As described in Figure 3.8, for the spherical-sapphire-based WGM resonator 

thermometer the fractional frequency temperature sensitivity ((Δf0/dT)/f0) cubically 

change from -56 ppm/K at -40 °C to -67 ppm/K at 85 °C. The relevant calculations 

results are enclosed in Table A 10. 
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Figure 3.8 f0 versus T sensitivity for WGM1 at each temperature (sapphire 1) 

3.3.2 Ice melting point repeatability and stability 
The spherical-sapphire-based WGM resonator thermometer was immersed into 

the ice melting point dewar at a depth of around 30 cm for three days. The 

measurement systems are the same as shown in Figure 2.15. Two series of 

experiments were repeated based on sapphire 1 and sapphire 4. The results based on 

sapphire 1 and sapphire 4 are given respectively in Figure 3.9 and Figure 3.10 , and 

Table A 11 and Table A 12. 
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Ice melting Point Repeatability in three days (Sapphire 1)
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Figure 3.9 Ice melting point repeatability in three days (sapphire 1) 

As illustrated in Figure 3.9, the spherical-sapphire-based WGM resonator 

thermometer that is based on sapphire 1 has repeatability of better than ± 0.5 mK in 

those three days which is much better than the cylindrical-sapphire-based WGM 

resonator thermometer published by Strouse [1].  

Ice melting Point Repeatability in three days (Sapphire 4)
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Figure 3.10 Ice melting point repeatability in three days (sapphire 4) 

Figure 3.10 shows an ice melting point repeatability of ± 3 mK in three days 

based on sapphire 4 and it also shows different drift rate every day.  
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Furthermore, the ice melting point stability test was also carried out based on 

sapphire 1 in about one hour. As described in Figure 3.11, the spherical-based-

sapphire WGM resonator thermometer shows a stability of better than 0.2 mK with 

comparison to the stability of about 7 mK of PRT after the equilibrium. The spherical-

based-sapphire WGM resonator thermometer reads ice melting point temperature in 

the range of -1.13mK to -0.98 mK with comparison the PRT reading of -1.20 mK to 

4.30 mK. The shift is not as significant as cylindrical sapphire WGMRT referred in 

Chapter 2. 
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Figure 3.11 Ice melting point stability 

3.3.3 Frequency response to the temperature 
change 

Experiments based on temperature step from 15 °C to 25 °C are implemented to 

compare the response to the temperature change of PRT and spherical-sapphire-based 

WGM resonator thermometer based on sapphire 1. The experiments results for more 

than one cycle are as follows and Figure 3.12 shows that the frequency increases with 

the decrease of the temperature and vice versa.  
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Figure 3.12 Comparisons of the response time between WGMT and PRT 

A zoom-in picture for the green part in Figure 3.12 is offered in Figure 3.13 to 

see clearly the delay time of the frequency response to the temperature change. Even 

though the current WGM resonator thermometer has bigger mass than PRT, its 

response of frequency to temperature is still very quickly and in about less than 2 

minutes as in Figure 3.13 and this works for both ascending and descending of the 

temperature. Obviously, the main limit of the response time is due to the power of the 

bath. If the bath power is bigger in order to have much faster temperature change the 

PRT will show great superiority over this WGM resonator thermometer. As a result, 

trying to make much smaller WGM resonator thermometer whose size is similar to 

PRT is one of the main developing guides. 
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Figure 3.13 Zoom in of one part of the response comparison from Figure 3.12 
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3.4 Reproducibility  

Four spherical sapphires that have the same nominal specifications were 

explored to investigate the reproducibility of the thermometer. Besides, the 

reassemble for one of the sapphire (sapphire 1’) was tested too.  

The quartic fit functions for WGMRT are given in the format of   

4 3 2
4 3 2 1 0f a T a T a T a T a= ⋅ + ⋅ + ⋅ + ⋅ +                       (3-1) 

Table 3.3 shows the quartic fitting coefficients for five sets of experiments of 

which a0 is the one that should be calibrated for every specific thermometer. Take the 

coefficients for sapphire 1 as the basic one, the calibrated fit residuals for the 

experiments data based on the other four sapphires are shown in Figure 3.14. 

Table 3.3 Quartic fit coefficient for five sets of experiments for all WGMs 

Sapphire a4× e12 a3× e9 a2× e7 a1× e4 a0 

1 -5.23136 2.04984 -6.19969 -8.26958 13.61184451 

2 -1.91924 1.79443 -6.27622 -8.25822 13.61079552 

3 -4.20064 1.93850 -6.19846 -8.26134 13.61133191 

4 -5.66429 2.04151 -6.16573 -8.26646 13.61189817 

1’ -3.88041 1.88829 -6.18800 -8.26330 13.61082860 
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Figure 3.14 Reproducibility of the spherical-sapphire-based WGM resonator thermometer 

As illustrated in Figure 3.14, the reproducibility of the spherical-sapphire-based 

WGM resonator thermometer is about ± 70 mK in the temperature range of -40 °C to 
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85 °C. A reproducibility of better than ± 40 mK can be gotten based on sapphire 4 and 

1’. In fact the residuals are from not only different sapphire samples but also their 

assemble status, like the force put on sapphire and the real distances between antenna 

and sapphire and so on.  

Comparisons between sapphire 1 and 1’ (reassembled sapphire 1) were also 

carried on to study about the reproducibility of the thermometer based on the same 

sapphire limited by underlying assemble conditions of different people each time. 

By fitting the experiment data based on sapphire 1’ with the equation of 

sapphire 1, the spherical-sapphire-based WGM resonator thermometer reproducibility 

is shown in Figure 3.15. It describes a reproducibility of better than ± 40 mK for the 

calibrated thermometer.  
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Figure 3.15 Reproducibility of the spherical-sapphire-based WGM resonator thermometer 

based on the same sapphire 

Compared to Figure 3.14, there aren’t significant differences between the 

thermometers that are based on the same sapphire or not. In other word, the 

reproducibility of the spherical-sapphire-based WGM resonator thermometer is 

mainly limited by the assemble status each time for the sapphires which have the 

same nominal specifications. Moreover, other differences based on the experiments 

based on sapphire 1 and the other four sapphires are the cavity status. Due to the 

pumping cable was broken after the experiments of sapphire 1, the cavity was 

machined and polished and re-soldered. Therefore, there are other factors that may 

bring about reproducibility problem, like the dimension of the cavity and the surface 
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smoothness et al. However, as shown in the analysis results, spherical-sapphire-based 

WGM resonator thermometer is not sensitive to these factors like cylindrical sapphire 

WGM resonator thermometer.  

3.5 Uncertainty Budget 

The uncertainty budget of the spherical-sapphire-based WGMRT was calculated 

based on the former experiments and documents at hand. There are two uncertainty 

source components like the cylindrical one in Chapter 2, one is from the measurement 

sensor and the other one is from the calibration components. The analysis results are 

given in Table 3.4.  

Table 3.4 Uncertainty budget of the spherical-sapphire-based WGMRT 

Uncertainty source Estimate Unit 
Unc. 
 type Distribution Divisor 

Std.  
Unc. Unit 

                
Sensor components               
Network analyzer resolution 0.05 mK B Rectangular 3.46 0.0 mK 
Lorentzian fit of f_peak 0.03 mK B Rectangular 3.46 0.0 mK 
Repeatability of f_peak 0.5 mK A Normal 1.96 0.3 mK 
Fitting curve residuals  3.5 mK B Rectangular 3.46 1.0 mK 
            1.0 mK 
Calibration components               

Bath stability 5 mK A Normal 1.96 2.6 mK 
Temperature gradient 7 mK B Rectangular 3.46 2.0 mK 
Bridge calibration 4 mK B Normal 1.96 2.0 mK 
PRT calibration 5 mK B Normal 1.96 2.6 mK 
            4.6 mK 
                
Combined standard 
deviation           4.7 mK 
Expanded uncertainty 
(95%)           9.3 mK 

As seen in Table 3.4, the sensors render a standard uncertainty of 1.0 mk while 

the calibration components give a standard uncertainty of 4.6 mk. Combining these 

two components, the expanded uncertainty (95%) for the each measurement can be 

less than 10 mK. 
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3.6 Conclusion 

This chapter introduces the details of the novel spherical-sapphire-based WGM 

resonator thermometer made in INRIM.  

Before starting the experiments, calculations were firstly done to check the 

feasibility of the design and locate the WGMs. Three WGMs exist in the range of 3 

GHz to 20 GHz which lies near to 13.5362 GHz, 16.3446 GHz and 19.0684 GHz with 

very high Q. 

Thermal cycle experiments from -40 °C to 85 °C were performed with Q of 

more than 100000. Cubic fit and quartic fit were both carried out and an accuracy of ± 

4 mK was obtained by quartic fit with standard deviation smaller than 1.7 mK for 

sapphire 1 based thermometer. Combing the other four sapphires, the spherical-

sapphire-based WGM resonator thermometer can have an accuracy of better than ± 20 

after appropriate fit. 

Hysterisis error was also discovered in the thermal cycle with a maximum value 

of 25 mK at 5 °C for sapphire 1’-based thermometer.  

The fractional frequency temperature sensitivity ((Δf0/ΔT)/f0) for WGM1 

increases from -56 ppm/K at -40 °C to -67 ppm/K at 85 °C  based on the thermal 

cycle experiments in this temperature range. 

Ice melting point repeatability and stability were both implemented. The ice 

melting point repeatability in three days is better than ± 0.5 mK for sapphire 1 and of 

± 3 mK based on sapphire 4.  

The stability of the spherical-sapphire-based WGM resonator thermometer 

based on sapphire 1 is 0.5 mK which is much better than the PRT whose stability in 

the same time range is about 7 mK. 

Frequency response to the temperature change was also checked. A temperature 

step from 15 °C to 25 °C was conducted to compare with PRT and it turns out that the 

spherical-sapphire-based WGM resonator thermometer can response very fast even 

though it has big mass. 

The reproducibility of the spherical-sapphire-based WGM resonator 

thermometer is about ± 60 mK in the temperature range of -40 °C to 85 °C based on 
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different sapphires while a reproducibility of better than ± 40 mK for the same 

sapphire with reassemble. The reproducibility of the spherical-sapphire-based WGM 

resonator thermometer is mainly limited by the assemble status each time for the 

sapphires which have the same nominal specifications. Experiments also show that it 

is not sensitive to the cavity surface and size.  

Uncertainty budget analysis results show that the measurement uncertainty 

mainly comes from the calibration components used for the experiments measurement. 

The combined uncertainty (95%) can be less than 10 mK. 

In conclusion, the spherical-sapphire-based WGM resonator thermometer is 

accessible for the industrial thermometer based on the previous experiment results. 

However, for extensive application a much compact WGM resonator thermometer 

capsule whose size is similar to PRT is one of the main developing directions. 
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Chapter 4 Sapphire rod resonator 

thermometer experiments 

4.1 Introduction 

After the researches on sapphire ring resonator thermometer, sapphire rod was 

tested too to make the thermometer more and more compact. Because the diameter of 

the sapphire rod is small the WGM can be too high to be detected by network 

analyzer. Resonant modes were calculated by Mehl of which the modes that have 

most of the energy concentrated on the sapphire were studied. In the experiments two 

kinds of sapphire rods were studied, one is the 0° orientation ( / /zε ε= ) and the other 

one is 90° orientation ( / /xε ε= ). Some of the resonant modes for 0° orientation 

sapphire are double degenerate while for 90° orientation sapphire the degeneracy is 

highly lifted. An innovative thermometer was developed by using the birefringence of 

the sapphire.  The ratios of these frequency pairs are sensitive to the temperature-

dependent birefringence of the crystal and relatively insensitive to surface 

contamination and changes in the shape of the cavity. All the researches referred in 

this chapter are done at Fluid Metrology group in National Institute of Standards and 

Technology (NIST). 

4.2 Sapphire rod supported by washers 

For a better knowing of the theory of the resonator works, the preliminary 

experiments begin with a resonator which is simplified by using screws or washers 

that are not robust enough to support the sapphire rod and moreover the resonator may 

not be closed well. Even though it can't be a real thermometer, for the theory study it 

can be enough.  

By simply supporting the sapphire rod inside of the cavity, a piece of washer is 

employed to clamp the sapphire rod in the center of the cavity. Three screw holes 

around the central equator of the cavity were drilled to hold the washer in place, see 
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Figure 4.1. The cavity is 42 mm in length and 18 mm in diameter (ID) while the 

sapphire is 30 mm long and 6 mm in diameter.  The thickness of the Teflon washer is 

about 6 mm. 

 

Figure 4.1 (a) Closed sapphire rod resonator, (b) open cavity with sapphire rod hold by 
washer and (c) flush probes soldered to the cap 

4.2.1  Room ambient experiments 
In order to match the calculation done by Mehl and my experiments results, 

experiments start from the empty cavity and then putting more and more perturbation 

inside and the last step is to put the sapphire inside.  

4.2.1.1 Experiments of empty cavity 

Experiments were done per the empty cavity with three steel screws around the 

central equator. Straight probes and loops were both tested. Table 4.1 gives the results 

based on straight probes and only TM modes can be coupled. While Table 4.2 shows 

both TM and TE modes can be coupled with loop probes. However, the 

reproducibility of the loop probes are not as good as straight probes, bigger 

perturbation of the loops, straight probes are the best coupling devices. 
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Table 4.1 Experimental data of empty cavity with straight probes 

fexp/GHz Qexp Mode No. fcal/GHz Qcal Δf/f Qexp/Qcal Mode type 

12.702600 3265 5 12.737944 12678 -0.28% 0.258 TM 

13.179500 1813 6 13.230133 10988 -0.38% 0.165 TM 

14.548800 1447 9 14.607539 11530 -0.40% 0.126 TM 

 

Table 4.2 Experimental data of empty cavity with loop probes 

fexp/GHz Qexp Mode No. fcal/GHz Qcal Δf / f Qmeas / Qcalc Mode type 

10.374423 4396 1 10.387051 10340 -0.12% 0.425 TE 

10.375647 1828 2 10.387054 10338 -0.11% 0.177 TE 

12.079365 2308 3 12.092796 12367 -0.11% 0.187 TE 

12.083284 3982 4 12.092798 12366 -0.08% 0.322 TE 

12.783000 1022 5 12.737944 12678 0.35% 0.081 TM 

13.366000 887 6 13.230133 10988 1.03% 0.081 TM 

14.458007 1682 7 14.496379 14905 -0.26% 0.113 TE 

14.486681 3934 8 14.496392 14905 -0.07% 0.264 TE 

14.656000 729 9 14.607539 11530 0.33% 0.063 TM 

As seen in these two tables the experimental Qs are too low compared to the 

calculation. Then the inside surfaces of the cavity and the cap surfaces are all polished 

to increase the conductivity of the conducting surfaces. Figure 4.2 shows significant 

improvements both in frequency and Q factor. 

As shown in Figure 4.2, after polishing the Qs are improved a lot from only less 

than 30% of the calculated values to around 70% and the frequency differences 

between the experiment and calculation are decreased to around only half of the 

values before polishing, in other word, after polishing the frequency differences 

between the experiment and calculation for empty cavity is within 0.21% and the Qs 

are around 70% of the calculated values. The corresponding experimental data are 

enclosed in Appendix in Table A 13 and Table A 14. 
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Figure 4.2 Comparisons of empty cavity before and after polishing for Q and f  

4.2.1.2 Experiments of cavity with Teflon 
After experiments on empty cavity match with the calculated values in certain 

accuracy, researches go to next step by putting a piece of washer inside of the empty 

cavity. Two kinds of washers were machined, one is nylon and the other one is Teflon. 

During the experiments, nylon has great perturbation to the microwave; most of the 

modes were absorbed by the nylon washer but not by Teflon.  

Experiments were done per empty cavity with Teflon washer inside, good 

matches were also gotten, see Table 4.3. The frequency difference is within 0.7% and 

the Q is around 50% of the calculated values. Surely, the Q ratio between the 

experiment and calculation is smaller compared to the empty cavity; this is due to the 

losses come from both copper cavity and Teflon washer.  
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Table 4.3 Comparisons between experiment and calculation for cavity with Teflon 

fexp/GHz Qexp Mode No. fcal/GHz Qcal Δf / f Qmeas / Qcalc 
12.113800 7410 5 12.112070 13090 0.01% 0.57 
13.082640 7869 6 13.081658 11397 0.01% 0.69 
13.965050 6303 11 13.962855 10431 0.02% 0.60 
15.979550 7246 12 15.880240 11941 0.63% 0.61 
18.084100 6107 21 17.960034 16456 0.69% 0.37 
18.361000 6856 22 18.237511 12723 0.68% 0.54 

4.2.1.3 Experiments of cavity with Teflon and sapphire 
The last step is to put the sapphire rod inside the cavity.  Two orientations of 

sapphires were at hand: 0° orientation sapphire ( / /,x y zε ε ε ε ε⊥= = = ) and 90° 

orientation sapphire ( / /,y z xε ε ε ε ε⊥= = = ). Plenty of experiments have been done on 

0° orientation sapphire, so the main attention was paid to 90° orientation sapphire in 

this part.  

In accordance to theory, for 90° orientation sapphire some doublet modes should 

exist. Accordingly, for coupling more modes, it is better that the antennas are 45° to c-

axis of the sapphire. 

Before starting the comparisons between theory and calculation, it is better to 

know well all possible significant perturbations, like the screws for supporting the 

washers, the holes for the screws around the cavity, the washer and so on; so series of 

experiments for these were done first of all. Moreover, the relations between the 

frequencies and axial displacement are also very interesting and significative to the 

resonator.     

4.2.1.3.1  Screws and comparisons 

Of course, the screws that may matter are not the screws that are used to close 

the cavity but the screws around the central equators of the cavity to support the 

Teflon washer and sapphire in the center of the cavity. Firstly, different materials of 

screws in hand were compared, steel, nylon, aluminium and brass. The frequencies 

and Q were both compared in Figure 4.3. The corresponding data are enclosed in 

Appendix in Table A 15~Table A 18. 
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Figure 4.3 Frequencies and Qs comparisons between different materials of screws 

Based on Figure 4.3 there is no significant differences between different screws, 

aluminium can be the best choice of all to render higher Q nonetheless. Afterwards, if 

there is no specific explanation all three screws used around the cavity are made of 

aluminium.  

4.2.1.3.2  Comparisons between with and without and different 
orientation holes around the cavity 

As seen in Figure 4.1 there are three screws holes around the cavity to support 

the Teflon washer which may or may not bring significant to resonant modes. Another 

new cavity which has the same dimensions as the old one was made but without holes 

around. This cavity is made only for comparison with the old one to explore the 
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affects of the existence and the orientation of the holes. Of course, no holes around the 

cavity mean that the washer can't be fixed but since the washer surface is not that 

smooth and it was made just fit the cavity snugly, for experiments phase it is 

acceptable. 

Figure 4.4 presents the Qs and frequencies comparisons for the resonant modes 

that are both observed in two resonators between the cavity with and without holes 

around. For most modes the Qs are a little higher and frequencies differences are a bit 

smaller when there are no holes but obviously it is not significant at all. The 

experiments data for this figure will be given in Appendix in Table A 19 and Table A 

20. 
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Figure 4.4 Frequencies and Qs comparisons between resonators with and without holes 
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Then by drilling the cavity with three holes that one of them are aligned with 

two antennas. In this way these three holes are turned about 30° to the former cavity. 

Qs and frequencies for the modes observed in both conditions were also compared, 

see Figure 4.5. No significant differences between different orientations can be seen. 

Table A 21 and Table A 22 present the experimental data. 
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Figure 4.5 Frequencies and Qs comparisons between resonators with different orientations of 
holes 

4.2.1.3.3 Comparisons between Teflon with and without holes 

The Teflon washer is another concern of the perturbation. Whether or not the 

amounts of the Teflon matter significantly needs to be discovered. Three holes were 

drilled randomly on the washer through the upper surface to the bottom of the ring. 
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The comparisons for Qs and frequencies are as follows, see Figure 4. 6 and the 

corresponding experimental data are presented in Table A 23 and Table A 24. 
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Figure 4.6 Frequencies and Qs comparisons between resonators with Teflon with and without 

holes 

As seen in Figure 4.6, the Teflon without holes has insignificantly smaller 

frequencies differences compared to calculations for most of the modes which is 

normal because the calculated values are given based on the Teflon without holes, 

while the Qs are almost the same for both conditions. Therefore, the amounts of 

Teflon washers under the same thickness are insignificant too. 
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4.2.1.3.4  Relations between resonant frequencies and axial 
displacement 

All the former experiments in this Chapter were done by putting the sapphire in 

the center, however, the displacement of the sapphire to the antennas not only change 

the coupling strength but also the resonant frequencies. Some tests were done to find 

out their relations. 

For the sake of finding more modes to analyze sapphire was pushed closer and 

closer to the antennas from 5.9055 mm, then to 5.3975 mm, 4.2418 mm, 3.5433 mm, 

2.7178 mm, and 1.9812 mm at last. The experimental results at each position are 

enclosed respectively in Appendix from Table A 25 to Table A 30.  The relations 

between frequencies and axial displacement were analyzed for each mode 

respectively and it turns out that frequencies are as quadratic function of axial 

displacement. Take mode 6 and mode 7 as examples; see Figure 4.7, where the 

displacement 0 means it was in the center. 
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Figure 4.7 Linear fit for frequencies and square of axial displacements 

4.2.1.3.5  Comparisons between experiments and calculations for 
sapphire rod resonator 

After all the possible perturbations were considered and on account of that they 

are all insignificant, experiments based on 90° orientation sapphire supported in the 

center of the cavity by a whole piece of Teflon washer ring which is fixed by 
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aluminum screws were implemented by putting the c-axis of the sapphire 45° to the 

antennas. Comparisons between experiments and calculations were given in Table 

4.4. 

Table 4.4 Mode match between experiments and calculations 

fexp /GHz Qexp mode No. fcal /GHz Qcal Δf / f Qmeas / Qcalc 

6.908522 13565 1 6.854953 22634 0.78% 0.60 

8.691660 9693 4 8.556413 24242 1.58% 0.40 

9.481220 13481 5 9.435375 21525 0.49% 0.63 

9.606620 12980 6 9.562123 20683 0.47% 0.63 

10.340380 18574 7 10.298477 30082 0.41% 0.62 

10.535680 18247 8 10.491155 28893 0.42% 0.63 

11.184080 29057 9 11.121059 64821 0.57% 0.45 

11.572500 9973 11 11.400001 20777 1.51% 0.48 

12.290370 16307 15 12.219093 40827 0.58% 0.40 

12.318000 15463 16 12.240126 45611 0.64% 0.34 

12.378740 38658 17 12.286837 78051 0.75% 0.50 

13.395650 8126 24 13.444917 62793 -0.37% 0.13 

13.582700 17784 25 13.594677 30937 -0.09% 0.57 

13.683060 13242 27 13.718765 44434 -0.26% 0.30 

14.533620 39588 28 14.357122 163049 1.23% 0.24 

14.755930 50198 29 14.553659 319388 1.39% 0.16 

15.259100 7749 31 15.187942 16316 0.47% 0.47 

15.661990 40841 32 15.438337 272301 1.45% 0.15 

15.829640 47790 33 15.592459 251709 1.52% 0.19 

As in Table 4.4, the experimental frequencies match with calculation within 2% 

while the experimental Qs are too low compared to the calculation which is 

acceptable because the calculated values are given without taking into account any 

losses from cavity, Teflon washer, sapphire and so on.  

Besides, the highlighted two modes, mode 29 and 32, are a pair of doublets 

according to the calculation which will be paid lots of attentions because of the 

birefringence of the 90° sapphire. In the calculation, mode 29 and 32 have around 

90% of the electric energy concentrated on the sapphire rod and only less than 2% of 

the electric energy are on Teflon washer which makes it available for a sapphire 
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resonator thermometer. Figure 4.8 shows the waveform distribution of electric energy 

density. The x-axis stands for the coordinate of the sapphire rod in z direction (unit: 

m) while y-axis means the electric energy density on the following position of the 

sapphire. It is very clear that there is no electric energy density in axial center of the 

sapphire thereby Teflon washer has less perturbation to this pair of modes. 

 

Figure 4.8 Waveform distribution of electric energy density 

Figure 4.9 and Figure 4.10 give pictures of electric energy density distribution 

on sapphire body and upper surface separately. The modes types are the same for both 

modes and only the phase differs by 90°. The red color in Figure 4.9 means maximum 

electric energy density while blue color is for zero electric energy density which is 

different in Figure 4.10 that both blue and red mean electric energy peak but they are 

reversed in phase and green stands for zero nonetheless. Moreover, Figure 4.10 gives 

good explanation why putting the c-axis of the sapphire 45° to the antennas could 

couple with more modes. 
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Figure 4.9 Waveform distribution of electric energy density for doublets 

    

Figure 4.10 Waveform distribution of electric energy density for doublets 

4.2.2 Dimension optimization 
Based on the sapphire rod in hand dimension optimization for the cavity is 

implemented by Mehl. Firstly, the shield cylinder dimensions were varied so that the 

radial and end gaps were approximately equal. That is, using nominal dimensions of 

the sapphire (3 mm radius, 30 mm length), the shield cylinder dimensions were 
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chosen so tha cyl s cyl sR   R   g;  L   L   2g;  g  gap= + = + = : (1) The corresponding 

pairs (Rcyl;Lcyl) are (4, 32), (4.5, 33), … (9, 42). Tefon supports at the center were 6.53 

mm thick and filled the radial region between the sapphire and shield. The modes are 

identified as “A” and “B”, corresponding to modes 29 and 32 of the experimental 

resonator.  

The relations between Q and cavity radius from 4 mm to 11 mm are given in 

Figure 4.11 where “NO-T” means no Teflon and “T” means with Teflon washer. The 

Teflon will decrease the Q certainly but the dependencies for both with and without 

Teflon are the same. The Q will not increase infinitely when the cavity becomes 

bigger but decreases after certain dimension. For the current calculations, when the 

radius of the cavity is within the range of 8 mm to 10 mm the Q is high.  

/
 

Figure 4.11 Q vs Rcyl for uniform-gap models with and without Teflon supports 

The coupling strength is also an important factor to consider about because it is 

linked with whether or not this mode can be observed especially when the temperature 

goes higher. According to Figure 4.12 if both modes are to be studied it is better the 

radius of the cavity is no less than 8 mm.  
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/  

Figure 4.12 Probe coupling strength vs Rcyl for uniform-gap models with and without Teflon 
supports 

As a good thermometer these two modes should have as much as possible 

energy on the sapphire. Figure 4.13 shows the calculation for fraction of energy in 

sapphire with different dimensions of the radius of the cavity. When the radius is in 

the range of 7 mm to 9 mm it has more than 88% of the electric energy on the 

sapphire. 

/

/

 

Figure 4.13 Fraction of electric energy in sapphire, RE,s vs Rcyl for uniform-gap models with 
and without Teflon supports 
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The frequencies also change with the radius as illustrated in Figure 4.14, it goes 

to lower frequencies when the radius becomes bigger.  

/

/

 

Figure 4.14 Eigenfrequencies vs Rcyl for uniform-gap models with and without Teflon 
supports 

Summing up the forgoing four figures, resonators with the radius from 8 mm to 

9 mm should render high Q, high electric energy percentage on dielectrics and high 

coupling strength based on the current 90° orientation sapphire rod which is 3 mm in 

radius and 30 mm in length with flush antennas. Since the cavity that has been using 

at the beginning of the chapter are 9 mm which conforms to the best dimension from 

the calculation by chance a serial of calculations for different lengths based on 9 mm 

radius were done too.  

From Figure 4.15 when the length of the cavity is within the range of 42 mm to 

44 mm it can gain higher Q and the Q is much more sensitive to the radial dimension 

than to the axial dimensions of the cavity compared to Figure 4.11. Figure 4.16 

presents that the coupling becomes weaker and weaker when the cavity becomes 

longer and longer therefore with flush antenna the length of the cavity should be the 

shorter the better within the calculation range of 40 mm to 50 mm. As seen in Figure 

4.17 the eigenfrequencies become smaller with the length of the cavity becomes 

longer too. By comparing Figure 4.14 and Figure 4.17 it is easy to observe that these 

two modes are more sensitive to the radial change than the axial change.  
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/             

Figure 4.15 Q vs Rcyl for 9 mm-radius models with and without Teflon supports 

/  

Figure 4.16 Probe coupling strength vs Rcyl for 9 mm-radius models with and without Teflon 
supports 
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/

/

 

Figure 4.17 Eigenfrequencies vs Rcyl for 9 mm-radius models with and without Teflon 
supports 

Now it is clear that when the length of the cavity is within 42 mm to 44 mm with 

9 mm radius the resonator can offer high Q, high electric energy percentage on 

dielectrics and high coupling strength based on the current 90° orientation sapphire 

rod which is 3 mm in radius and 30 mm in length with flush antennas. The cavity in 

hand now is 9 mm in radius and 42 mm in length nominally which perfectly matches 

with the calculation results for dimension optimization.  

4.2.3  Preliminary temperature experiments with 
air bath  

After the dimension optimization some preliminary tests based on present 

sapphire rod resonator can be done and the former calculations for resonant modes 

and doublets are still available. Mode 29 and 32 are a pair of doublets which can be 

employed for exploring use of the birefringence of sapphire crystals as a thermometer. 

Before making a whole piece of sapphire supported inside the cavity but without any 

other perturbations like Teflon washer to limit its temperature range, a rough 

estimation of the thermometer based on the current resonator was implemented in an 

air bath with very low accuracy. In the experiments an ISOTECH HYPERION 

portable bath was used as an air bath and an Agilent N5230A network analyser works 

for logging data with Labview programme. No other calibrated PRT was employed 

considering that the aim of the experiments was only to investigate the possibility of 
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using the birefringence of the sapphire to make the thermometer and the underlying 

advantages and disadvantages. Figure 4.18 gives the system for roughly temperature 

measurements. 

 

Figure 4.18 The system of the air bath temperature measurement for sapphire rod resonator 

Comparisons for sapphire rod resonator thermometer between doublets 

frequency ratios and single frequencies are carried out. It is also obvious from Figure 

4.19 that the ratios of the frequency pairs are sensitive to the temperature which 

makes it possible to make the sapphire resonator thermometer have an external shape 

that is close to the conventional platinum resistance thermometer and relatively 

insensitive to surface contamination and changes in the shape of the cavity. However, 

it has its disadvantage too. The frequency sensitivity (Δf/ΔT)/f of the frequency ratio 

(about 10 ppm/K) are much smaller than the frequency sensitivity of single frequency 

(about 50 ppm/K). The accuracies by using the frequency ratio are lower than using 

only single mode and the reason for this is uncertain but it may relate to that 

birefringence thermometer is more sensitive to some perturbations. More details will 

be given based on the real thermometer. 

The accuracies for this thermometer are very low which is normal because of 

few reasons. One of the reasons is the Teflon washer has great losses and it will 

decrease the accuracy a lot. Secondly, no other thermometer is employed and the 

temperatures read out from the bath are the nominal values but not real temperatures. 

Moreover, the resonator is not closed well so the humidity will also affect the 
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accuracy of the thermometer. However, before starting to design a new available 

thermometer experiments based on these are reasonable.  
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Figure 4.19 Rough temperature residuals comparisons between frequencies ratio and single 
mode of linear fit 

4.3 Design of a real sapphire birefringence 

thermometer 

Getting rid of the great perturbations of the Teflon washer, supporting screws et 

al. a new thermometer which based on the former experiments were designed.  

One new whole piece of sapphire crystal that has similar shape as the Teflon 

washer supported old sapphire rod was designed, see Figure 4.20. The sapphire is 

composed of a rod with 3 mm in radius and 30 mm in length and a 3 mm thick 

sapphire ring with outer diameter of 9 mm. The c-axis of all the sapphire is still 

perpendicular to the geometric axis-z axis. The up and bottom surfaces of the ring part 

of the sapphire are chamfered for installation easy and tight.  
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Figure 4.20 Picture for the new sapphire 

The corresponding design for the cavity is also given in Figure 4.21, the cavity 

is made of stainless steel with gold plated. The gold plated feedthrough SMA 

connectors which can work within -80 °C to 450 °C are welded to the cavity. The 

schematic drawing for SMA connector are enclosed in Figure B 4. The hole around 

the feedthrough is for calibrated PRT to know the “real” temperature of the cavity 

block. A vacuum line on the body of the cavity is also needed. The schematic drawing 

for the full cavity are given in Figure B 5~Figure B 9. 

 

Figure 4.21  (a) closed cavity (b) upper part of the cavity (c) lower part of the cavity (d) gold 
plated Bellville washer 

A gold plated Bellville washer is placed between the upper and lower part of the 

cavity to press the sapphire sit tightly on the slope of the upper body whose angle is 
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the same as the angle of the chamfered sapphire ring in order to fix and center the 

sapphire in the cavity. The dimension drawing for the washer is shown in Figure B 10.  

The calculations were done based on the drawing of Figure 4.22 by ignoring the 

Bellville washer. All the calculation results are enclosed in Table A 31 of which two 

pairs of doublets are very attracting. One pair of them is near to 13.91 GHz and 14.69 

GHz and another pairs are located around 14.82 GHz and 15.73 GHz. Table 4.5 

presents these two pairs of doublets which have more than 88% of the electric energy 

concentrated on the sapphire rod but less than 10% of the electric energy density on 

the disk which only functions as support. The electric energy densities for these two 

pairs are given in Figure 4.23. 

 

Figure 4.22 Drawings of the birefringence thermometer (no washer is drawn) for calculation 

Table 4.5 Calculation results of energy proportion of two pairs of doublets 

 

 

 

f/GHz Q RE.s RH,s RE.sdisk RH,sdisk 

13.914718 96704 89.07% 81.72% 8.83% 4.01% 

14.693535 103847 90.37% 82.17% 9.75% 4.31% 

14.821167 183307 92.10% 86.31% 4.35% 8.85% 

15.725590 73268 88.39% 83.22% 5.03% 10.46% 
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Figure 4.23 Electric energy density for the two doublets (a) and (b) are a pair that are around 
13.91 GHz and 14.69 GHz and (c) and (d) are another pair that are close to 14.82 GHz and 

15.73 GHz 

Figure 4.24 presents the electric energy density on the top surface to indicate the 

coupling strength. The mode around 13.91 GHz is weaker than the other three modes 

by an order of magnitude.  
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Figure 4.24 Normal electric field Ez on the top surface for the two doublets 

However, underlying problems may exist. The nearest neighbours of these 

doublets are so close to them that they may couple to the doublets. The 13.89 GHz 

mode is 0.16% below 13.91 GHz, the 14.47 GHz mode is 0.21% below 14.69 GHz, 

the 14.87 GHz mode is 0.37% above the 14.82 GHz mode and the 15.77 GHz mode is 

0.33% above the 15.72 GHz mode. What is worse is that these neighbours have high 

electric energy concentration on the sapphire disk, see Table 4.6, some of them even 

have stronger coupling to the antenna than the doublets. 
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Table 4.6 Calculation results of energy proportion and coupling strength of two pairs of 
doublets and their neighbours 

 

 

 

 

 

 

 

4.4 Conclusions 

This chapter introduces my work done at NIST on birefringence resonator 

thermometer which has the possibility to make it shaped like a PRT. Lots of work was 

done for the preparation of the thermometer. 

Different perturbations in the experiments were considered respectively, 

materials of supporting screws, amounts of the Teflon washer under the same 

thickness; whether or not there are holes around the cavity central equator et al. and 

they are all proved to be insignificant.  

The resonant frequencies are sensitive to the axial displacement and from the 

experiments it can be concluded that the frequencies are quadratic function of axial 

displacement. 

Calculations by Mehl [130] can match very well with experiments with the 

frequencies differences of less than 2% for observed modes of which one pair of 

doublets modes near 14.7 GHz and 15.6 GHz are most concerned. They have most of 

the energy concentrated on the sapphire and most importantly, they are doublets 

because of the birefringence.  

Dimension optimization was implemented for the current sapphire rod in hand. 

According to the calculation by Mehl[130], the Q of the resonator has a peak at 

f/GHz Q RE.s RH,s RE.sdisk RH,sdisk z,1
2 1/2

E
 

E< >
 

13.892002 16533 88.30% 59.95% 54.97% 28.19% -0.0156 

13.914718 96704 89.07% 81.72% 8.83% 4.01% -0.0042 

14.447995 27709 95.57% 69.08% 34.01% 18.34% -0.0014 

14.693535 103847 90.37% 82.17% 9.75% 4.31% -0.0159 

14.821167 183307 92.10% 86.31% 4.35% 8.85% -0.0148 

14.875606 10243 93.92% 58.45% 72.30% 38.96% -0.0009 

15.725590 73268 88.39% 83.22% 5.03% 10.46% 0.0315 

15.777647 8824 74.20% 58.15% 65.07% 46.38% 0.0667 
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certain dimension of the cavity and then becomes smaller by increasing or decreasing 

the cavity. Eigenfrequency lowers with the increase of the cavity dimension and it is 

more sensitive to the radial change than the axial change. It turns out that for 90° 

orientation sapphire rod that is 6 mm in diameter and 30 mm in length the best 

dimensions for the cavity are 8 mm~9 mm in radius and 42 mm~44 mm in length. 

Some preliminary experiments based on a cavity that is 9 mm in radius and 42 

mm in length were implemented in air bath with low accuracy. It proves the 

possibility to make the birefringence thermometer shaped like a conventional PRT but 

with lower frequency sensitivity and accuracy compared to the single mode sapphire 

rod resonator thermometer. Besides, the birefringence thermometer should be 

relatively insensitive to the surface contamination and changes in the shape. 

A new piece of sapphire which has rod diameter of 6 mm and 30 mm in length 

with ring diameter of 18 mm and 3 mm in thickness and the corresponding new cavity 

were designed. Calculations for the new birefringence thermometer were also done by 

Mehl [130] and possible difficulty may face in the experiments were predicted too. 

Work in this chapter is very meaningful for the great possibility to make the 

sapphire WGM resonator thermometer shaped like a conventional platinum resistance 

thermometer.  
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Appendix A  

Table A 1 Thermal cycle experiment results of the cylindrical sapphire WGMRT based on 
sapphire 1 

Tnom 
/ °C 

Treal 
/°C 

Std 
Dev 

 

WGM31 
/GHz Q31 

WGM41 
/GHz Q41 

WGM51 
/GHz Q51 

-40 -39.884 0.001 12.457791 99809 15.246195 141783 18.004292 168837 
-30 -29.889 0.001 12.450424 94812 15.236962 129102 17.993218 152236 
-20 -19.901 0.001 12.442907 90385 15.227544 116813 17.981923 138364 
-10 -9.904 0.001 12.435246 86022 15.217942 107125 17.970413 125284 
0 0.0012 0.001 12.427525 78508 15.208271 100869 17.958826 114624 
5 5.089 0.001 12.423524 78841 15.203253 99215 17.952805 109764 

15 15.093 0.001 12.415570 74365 15.193283 94745 17.940854 100409 
25 25.091 0.001 12.407529 68858 15.183198 90798 17.928763 92173 
50 50.097 0.002 12.386968 56773 15.157503 78889 17.897963 77689 
75 75.117 0.001 12.366037 52602 15.131234 68720 17.866480 66826 
85 85.129 0.001 12.357569 47724 15.120585 64868 17.853718 62523 
75 75.112 0.001 12.366030 51844 15.131237 68350 17.866485 66314 
50 50.092 0.001 12.386972 55709 15.157509 78474 17.897972 77959 
25 25.078 0.001 12.407539 65059 15.183210 90257 17.928779 91876 
15 15.094 0.001 12.415569 74630 15.193284 93879 17.940854 100542 
5 5.082 0.001 12.423529 75791 15.203259 99561 17.952816 109508 
0 0.0013 0.001 12.427525 78501 15.208271 100934 17.958825 114622 

-10 -9.904 0.001 12.435245 85817 15.217942 108031 17.970412 125907 
-20 -19.904 0.001 12.442908 90593 15.227545 115691 17.981925 137757 
-30 -29.891 0.001 12.450425 94819 15.236964 128736 17.993219 152470 
-40 -39.885 0.001 12.457791 99357 15.246195 142748 18.004292 168827 
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Table A 2 Thermal cycle experiment results of the cylindrical sapphire WGMRT based on 
sapphire 2 

Tnom 
/°C 

Treal 
/°C 

Std 
Dev 
/°C 

WGM32 
/GHz Q32 

WGM42 
/GHz Q42 

WGM52 
/GHz Q52 

-40 -39.954 0.001 12.460047 97236 15.248160 142889 18.006388 172902 
-30 -29.993 0.000 12.452709 92313 15.238963 130954 17.995356 155766 
-20 -20.041 0.001 12.445220 87382 15.229580 120867 17.984104 141092 
-10 -10.067 0.001 12.437577 83158 15.220002 117653 17.972623 127907 
0 -0.0009 0.001 12.429738 81304 15.210182 117598 17.960848 116980 
5 4.907 0.001 12.425878 82168 15.205340 108738 17.955039 111504 

15 14.867 0.001 12.417955 79293 15.195413 102232 17.943141 102109 
25 24.834 0.001 12.409930 75071 15.185359 95266 17.931090 93728 
50 49.766 0.001 12.389481 65645 15.159747 81062 17.900392 78467 
75 74.695 0.002 12.368592 58090 15.133575 67756 17.869028 66777 
85 84.648 0.005 12.360137 54807 15.122988 63989 17.856345 62830 
75 74.701 0.002 12.368577 57179 15.133568 68687 17.869021 66897 
50 49.776 0.001 12.389464 63506 15.159737 84185 17.900383 78780 
25 24.849 0.001 12.409912 72319 15.185345 100385 17.931078 93988 
15 14.876 0.001 12.417944 76122 15.195406 107600 17.943136 102239 
5 4.905 0.001 12.425875 78789 15.205341 113877 17.955044 111606 
0 -0.0003 0.001 12.429738 81331 15.210181 117704 17.960847 117006 

-10 -10.045 0.001 12.437559 83318 15.219980 117331 17.972598 128092 
-20 -20.025 0.001 12.445207 87864 15.229564 120076 17.984087 141250 
-30 -29.985 0.001 12.452701 92548 15.238955 130696 17.995346 155909 
-40 -39.955 0.001 12.460048 96781 15.248161 143395 18.006390 173025 
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Table A 3 Thermal cycle experiment results of the cylindrical sapphire WGMRT based on 
sapphire 2’ (reassembled sapphire 2) 

Tnom 
/°C 

Treal 
/°C 

Std 
Dev 
/°C 

WGM32’ 
/GHz Q32’ 

WGM42’ 
/GHz Q42’ 

WGM52’ 
/GHz Q52’ 

-30 -29.889 0.001 12.450175 93738 15.238178 78841 / / 
-20 -19.900 0.001 12.442662 87726 15.228766 77852 17.983706 128922 
-10 -9.904 0.001 12.435004 81354 15.219167 75716 17.972201 120210 
0 -0.008 0.001 12.427296 70514 15.209514 74983 17.960625 110808 
5 5.081 0.001 12.423283 70491 15.204486 69348 17.954605 105564 

15 15.085 0.001 12.415323 67906 15.194521 67542 17.942655 79758 
25 25.084 0.001 12.407271 67542 15.184436 64723 17.930564 89528 
50 50.092 0.002 12.386763 61891 15.158745 60385 17.899763 75111 
75 75.115 0.001 12.365797 55066 15.132471 55531 17.868271 64758 
85 85.129 0.001 12.357304 52464 15.121823 53815 17.855509 61042 
75 75.112 0.001 12.365802 55022 15.132475 55833 17.868275 64790 
50 50.086 0.001 12.386772 59502 15.158755 61790 17.899772 75690 
25 25.077 0.001 12.407278 64987 15.184449 69396 17.930572 90605 
15 15.081 0.001 12.415326 65694 15.194531 71529 17.942661 98328 
5 5.081 0.001 12.423284 66554 15.204497 78071 17.954607 107091 
0 -0.0045 0.001 12.427297 70415 15.209514 75036 17.960625 110380 

-10 -9.912 0.001 12.435005 77628 15.219174 77463 17.972211 120865 
-20 -19.907 0.001 12.442661 84354 15.228770 80069 17.983712 130412 
-30 -29.892 0.001 12.450173 90232 15.238180 81361 / / 
-40 -39.883 0.001 12.457534 97123 15.247408 89880 18.006099 165921 
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Table A 4 Ice melting point repeatability experiment results based on sapphire 1 of the 
cylindrical sapphire WGMRT 

Number T 
/°C 

WGM3 
/GHz 

dT3 
/mK 

WGM4 
/GHz 

dT4 
/mK 

WGM5 
/GHz 

dT5 
/mK 

1 0.0012 12.427525 -0.18 15.208271 -0.32 17.958826 -0.37 
2 0.0013 12.427525 -0.01 15.208271 -0.26 17.958825 -0.19 
3 0.0014 12.427525 0.04 15.208271 -0.21 17.958825 -0.13 
4 0.0012 12.427525 0.15 15.208271 -0.10 17.958825 -0.07 
5 0.0013 12.427524 0.17 15.208271 -0.11 17.958825 -0.19 
6 0.0013 12.427525 -0.01 15.208270 0.03 17.958825 0.01 
7 0.0013 12.427525 0.09 15.208270 0.07 17.958825 0.07 
8 0.0013 12.427525 0.08 15.208270 0.00 17.958825 0.08 
9 0.0014 12.427525 0.08 15.208270 0.02 17.958825 -0.05 

10 0.0013 12.427525 0.08 15.208270 0.05 17.958825 0.13 
11 0.0017 12.427525 -0.07 15.208270 0.26 17.958825 0.18 
12 0.0017 12.427525 -0.08 15.208270 0.18 17.958825 0.18 
13 0.0014 12.427525 -0.11 15.208270 0.19 17.958825 0.05 
14 0.0016 12.427525 -0.01 15.208270 0.10 17.958825 0.23 
15 

 
0.0016 12.427525 -0.03 15.208270 0.10 17.958825 0.08 

Std Dev 
/ mK 0.16 

      

 

Table A 5 Ice melting point repeatability experiment results based on sapphire 2 of the 
cylindrical sapphire WGMRT 

No. T 
/°C 

WGM3 
/GHz 

dT3 
/mK 

WGM4 
/GHz 

dT4 
/mK 

WGM5 
/GHz 

dT5 
/mK 

1 -0.0085 12.429743 -4.59 15.210188 -4.37 17.960855 -4.49 
2 -0.0076 12.429742 -3.20 15.210187 -3.09 17.960854 -3.07 
3 -0.0058 12.429741 -1.73 15.210185 -1.96 17.960852 -1.67 
4 -0.0026 12.429740 -0.11 15.210184 -0.92 17.960850 -0.38 
5 -0.0019 12.429739 0.61 15.210183 -0.07 17.960849 0.51 
6 -0.0009 12.429738 1.59 15.210182 0.92 17.960848 1.45 
7 -0.0004 12.429738 2.27 15.210178 5.13 17.960847 2.40 
8 -0.0002 12.429738 2.58 15.210181 2.27 17.960847 2.70 
9 -0.0004 12.429738 2.58 15.210181 2.08 17.960847 2.55 

Std Dev 
/ mK 3.27       
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Table A 6 Thermal cycling experiment results of spherical-sapphire-based WGMRT 
(sapphire 1’) 

Nominal T/ °C Real T/°C Std Dev/°C WGM1’/GHz Q1’ 
85 85.12807 0.00120 13.536962 52685 
75 75.11183 0.00113 13.545950 56295 
50 50.08668 0.00184 13.568108 65639 
25 25.07822 0.00105 13.589755 76298 
15 15.08169 0.00124 13.598243 80872 
5 5.08246 0.00104 13.606628 85279 

-10 -9.90653 0.00116 13.618950 93118 
-20 -19.9014 0.00111 13.627014 98674 
-30 -29.88723 0.00075 13.634921 105359 
-40 -39.87934 0.00073 13.642666 112168 
-30 -29.8846 0.00089 13.634919 105228 
-20 -19.8978 0.00107 13.627011 98547 
-10 -9.9008 0.00116 13.618944 92357 
0 0.09828 0.00158 13.610739 86776 
5 5.08969 0.00132 13.606600 84110 
15 15.09401 0.00100 13.598211 79105 
25 25.09162 0.00108 13.589723 74387 
50 50.09684 0.00227 13.568084 63845 
75 75.11586 0.00115 13.545940 55555 
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Table A 7 Thermal cycling experiment results of spherical-sapphire-based WGMRT 
(sapphire 2) 

Nominal T/ °C Real T/°C Std Dev/°C WGM2/GHz Q2 
85 85.1294 0.00114 13.536945 56559 
75 75.1123 0.00117 13.545933 59149 
50 50.0567 0.00187 13.568082 66492 
25 25.0788 0.00105 13.589720 75859 
15 15.0823 0.00124 13.598205 79580 
5 5.0825 0.00117 13.606582 82971 
0 0.0861 0.00152 13.610725 83044 

-10 -9.9116 0.00110 13.618922 87693 
-20 -19.9060 0.00112 13.626978 93380 
-30 -29.8912 0.00102 13.634875 99183 
-40 -39.8825 0.00114 13.642613 105680 
-30 -29.8873 0.00082 13.634867 99487 
-20 -19.9000 0.00087 13.626959 93382 
-10 -9.9028 0.00130 13.618893 87531 
0 0.09546 0.00138 13.610691 82320 
5 5.0828 0.00116 13.606590 80295 
15 15.0866 0.00098 13.598202 74984 
25 25.0852 0.00100 13.589712 73242 
50 50.0949 0.00303 13.568069 66645 
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Table A 8 Thermal cycling experiment results of spherical-sapphire-based WGMRT 
(sapphire 3) 

Nominal T/ °C Real T/°C Std Dev/°C WGM3/GHz Q3 
75 75.11314 0.00108 13.546465 55343 
50 50.08940 0.00153 13.568619 64065 
25 25.08018 0.00105 13.590256 74508 
15 15.08310 0.00111 13.598740 79498 
5 5.08221 0.00123 13.607121 83867 
0 0.09622 0.00128 13.611255 83733 

-10 -9.90580 0.00125 13.619455 88873 
-20 -19.90281 0.00114 13.627516 93703 
-30 -29.88964 0.00110 13.635418 99270 
-40 -39.88243 0.00096 13.643158 105404 
-30 -29.88695 0.00069 13.635415 99411 
-20 -19.89976 0.00100 13.627510 94190 
-10 -9.90290 0.00152 13.619447 88768 
0 0.09762 0.00172 13.611247 83620 
5 5.08770 0.00123 13.607106 82365 

15 15.09171 0.00102 13.598724 77983 
25 25.08956 0.00100 13.590241 71668 
50 50.09625 0.00269 13.568606 61727 
75 75.11655 0.00116 13.546463 55149 
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Table A 9 Thermal cycling experiment results of spherical-sapphire-based WGMRT 
(sapphire 4) 

 
Nominal T/ °C Real T/°C Std Dev/°C WGM4/GHz Q4 

85 85.1282 0.00130 13.538023 52922 
75 75.1123 0.00112 13.547014 55746 
50 50.08666 0.00218 13.569174 63813 
25 25.07912 0.00103 13.590817 73325 
15 15.08298 0.00103 13.599304 77278 
5 5.08247 0.00124 13.607688 81034 
0 0.08593 0.00216 13.611830 80000 

-10 -9.91189 0.00113 13.620033 84145 
-20 -19.90704 0.00125 13.628095 89009 
-30 -29.89177 0.00052 13.636000 93911 
-40 -39.8837 0.00065 13.643742 99252 
-30 -29.88811 0.00070 13.635995 93767 
-20 -19.89980 0.00079 13.628087 88552 
-10 -9.90322 0.00104 13.620016 83424 
0 0.09620 0.00130 13.611819 79473 
5 5.08272 0.00107 13.607671 79396 
15 15.08642 0.00101 13.599281 67483 
25 25.0843 0.00102 13.590800 72316 
50 50.09304 0.00294 13.569159 62691 
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Table A 10 Fractional frequency temperature sensitivity for spherical-sapphire-based WGM 
resonator thermometer 

Real T/℃ ((Δf/ΔT)/f)/ (ppm/K) 
-39.88386 -56 
-29.88818 -57 
-19.89965 -59 

-9.90244 -60 
0.00154 -61 
5.09074 -61 

15.09538 -62 
25.09465 -63 
50.10045 -65 
75.11768 -66 
85.12865 -67 
75.11186 -66 
50.08646 -65 
25.08480 -63 
15.08684 -62 
5.08554 -61 
0.00190 -61 

-9.91082 -60 
-19.90646 -59 
-29.89110 -57 
-39.88496 -56 
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Table A 11 Ice melting point repeatability experiment data for spherical-sapphire-based 
WGM resonator thermometer in three days (sapphire 1) 

Time 
 

Real T/℃ Std Dev/℃ fexp/GHz Qexp dT/mK 
24/10/2011 11.15 0.00190 0.00098 13.6118452 82073 0.09 
24/10/2011 13.24 0.00148 0.00102 13.6118453 82298 -0.09 
24/10/2011 15.23 0.00134 0.00089 13.6118456 82560 -0.42 
24/10/2011 17.10 0.00141 0.00099 13.6118456 82546 -0.38 
25/10/2011 10.25 0.00154 0.00091 13.6118453 82481 -0.08 
25/10/2011 11.42 0.00145 0.00093 13.6118453 82482 -0.09 
25/10/2011 15.27 0.00151 0.00097 13.6118454 82498 -0.12 
25/10/2011 17.10 0.00146 0.00094 13.6118453 82461 -0.08 
25/10/2011 18.30 0.00142 0.00096 13.6118453 82422 -0.02 
26/10/2011 10.22 0.00151 0.00095 13.6118451 82498 0.14 
26/10/2011 12.30 0.00141 0.00097 13.6118450 82466 0.29 
26/10/2011 14.53 0.00149 0.00095 13.6118451 82449 0.19 
26/10/2011 16.32 0.00155 0.00091 13.6118450 82456 0.29 
26/10/2011 17.53 0.00150 0.00099 13.6118450 82443 0.28 

 

Table A 12 Ice melting point repeatability experiment data for spherical-sapphire-based 
WGM resonator thermometer in three days (sapphire 4) 

Time Real T/℃ Std Dev/℃ fexp/GHz Qexp dT/mK 
18/01/2012 12.32 -0.00524 0.00100 13.611904 80002 -2.64 
18/01/2012 14.18 -0.00345 0.00091 13.611904 80010 -2.35 
18/01/2012 15.50 -0.00299 0.00099 13.611903 79996 -2.04 
18/01/2012 17.22 -0.00333 0.00109 13.611903 80007 -1.95 
18/01/2012 18.18 -0.00379 0.00091 13.611903 80016 -2.05 
19/01/2012 11.42 -0.00106 0.00096 13.611902 79995 -0.15 
19/01/2012 13.37 -0.00177 0.00098 13.611902 80009 0.26 
19/01/2012 15.04 -0.00174 0.00095 13.611902 80023 0.26 
19/01/2012 16.13 -0.00175 0.00089 13.611901 80008 0.31 
19/01/2012 17.33 -0.00170 0.00101 13.611902 80011 0.24 
19/01/2012 18.16 -0.00176 0.00093 13.611902 79995 0.20 
20/01/2012 11.32 0.00083 0.00098 13.611901 79995 0.96 
20/01/2012 13.56 0.00053 0.00094 13.611900 79993 1.62 
20/01/2012 15.19 0.00028 0.00100 13.611900 79988 1.79 
20/01/2012 16.13 0.00005 0.00106 13.611900 80047 1.80 
20/01/2012 17.12 -0.00001 0.00092 13.611900 79952 1.83 
20/01/2012 18.06 -0.00012 0.00090 13.611900 79967 1.92 
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Table A 13 Experiment data of unpolished empty cavity 

fexp-no polishing/GHz Qexp-no polishing Mode fcal/GHz Qcal Δf/f Qexp/Qcal 
12.702600 3265 5 12.737944 12678 -0.28% 0.258 
13.179500 1813 6 13.230133 10988 -0.38% 0.165 
14.548800 1447 9 14.607539 11530 -0.40% 0.126 
16.538350 397 10 16.568093 10135 -0.18% 0.039 
16.587196 1260 11 16.568317 10140 0.11% 0.124 

  

Table A 14 Experiment data of polished empty cavity 

fexp-polished/GH Qexp- polished Mode fcal/GHz Qcal Δf/f Qexp/Qcal 
12.714360 8856 5 12.737944 12678 -0.19% 0.699 
13.203740 8128 6 13.230133 10988 -0.20% 0.740 
14.584530 6420 9 14.607539 11530 -0.16% 0.557 
16.633415 8831 12 16.568093 10135 -0.11% 0.719 
19.139600 8253 17 16.568317 10140 -0.06% 0.629 

 
Table A 15 Comparisons of calculation with experiments of cavity with steel screws 

new cavity-flush-90 sapphire-45 plane-steel 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.908515 9777 1 6.854953 22634 0.78% 0.432 
8.689940 9351 4 8.556413 24242 1.56% 0.386 
9.480650 13097 5 9.435375 21525 0.48% 0.608 
9.606250 12409 6 9.562123 20683 0.46% 0.600 
10.339615 17573 7 10.298477 30082 0.40% 0.584 
10.535300 16455 8 10.491155 28893 0.42% 0.570 
11.183830 28501 9 11.121059 64821 0.56% 0.440 
11.572705 8577 11 11.400001 20777 1.51% 0.413 
12.290940 12974 15 12.219093 40827 0.59% 0.318 
12.318210 12102 16 12.240126 45611 0.64% 0.265 
12.378790 35936 17 12.286837 78051 0.75% 0.460 
13.394430 7949 22 13.263249 16412 0.99% 0.484 
13.580810 14779 24 13.444917 62793 1.01% 0.235 
13.682060 12659 25 13.594677 30937 0.64% 0.409 
14.533460 38612 28 14.357122 163049 1.23% 0.237 
14.755750 48977 29 14.553659 319388 1.39% 0.153 
15.258700 7361 31 15.187942 16316 0.47% 0.451 
15.661940 39249 32 15.438337 272301 1.45% 0.144 
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Table A 16 Comparisons of calculation with experiments of cavity with nylon screws 

new cavity-flush-90 sapphire-45 plane-nylon 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.905210 14176 1 6.854953 22634 0.73% 0.626 
8.692760 9038 4 8.556413 24242 1.59% 0.373 
9.480720 13464 5 9.435375 21525 0.48% 0.626 
9.606160 12971 6 9.562123 20683 0.46% 0.627 
10.340020 18221 7 10.298477 30082 0.40% 0.606 
10.535120 16830 8 10.491155 28893 0.42% 0.583 
11.183840 28636 9 11.121059 64821 0.56% 0.442 
11.567660 10132 11 11.400001 20777 1.47% 0.488 
12.283940 16622 15 12.219093 40827 0.53% 0.407 
12.311530 15490 16 12.240126 45611 0.58% 0.340 
12.378480 39027 17 12.286837 78051 0.75% 0.500 
13.396200 7919 22 13.263249 16412 1.00% 0.483 
13.583850 16307 24 13.444917 62793 1.03% 0.260 
13.682630 12237 25 13.594677 30937 0.65% 0.396 
14.533520 39338 28 14.357122 163049 1.23% 0.241 
14.755870 50299 29 14.553659 319388 1.39% 0.157 
15.256200 7776 31 15.187942 16316 0.45% 0.477 
15.661760 39620 32 15.438337 272301 1.45% 0.146 
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Table A 17 Comparisons of calculation with experiments of cavity with aluminum screws 

new cavity-flush-90 sapphire-45 plane-aluminum 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.908522 13565 1 6.854953 22634 0.78% 0.599 
8.691660 9693 4 8.556413 24242 1.58% 0.400 
9.481220 13481 5 9.435375 21525 0.49% 0.626 
9.606620 12980 6 9.562123 20683 0.47% 0.628 

10.340380 18574 7 10.298477 30082 0.41% 0.617 
10.535680 18247 8 10.491155 28893 0.42% 0.632 
11.184080 29057 9 11.121059 64821 0.57% 0.448 
11.572500 9973 11 11.400001 20777 1.51% 0.480 
12.290370 16307 15 12.219093 40827 0.58% 0.399 
12.318000 15463 16 12.240126 45611 0.64% 0.339 
12.378740 38658 17 12.286837 78051 0.75% 0.495 
13.395650 8126 24 13.263249 16412 -0.37% 0.129 
13.582700 17784 25 13.444917 62793 -0.09% 0.575 
13.683060 13242 27 13.594677 30937 -0.26% 0.298 
14.533620 39588 28 14.357122 163049 1.23% 0.243 
14.755930 50198 29 14.553659 319388 1.39% 0.157 
15.259100 7749 31 15.187942 16316 0.47% 0.475 
15.661990 40841 32 15.438337 272301 1.45% 0.150 
15.829640 47790 33 15.592459 251709 1.52% 0.190 
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Table A 18 Comparisons of calculation with experiments of cavity with brass screws 

new cavity-flush-90 sapphire-45 plane-brass 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.910920 11936 1 6.854953 22634 0.82% 0.527 
8.684400 9285 4 8.556413 24242 1.50% 0.383 
9.481200 13332 5 9.435375 21525 0.49% 0.619 
9.606440 12863 6 9.562123 20683 0.46% 0.622 

10.339555 17775 7 10.298477 30082 0.40% 0.591 
10.533970 16329 8 10.491155 28893 0.41% 0.565 
11.184000 29191 9 11.121059 64821 0.57% 0.450 
11.575420 8587 11 11.400001 20777 1.54% 0.413 
12.294150 12998 15 12.219093 40827 0.61% 0.318 
12.322600 10921 16 12.240126 45611 0.67% 0.239 
12.377720 31838 17 12.286837 78051 0.74% 0.408 
13.388600 7551 22 13.263249 16412 0.95% 0.460 
13.577600 14400 24 13.444917 62793 0.99% 0.229 
13.672550 11430 25 13.594677 30937 0.57% 0.369 
14.532990 39488 28 14.357122 163049 1.22% 0.242 
14.756030 50003 29 14.553659 319388 1.39% 0.157 
15.260100 7669 31 15.187942 16316 0.48% 0.470 
15.662110 39286 32 15.438337 272301 1.45% 0.144 
15.829600 46444 33 15.592459 251709 1.52% 0.185 

 
Table A 19 Comparisons between calculation and experiments of cavity with holes 

new cavity-flush-90 sapphire-45 plane-with holes 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 

6.908522 13565 1 6.854953 22634 0.78% 0.60 
8.691660 9693 4 8.556413 24242 1.58% 0.40 
9.481220 13481 5 9.435375 21525 0.49% 0.63 
9.606620 12980 6 9.562123 20683 0.47% 0.63 

10.340380 18574 7 10.298477 30082 0.41% 0.62 
11.184080 29057 9 11.121059 64821 0.57% 0.45 
11.572500 9973 11 11.400001 20777 1.51% 0.48 
12.290370 16307 15 12.219093 40827 0.58% 0.40 
12.318000 15463 16 12.240126 45611 0.64% 0.34 
13.395650 8126 24 13.444917 62793 -0.37% 0.13 
13.582700 17784 25 13.594677 30937 -0.09% 0.57 
14.755930 50198 29 14.553659 319388 1.39% 0.16 
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Table A 20 Comparisons between calculation and experiments of cavity without holes 

new cavity-flush-90 sapphire-45 plane-without holes 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.904280 14644 1 6.855774 22640 0.71% 0.65 
8.686770 10014 4 8.558162 24250 1.50% 0.41 
9.479260 13636 5 9.436183 21544 0.46% 0.63 
9.605200 12950 6 9.563010 20703 0.44% 0.63 

10.338860 18440 7 10.299313 30088 0.38% 0.61 
11.182510 28976 9 11.121551 64789 0.55% 0.45 
11.568860 11011 11 11.402191 20822 1.46% 0.53 
12.284880 17911 15 12.218625 41103 0.54% 0.44 
12.312430 16660 16 12.239870 45947 0.59% 0.36 
13.413280 25261 24 13.444415 63513 -0.23% 0.40 
13.576900 19337 25 13.595455 31092 -0.14% 0.62 
14.532380 38442 29 14.550967 321303 -0.13% 0.12 

 
Table A 21 Experimental data per old cylinder cavity 

Old cavity-flush-90 sapphire-45 plane-aluminum-three holes drilled 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.897981 12310 1 6.854953 22634 0.63% 0.54 
8.679680 9617 4 8.556413 24242 1.44% 0.40 
9.475710 13673 5 9.435375 21525 0.43% 0.64 
9.602150 12802 6 9.562123 20683 0.42% 0.62 
10.339390 18952 7 10.298477 30082 0.40% 0.63 
10.536420 17096 8 10.491155 28893 0.43% 0.59 
11.555130 9975 11 11.400001 20777 1.36% 0.48 
12.277840 16614 15 12.219093 40827 0.48% 0.41 
12.296890 16015 16 12.240126 45611 0.46% 0.35 
12.383090 36351 17 12.286837 78051 0.78% 0.47 
13.390410 9284 22 13.263249 16412 0.96% 0.57 
13.414010 23728 24 13.444917 62793 -0.23% 0.38 
13.574690 18770 25 13.594677 30937 -0.15% 0.61 
13.678800 14258 27 13.718765 44434 -0.29% 0.32 
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Table A 22 Experimental data per new cylinder cavity whose holes are drilled by turning 30° 

New cavity-flush-90 sapphire-45 plane-aluminum-holes were turned by 30°  

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.908522 13565 1 6.854953 22634 0.78% 0.60 
8.691660 9693 4 8.556413 24242 1.58% 0.40 
9.481220 13481 5 9.435375 21525 0.49% 0.63 
9.606620 12980 6 9.562123 20683 0.47% 0.63 
10.340380 18574 7 10.298477 30082 0.41% 0.62 
10.535680 18247 8 10.491155 28893 0.42% 0.63 
11.184080 29057 9 11.121059 64821 0.57% 0.45 
11.572500 9973 11 11.400001 20777 1.51% 0.48 
12.290370 16307 15 12.219093 40827 0.58% 0.40 
12.318000 15463 16 12.240126 45611 0.64% 0.34 
12.378740 38658 17 12.286837 78051 0.75% 0.50 
13.395650 8126 24 13.444917 62793 -0.37% 0.13 
13.582700 17784 25 13.594677 30937 -0.09% 0.57 
13.683060 13242 27 13.718765 44434 -0.26% 0.30 
14.533620 39588 28 14.357122 163049 1.23% 0.24 
14.755930 50198 29 14.553659 319388 1.39% 0.16 
15.259100 7749 31 15.187942 16316 0.47% 0.47 
15.661990 40841 32 15.438337 272301 1.45% 0.15 
15.829640 47790 33 15.592459 251709 1.52% 0.19 
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Table A 23 Comparisons between calculation and experiment when the Teflon has holes 

New cavity-flush-90 sapphire-45 plane-aluminum-teflon with 3 holes 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 
6.913980 13547 1 6.854953 22634 0.86% 0.60 
8.731490 9993 4 8.556413 24242 2.05% 0.41 
9.497260 13674 5 9.435375 21525 0.66% 0.64 
9.622140 13305 6 9.562123 20683 0.63% 0.64 
10.351720 18534 7 10.298477 30082 0.52% 0.62 
10.549440 17842 8 10.491155 28893 0.56% 0.62 
11.193530 29134 9 11.121059 64821 0.65% 0.45 
11.598200 9997 11 11.400001 20777 1.74% 0.48 
12.317160 16979 15 12.219093 40827 0.80% 0.42 
12.343140 16465 16 12.240126 45611 0.84% 0.36 
13.623200 17464 24 13.444917 62793 1.33% 0.28 
13.740300 12775 25 13.594677 30937 1.07% 0.41 
14.537860 38993 28 14.357122 163049 1.26% 0.24 
14.757730 50014 29 14.553659 319388 1.40% 0.16 
15.299000 7377 31 15.187942 16316 0.73% 0.45 
15.663760 40591 32 15.438337 272301 1.46% 0.15 

 

Table A 24 Comparisons between calculation and experiment when the Teflon hasn’t holes 

New cavity-flush-90 sapphire-45 plane-aluminum-teflon without holes 

fexp/GHz Qexp Mode fcal/GHz Qcal Δf / f Qexp / Qcal 

6.908522 13565 1 6.854953 22634 0.78% 0.60 
8.691660 9693 4 8.556413 24242 1.58% 0.40 
9.481220 13481 5 9.435375 21525 0.49% 0.63 
9.606620 12980 6 9.562123 20683 0.47% 0.63 

10.340380 18574 7 10.298477 30082 0.41% 0.62 
10.535680 18247 8 10.491155 28893 0.42% 0.63 
11.184080 29057 9 11.121059 64821 0.57% 0.45 
11.572500 9973 11 11.400001 20777 1.51% 0.48 
12.290370 16307 15 12.219093 40827 0.58% 0.40 
12.318000 15463 16 12.240126 45611 0.64% 0.34 
13.395650 8126 24 13.444917 62793 -0.37% 0.13 
13.582700 17784 25 13.594677 30937 -0.09% 0.57 
14.533620 39588 28 14.357122 163049 1.23% 0.24 
14.755930 50198 29 14.553659 319388 1.39% 0.16 
15.259100 7749 31 15.187942 16316 0.47% 0.47 
15.661990 40841 32 15.438337 272301 1.45% 0.15 
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Table A 25 Experimental results when the displacement between antenna to sapphire is 
5.9055 mm 

Experiments-45° plane-14-metal-5.9055 mm 

fexp/GHz Qexp Mode fcal/GHz Qcal Qexp / Qcal f1/fcal ds1/mm ds12/mm2 
6.912350 9007 1 6.854953 22634 0.40 1.008373 0 0 
8.738680 8541 4 8.556413 24242 0.35 1.021302 0 0 
9.489150 12387 5 9.435375 21525 0.58 1.005699 0 0 
9.636820 12291 6 9.562123 20683 0.59 1.007812 0 0 

10.342360 15048 7 10.298477 30082 0.50 1.004261 0 0 
11.187890 22145 9 11.121059 64821 0.34 1.006009 0 0 
11.520470 21753 11 11.400001 20777 1.05 1.010567 0 0 
11.600500 5151 12 11.428924 65426 0.08 1.015012 0 0 
12.301038 11927 16 12.240126 45611 0.26 1.004976 0 0 

 

Table A 26 Experimental results when the displacement between antenna to sapphire is 
5.3975 mm 

Experiments-45° plane-14-metal-5.3975 mm 

fexp/GHz Qexp fcal/GHz Qcal Qexp / 
 

f1/fcal ds1/mm ds12/mm2 
6.911660 9473 6.854953 22634 0.42 1.008272 -0.02 0.0004 
8.736450 8445 8.556413 24242 0.35 1.021041 -0.02 0.0004 
9.489030 12448 9.435375 21525 0.58 1.005687 -0.02 0.0004 
9.636100 12072 9.562123 20683 0.58 1.007736 -0.02 0.0004 
10.343000 15277 10.298477 30082 0.51 1.004323 -0.02 0.0004 
11.188650 22449 11.121059 64821 0.35 1.006078 -0.02 0.0004 
11.520040 20297 11.400001 20777 0.98 1.010530 -0.02 0.0004 
11.593090 5010 11.428924 65426 0.08 1.014364 -0.02 0.0004 
12.304440 12707 12.219093 40827 0.31 1.006985 -0.02 0.0004 
12.346450 15801 12.240126 45611 0.35 1.008687 -0.02 0.0004 
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Table A 27 Experimental results when the displacement between antenna to sapphire is 
4.2418 mm 

Experiments-45° plane-14-metal-4.2418mm 

fexp/GHz Qexp fcal/GHz Qcal Qexp / Qcal f1/fcal ds1/mm ds12/mm2 

6.894740 9057 6.854953 22634 0.40 1.005804 -0.0655 0.0043 
8.743560 8179 8.556413 24242 0.34 1.021872 -0.0655 0.0043 
9.493310 12427 9.435375 21525 0.58 1.006140 -0.0655 0.0043 
9.641360 12247 9.562123 20683 0.59 1.008287 -0.0655 0.0043 

10.357670 15478 10.298477 30082 0.51 1.005748 -0.0655 0.0043 
11.208680 22971 11.121059 64821 0.35 1.007879 -0.0655 0.0043 
11.506760 6046 11.400001 20777 0.29 1.009365 -0.0655 0.0043 
11.547820 14509 11.428924 65426 0.22 1.010403 -0.0655 0.0043 
11.944910 29112 11.864948 151667 0.19 1.006739 -0.0655 0.0043 
12.287800 16995 12.219093 40827 0.42 1.005623 -0.0655 0.0043 
12.336280 13433 12.240126 45611 0.29 1.007856 -0.0655 0.0043 
12.486400 18891 12.286837 78051 0.24 1.016242 -0.0655 0.0043 

   

Table A 28 Experimental results when the displacement between antenna to sapphire is 
3.5433 mm 

Experiments-45° plane-14-metal-3.5433mm 

fexp/GHz Qexp fcal/GHz Qcal Qexp / Qcal f1/fcal ds1/mm ds12/mm2 
6.874580 9507 6.854953 22634 0.42 1.002863 -0.0930 0.0086 
8.750520 8039 8.556413 24242 0.33 1.022686 -0.0930 0.0086 
9.497660 12606 9.435375 21525 0.59 1.006601 -0.0930 0.0086 
9.646780 12104 9.562123 20683 0.59 1.008853 -0.0930 0.0086 

10.373300 15671 10.298477 30082 0.52 1.007265 -0.0930 0.0086 
10.596500 14386 10.491155 28893 0.50 1.010041 -0.0930 0.0086 
11.230950 22654 11.121059 64821 0.35 1.009881 -0.0930 0.0086 
11.425900 11629 11.400001 20777 0.56 1.002272 -0.0930 0.0086 
11.429980 5700 11.428924 65426 0.09 1.000092 -0.0930 0.0086 
11.941380 25204 11.864948 151667 0.17 1.006442 -0.0930 0.0086 
12.259820 17069 12.219093 40827 0.42 1.003333 -0.0930 0.0086 
12.365240 13728 12.240126 45611 0.30 1.010222 -0.0930 0.0086 
12.874000 20346 12.828263 10679 1.91 1.003565 -0.0930 0.0086 
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Table A 29 Experimental results when the displacement between antenna to sapphire is 
2.7178 mm 

Experiments-45° plane-14-metal-2.7178mm 

fexp/GHz Qexp fcal/GHz Qcal Qexp / Qcal f1/fcal ds1/mm ds12/mm2 
6.835880 8956 6.854953 22634 0.40 0.997218 -0.1255 0.0158 
8.755340 7647 8.556413 24242 0.32 1.023249 -0.1255 0.0158 
9.503960 12761 9.435375 21525 0.59 1.007269 -0.1255 0.0158 
9.655220 12205 9.562123 20683 0.59 1.009736 -0.1255 0.0158 

10.396880 16207 10.298477 30082 0.54 1.009555 -0.1255 0.0158 
10.626220 14224 10.491155 28893 0.49 1.012874 -0.1255 0.0158 
11.266150 23121 11.121059 64821 0.36 1.013047 -0.1255 0.0158 
11.313050 5183 11.400001 20777 0.25 0.992373 -0.1255 0.0158 
11.945930 23014 11.864948 151667 0.15 1.006825 -0.1255 0.0158 
12.236300 16042 12.219093 40827 0.39 1.001408 -0.1255 0.0158 
12.401520 13729 12.240126 45611 0.30 1.013186 -0.1255 0.0158 
12.890540 23530 12.828263 10679 2.20 1.004855 -0.1255 0.0158 
12.858611 37851 12.842157 11407 3.32 1.001281 -0.1255 0.0158 

 
 

Table A 30 Experimental results when the displacement between antenna to sapphire is 
1.9812 mm 

Experiments-45° plane-14-metal-1.9812mm 
fexp 

/GHz Qexp 
fcal 

/GHz Qcal Qexp / Qcal f1/fcal 
ds1 
/mm 

ds12 
/mm2 

6.781960 8766 6.854953 22634 0.39 0.989352 -0.1545 0.0239 
7.530400 3524 7.440836 11358 0.31 1.012037 -0.1545 0.0239 
8.747400 6956 8.556413 24242 0.29 1.022321 -0.1545 0.0239 
9.509440 12549 9.435375 21525 0.58 1.007850 -0.1545 0.0239 
9.662560 11983 9.562123 20683 0.58 1.010504 -0.1545 0.0239 

10.420000 15883 10.298477 30082 0.53 1.011800 -0.1545 0.0239 
10.655780 14169 10.491155 28893 0.49 1.015692 -0.1545 0.0239 
11.194850 4435 11.121059 64821 0.07 1.006635 -0.1545 0.0239 
11.304480 21553 11.400001 20777 1.04 0.991621 -0.1545 0.0239 
11.960800 19312 11.864948 151667 0.13 1.008079 -0.1545 0.0239 
12.222940 15799 12.219093 40827 0.39 1.000315 -0.1545 0.0239 
12.431620 14957 12.240126 45611 0.33 1.015645 -0.1545 0.0239 
12.890500 30101 12.828263 10679 2.82 1.004852 -0.1545 0.0239 
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Table A 31 Calculation results for birefringence thermometer 

f /GHz Q RE.s RH,s RE.sdisk RH,sdisk 
6.935025 8297 77.68% 33.00% 66.17% 17.86% 
7.387147 8779 75.58% 32.78% 62.09% 17.51% 
7.444222 12028 70.49% 36.03% 8.77% 17.66% 
9.106225 16027 73.25% 27.78% 18.21% 2.51% 

10.249506 11383 91.92% 53.45% 77.61% 32.16% 
10.466183 17766 52.08% 51.41% 9.34% 15.29% 
10.694466 16716 51.07% 48.56% 7.94% 13.27% 
10.703770 8047 86.89% 34.52% 83.64% 30.35% 
11.010445 11089 90.82% 51.67% 74.47% 30.69% 
11.044570 15713 42.15% 43.26% 2.74% 0.71% 
11.294872 15448 43.24% 41.68% 3.13% 0.74% 
11.625620 31054 66.89% 61.70% 4.25% 7.97% 
11.981635 33022 70.39% 62.18% 3.83% 7.67% 
12.127791 44870 80.61% 68.22% 5.72% 2.03% 
12.243104 12370 33.48% 39.52% 6.51% 16.30% 
12.476704 13979 73.15% 62.12% 26.21% 28.38% 
12.540225 35982 81.51% 67.20% 7.11% 3.82% 
12.646774 14547 64.94% 58.25% 14.80% 23.89% 
12.763745 12230 91.66% 56.74% 68.27% 34.62% 
12.925643 50996 93.57% 83.92% 0.42% 1.52% 
12.975412 7710 91.29% 42.80% 88.57% 39.89% 
13.100502 50278 93.86% 80.70% 4.55% 1.80% 
13.130088 14238 79.94% 60.28% 30.73% 18.50% 
13.372641 13051 83.60% 54.40% 52.99% 26.95% 
13.635946 29342 86.20% 71.82% 19.10% 14.61% 
13.861349 17327 41.57% 34.61% 13.24% 4.38% 
13.892002 16533 88.30% 59.95% 54.97% 28.19% 
13.914718 96704 89.07% 81.72% 8.83% 4.01% 
14.207971 91337 94.35% 81.48% 2.24% 4.93% 
14.353004 23845 76.09% 48.22% 16.86% 6.89% 
14.416930 22299 73.21% 45.57% 16.22% 6.51% 
14.447995 27709 95.57% 69.08% 34.01% 18.34% 
14.693535 103847 90.37% 82.17% 9.75% 4.31% 
14.821167 183307 92.10% 86.31% 4.35% 8.85% 
14.875606 10243 93.92% 58.45% 72.30% 38.96% 
14.953252 7456 92.72% 49.40% 91.67% 48.03% 
15.231151 11345 94.44% 60.77% 69.74% 38.67% 
15.610490 7688 56.57% 58.20% 43.26% 41.83% 
15.725590 73268 88.39% 83.22% 5.03% 10.46% 
15.777647 8824 74.20% 58.15% 65.07% 46.38% 
15.933792 13722 91.51% 64.61% 61.90% 39.56% 
15.998268 56622 88.83% 82.94% 10.20% 5.84% 
16.048083 75392 95.28% 78.35% 11.44% 11.17% 
16.261001 9868 49.77% 50.49% 16.61% 22.60% 
16.406485 9153 45.87% 46.61% 14.52% 21.95% 
16.797935 7847 93.63% 56.15% 91.50% 53.75% 
16.826385 7400 93.69% 54.65% 92.92% 53.80% 
16.958808 62804 92.45% 78.38% 18.61% 16.29% 
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Appendix B  

Unit: mm 

 

Figure B 1 Cavity body  

 
Figure B 2 Lower cap 
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Figure B 3 Top cap 

 
 

 

Figure B 4 SMA connector drawing view (Unit: inch) 
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Figure B 5 Cut plane 1 of the cavity body front view 

 
 

 
Figure B 6 Cut plane 2 of the cavity body front view (cut from the vacuum line) 
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Figure B 7 Cut plane 3 of the cavity body front view (perpendicular to Figure B 5) 

 

 
Figure B 8  Cavity bottom view  
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Figure B 9  Cavity top view  

 
 

 

Figure B 10 Steel triple-wave washer 
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