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Abstract

Magnetic bearings are systems capable of supporting rotors in absence of mechanical
contact. Among many advantages with respect to ball and roller bearings are the
possibilities of operating at extremely high rotational speeds and free of maintenan-
ce. Nevertheless, classical active magnetic bearings (AMB) are costly systems and
may su�er from reliability problems. The most common types of passive magnetic
bearings (PMB) based on the use of permanent magnet and reluctance forces are
robust and relatively cheap but are a�ected by an intrinsic stability problem related
to negative sti�ness. The alternative of superconducting bearings has to deal with
the di�culties for guaranteeing low temperatures for the superconducting materials
to work; this represents a barrier for this technology.

In the last decades an alternative for obtaining stable passive magnetic levi-
tation has been searched, leading to the development of electrodynamic bearings.
These systems, capable of realizing electrodynamic suspension for rotors using regu-
lar materials at room temperature, may be an alternative for the suspension of high
rotational speed machines in the near future. The technological solutions proposed
are still unable of devising a system capable of demonstrating the feasibility of this
concept.

Introduced in this context, this doctoral dissertation aims at developing models
and design procedures to bring electrodynamic levitation of rotors closer to indu-
strial applications. To this end, a large portion of the work is devoted to develop a
uni�ed model for representing the electromechanical interaction between rotor and
stator generated by electrodynamic bearings of di�erent types, namely homopolar
and heteropolar con�gurations. The electromechanical model is developed taking
advantage of the complex coordinate representation, typical in rotordynamics, in
order to enable easy integration of the bearing's model with di�erent rotordyna-
mic models. An experimental validation of the model is carried out for homopolar
con�gurations.

The study of the dynamics of rotors on electrodynamic bearings is probably one
of the most important aspects that must be dealt with before the bearings can reach
the technological development needed to become industrially available. Bearing this
in mind, the dynamics of a Je�cott rotor and that of a four degree of freedom rotor
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are studied devoting special attention to the study of stability demonstrating the
presence of unstable cylindrical and conical modes. The unbalance and frequency
responses of the rotor on electrodynamic bearings are used to evidence the advanta-
ges and drawbacks between homopolar and heteropolar con�gurations. The studies
are conduced using the state space formalism to obtain easy to manipulate system
models.

The modelling of the suspension evidences the strong coupling between the sub-
systems, showing that the in�uence of each subsystem on the rotordynamic stability
is not obvious, thus complicating the design of the whole suspension. Considering an
iterative design approach, the design of a test rig is presented. It is designed to test
the validity of the models and the feasibility of radial electrodynamic suspension. A
the mechanical layout of the test rig is developed to deal with the stability aspects
introduced by the use of electrodynamic bearings.

vi



Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scienti�c contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Review of literature 5

2.1 Radial electrodynamic bearings . . . . . . . . . . . . . . . . . . . . . 5
2.2 Axial electrodynamic bearings . . . . . . . . . . . . . . . . . . . . . . 13

I Modelling and experimental validation 15

3 Electromechanical model 17

3.1 Potentials and Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Heteropolar con�guration . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Homopolar con�guration . . . . . . . . . . . . . . . . . . . . . 20

3.2 Flux linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Heteropolar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Homopolar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Flux in non-rotating Cartesian coordinates . . . . . . . . . . . 26

3.3 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Equations in complex notation . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Dynamic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Eddy currents and bearing's forces . . . . . . . . . . . . . . . 29

4 Experimental validation through quasi-stationary tests 31

4.1 Modelling of the experiment . . . . . . . . . . . . . . . . . . . . . . . 31

vii



4.2 Test rig for quasi stationary characterization . . . . . . . . . . . . . . 32
4.3 Experimental analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II Dynamics of rotors on electrodynamic bearings 39

5 Je�cott rotor 41

5.1 Undamped Je�cott rotor . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Damped Je�cott rotor . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Unbalance response . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Je�cott rotor on elastic basing . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Anisotropy of heteropolar bearings . . . . . . . . . . . . . . . . . . . 51
5.5 Anisotropy of stator-casing connections . . . . . . . . . . . . . . . . . 53

6 4 DOF model 57

6.1 Transformation matrices . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1.1 Rotor's centre of mass between bearings . . . . . . . . . . . . 58
6.1.2 Rotor's centre of mass beside the supports . . . . . . . . . . . 61

6.2 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2.1 Rotordynamic stability . . . . . . . . . . . . . . . . . . . . . . 64

III Test rig of a rotor on homopolar electrodynamic bea-
rings 69

7 Test rig design 71

7.1 Electrodynamic Bearing . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1.1 Finite element modelling . . . . . . . . . . . . . . . . . . . . . 72
7.1.2 Sensitivity analysis and dimensioning of the bearing's compo-

nents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.3 Flexibility of the rotor . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Stabilization system . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Mechanical layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusions 95

Bibliography 97

List of Figures 101

List of Tables 105

viii



Chapter 1

Introduction

1.1 Motivation

Electrodynamic stabilised levitation of high-speed rotors is now reaching the bor-
derline between academic interest and industrial application. Systems capable of
realising this principle are commonly referred to as electrodynamic bearings (EDBs).
The EDBs's unique characteristic of producing positive sti�ness by passive means,
without violating the Earnshaw stability criterion, has attracted the interest of ma-
ny researchers during the last decades. Among EDBs's most interesting features is
the possibility of obtaining stable levitation using standard conductive materials at
room-temperature, and in absence of control systems, power electronics, and sen-
sors. Because stable levitation can be achieved by passive means, electrodynamic
bearings can be an advantageous alternative to active magnetic bearings.

The working principle of EDBs relies on exploiting repulsive forces generated by
eddy currents to achieve levitation. The eddy currents can be of two di�erent types:
transformer eddy currents generated by time varying magnetic �elds, or motional
eddy currents generated by the interaction between a conductor and a constant
magnetic �eld in presence of relative motion. Both types can be used to levitate
a rotor; schematic representations of possible con�gurations of EDBs implementing
these principles, and that have been studied and presented in literature, are shown
in Fig. 2.1 and Fig. 2.2.

Using transformer type eddy currents to levitate a rotor has represented the be-
ginning of the research on electrodynamic bearings. The concept is relatively simple
to understand, but the large amount of energy dissipated to realize the suspension
has limited the interest for this solution. On the other hand, the promising charac-
teristics led to the development of EDBs that exploit motional eddy currents. In
this case the relative motion between conductor and magnetic �eld induces eddy
currents inside the conductor, thereby generating magnetic forces that can be used
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1 � Introduction

to achieve levitation. Consider a disc conductor connected to a rotor with an axi-
symmetric magnetic �eld �xed to the stator. The combination of rotor's spin and
whirl may generate a non-symmetric electric �eld inside the conductor inducing cur-
rents, which in turn a�ects the forces on the rotor. The mechanical e�ect depends
on the rotation speed. If the speed is low, the electromagnetic forces are tangential
and aligned with the velocity. At high speeds, these forces become radial and pro-
portional to the displacement of the rotor, thus stabilizing. It is worth emphasising
that high and low speeds are related to the electric pole of the eddy currents arising
in the conductor.

Although the working principle of EDBs may seem simple and straightforward,
leading to very promising characteristics, the design of a rotor running exclusively
on electrodynamic radial bearings is a challenging task. However eddy current forces
are generally stabilizing, in the case of a rotating system this is not always true. The
electromagnetic interaction between rotor and stator gives place to an intrinsically
unstable whirling mode that must be dealt with. These rotordynamic instabilities
have been presented and studied analytically by many researchers, however, very
few of them have shown experimental evidence on this matter. An even smaller
group has presented experimental proof os stable levitation of a rotor supported by
EDBs, and, to the present day, no clear guideline on how to prevent the unstable
behaviour of the suspension in practical terms is present in literature.

1.2 Aim of the work

The main purpose of this study is to design and develop a prototype for passive ma-
gnetic levitation of the radial degrees of freedom of a rotating shaft. The secondary
goal is to develop and validate analytical models that can help the development of
technology for the electrodynamic suspension of high speed rotating machinery.

1.3 Scienti�c contribution

The scienti�c contribution of this study is summarized below:

1. Development of a generalized modelling approach for electrodynamic bearings
that allow appreciating di�erences and similarities between homopolar and
heteropolar electrodynamic bearings.

2. Analysis of the behaviour of sti� rotors on electrodynamic bearings, shedding
light onto certain aspects of these systems never examined before.

3. Numerical veri�cation of the electromagnetic properties of improved perfor-
mance electrodynamic bearings.
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1.4 � Dissertation outline

4. Experimental veri�cation of the electromechanical properties of improved per-
formance electrodynamic bearings.

This work was designed to be a step towards the �nal goal of developing a test
rig to demonstrate the feasibility of EDBs, thus all these contributions were needed
to achieve the �nal goal. In the following chapters these steps will be presented and
explained in detail.

1.4 Dissertation outline

The present doctoral dissertation is divided in eight chapters.

Chapter 1 The �rst chapter gives the motivation based on a brief overview of
the state of the art on electrodynamic bearings. Furthermore, the dissertation's
objectives and structure are described.

Chapter 2 In the second chapter a review of the existing literature dealing with
the electrodynamic levitation of rotors is presented. The main �ndings brought to
light by other researchers are underlined.

Chapter 3 Chapter 3 presents the development of the uni�ed model of the elec-
tromechanical interaction between a rotating conductor and a stationary magnetic
�eld. The modelling in terms of complex coordinates is presented.

Chapter 4 The validation of the models developed in chapter 3 is presented.
The quasi-stationary operating condition is described as a means for the validation
of the analytical models and the expression obtained analytically is compared to
experimental data for model validation. The test rig developed to perform the
experimental study is described in detail.

Chapter 5 The models developed in chapter 3 are used to study the rotordyna-
mics of a Je�cott rotor supported by homopolar and heteropolar electrodynamic
bearings. The di�culties in ensuring whirling stability of electrodynamic suspen-
sions are evidenced. The di�erences between the dynamic behaviour of suspensions
using homopolar or heteropolar EDBs are brought to light comparing the rotor's
unbalance and frequency responses. In the last part of the chapter the EDB model
is used to study the e�ects of anisotropy of the stator on the stability of the rotor.

3



1 � Introduction

Chapter 6 The models developed in chapter 3 are used to develop the model
of a 4DOF rotor supported by EDBs. The models are used to study the role of
gyroscopic e�ect on the stability of the rotor.

Chapter 7 The design of the prototype developed to achieve stable passive magne-
tic radial levitation is presented. The design of the main subsystems of the magnetic
suspension is described in detail. At the end of the chapter the �nal layout of the
test rig is described, and the mechanical parts shown.

Chapter 8 The main �ndings of the work are summarized and the conclusions
presented. Possibilities for future research are discussed.

4



Chapter 2

Review of literature

The subject of magnetic suspension for high speed rotors has attracted the interest
of researchers for many decades. In the last few years there has been a relatively
strong interest on the research dedicated to electrodynamic bearings (this work is
also part of this trend), but a survey on the literature dedicated exclusively to
electrodynamic levitation of rotor's degrees of freedom has not yet been presented.
Aiming at this fact, the present chapter is devoted to investigate the developments
on electrodynamic levitation of rotors in the last three decades.

2.1 Radial electrodynamic bearings

The most interesting application of electrodynamic bearings is to produce passive
radial suspension for high speed rotors. In most recent con�gurations, the passive
and autonomous nature could largely increase the use of magnetic suspensions in
commercial applications.

First interest on this type of passive suspension can be found in the work of
Basore [1]. He presented a detailed study of passive suspensions for high speed
�ywheels; a large quantity of information about the design of �ywheels is introduced,
and a passive suspension scheme proposed. In the proposed suspension scheme the
main levitation force is provided by reluctance bearings. The bearing's magnetic
�eld is homopolar and generated by permanent magnets. This same magnetic �eld
is used to devise the electrodynamic bearings. Di�erent arrangements of homopolar
electrodynamic bearings are also discussed; additionally, Basore proposes the use of
a heteropolar magnetic �eld combined to null �ux coils in radial bearings.

In Basore's study the EDB provides a stabilizing radial force when a displacement
between rotor and stator is introduced, but the destabilizing tangential forces are
neglected. The analysis of the bearing's forces is conducted considering constant
displacement between rotor and stator, where the spin speed is also kept constant.
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2 � Review of literature

This condition is known as quasi stationary operating condition. Although it proves
useful when predicting the bearing's performance, it is not suitable for dynamic
conditions, where the rotor is animated by non-synchronous whirl or non-periodic
motion about the stator's axis. Hence, the design approach described by Basore
does not prove e�ective when addressing di�culties regarding dynamic stability of
the suspension.

Unstable behaviour of a rotor on electrodynamic bearings is found in the work
of Nikolajsen [2]. No theoretical developments are presented to describe the pheno-
menon, but a brief description of some experiments is given. The prototype used for
the experiments is based on the electromagnetic river concept [3], and consists in
wrapping around a linear induction motor to provide radial sti�ness, axial sti�ness,
and drive torque to the rotor. As mentioned by Ting and Tichy [4], the behaviour
described in the experiments of Nikolajsen is coherent with the dynamics of a ro-
tor on EDBs, where electromagnets supplied with AC currents generate the main
magnetic �eld. They proved that in this case the bearing's damping may become
negative, thus destabilizing. In a later study Nikolajsen [5] analysed the feasibility
of applying this concept in �ywheels for spatial applications, but the large amount of
energy dissipated as Joule heating in the rotating conductors proved to be a barrier
to the development of this technology.

Connor and Tichy [6] presented theoretical developments using the journal bea-
ring con�guration shown in Fig. 2.1a; this con�guration is similar to that proposed
by Nikolajsen. They derived an analytical solution for the two dimensional electro-
magnetic �elds in a heteropolar bearing to analyse the behaviour of its properties in
terms of losses, force amplitude, and attitude angle. The attitude angle represents
the phase angle between the direction of displacement of the rotor and that of the
reaction force. Realizing the promising characteristics, but noting the relatively low
sti�ness and high losses, Tichy and Connor [7] studied the e�ects of geometry on
the load capacity of the bearing. The exhausting mathematical treatment and so-
mewhat confusing presentation renders the results di�cult to be interpreted. Ting
and Tichy [4] and Simone and Tichy [8] re-proposed the solution of the magnetic
�eld to predict the mechanical properties of the bearing. Direct and cross-coupled
sti�ness and damping are evaluated evidencing the possible occurrence of negative
damping, thus proving the destabilizing contribution of electrodynamic bearings to
the rotordynamics.

Energy dissipation in the rotor has represented an obstacle for the application
of AC heteropolar electrodynamic bearings in the suspension of regular size rotors.
Siegwart et al. [9] propose to solve the problem of excess heating by using micro
scale rotors. They discussed the use of eddy current bearings for the levitation of a
small aluminium cylinder on full electrodynamic suspension (radial and axial), and
the motoring magnetic �eld is supplied by the same electromagnets used for levi-
tation. Relatively low rotor temperatures (60◦C to 100◦C) are reported in working
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2.1 � Radial electrodynamic bearings

conditions, whereas rotordynamic stability is not discussed, but very low damping
of the suspension is mentioned as a critical factor.

Given the di�culties in solving the Joule heating problems with AC bearings,
the interest on this type of con�guration has faded. Following the ideas of Basore
[1], Post and his co-workers conducted a long lasting research on EDBs at the
Lawrence Livermore National Laboratory (LLNL) studying a con�guration that
virtually eliminates thermal problems. Post and Ryutov [10] proposed the use of
rotating permanent magnets in cylindrical Halbach arrays and stationary Litz wire
conductors; the arrangement proposed is shown in Fig. 2.1b. Placing the conductors
in the stator allows simpler fabrication, more robust layout, and easier cooling.
The use of `window frame' circuits with even-order Halbach arrays ensures �ux
cancellation at centred position [10, 11], thus eliminating unwanted energy losses
and strongly reducing the excess heating problem.

Nevertheless, Post's heteropolar con�guration has a drawback with respect to
the AC con�guration; it cannot give any supporting force at zero rotational speed1.
Furthermore, the rotordynamic stability is a problem that must be dealt with simi-
larly to the previous case. The concerns with stability of rotor's whirl modes has
been present since the beginning of Post and Ryutov works [10]. The modelling of
the suspension, coupling a simpli�ed electromechanical model of the EDB with a
Je�cott rotor model is used to establish the conditions needed for stable levitation.
The introduction of non-rotating electromagnetic damping associated to the relati-
ve speed of motion between rotor and stator is identi�ed as a possible solution for
stability. An innovative solution (in this context) for the stabilization, relying on
the use of anisotropic electromechanical properties of the EDBs, is also proposed.
The necessary conditions to obtain stable levitation using this technique are derived
using a slightly modi�ed suspension model. The stability bounds identi�ed by Post
et al. [10�12] seem to be incorrect due to an oversimpli�cation of the electromechani-
cal model. The proposed bearing model can be interpreted considering the analogy
between electrical and mechanical systems, where Post et al.consider the interaction
between a magnet and a conductor with relative motion as a parallel spring-damper
system. This modelling is known to be incorrect in this context [13].

In a later work Post and Bender [14] presented an experimental study on a �y-
wheel system supported by heteropolar electrodynamic bearings. A small collection
of experimental results obtained under quasi stationary conditions is presented sho-
wing the behaviour of the bearing's transverse sti�ness, axial sti�nesses, and the
in�uence of the lateral displacement on the voltage induced inside the coils. Also

1This represents a drawback shared by all con�gurations that use the relative motion between
permanent magnets and conductors instead of AC electromagnets to provide the levitation force.
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2 � Review of literature

the electromagnetic dampers used to introduce non-rotating damping between ro-
tor and stator are tested, but generally, no relevant conclusion can be taken as the
results obtained in quasi stationary conditions tend to dim the real di�culty to be
encountered when working in dynamic conditions.

Like Post and Ryutov [11], Eichenberg et al. [15] modelled the bearing's elec-
tromechanical interaction starting from the analytical solution of the magnetic �ux
density generated by the Halbach array in a rotating reference frame. This solution
is used to integrate the magnetic �ux linkage in the stationary conductors taking
into account of generic displacements between rotor and stator. The currents and
forces are calculated in quasi stationary conditions, considering a �xed position of
the rotor and neglecting its lateral speed. The expressions obtained for force and
current are compared to experimental results for model validation. The test rig used
to produce the experimental data resembles more an electromagnetic brake than a
radial bearing because only one pole piece of the stator is built, and the null �ux
scheme cannot be implemented. The experimental results are nonetheless intere-
sting, showing good agreement between model and experimental data for force and
rotational loss measurements. Furthermore, the results prove clearly the severe limi-
tation in the lift and drag forces caused by the introduction of external inductively
loaded circuits in series with the stator coils.

Another possible con�guration that allows eliminating unwanted eddy current
losses and has been visited by many researchers is the homopolar electrodynamic
bearing con�guration. Two possible layouts are shown in Fig. 2.2. A fundamental
di�erence between heteropolar and homopolar con�gurations is that while the hete-
ropolar scheme allows placing the conductors on the stator, the homopolar scheme
requires a rotating conductor. In the �rst case unwanted losses at centred position
are avoided with the null �ux scheme whereas in the latter they are avoided by the
axisymmetry of the magnetic �eld.

First experiments on homopolar electrodynamic bearings where presented by
Murakami and Satoh [16]. An axial �ux con�guration such as shown in Fig. 2.2a
was studied, where the homopolar �ux crosses the rotating conductor parallel to the
axis of rotation. Discs with di�erent diameters were tested and e�ect of displacement
between rotating conductor and magnetic �eld was shown to be linear. The e�ect of
rotating speed at constant displacement was also investigated for a relatively limited
range of speed, thus limiting the conclusions that can be taken. On the same period
Bermudez et al. [17] presented an analogous study on the characteristics of a radial
�ux homopolar bearing; the con�guration used by Bermudez is similar to that of
Fig. 2.2b.

Filatov and Maslen [18] proposed a homopolar electrodynamic bearing using
conducting loops presenting a modelling approach and describing the realization of
experiments where stable electrodynamic levitation is achieved. In a later work from
Filatov [19] the con�guration studied is called by the author as `null-E' magnetic
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2.1 � Radial electrodynamic bearings
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Figure 2.1. Di�erent con�gurations of heteropolar electrodynamic bearings. (a)
Scheme of a heteropolar AC electrodynamic bearing proposed by Nikolajsen and
Tichy. (b) Post's heteropolar con�guration.

bearing because the null �ux condition is not satis�ed in the homopolar case, but
since the �ux linkage is constant, the induced electric �eld E is null. To the author's
knowledge, Filatov and Maslen were the only capable of achieving stable levitation
using a suspension based on electrodynamic radial bearings. They described the
tests performed stressing the fact that very low rotational loss is introduced by the
EDB, but the results and data described are very di�cult to recast in their own
models. In succeeding works Filatov et al. [20�22] revisited the analyses, where they
present an initial modelling of the electromechanical interaction between rotor and
stator caused by the electrodynamic bearing. The authors introduce and develop
the problem of unstable behaviour of the suspension when no external non rotating
damping is introduced, but the conclusions are incorrect due to oversimpli�cation.
The models do not consider correctly the electrical dynamics of the currents inside
the coils because they assume that the phase angle (attitude angle) between rotor
displacement and bearing's force depend only on the ratio between rotational speed
and electrical time constant. This is true exclusively when working at �xed displace-
ment, and lateral speeds are null. The assumption of low lateral speeds is incorrect
as the frequency of the lateral motion is likely to be of the same order of magnitude
of the RL electric pole frequency (and possibly higher). Another aspect presented
in the work is the use of inductive loaded electric circuits shunted with the coils
to reduce the stabilization threshold speed. This is correct for what concerns the
stability, but, as noted by Filatov an Maslen [18], the inductive loaded circuits also
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Figure 2.2. Possible con�gurations of homopolar electrodynamic bearings. (a)
Axial �ux con�guration, (b) radial �ux con�guration

reduce the radial sti�ness of the bearing.

A continuation of these works is presented by Davey et al. [23]. They presented
the design of a �ywheel using homopolar bearings, substituting the conducting loops
with a solid conductor disc. The main aspect dealt with is the introduction of lateral
non rotating damping needed to stabilize the whirl modes of the rotor; two di�erent
con�gurations of electromagnetic dampers are proposed to optimize the non-rotating
damping. This work is continued by Filatov et al. [24], where the electromechanical
properties of the electrodynamic bearing are estimated using �nite element models.
The same models of the suspension proposed in the previous works are used to
establish stability bounds, thus leading to incorrect results.

On the modelling of the electromechanical interaction between rotor and stator
on homopolar bearings, the work of Kluyskens et al. [25] presented clear considera-
tions on the role of the rotating conductor on rotor's stability. The rotating damping
is clearly identi�ed as the cause of instability, and stability bounds for a Je�cott ro-
tor in presence of rotating damping and sti�ness are de�ned. An electromechanical
model devised to describe the dynamics of a rotor on eddy current bearings is pre-
sented. The analysis of the stability are developed using the Rout-Hurwitz criterion
to establish stability conditions for the suspension similarly to what proposed by
Filatov and Maslen [18]. Also in this case, the incomplete solution of the electrical
dynamics of the eddy currents inside the conductors falses the results, leading to
incorrect stability bounds. The proposed model is nevertheless valid under quasi
stationary conditions at relatively low frequencies, and the results of �nite element
simulations are compared to analytical results evidencing this characteristic. The
electromechanical models are re�ned [26] to consider the skin e�ect inside solid
conductors using frequency variable impedance models presented later [27].
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2.1 � Radial electrodynamic bearings

Noting a recurrent inaccuracy in the electromechanical models presented in the
literature [1, 14, 15, 25], in the last few years Amati et al. [28] presented a new mo-
delling approach to correctly account for the electromechanical interaction between
rotating conductor and stationary magnetic �eld for homopolar electrodynamic bea-
rings. The model is derived considering the equivalence between the state equations
of a voice coil model and that of a spring-damper in series. The choice of referring
to the mechanical analogue instead of the electrical system is adopted because the
reference frames can be established in a more intuitive basis, which is a key point
when dealing with rotating machines. This allows easily writing the system's equa-
tions in complex coordinates, rendering straightforward its use in connection with
rotordynamic models. Furthermore, the stability of a Je�cott rotor on homopolar
electrodynamic bearings is studied. The validation of the proposed models is pre-
sented by Tonoli et al. [29]. In this latter work a large collection of experimental
data is used to validate the models under both quasi stationary and dynamic condi-
tions, showing very good agreement. Moreover, a new stabilization technique on the
electrodynamic suspension context is presented. This technique proposes the intro-
duction of sti�ness and damping between the stator of the electrodynamic bearing
and the case of the machine, allowing a simpli�cation of rotor's layout compared to
solutions proposed previously [12, 18] with a possible reduction of the stabilization
speed threshold.

As the modelling techniques for motion induced eddy currents with �nite elemen-
ts improved in accuracy, allowing to consider di�erent conductor shapes, also the
design of electrodynamic bearings resorted to this instrument to improve the qua-
lity of the models. Currently the research on electrodynamic suspensions is often
developed using analytical models to study the rotordynamics, while �nite element
simulations of the electromagnetic �elds serve to evaluate the mechanical properties
of the bearing itself. Especially when dealing with electrodynamic bearings using
solid conductors in the rotor, the �nite element simulations are essential since they
represent the most reliable way to predict and optimize the bearing's performance
prior to the realization of prototypes.

The �rst �nite element analysis of an electrodynamic bearing is found in the
work of Iskierka [32]. He presented a two dimensional time-harmonic solution of an
aluminium tube rotating at constant eccentricity in an heteropolar magnetic �eld
generated by electromagnets. The results in terms of lift and tangential forces for
di�erent excitation frequencies of the stator coils are shown making a comparison
between symmetric and non-symmetric current density distributions on the stator.
The analyses put in evidence the possible advantages of using a non-symmetrical
current density distribution.

The most important reference in the �nite element modelling of electrodynamic
bearings is doubtless the work presented by Lembke [30,33]. A very complete survey
on the modelling of homopolar radial electrodynamic bearings is presented shedding
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(a) (b)

(c)

Figure 2.3. Finite element results for homopolar EDBs presented in literature. (a)
Lembke [30], (b) Kluskens et al. [31], (c) Filatov et al. [24]

light onto many aspects never discussed in previous works. Most of the analyses are
developed under quasi stationary conditions and an optimization of the bearing's
performance is conducted, but rotor's stability is not taken into account during the
optimization, thus the feasibility of the proposed suspension is not demonstrated.

A di�erent approach to the �nite element modelling of homopolar bearings was
proposed by Filatov et al. [24], where a simpli�ed two dimensional time-harmonic
model is used to estimate the sti�ness and damping properties of the bearing. Be-
cause the �ux distribution is three dimensional in the homopolar case, this approach
leads to less accurate results, but nevertheless valid for fast feasibility analysis.

Following the indications given in the work of Lembke, Genta et al. [34] and

12



2.2 � Axial electrodynamic bearings

Amati et al. [35] developed sensitivity analyses of the bearing's properties to varia-
tions in the geometry using �nite element computations. Kluyskens et al. [31] used
�nite element results to study the e�ects of eddy current forces in semi-passive bea-
rings having a con�guration similar to that of a homopolar electrodynamic bearing,
presenting experimental measurements for model validation.

Usually, the �nite element analyses of bearings based on eddy currents are per-
formed under quasi stationary conditions. This means that the rotor's position is
�xed with respect to the stator, and the forces generated between rotor and stator
are calculated for di�erent values of rotating speed. If the moving conductor has
invariant cross section at right angles to the direction of motion the modelling is
strongly simpli�ed and the solution can be obtained in three dimensions with a �xed
mesh, without resorting to time-stepping methods [36,37]. This condition is usually
satis�ed for homopolar con�gurations. An alternative to this method is to use two
dimensional time-harmonic analysis, but less accurate results are obtained in this
case. An illustration of the typical results obtained with two and three dimensional
�nite element simulations of homopolar electrodynamic bearings is shown in Fig.
2.3.

2.2 Axial electrodynamic bearings

The use of null �ux coils for magnetic levitation minimizing drag forces was �rst
devised to provide lift force for the levitation of high speed trains [38]. The same
concept can be applied for the realization of axial bearings for high speed rotors
using electrodynamic forces [39].

Besides the promising characteristics of this con�guration, to the author's kno-
wledge, there is very little literature in the subject. Post et al. [10] presented the
con�guration based on stationary conductors and rotating magnets using Halbach
arrays and considering the same design equations proposed for radial bearings in
that work. The research on the topic has evolved mainly relying on experimental
analysis [40�42].

In the case of axial electrodynamic bearings, the use of �nite element simulations
to calculate the forces generated by the currents induced in the null �ux coils is much
more complex than in the radial bearings case. Due to the shape of the conductors
the analysis require three dimensional time-stepping simulations. To the author's
knowledge no results using this procedure were presented for axial EDBs. The
results of �nite element simulations of the stationary magnetic �eld generated by
the permanent magnets, and coupled with analytical models to predict the bearing's
performance, was presented by Thompson [43] and Storm [44].

The modelling of the axial dynamics of the rotor mass was presented by Tonoli
et al. [45], and a test rig similar to that proposed by Sandtner and Bleuler [40] was

13
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devised to produce experimental data used to validate the models under quasi sta-
tionary conditions. The models are used to study the axial stability. The proposed
models were revised by Impinna et al. [46], and possible instability of the axial su-
spension is evidenced, but the conditions needed to stabilize this unstable mode are
easily satis�ed. Experimental results showing passive stable levitation are presented
and discussed.
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Chapter 3

Electromechanical model

In the present chapter a model of electrodynamic bearing is presented. The objec-
tive is to develop a model that allows studying the rotordynamics of any kind of
rotor supported by EDBs. To study the dynamics of a rotor supported by elec-
trodynamic bearings we de�ne the system under analysis. Figure 3.1 presents two
types of electrodynamic bearings. Figure 3.1a shows a schematic representation of
a heteropolar electrodynamic bearing such as that studied in [10,11] while Fig. 3.1b
shows a scheme of a homopolar electrodynamic bearing. In the �rst case, the ma-
gnetic �eld lines close in the same plane of the main �ux Bs while in the second
the �eld closure happens outside the plane as shown in Fig. 3.1c. Two sets of short
circuited coils (1,1' and 2,2') are installed on the rotor on orthogonal planes. This
is the simplest con�guration representative of the dynamic behaviour of the system
as it allows taking into account the vector nature of the electrical quantities arising
in the rotor.

The geometries considered and depicted in the �gure were chosen to put in
evidence the similarities between the two cases. All geometrical con�gurations of
heteropolar EDBs based on the null-�ux scheme and all homopolar con�gurations
mentioned in the previous chapter are considered to be possible under the same
modelling procedure.

The models are developed under the following assumptions:

� The electric parameters of the coils are the same, and they are both shor-
ted. The case of a generic passive shunt can be dealt with by considering the
appropriate value of the impedance in series with the winding.

� The magnetic circuit is isotropic and independent from the angular position
of the rotor.
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Figure 3.1. Schematic representation of a) heteropolar and b) homopolar
electrodynamic bearing con�gurations. c) Closure of �eld lines outside the
plane for the homopolar case.

� The �ux density due to the stator is constant as if generated by permanent
magnets. Additionally, the magnetic �eld of the stator is �xed in space1.

� The cross section of each winding has a negligible area, hence all conductors
are a�ected by the same magnetic �eld.

� Lateral displacements of the rotor are much smaller than the radius of the
coils (xc, yc � rc).

� The rotor angular speed Ω is an input to the system.

� The coordinates xc and yc are the Lagrangian coordinates giving the position
of point C, i.e., the geometric centre of the rotor, with respect to point O, i.e.,
the centre of the magnetic �eld.

The arbitrary orientation of the currents shown in the �gure does not a�ect
the results. An appropriate choice, however, enables writing the system's equa-
tions in terms of complex coordinates, resulting in simpler and more compact equa-
tions [47,48]. The most appropriate choice ensures positive �ux linkages for positive

1The expressions describing a system with rotating magnets are analogue, requiring a simple
modi�cation in the reference frames of the �nal equations.
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displacements of point C in the xy plane. Furthermore, unit vectors n1,2 perpen-
dicular to the plane of windings 1 and 2 have their orientation obtained from the
positive coil currents by the right-hand rule. Rotor angle θ is measured from the x
axis in counter-clockwise direction.

3.1 Potentials and Fluxes

The rotor is allowed to move in the xy plane and the magnetic �ux linked by the
rotor's coils is a�ected by this motion. Expressions for the �ux linkages as a function
of the rotor's position and angle can be derived from the analysis of the analytical
solution of the magnetic vector potential and �ux density in the air surrounding the
coils. The di�erent shape of the magnetic �eld in the air for the homopolar and
heteropolar cases requires the use of di�erent solution strategies for each case.

3.1.1 Heteropolar con�guration

The heteropolar magnetic �eld is generated by Halbach arrays of permanent magne-
ts; it is assumed to be sinusoidal just outside the border of the permanent magnets.
The two dimensional �eld distribution allows to formulate the partial di�erential
equation giving the �ux distribution in terms of the component of the magnetic vec-
tor potential Az perpendicular to the plane of the �ux distribution. The magnetic
�ux density B in the plane can be derived from the solution for the vector potential.
Furthermore, according to the assumption that the Halbach arrays generate a sinu-
soidal �eld, using the properties of the vector potential formulation, it is possible to
formulate a boundary value problem for a generic number of magnetic pole pairs p.
The problem is then de�ned as:

∇2Az = 0

Az(r0) = A0 sin pθ.
(3.1)

The second line gives the value of the magnetic vector potential at the boundary.
The magnetic �ux density can then be obtained as:

B = ∇×Az. (3.2)

Due to the circular geometry, this problem is more conveniently formulated in
polar coordinates. Equation (3.1) can be solved using the variable separation method
and the �ux densities in polar coordinates are obtained from Eq. (3.2) as

Az(r, θ) = A0

(
r

r0

)p
sin(pθ)

B(r, θ) = A0
rp−1

rp0
p

{
cos pθ
− sin pθ

}
.

(3.3)
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For the study it is useful to de�ne the components of B in Cartesian coordi-
nates. It is simple to de�ne a transformation matrix between polar and Cartesian
coordinates as:

Bx,y(r, θ) =

[
cos θ − sin θ
sin θ cos θ

]
Br,θ(r, θ). (3.4)

Note that only the components of the solution are mapped from polar to Carte-
sian coordinates. The variables of the equation remain the in the polar frame. Using
Eq. (3.4) it is possible to represent the �ux density in the air region surrounding
the rotor as:

Bx,y(r, θ) = A0
rp−1

rp0
p

{
cos((p− 1)θ)
− sin((p− 1)θ)

}
. (3.5)

Figure 3.2a shows the graphical representation of Eq. (3.5) for p = 2. In the
�gure the cones give the �ux direction and the lines represent the contour of the
�ux density.

3.1.2 Homopolar con�guration

The homopolar �ux can be generated, for example, as shown in Fig. 3.1c. The lateral
movement of the rotor breaks the axial symmetry of the problem and it becomes
three-dimensional. This does not allow using the vector potential formulation in a
similar way as for the heteropolar case presented in Eq. (3.1). Fortunately, the �ux
distribution in the region of interest is of great simplicity and the expression can be
derived with the help of some simple physical considerations.

The main consideration is that the �ux in the region of interest is radial. The
�ux must respect the Gauss's law for magnetic �elds and consequently the problem
is formulated as follows:

∇ ·B = 0

Br(r0) = B0.
(3.6)

The x and y components of the �ux density can be expressed as:

Bx,y(r, θ) = B0
r0

r
(3.7)

As in the previous case it is convenient to have the �ux expressed in Cartesian
coordinates. Using Eq. (3.4), the �ux density surrounding the rotor is:

Bx,y(r, θ) = B0
r0

r

{
cos θ
sin θ

}
(3.8)
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Az(r0) = A0 sin(pθ)

(a)

B(r0) = B0

(b)

Figure 3.2. Graphical representation of the magnetic �ux density in the air sur-
rounding the rotor. a) Heteropolar b) Homopolar.

A graphical representation of the solution to the di�erential equation given by
Eq. (3.8) is shown in Fig. 3.2b.

3.2 Flux linkages

The �rst step of the proposed modelling is to evaluate the magnetic �ux linked by
the rotor's coils as a function of the rotor's angular position and lateral displacement
in the Cartesian frame of reference. The system under analysis and the geometrical
quantities used in this operation are de�ned in Fig. 3.3 .

The magnetic �ux λ generated by the stator and linked by the rotor can be
obtained from the magnetic �ux density as:

λi =

∫
B · nidΩ, (3.9)

S1

y

1

1'
2'

2

q

O

C
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n 1
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h
x

x 0

f r C

r

Figure 3.3. Sketch of the rotor with the variables for the �ux calculation.
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where ni represents the unit vector normal to the generic surface Ω. If for simplicity
we consider the �eld to be constant along the z axis perpendicular to the plane of
the �gure for the entire length h of the rotor, the surface integration simpli�es into
a line integration along the line S.

λi = h

∫
B · nidSi. (3.10)

If the magnetic �ux B in the plane can be represented in terms of the vector
potential Az following Eq. 3.2, then according to the Stoke's theorem [49], it is
possible to demonstrate that the �ux across this surface can be calculated as:

λi = h(Azi′
−Azi). (3.11)

To de�ne an expression for the total magnetic �ux λ1 and λ2 linked by the rotor's
windings due to the magnetic �eld of the stator one can de�ne a reference frame
(O,ξ,η) that rotates together with the rotor with angle θ. First a virtual displacement
between the points O and C in ξ direction is applied, and Eq. (3.10) is computed
for generic values of the rotor angle θ. The same operation is repeated for a virtual
displacement of the rotor in η direction. The integrals are computed in arbitrary
surfaces S1 and S2 that are chosen to be sectors of cylinders for convenience. The
procedure is developed for both heteropolar and homopolar con�gurations. Due to
the di�erent mathematical representation chosen for the homopolar and heteropolar
con�gurations of EDBs, the integration of the �ux linkage has to be performed
separately for each case.

To perform this operation we recall one of the assumptions made in chapter 3.
It is assumed that the lateral displacements of the rotor are much smaller than the
radius of the coil's. Making reference to Fig. 3.3 this represents that:

r ≈ rc

cosφ ≈ 1

sinφ ≈ φ

φ ≈ ξ0

r
.

(3.12)

3.2.1 Heteropolar

The heteropolar model is derived considering an even number of pole pairs p. This
consideration doesn't reduce the validity of the model.
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3.2 � Flux linkages

Virtual displacement ξ0

Coil 1 The magnetic �ux linked by each coil is obtained by operating the procedure
described using Eq. (3.11) instead of Eq. (3.10). Imposing a �xed position ξ0 in the
rotating frame and evaluating the �ux linked by coil 1 we obtain:

Az1′
= A0

(
r

r0

)p
sin(p(θ + (

π

2
− φ)))

Az1 = A0

(
r

r0

)p
sin(p(θ − (

π

2
− φ))).

(3.13)

Knowing that p is an even number the expression of the �ux linkage is:

λ1ξ = h(Az1′
−Az1) = −(−1)

p
2 2hA0

(
r

r0

)p
cos pθ sin pφ. (3.14)

According to the linearization hypothesis this expression can be written as:

λ1ξ = −(−1)
p
2 ξ02 p hA0

rp−1

rp0
cos pθ. (3.15)

Considering the coe�cient:

Λ0 = 2 p hA0
rp−1

rp0
, (3.16)

the expression for the �ux linked by coil 1 due to a displacement of the rotor in ξ
direction is

λ1ξ = −(−1)
p
2 Λ0ξ0 cos pθ. (3.17)

Coil 2 The vector potential at the terminals of coil 2'2 due to a displacement ξ0

are:

Az2′
= A0

(
r + ξ0

r0

)p
sin pθ

Az2 = A0

(
r − ξ0

r0

)p
sin pθ.

(3.18)

According to Eq. (3.11) the �ux linkage is:

λ2ξ =
A0

rp0
sin pθ ((r + ξ0)p − (r − ξ0)p) (3.19)
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We notice the presence of the binomials of power p. These can be expanded
unsing the binomial theorem in the form:

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk. (3.20)

Combining the two binomials the existence of cases for di�erent values of pole
pairs p can be obtained. The cases are:

(r + ξ0)p − (r − ξ0)p =

{
0 for k = even

2rp−kξp0
(
p
k

)
for k = odd

(3.21)

In agreement with the linearization hypothesis assumed previously, we are inte-
rested only in the terms with ξko for k = 0, 1. The resulting expression for the �ux
linkage of coil 2 is:

λ2ξ = ξ0 2 p hA0
rp−1

rp0
sin pθ. (3.22)

Considering the de�nition of Eq. (3.16), the �nal expression is:

λ2ξ = Λ0ξ0 sin pθ. (3.23)

Virtual displacement η0

The procedure to obtain an expression for the �ux linkages due to a virtual displace-
ment η0 along the η direction of the rotating reference frame is the same as described
previously for ξ direction. In this case only the �nal expressions will be presented
for each coil. They are:

λ1η = (−1)
p
2 Λ0η0 sin pθ (3.24)

λ2η = Λ0η0 cos pθ. (3.25)

The complete expression for the �ux linkage can be written in matrix form as:{
λ1

λ2

}
HE

= Λ0

[
−(−1)

p
2 cos pθ (−1)

p
2 sin pθ

sin pθ cos pθ

]{
ξc
ηc

}
. (3.26)

It's possible to note how the sign of the elements of the �rst row of the matrix
has to be de�ned as consequence of the number of pole pairs. This shows how an
appropriate choice of current orientation inside the coil allows to have the �ux in
terms of a rotation matrix. Later in the chapter we will see how this choice will
enable the representation in terms of complex coordinates, simplifying the notation.
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3.2 � Flux linkages

At this point it is important to recall that the expression for the heteropolar �ux
given by Eq. (3.26) is derived for an even number of pole pairs (p = 2, 4, ...). In
this case there is �ux cancelation when the rotor is at centred position minimizing
the losses [11]. An odd number of pole pairs (p = 1, 3, ...) breaks the symmetry
eliminating the �ux cancelation characteristic for the rotor's coils at centred posi-
tion. This causes the system to behave as an electromagnetic brake/damper, mainly
dissipating the energy associated to the rotation, thus there is no reason for apply-
ing it in the electrodynamic bearing context. For this reason this type of system is
not dealt with in this dissertation; readers may refer to [48, 50, 51] for an extensive
discussion on the topic.

3.2.2 Homopolar

In the homopolar con�guration, the �ux is obtained directly through the integra-
tion of Eq. (3.10) considering the �ux distribution given by Eq. (3.7). As stated
previously, the arbitrary surfaces of integration are chosen to be sectors of cylinder
for convenience. The surfaces are evidenced in Fig. 3.3.

Virtual displacement ξ0

Coil 1 The integration of Eq. (3.10) for a virtual displacement of the rotor in ξ
direction is equal to:

λ1ξ = hr0

∫ ξ0
rc

− ξ0
rc

B0

rc
rdθ = 2B0hξ0

r0

rc
. (3.27)

In this case it can be de�ned:

Λ0 = 2B0h
r0

rc
(3.28)

and the resulting expression for the �ux is:

λ1ξ = Λ0ξ0. (3.29)

In Eq. (3.27) the surface normal is a unit vector pointing radially.

Coil 2 When coil 2 is subject to a displacement in the ξ direction it doesn't
perceive any �ux because the homopolar �ux has zero tangential component. This
means that:

λ2ξ = 0 (3.30)
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Virtual displacement η0

Also in the homopolar con�guration the procedure is repeated for a displacement of
the rotor centre in η direction. The expressions for the �uxes in this case are:

λ1η = 0 (3.31)

λ2η = Λ0η0. (3.32)

The �nal expression for the �ux linkage by the two coils due to rotor motion in
the homopolar con�guration is:{

λ1

λ2

}
HO

= Λ0

{
ξc
ηc

}
. (3.33)

This expression is written in a reference frame ξη that rotates synchronous with the
rotor.

3.2.3 Flux in non-rotating Cartesian coordinates

In the previous paragraphs the expressions were obtained in terms of rotating coor-
dinates. For the derivation of the rotor's equations of motion it is more convenient
to have the expressions in terms of a non-rotating Cartesian reference frame posi-
tioned in the centre of the magnetic �eld. This reference frame does not have to be
inertial as will be seen in the next chapter.

The transformation between rotating and non-rotating reference frames is given
by: {

ξc
ηc

}
=

[
cos θ sin θ
− sin θ cos θ

]{
xc
yc

}
. (3.34)

The resulting expressions for the �ux linkages as a function of the displacement of
the rotor in non-rotating coordinates are:{

λ1

λ2

}
HE

= Λ0

[
cos (p− 1)θ − sin (p− 1)θ
sin (p− 1)θ cos (p− 1)θ

]{
xc
yc

}
(3.35){

λ1

λ2

}
HO

= Λ0

[
cos θ sin θ
− sin θ cos θ

]{
xc
yc

}
. (3.36)

The coe�cient Λ0 is present in both equations, but in the mathematical develo-
pments presented previously it does not result to be identical (see Eq. (3.16) and
Eq. (3.28)). As stated previously, this is a consequence of the di�erent formulation
needed to solve the magnetic �eld in the air for the two con�gurations. It is, never-
theless, a coe�cient that groups together the magnetic and geometrical parameters
de�ning the �ux linkage dependence on lateral displacements and in both cases has
units Wb m−1. In practice this coe�cient has to be identi�ed either by means of
�nite element simulations or experimentally.
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3.3 Forces

The forces acting on the rotor are a consequence of the interaction between the
stator magnetic �eld and the rotor's currents in absence of ferromagnetic materials.
For this reason they are of Lorentz nature and can be calculated as:

F = NLi×B. (3.37)

To obtain the expression for the total force acting on the rotor for any value of
current and position of the rotor, a procedure similar to what described previously
for the �uxes can be applied. The only di�erence is that in this case Eq. (3.37)
must be calculated. Under the assumptions listed in the introduction of chapter 3,
the expressions for the force for the heteropolar and homopolar bearings are:{

Fx
Fy

}
HE

= Λ0

[
cos (p− 1)θ sin (p− 1)θ
− sin (p− 1)θ cos (p− 1)θ

]{
i1
i2

}
(3.38){

Fx
Fy

}
HO

= Λ0

[
cos θ − sin θ
sin θ cos θ

]{
i1
i2

}
. (3.39)

It is important to notice how the force, di�erently from the �ux, is independent
from the lateral position of the rotor, being a function of the rotor angle and coil's
currents only. The coe�cient Λ0 is identical to that obtained for the �uxes in Eqs.
(3.35) and (3.36).

3.4 Equations in complex notation

Equations (3.35) and (3.36) describe the magnetic �ux linkage perceived by the
rotor, and Eqs. (3.38) and (3.39) give the force acting on the rotor.

The equations show that the magnetic �ux linked by the rotor's windings can be
represented by a rotating vector. Similarly, the displacement of point C, the current
in the coils and the force can be represented as vectors. These vectors can be written
as complex numbers. The advantage is a more compact notation to represent the
system's equations.

The vector quantities written as complex numbers can be interpreted as:

qc = xc + jyc

λ = λ1 + jλ2

i = i1 + ji2

Fq = Fx + jFy

(3.40)
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where j =
√
−1. Written as functions of the complex variables, Eqs. (3.35), (3.36),

(3.38) and (3.39) are:

λHE = qcΛ0e
j(p−1)θ (3.41)

λHO = qcΛ0e
−jθ (3.42)

FHE = iΛ0e
−j(p−1)θ (3.43)

FHO = iΛ0e
jθ. (3.44)

Equations (3.41) and (3.42) may be seen as two cases of bearings characterized
by di�erent number of pole pairs in circumferential direction. The heteropolar has
p pole pairs (p inversions of the magnetic �eld in the air gap) while the homopolar
has none (no inversions of the �eld in the air gap, i.e., p = 0). In both cases there
is �ux cancellation when the rotor is centred. It is possible to see that even if
the heteropolar and homopolar solutions do not come from the same mathematical
treatment, they can be uni�ed. The expressions can be merged into a set of equations
representing both cases as:

λ = qcΛ0e
j(p−1)θ

Fq = iΛ0e
−j(p−1)θ.

(3.45)

Considering this equation, it is possible to proceed the analytic treatment of
electrodynamic bearings in an uni�ed way for both homopolar and heteropolar con-
�gurations. Analysing one case or the other becomes a simple parametric problem.

3.5 Dynamic behaviour

To describe the dynamics of the eddy currents inside the coils and also the dyna-
mic e�ects of electrodynamic bearings on rotors supported by them, we make the
assumption that the rotor rotates at constant angular speed Ω (θ = Ωt). Assuming
constant, or slowly varying, rotating speed is commonly done in rotordynamics [47]
and does not reduce the validity of the model.

At this point it is possible to write an equation that describes the behaviour of
the current in the electric circuit of the coils. Figure 3.4 presents the electric circuit
where the terms Rc and Lc are the resistance and inductance of the coil. For some
applications it may be interesting to connect inductive loaded circuits in series with
the coil [10, 11, 18,19, 21]. For this reason the terms of a generic passive shunt Radd

and Ladd are introduced in the model. The mutual inductance between the coils has
been neglected. The orthogonality between the two coils justi�es this assumption.
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Figure 3.4. Electric circuit of the rotor's short circuited coils.

3.5.1 Eddy currents and bearing's forces

Taking the de�nition of the complex variables in Eq. (3.40) into account, the state
equation describing the dynamics of the eddy currents inside the coils can be written
as:

di

dt
=
λ̇

L
− R

L
i. (3.46)

The equation describing the dynamics of the current inside the coils is obtained
applying the Kircho�'s voltage law.

Combining Eq. (3.45) and (3.46) it is possible to obtain the �nal state equation
describing the electromechanical interaction created by the electrodynamic bearing.
Putting in evidence the mechanical inputs (qc, Ω) and outputs (Fq), the state and
output equations become:

di

dt
=

Λ0

L
(q̇c + j(p− 1)qcΩ)ej(p−1)Ωt − R

L
i

Fq = iΛ0e
−j(p−1)Ωt.

(3.47)

Although linear, this equation has time varying coe�cients. To study the dy-
namics using typical LTI (Linear Time-Invariant) analysis tools it is necessary to
obtain an equation with time invariant coe�cients. The information of interest from
Eq. (3.47) are the bearing's forces. Bearing this in mind, it is possible to exchange
the state and the output variables. Force Fq becomes then the state and current i the
output. The second equation of Eq. (3.47) is used as a coordinate transformation
to obtain the following constant coe�cient equation:

Ḟq =
Λ2

0

L
(q̇c + j(p− 1)qcΩ)− Fq

(
R

L
+ j(p− 1)Ω

)
i =

Fq
Λ0

ej(p−1)Ωt.

(3.48)
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3 � Electromechanical model

This set of equations will be used for modelling the electrodynamic bearing in
all the following analyses.
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Chapter 4

Experimental validation through

quasi-stationary tests

This chapter describes the experimental work carried out to validate the electrody-
namic bearing models presented in the previous chapter. The validation is performed
by comparing the model's results with experimental data obtained under a control-
led operating condition. An axial �ux homopolar electrodynamic bearing is used to
perform the validation.

4.1 Modelling of the experiment

When dealing with homopolar electrodynamic bearings usually it is necessary to use
solid conductors and the concepts of resistance and inductance are di�cult to apply
directly. Hence, the model's coe�cients are more easily interpreted and dealt with
referring to their mechanical equivalents [28] as:

k =
Λ2

0

L

c =
Λ2

0

R

ωRL =
R

L
=
k

c
.

(4.1)

In the mechanical equivalent representation the parameters are interpreted as:

� k represents the bearing's mechanical sti�ness at in�nite rotational speed.

� c represents the bearing's equivalent viscous damping at zero rotational speed.
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4 � Experimental validation through quasi-stationary tests

� ωRL is the electric pole frequency.

It is obvious that the mechanical coe�cients given by Eq. (4.1) can be substi-
tuted directly in the EDB's dynamic model given by Eq. (3.48) without any loss of
validity, and the studies presented previously remain valid.

To perform the experiments that serve to validate the models described previou-
sly it is necessary to identify a working condition that can be reproduced experi-
mentally and does not require neglecting any parameter. One possible condition is
the quasi stationary (or quasi static) condition. With reference to Fig. 3.1b, the
test in quasi stationary conditions requires the introduction of a �xed, known value
of eccentricity between points O and C. The rotor must be put into rotation at dif-
ferent values of spin speed that remains constant during each measurement. From
the modelling point of view this imposes the following constraints to the solution:

qc = q0

q̇c = 0.
(4.2)

Applying these constraints to Eq. (3.48), the force produced by the electrodynamic
homopolar electrodynamic bearing in quasi stationary conditions is equal to:

Fq =
Λ2

0

L

 1

1 +
(
R/L
Ω

)2 − j
Ω

R
L

(
1 +

(
Ω
R/L

)2
)
 . (4.3)

The solution is in accordance with the notation used during the derivation of the
model, hence, the real and imaginary parts of the solution represent the components
of the force in x and y directions, respectively.

A non-linear curve �tting tool can be used to �t Eq. (4.3) to values of force
measured experimentally, serving both as a model validation tool and as a tool for
identi�cation of parameters.

4.2 Test rig for quasi stationary characterization

The tests are addressed to produce experimental evidence of the correctness of the as-
sumptions used to develop the models. A second objective is to verify the procedure
for the identi�cation of the model's coe�cients by means of curve �tting.

The requirements for the realization of the experimental tests are:

� Measure the radial forces developed by the electrodynamic bearing at �xed,
known eccentricity.
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4.2 � Test rig for quasi stationary characterization

� Measure the spin speed of the rotor.

To this end the test rig shown in Fig. 4.2 was designed. The test rig is composed
of three main parts: (a) the mechanical structure, (b) the magnetic circuit, forming
the stator of the electrodynamic bearing, and (c) the rotating parts. The parts of
the test rig are numbered in the balloons in Figs. 4.2a and 4.2b.

The structural part is composed by two aluminium plates (5) rigidly connected
between each other with 4 vertical beams (15). A micrometric positioning stage
(11) is �xed to the upper aluminium plate. A DC electric motor is �xed to the
positioning stage using a two piece structure similar to a bell housing (4). The
maximum rotation speed of the electric motor is 10000 rpm.

The rotating parts are supported by two ball bearings. The shaft (2) that drives
the rotating conductor of the electrodynamic bearing (9) is connected to the electric
motor by means of a �exible coupling (3). The magnetic circuit of the electrodynamic
bearing is composed of three iron parts (8) forming the back iron and two permanent
magnets (7). It is connected to the test rig structure by means of four �exible
steel beams (6). Two load cells (10) positioned orthogonal to each other are used
to constrain the position of the EDB's stator and to measure real and imaginary
components of the force produced by the EDB. An optical encoder (12) is attached
to the upper end of the shaft providing the spin speed signal.

The main geometrical parameters characterizing the electrodynamic bearing used
for the tests are illustrated in Fig. 4.1. With respect to this �gure, the values of the
dimensions and physical quantities characterizing the whole system are grouped in
Tab. 4.1.

di
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2,86"

0,14"
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3,15"

1,97"

D

Figure 4.1. Reference model with quotations of the fundamental geometric para-
meters of the electrodynamic bearing used in the experimental tests.
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Figure 4.2. Test rig for the measurement of the quasi-static characteristic of the
bearing. a) Cross section view. b) Picture of test rig.
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4.3 � Experimental analysis.

Table 4.1. Main parameters of the test rig for quasi stationary characterization.

Parameter Value Unit
Geometry of the permanent magnets Ring -
Material of the permanent magnets NdFeB -
Residual magnetization 1.09 T
Permanent magnets' external diameter de 120 mm
Permanent magnets' internal diameter di 64 mm
Permanent magnets' thickness mt 5.5 mm
Conducting discs' external diameter D 110 mm
Conducting discs' thickness t 3 mm
Air gap g 1 mm

4.3 Experimental analysis.

The realization of experimental tests requires an accurate observation of the pheno-
mena involved, trying to isolate as much as possible the e�ects of interest. Usually
it is very di�cult to predict all the details that in�uence the �nal results, and a
�ne tuning of the experiments can only be found following with rigour a testing
procedure. The testing procedure for the electrodynamic bearing's characterization
under quasi stationary conditions requires performing the following steps before and
during each test:

1. Connection of the EDB's rotor to the lower end of the shaft and connection of
the EDB's stator using four �exible steel beams (6).

2. Introduction of the load cells in between the EDB's stator and a rigid inertial
basing.

3. Calibration of the measurement chain to account for the sti�ness in parallel
introduced by the four steel beams (6).

4. De�nition of the centred position (referring to Fig. 3.1b, O = C). This is
done by putting the rotor into rotation at a relatively high rotational speed
and then acting on the micrometric positioning stage until the forces measured
by the load cells are brought close to zero. In practical terms the zero can be
reached within a tenth of a Newton.

5. Imposition of the eccentricity q0 by acting in one of the micrometres. In the
tests presented q0 = 0.5 mm.

6. Accelerate the rotor to di�erent values of rotational speed and measure the
values of forces produced by the bearing. Since the electrical dynamics of the
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4 � Experimental validation through quasi-stationary tests

eddy currents is usually much faster than the mechanical dynamics, the mea-
surements can be performed in a run up test without any loss of information.

The data obtained performing this procedure is acquired using a LMS digital signal
analyser. A �ltering and down sampling operation is performed in post processing
phase to render the data clearer and easier to manipulate.

The tests are performed for three di�erent types of conducting materials, namely
brass, aluminium, and copper. The geometry of the sample discs is equal in the three
cases and is de�ned in Tab. 4.1 with respect to Fig. 4.1. The results obtained are
shown in Fig. 4.3. Figure 4.3a shows the results obtained using a brass disc, Fig.
4.3b shows the results for an aluminium disc, and Fig. 4.3c shows the results for a
copper disc.

The agreement between the experimental results for the bearing's forces and
the analytical model is very good in all three cases, con�rming the validity of the
model. The values of the mechanical equivalent parameters describing each test
(brass, aluminium, and copper) are summarized in Tab. 4.2. The values of these
parameters are the results of curve �tting between Eq. (4.3) and the experimental
data for each case. A con�rmation of the goodness of the parameter estimation can
be obtained comparing the values of k and c for the di�erent materials. As expected
the sti�ness remains virtually the same in all three cases. This is due to the fact
that the parameter k is not a�ected by the conductivity of the material but depends
only on the magnetic characteristics of the magnetic circuit and the shape of the
eddy current path. Since the geometry of the conductor and magnetic circuit is the
same in all cases, the k must remain constant. On the other hand, the damping is
strongly a�ected by the material's conductivity and increases for increasing values
of conductivity, thus the copper disc is expected to have higher damping than the
aluminium and brass discs.

Table 4.2. Main parameters of the test rig for quasi stationary characterization.

Material k [N m−1] c [N s m−1]
Brass 35541 19.5
Aluminium 36018 35
Copper 35722 67.1
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Figure 4.3. Comparison between experimentally measured forces and analytical
model for di�erent conducting materials in the EDB's rotor. a) Brass, b) alumi-
nium, and c) copper. Measured imaginary component of force (◦), measured real
component (· · · ), analytical model (−)
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Chapter 5

Je�cott rotor

By the nature of the phenomena, studying the dynamics of a rotor on magnetic
bearings requires one to consider that the centre of the rotor is moving relative to
the stator. In the speci�c case of the electrodynamic bearing, this means that the
centre of the conductor (point C) is moving relative to the magnetic �eld (point O).
Equation (3.48) takes this into account. The new state variable Fq can be used to
�nd the coupling with the dynamic equation of the rotor mass m. In this way it is
possible to study the rotordynamic implications of supporting rotors with di�erent
types of electrodynamic bearings.

The simplest model that can be used to study the dynamic behaviour of a rotor
is the Je�cott rotor model. It consists of a point mass attached to a massless shaft.
This model represents an oversimpli�cation as it neglects many aspects present in
real world rotors but, nevertheless it allows to gain insight into important phenomena
specially in the case of rotors supported by electrodynamic bearings.

In this section we will study the stability of the Je�cott rotor model supported
exclusively by EDBs. The stability of a linear system is determined by the eigenva-
lues of this system. Brie�y, the system is stable if the real part of all the eigenvalues
is negative [52]. This means that the system will exhibit a bounded output for re-
spective bounded inputs. In the rotordynamics context this means that the rotor
will respond to any disturbance forces with orbits of bounded radius.

For the demonstration of the concepts some graphs are used. The values of the
EDB's parameters and rotor's mass used to produce the diagrams are given in Tab.
5.1.
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5 � Je�cott rotor

Table 5.1. Parameters describing the dynamics of a Je�cott rotor on EDBs.

Parameter Symbol Value Unit
Rotor's mass m 2.025 kg
Flux linkage constant Λ0 10 Wb m−1

Bearing's resistance R 0.286 Ω
Bearing's inductance L 0.33 mH

5.1 Undamped Je�cott rotor

The equation of motion of the Je�cott rotor supported by EDBs is

mq̈c + Fq = Fext, (5.1)

where Fq is the force introduced in the system by the electrodynamic bearing and
Fext is a generic disturbance force acting in the rotor's mass. Note that the force
introduced by the bearing is seen as a reaction by the rotor mass.

The electrodynamic bearing of Eq. (3.48) and the rotor of Eq. (5.1) are interac-
ting subsystems. The rotor block responds to forces and moments with velocities
and displacements. The bearing responds to the rotor's outputs with forces. As a
consequence, to study the dynamic behaviour of the rotor running on EDBs, Eq.
(3.48) and (5.1) must be solved together. Given the linear time invariant form of
the equations, a state-space model can be built for this purpose. The state-space
model has the form: 

q̈c
q̇c
Ḟq

 = A


q̇c
qc
Fq

+B
{
Fext

}
. (5.2)

The dynamic matrix A is

A =

 0 0 − 1
m

1 0 0
Λ2
0

L
j

Λ2
0

L
(p− 1)Ω −

(
R
L

+ j(p− 1)Ω
)
 (5.3)

and the input gain matrix B is equal to

B =

 1
m

0
0

 .
The state-space modelling allows studying the rotordynamic stability, frequency

response, unbalance response, and enables developing other tools to study the dy-
namics of the suspension in a fast and easy way. The analysis of di�erent systems
can be performed as simple parametric studies.
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Figure 5.1. Root loci plot of the Je�cott rotor supported by electrodynamic bea-
rings for increasing values of rotating speed.

To study the rotor's stability we calculate the eigenvalues of the dynamic matrix
A of the suspension's model (rotor supported by EDB) and analyse the evolution of
the system's poles in a root loci plot. Figure 5.1 shows the root loci plot obtained
by calculating the eigenvalues of Eq. (5.3) for increasing values of rotating speed Ω.
Note that the �gure shows the evolution of the poles for the homopolar case and for
the heteropolar with p = 2.

It can be seen how the system presents a root that is in the right hand part
of the complex plane for any value of rotating speed di�erent from zero. This is
true for both homopolar and heteropolar cases, representing that the Je�cott rotor
supported by EDBs is unstable for any value of rotating speed if the system is
not modi�ed. The reason for this unstable behaviour has been identi�ed to be
the presence of rotating damping in the system. The eddy currents induced in the
conducting part of the electrodynamic bearing dissipate energy associated to the
motion of the rotating part. Rotating damping forces are known to destabilize the
free whirling motion of rotors for speeds above the �rst critical. In particular, if
the rotating damping is of viscous type, the instability threshold of the undamped
system (no external non rotating damping) is equal to the �rst critical speed [47].

Intuitively one can think that the instability arises from the fact that the system
is always operating in supercritical regime because the electrodynamic supports are
unable to give radial sti�ness at zero rotating speed. Actually this statement is
only partially valid since the behaviour of the electrodynamic bearing cannot be
correctly represented by a rotating viscous damper. The frequency dependence of
the bearing's forces must be taken into account, modifying the overall behaviour.
In the next sections we will use the suspension model to study its dynamic response
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5 � Je�cott rotor

and analyse di�erent stabilization techniques previously presented in the literature
[10,29].

5.2 Damped Je�cott rotor

The most straightforward way to introduce non rotating damping in the system is to
do it by means of an electromagnetic damper associating non rotating damping to
the rotor translational degree of freedom qc. This stabilization technique has been
proposed almost from the beginning of the interests in electrodynamic suspension of
rotors. From the modelling point of view it consists simply in introducing a viscous
damping element associated to the rotor translational degree of freedom qc. As a
result non-rotating damping is introduced in the model of Eq. (5.1) and the new
equation of motion of the rotor's mass is:

mq̈c + cq̇c + Fq = Fext. (5.4)

The dynamic matrix of the state-space model is also updated

A =

 − c
m

0 − 1
m

1 0 0
Λ2
0

L
j

Λ2
0

L
(p− 1)Ω −

(
R
L

+ j(p− 1)Ω
)
 . (5.5)

Figure 5.2 shows the in�uence of the non-rotating damping on the system's po-
les. It is readily seen that the presence of damping allows stabilizing the dynamic
behaviour above a certain value of rotating speed ΩS. This value represents a sta-
bility threshold, being the system unstable for spin speeds below it and stable for
speeds above it. Another conclusion that arises from this diagram is that the bea-
ring's rotating damping contribution reduces for higher values of spin speed, when
the stabilizing sti�ness contribution becomes dominant.

It can also be pointed out that increasing the number of pole pairs of the hete-
ropolar con�guration is bene�cial for the stability. The presence of more magnetic
pole pairs increases the frequency perceived by the electrical circuit. The resulting
e�ect is that the spin speed for which the damped rotor becomes stable is decreased.
This characteristic can be observed in Fig. 5.3 where the real part of the unstable
root is plotted versus the spin speed. The spin speed for which the graph crosses
the zero represents the stability threshold for that con�guration.

5.2.1 Unbalance response

The static unbalance introduces a force whose amplitude is a quadratic function of
the spin speed and can become quite large for high speed rotors [47]. Conventio-
nal ball and roller bearings, that can be modelled as sti� spring-damper elements,
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Figure 5.2. Root loci plot of the damped Je�cott rotor.

0

0

Ω [rpm]

σ
=

R
e(
s)

[1
/s
]

 

 
p = 0
p = 2
p = 4
p = 6

Unstable

Stable

Figure 5.3. In�uence of the number of magnetic pole pairs on stabiliza-
tion threshold speed.

constrain the rotor to spin around its geometrical axis, transmitting the unbalance
force to the housing of the machine. This may lead to large vibrations or even to
bearing failure.

Unbalance compensation has been an important research topic in the magnetic
bearing community almost from the beginning. In case of active magnetic bearings,
the presence of a feedback loop opens opportunities for managing unbalance that
were almost unthinkable with conventional bearings. Several algorithms have been
proposed to actively identify and compensate the e�ects of the unbalance [53, 54].
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5 � Je�cott rotor

By converse, very little e�ort has been focused on the unbalance e�ects in case of
rotors supported by passive magnetic bearings.

Similarly to conventional bearings, passive magnetic bearings using reluctance
forces or permanent magnet forces cannot deal with unbalance and may as well
resent of vibrations due to residual unbalance, specially during acceleration phases.

Electrodynamic bearings react to unbalance forces in di�erent ways according
to the number of magnetic pole pairs. It is shown in Fig. 5.4a how the unbalance
response of the rotor running on homopolar bearings presents no ampli�cation due
to resonance. On the other hand, Fig. 5.4b shows that a rotor on heteropolar
bearings presents an unbalance response that, besides the stability issue, is similar
to the response of a rotor on �exible supports.

It can be demonstrated that the absence of a resonance peak in the unbalance
response of the homopolar case is not due to the external damping added to stabilize
the system, but is an intrinsic characteristic of the homopolar bearing. Considering
that the force generated by the unbalance of the rotor introduces a synchronous
forcing function with the form:

Funb = mεΩ2ejΩt; (5.6)

the response of the rotor to such a force is a synchronous whirl

qc = q0e
jΩt. (5.7)

Substituting Eq. (5.7) in Eq. (3.45) we get that the �ux linked by the coils as a
function of the rotor angle is

λ = q0Λ0, (5.8)

which is constant for every rotor angle. This means that the back electromotive
force in the coils bemf = −λ̇ is equal to zero. From Eq. (3.46) this results in no
current in the coils and, therefore, no force due to unbalance. This is not true for
any heteropolar con�guration.

The unbalance response of the homopolar electrodynamic bearing results to be
equal to the residual unbalance in the whole working range, which means that the
rotor always spins around its inertia axis (self-centred). As a consequence, no force
due to rotor's unbalance is produced by the bearing and transmitted to the housing,
thus the rotor should rotate smoothly. On the other hand, analysing the reaction
forces produced by the heteropolar bearing it is possible to notice how it reacts as
a normal �exible support, perceiving all external disturbances and reacting to it.
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Figure 5.4. Unbalance response of a rotor running on a) homopolar and b) hete-
ropolar electrodynamic bearings.

5.2.2 Frequency response

The behaviour of electrodynamic bearings subject to unbalance forces can also be
evidenced by the transfer response function between input rotor's forces and output
forces transmitted to the housing. This function is shown in Fig. 5.5. The graph is
plotted with respect to a non-dimensional frequency equal to the forcing frequency
ω divided by the spin speed Ω.

It can be noticed how the force produced by the homopolar bearing has the
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Figure 5.5. Frequency response function between the electrodynamic support
forces and the rotor forces.

behaviour of a narrow notch �lter for a force excitation synchronous with the rotating
speed (ω/Ω = 1). As in the previous section, it reinforces the fact that the homopolar
bearing cannot perceive synchronous forces and consequently these are �ltered and
not transmitted to the housing. This is an advantage of this particular type of passive
bearing with respect to active magnetic bearings. Similar behaviour is pursued in
the active magnetic bearing context by means of complex control strategies that
require platforms with high processing performance.

The heteropolar bearing behaves again as a regular elastic support reacting to
every input frequency.

5.3 Je�cott rotor on elastic basing

An alternative to the previous solution that allows introducing non-rotating damping
in an e�ective way is to introduce a stabilizing element between the stator of the
EDB and a rigid base. This element can be devised in di�erent ways, but in any
case must be capable of introducing both sti�ness and damping. This solution has
been applied successfully to damp rotor induced vibrations, being the most evident
case that of a common laundry machine.

Within the EDB's context this system was analysed by Tonoli et al. [29]. It
was shown that the stability boundaries of a Je�cott rotor on this kind of support
can be reduced with respect to those of the case described in Sec. 5.2. It also
avoids increasing the rotor's mass and complexity by eliminating the permanent
magnets dedicated to the damping in the former con�guration. Instead, damping
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5.3 � Je�cott rotor on elastic basing

is introduced between two non-rotating elements, thus enabling the use of regular
damping systems such as viscoelastic materials or squeeze �lm dampers. However,
the choice of appropriate values of sti�ness and damping of the stabilizing element
is not obvious, requiring the solution of an optimization problem.

From the modelling point of view, this case is interpreted as shown in Fig. 5.6.
In the �gure the xy frame is inertial as if attached to an in�nitely sti� base while
x′y′ is a translating frame attached to the stator mass. The axes of the two systems
remain parallel to each other. It must be noticed that in this case there are three
interacting subsystems, namely, the rotor, the EDB and the stator. With respect to
the �gure, the associated complex degrees of freedom are:

� The displacement of the rotor geometric centre C in the inertial frame.

q = x+ jy (5.9)

� The displacement of the stator mass ms represented by the point S in the
inertial frame.

qs = xs + jys (5.10)

� The relative displacement between the displacement between points C and S.

qc = q − qs (5.11)

The equations of the rotor mass and EDB are given by Eq. (5.1) and Eq. (3.48)
respectively. The displacements and speeds considered in the EDB's equations are
the relative ones (qc and q̇c). The stator mass dynamics is described by the following
equation:
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Figure 5.6. Model of the Je�cott rotor on elastic supports.
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msq̈s + cS q̇s + ksqs − Fq = 0. (5.12)

The presence of the negative sign on the bearing force Fq means that the stator
mass sees this force as an external force while the rotor mass perceives it as a reaction
force (see Eq. (5.1)).

The state space model of this system can be written as:
q̈
q̈s
q̇
q̇s
Ḟq

 = A


q̇
q̇s
q
qs
Fq

+B
{
Fext

}
. (5.13)

The dynamic matrix A for the state-space model of this system is:

A =


0 0 0 0 − 1

mr

0 − cs
ms

0 − ks
ms

1
ms

1 0 0 0 0
0 1 0 0 0
Λ2
0

L
−Λ2

0

L
j

Λ2
0

L
(p− 1)Ω −jΛ2

0

L
(p− 1)Ω −

(
R
L

+ j(p− 1)Ω
)

 (5.14)

and the input gain matrix B is equal to

B =


1
mr

0
0
0
0

 .
The root loci of this system considering the same bearing's characteristics of the

previous case is shown in Fig. 5.7. The values of sti�ness ks and damping cs are
240 kN/m and 510 N s/m. The choice of these values must be done performing an
optimization to minimize the stabilization threshold speed. To have an objective
view of the problem one can resort to a plot showing the response of the stabilization
threshold speed in terms of di�erent values of ks and cs. Figure 5.8 shows a countour
plot of the stabilization threshold speed. The presence of a minimum is clear in the
�gure leaving to the designer the task of optimizing the system's properties to mini-
mize the stabilization threshold speed guaranteeing that the region surrounding the
minimum lies within a region of physically feasible property values. This operation
is described for the design of a prototype system in chapter 7.
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Figure 5.7. Root loci plot showing the evolution of the system's poles for
increasing values of spin speed Ω.
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Figure 5.8. Example of mapping of the stabilization threshold speed in
terms of the mechanical properties of the elastic element connecting EDB's
stator and inertial base.

5.4 Anisotropy of heteropolar bearings

In the preceding sections, both rotor and stator were assumed to be axial symmetric.
Considering the di�culty in insuring stability of the whirling motion of the rotor,
a stabilizing technique for transverse whirl modes introducing anisotropy into the
bearing sti�ness can be considered [11]. For solving this problem it is necessary
to open the state space model in complex coordinates given by Eq. (5.5) into it's
representation in real coordinates as:
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

ẍc
ÿc
ẋc
ẏc
Ḟx
Ḟy


= A



ẋc
ẏc
xc
yc
Fx
Fy


+B

{
Fext

}
, (5.15)

where the dynamic matrix is:

A =



− c
m

0 0 0 − 1
m

0
0 − c

m
0 0 0 − 1

m

1 0 0 0 0 0
0 1 0 0 0 0

Λ2
0x

Lx
0 0 (p− 1)

Λ2
0x

Lx
Ω −Rx

Lx
−(p− 1)Ω

0
Λ2
0y

Ly
−(p− 1)

Λ2
0y

Ly
Ω 0 (p− 1)Ω −Ry

Ly


. (5.16)

Calculating the eigenvalues of the dynamic matrix for di�erent values of spin
speeds it is possible to �nd the stabilization threshold speed. If di�erent values
of the ratio between the properties in x direction and those in y direction, and
�nding the stabilization threshold speed in every case, it is possible to study how
the anisotropy of these properties in�uence the stabilization speed. Figure 5.9 shows
the graphs obtained performing this operation for di�erent values of non-rotating
damping between rotor and stator. It can be noticed that the anisotropy has a
strong in�uence on the stabilization speed. In fact, one of the worst cases is exactly
when the properties of the bearing are isotropic; this is evidenced by the peak in the
stabilization threshold speed. The non-rotating damping has the e�ect of reducing
the stabilization speed in the whole range. One aspect to be noticed is that for
very large values of anisotropy combined to large values of bearing's sti�ness, the
stabilization threshold reduces strongly towards zero also for low values of non-
rotating damping.
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Figure 5.9. Stabilization speed of the rotor on heteropolar EDB with aniso-
tropic properties of the bearing.

5.5 Anisotropy of stator-casing connections

The homopolar concept was �rst devised to eliminate unnecessary eddy current
losses generated by AC electrodynamic bearings [30]. The concept itself presupposes
axial symmetry of both rotor and stator, hence the introduction of anisotropy of the
bearing is not possible. On the other hand, considering the con�guration presented
in Sec. 5.3, it is possible to imagine a system where the sti�ness and damping of
the connections between the stator of the EDB and the basing are di�erent in each
direction.

Similarly to the previous case, this system is more conveniently represented in
real coordinates. The representation in complex coordinates is possible as well [47]
but creates di�culties for the state-space modelling.

In the �rst paragraph the homopolar concept was cited to motivate this section
however, as a consequence of the uni�ed modelling, the e�ect of anisotropy can
be appreciated in both homopolar and heteropolar con�gurations. The state-space
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model can be written as: 

ẍc
ÿc
ẍ
ÿ
ẋc
ẏc
ẋ
ẏ

Ḟx
Ḟy



= A



ẋc
ẏc
ẋ
ẏ
xc
yc
x
y
Fx
Fy



+B
{
Fext

}
. (5.17)

where the dynamic matrix is:

A =



0 0 0 0 0 0 0 0 − 1
m

0
0 0 0 0 0 0 0 0 0 − 1

m

0 0 − cx
ms

0 0 0 − kx
ms

0 1
ms

0

0 0 0 − cy
ms

0 0 0 − ky
ms

0 1
ms

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
Λ2
0

L
0 −Λ2

0

L
0 0

Λ2
0

L
Ω 0 −Λ2

0

L
Ω −R

L
−Ω

0
Λ2
0

L
0 −Λ2

0

L
−Λ2

0

L
Ω 0

Λ2
0

L
Ω 0 Ω −R

L


(5.18)

From the stability viewpoint, the inputs of the system are irrelevant [52] and the
input gain matrix doesn't have to be de�ned.

The possibility of taking advantage of anisotropy of the connections to reduce the
stabilization threshold speed, the stabilization speed can be calculated for di�erent
values of the anisotropy ratio (α = kx/ky). Considering constant values of the
rotor and stator masses, m and ms respectively, and the system scheme of Fig.
5.6, the e�ect of anisotropy is studied in terms of the damping ratio ζ. Figure 5.10
shows how anisotropy and damping ratios a�ect the stabilization speed. For systems
having low damping ratios, the anisotropy can have a bene�cial role, reducing the
stabilization speed threshold. The increase in the damping ratio eliminates the
positive e�ects anisotropy in the elastic connections, but e�ectively reduces the
stabilization threshold.

The anisotropy in this case has a di�erent e�ect with respect to that illustrated
in Fig. 5.9. The increase in the anisotropy ratio with a respective increase in the
sti�ness of one direction results to increase the stabilization threshold speed. This
diagram is case dependent but in general it is expected that the anisotropy will have
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Figure 5.10. Stabilization speed of the rotor on homopolar EDB with anisotropic
connections between bearing stator and basing.

a positive contribution only when the value of damping is low [47]. Furthermore,
within physically feasible margins, it is always more advantageous to increase the
value of damping than to use anisotropy e�ects because the stabilization threshold
speed is more sensitive to the �rst than to the latter.
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Chapter 6

4 DOF model

In the previous chapter the dynamic behaviour of a Je�cott rotor supported by elec-
trodynamic bearings has been studied. As stated there, this rotor model represents
an oversimpli�cation. The four degree of freedom (4DOF) model represents a more
realistic model since the tilting degree of freedom of the rotor's centre of mass is
taken into account. In the present chapter the aspects related to stability of the
suspension are addressed considering a 4DOF rotor model. This analysis should put
in evidence some critical aspects related to the system's stability that have never
been studied in previous works.

The system under analysis is composed by three subsystems that interact wi-
th each other by exchanging forces, namely rotor, electrodynamic bearing, and
the EDB's stator connected to the basing through elastic elements. A schematic
representation is shown in Fig. 6.1.

a b

EDB
1

EDB
2

m, J , Jt p

ms1

ks1cs1

ms2

ks2cs2

y
x

z

Figure 6.1. Model of a four degree of freedom rotor supported by electrody-
namic bearings on elastic basing.
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6 � 4 DOF model

To correctly model the tilting degree of freedom, the position of the supports
must be considered. For this matter, in the following section we de�ne a set of
operations that transform the motion of the rotor's centre of mass into motion at
the bearings and also the reactions at the bearings into reactions at the rotor's centre
of mass.

6.1 Transformation matrices

Representing the interaction between the rotor and the electrodynamic bearings
requires the de�nition of a transformation between inputs and outputs of rotor's
centre of mass and bearing's centre and vice versa. The bearing responds to displa-
cements and speeds with forces that are applied at the bearing's centre, but act on
rotor's centre of mass. Similarly, the lateral and rotational motions of the centre of
mass generate an equivalent lateral motion at the bearing's centre1. Two di�erent
arrangements of rotor and EDBs are analysed to de�ne these relations, they are:

1. Rotor's centre of mass located between the two bearings.

2. The two bearings located at the same side of the rotor's centre of mass.

The transformation matrices are de�ned in terms of real quantities and subse-
quently the complex notation is introduced to reduce their order.

6.1.1 Rotor's centre of mass between bearings

Considering a rotor supported by two generic bearings located at the two ends of
the shaft, the transformations are presented in �gures 6.2 and 6.3.

Figures 6.2a and 6.2b represent the transformations of forces generated by the
bearings at the ends of the shaft into resultant forces and moments acting in the
rotor's centre of mass in planes zx and zy respectively. It is important to note how
the de�nition of the coordinate system of Fig. 6.1 implies a di�erent sign convention
for moments and rotations in the two planes.

To compute the transformation matrix between forces at the bearings and the
forces and moments at the rotor's centre of mass, we apply two generic forces, Fx1
and Fx2 , at the supports and calculate the resulting force and moment at the rotor's
centre of mass, obtaining:

Fx = Fx1 + Fx2
My = −aFx1 + bFx2 .

(6.1)

1This consideration is valid under the assumption of small lateral and rotational displacements.
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Figure 6.2. De�nition of force exchange between the electrodynamic bea-
rings and the centre of the rotor

Subsequently, the same procedure is performed in plane zy; forces Fy1 and Fy2
are applied at the supports and the resulting force and moment at the rotor's centre
of mass are computed:

Fy = Fy1 + Fy2
Mx = aFy1 − bFy2 .

(6.2)

Condensing the operations in a transformation matrix we obtain:
Fx
My

Fy
Mx

 = T


Fx1
Fy1
Fx2
Fy2

 , (6.3)

where T is:

T =


1 0 1 0
−a 0 b 0
0 1 0 1
0 a 0 −b

 . (6.4)

Using the complex notation:

Fq = Fx + jFy

Mφ = My − jMx

, (6.5)

it is easy to demonstrate how the transformation reduces to:

T =

[
1 1
−a b

]
. (6.6)
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Figure 6.3. De�nition of force exchange between the electrodynamic bea-
rings and the centre of the rotor

A similar procedure is applied to compute the transformation between rotor's
displacements and those in correspondence to the supports. For doing so the
hypothesis of small lateral displacements and rotation angles must be considered.

We begin by considering the degrees of freedom on the zx shown in Fig. 6.3a.
Virtual displacements are applyed to rotor's degrees of freedom x and φy, and the
displacements in correspondence to the supports are computed:

x1 = x− aφy
x2 = x+ bφy.

(6.7)

Applying the same procedure to the degrees of freedom of plane zy we obtain:

y1 = y + aφx

y2 = y − bφx.
(6.8)

As in the previous case, the operations can be condensed in a transformation
matrix: 

x1

y1

x2

y2

 = TT


x
φy
y
φx

 , (6.9)

where the transformation matrix in this case is the transpose of matrix T given by
Eq. (6.4):
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TT =


1 −a 0 0
0 0 1 a
1 b 0 0
0 0 1 −b

 . (6.10)

Also in this case the complex notation is introduced. The complex variables in
this case can be represented as:

q = x+ jy

φ = φy − jφx,
(6.11)

and the transpose of the matrix of Eq. (6.6) represents this transformation as:{
q1

q2

}
= TT

{
q
φ

}
. (6.12)

The �nal shape of the transformation matrix is given by:

TT =

[
1 −a
1 b

]
(6.13)

6.1.2 Rotor's centre of mass beside the supports

Another case of interest for many possible applications is the case where both the
bearings are located at the same side of the rotor's centre of mass. In this case the
relation between forces generated at the bearings and those acting at the centre of
mass are shown in Figs. 6.4a and 6.4b. The relation between the displacements of
the rotor's centre of mass and the resulting displacements at the bearings is shown
in Figs. 6.5a and 6.5b.

The procedure to obtain the transformation matrices is the same as presented in
the previous case. The matrix representing the transformation between the forces
generated at the bearings and those acting on the rotor is:

T =


1 0 1 0
−a 0 −b 0
0 1 0 1
0 a 0 b

 (6.14)

Using the complex notation the T reduces to:

T =

[
1 1
−a −b

]
(6.15)
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Figure 6.4. De�nition of force exchange between the electrodynamic bea-
rings and the centre of the rotor
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Figure 6.5. De�nition of force exchange between the electrodynamic bea-
rings and the centre of the rotor

Similarly, to the previous case, the transpose of T gives the transformation bet-
ween displacements of the rotor's centre of mass and displacements at the bearings.

TT =


1 −a 0 0
0 0 1 a
1 −b 0 0
0 0 1 b

 (6.16)

Also in this case the complex notation is introduced and the transpose of the
matrix of Eq. (6.15) represents this transformation as:

TT =

[
1 −a
1 −b

]
(6.17)
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6.2 State space model

In the introduction of this chapter it was stated that the whole system is composed
by three subsystems that interact with each other by exchanging forces. At this
point we de�ne the equations of each system in order to build a state space model
of the whole system describing its coupled dynamics. The equations are written in
complex coordinates for compactness and clarity.

The equation of motion of the 4 degree of freedom rotor is [47]:[
m 0
0 Jt

]{
q̈

φ̈

}
+

([
c 0
0 cφ

]
− jΩ

[
0 0
0 Jp

]){
q̇

φ̇

}
+

{
Fq
Mφ

}
=

{
Fext
Mext

}
(6.18)

The presence of non-rotating damping in this equation is considered in order to
have a more general model where damping introduced directly between the rotor
and the basing and damping introduced between the EDB's stator and the basing
can be considered at the same time. Instead the force due to sti�ness and rotating
damping generated by the EDB are accounted for by means of Fq and Mφ, that
depend on the EDB's states.

The EDB stator's equation of motion is the same as Eq. 5.14. For the sake of
generality, each EDB and relative stator are considered to have di�erent parameters,
hence the stator equations are written as:

[
ms1 0
0 ms2

]{
q̈s1
q̈s2

}
+

[
cs1 0
0 cs2

]{
q̇s1
q̇s2

}
+

[
ks1 0
0 ks2

]{
qs1
qs2

}
−
{
Fq1
Fq2

}
=

{
0
0

}
(6.19)

The two electrodynamic bearings are represented by Eq. (3.48). The two
bearings are thus described by the following set of equations:

{
Ḟq1
Ḟq2

}
=

[
Λ2
01

L1
0

0
Λ2
02

L2

]({
q̇c1
q̇c2

}
− jΩ

{
qc1
qc2

})

−
[R1

L1
+ j(p1 − 1)Ω 0

0 R2

L2
+ j(p2 − 1)Ω

]{
Fq1
Fq2

} (6.20)

In the previous equation (Eq. (6.20)) the displacements and speeds make reference
to those given by Eq. (5.11).

The state-space model describing the dynamics of the overall system that couples
Eqs. (6.18), (6.19), and (6.20), can be de�ned as:
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

q̈

φ̈
q̈s1
q̈s2
q̇

φ̇
q̇s1
q̇s2
Ḟq1
Ḟq2



= A



q̇

φ̇
q̇s1
q̇s2
q
φ
qs1
qs2
Fq1
Fq2



+B
{
Fext

}
. (6.21)

The dynamic matrix A of this system is:

A =


M−1(−C+ jΩG) [0]2×6 −M−1T

[0]2×2 −M−1
s Cs [0]2×2 −M−1

s Ks M−1
s

I4×4 [0]4×6

KEDBT
T −KEDB jΩKEDBT

T −jΩKEDB −DEDB

 (6.22)

where the submatrices that compose the model are de�ned as:

M =

[
m 0
0 Jt

]
C =

[
c 0
0 cφ

]
G =

[
0 0
0 Jp

]
Ms =

[
ms 0
0 ms

]
Cs =

[
cs 0
0 cs

]
Ks =

[
ks 0
0 ks

]
KEDB =

[
(p1 − 1)

Λ2
01

L1
0

0 (p2 − 1)
Λ2
02

L2

]
DEDB =

[R1

L1
+ j(p1 − 1)Ω 0

0 R2

L2
+ j(p2 − 1)Ω

]
.

6.2.1 Rotordynamic stability

The state space model of Eq. (6.21) considers the dynamic model derived in chapter
3 to represent the electromechanical interaction inside the electrodynamic bearing.
For this reason, analogously to what presented in chapter 5, the rotor's stability can
be analysed by means of a root loci plot. The di�erence in this case is the possibility
of analysing the behaviour of conical modes and the in�uence of gyroscopic e�ect
on the rotordynamic stability.

The root loci of Fig. 6.6 evidences the presence of three poles having positive
real parts. The red and brown curves are related to poles that become stable at
high rotational speeds, whereas the blue curve does not become stable even at higher
speeds. Analysing the decay rate in Fig. 6.7 it is clear how the blue curve never
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becomes stable. This in�uence of gyroscopic e�ect in the stability is a problem that
has never been dealt with before in the literature of electrodynamic bearings. We
can see on the Campbell diagram of the rotor's modes only, shown in Fig. 6.8, that
the unstable mode is a conical forward mode.

The cause of this instability is the e�ect of rotating damping in supercritical
regime. The rotating damping is destabilizing in this condition. Typically this phe-
nomenon is demonstrated for the cylindrical modes using a Je�cott rotor model [47],
hence the e�ects on higher frequency rotor modes cannot studied. It is nevertheless
interesting to notice how in the particular case under study (rotor - EDB - elastic
base), the noticeable presence of rotating damping associated to the relatively low
sti�ness of the bearing itself leads to a condition where the conical mode of the
4DOF model is always unstable.

From the technical point of view it is natural that the unstable conical mode
must be made stable to make the radial electrodynamic suspension feasible and
useful. The stabilizing system using elastic connections between bearing's stator
and case is very e�cient to stabilize the cylindrical modes, but is ine�ective on the
conical mode. Given that, the simplest way to stabilize the conical mode is to use
gyroscopic moments. Similar concept has proven useful with the Levitron toy [55],
but in the present case the applicability can prove much more interesting as there
is no upper boundary for the stability.

In this case, stability of the conical mode can be guaranteed if the conical mode is
always subcritical, hence the rotating damping has a stabilizing e�ect on this mode.
With reference to Fig. 6.8, this is achieved once the slope of the line ω = ΩJp/Jt is
higher than that of the line ω = Ω. It cannot be neglected that this condition imposes
heavy limitations on the possible applications of the electrodynamic suspensions.
The conditions described to achieve stability with this method require the rotor to
have the polar moment of inertia Jp greater than the transversal moment of inertia
Jt which is a common condition for �ywheels, but not for the majority of high speed
applications.
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Figure 6.6. Root loci plot of the poles of a 4 degree of freedom rotor supported by
homopolar electrodynamic bearings.
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Figure 6.7. Decay rate plot of the poles of a 4 degree of freedom rotor supported
by homopolar electrodynamic bearings.
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Chapter 7

Test rig design

Even though the working principle of electrodynamic bearings seem simple and
straightforward, leading to promising characteristics, the design of a rotor running
exclusively on electrodynamic radial bearings is a challenging task. As presented
in the previous chapters, the electromagnetic interaction between rotor and stator
gives place to intrinsically unstable rotor modes that must be dealt with.

Another di�culty introduced in the design phase is due to the strong coupling
between the properties of all subsystems. Every subsystem, being either rotor, sta-
tor, or electrodynamic bearing, contribute substantially to the stability. Moreover,
the passive nature of the suspension does not allow any correction of a parameter
once the system is built. For this reason an accurate de�nition of each parameter is
of major importance during the dimensioning and design phases.

The objective of this chapter is to present the design phases of a test rig im-
plementing the concepts presented in the previous chapters. The test rig is devised
to obtain stable radial levitation of a rotor using exclusively radial electrodynamic
bearings. The design of the EDB is carried ou by means of �nite element (FE)
simulations of the electromagnetic �eld. The stabilization system implementing the
concept presented in Sec. 5.3 is also presented. Experimental results are used to
validate each phase of the design.

7.1 Electrodynamic Bearing

The design of the electrodynamic bearing is one fundamental part of the design of
the suspension. As stated previously, it cannot be decoupled from the design of
the rest of the system, therefore the �nal set of properties of the electrodynamic
bearing can only be de�ned after an iterative process. Currently the �rst step of
this process must be done in a trial and error basis without any clear guideline; an
initial geometry that respects the mechanical constraints is chosen and FE analysis
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7 � Test rig design

is carried out to evaluate the properties. Re�nements are performed subsequently
after each iteration.

7.1.1 Finite element modelling

The design of the bearing is developed mainly by means of �nite element simulations
of the electromagnetic �eld generated by the motion of the conductor inside the
stationary magnetic �eld. The equations governing this system can be solved by
many commercial �nite element codes; di�erent numerical schemes to solve the
formulation of the eddy current problem inside solid conductors are presented by
Albertz et al. [36] and Rodger et al. [37] and won't be addressed here. Instead, a
brief description of the simulation process is given, pointing out the steps taken in
order to produce the results and what is expected from the �nite element models.

An extensive discussion on the most important aspects to be taken into account
when realizing this kind of �nite element simulation can be found in the work of
Lembke [30].

In particular for this application, COMSOL Multiphysics has been chosen for
it is capable of solving the eddy currents in quasi-stationary conditions directly,
without the necessity of time-stepping simulations. The main objective of the �-
nite element simulations is to allow identifying the macroscopic electromechanical
parameters describing the dynamics of the interaction between rotating conductor
and stationary magnetic �eld. The identi�cation of these parameters can be done
with the help of the quasi stationary working condition. This particular operating
condition has been described in chapter 3; as mentioned there, it can be reproduced
easily both experimentally and numerically using �nite element models.
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Figure 7.1. Quasi stationary force curves obtained using a �nite element model.
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7.1 � Electrodynamic Bearing

The quasi stationary condition consists in �xing the rotor's spin speed and the
position of the conductor's rotation axis with respect to the symmetry axis of the
magnetic �eld. It is fundamental that the axis of rotation does not coincide with
the axis of symmetry of the magnetic �eld. In this condition a force is developed
between conductor and magnetic �eld. The �nite element model allows calculating
the value of the components of this force, and applying a curve �tting tool on Eq.
(4.3) and FE results it is possible to identify the model's parameters. Because the
homopolar bearing is realized using solid conductors and the concepts of resistance
and inductance cannot be applied directly, we recall Eq. (4.1).

k =
Λ2

0

L

c =
Λ2

0

R
.

This equation relates the �ux constant, the inductance, and the resistance of
the conductors allowing to express them in terms of two mechanical equivalent
quantities [28] without any loss of validity of the modelling procedure presented
previously.

From the simulation point of view, the de�nition of the models requires de�ning
the velocity �eld of the rotating conductor. But, as mentioned previously, no real
motion of the mesh is required. One simulation must be produced for each value of
spin speed, and the forces acting in the rotating conductor are calculated using the
Lorentz force formula. The results expected from the FE models are shown in Fig.
7.1.

To obtain good approximations of these results special attention must be given
to the meshing of the conducting disc and air gap. First of all, as suggested by
Lembke [30], tetrahedral and wedge elements should be avoided. These two types of
elements introduce instabilities in the solution of the electric currents. Bondeson et
al. [56] explains that `eddy current calculations are more frequently carried out on
hexahedral meshes than on tetrahedral ones. One reason for this is that eddy current
problems often involve currents in thin layers, within the skin depth of conductor
surfaces. The skin depth is typically in the millimetre to centimetre range, which
is small compared to the global dimensions of a motor, generator, or transformer.
Therefore, high resolution is required in the direction normal to the surface of a
conductor, whereas the resolution requirement in the perpendicular direction can
be much less demanding. This anisotropy is easier to achieve on a hexahedral mesh
than a tetrahedral one'.

Although the electrodynamic bearing does not fall within the categories mentio-
ned by Bondeson et al., their analysis correctly apply also in this case. This can be
noticed comparing the solutions of a model built using tetrahedral elements (Fig.
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(a) (b)

Figure 7.2. Finite element solution using tetrahedral elements on con-
ducting disc domain.

(a) (b)

Figure 7.3. Finite element solution using hexahedral elements on con-
ducting disc domain.

7.2) and another using exclusively hexahedrons (Fig. 7.3) on the conductor domain.
The arrow representation of the current density in both cases shows the main cur-
rent path, but the solution produced by the tetrahedral mesh introduces undesired
fake currents. These currents disturb the calculation of the forces with the �nite
element model giving place to unreal values of forces.

The models used on the analyses are obtained producing an accurate mesh of
one section of the model and revolving it around the axis of symmetry, producing
a mesh composed by hexahedral elements and some wedge elements in parts where
accuracy requirements are less demanding. After the meshing is complete, a virtual
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7.1 � Electrodynamic Bearing

Figure 7.4. Finite element model of the double �ux con�guration of homo-
polar electrodynamic bearing.

displacement is imposed on all nodes of the conducting disc domain. It is also
important to introduce eddy layers of elements in the upper part of the conducting
disc to allow capturing the occurrence of skin e�ect accurately. Taking advantage of
symmetry planes is also a relevant step; in this case study there is one anti-symmetry
plane that can be considered. An example of mesh produced taking into account of
the most important guidelines found in literature is shown in Fig. 7.4.

7.1.2 Sensitivity analysis and dimensioning of the bearing's

components

To the present day there exists no reference for the initial dimensioning of a magne-
tic suspension using electrodynamic bearings. This means that there is no method
to estimate the parameters of the bearing for a given geometry. For this reason
the design phase requires a long sensitivity analysis where the �nite element models
are associated to the state-space model of the suspension given by Eq. (5.13). The
overall in�uence of its parameters on the system can be understood and evalua-
ted. This study of the whole system is also used to identify the properties of the
elastic connection between EDB's stator and basing that optimize the suspension's
behaviour in terms of stability.

To de�ne the �nal geometry of the electrodynamic bearing, many analyses are
carried out to �nd the most suitable con�guration within feasible geometries. A
reference model shown in Fig. 7.5 was de�ned to guide the analysis. The main
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Figure 7.5. Reference model for design and sensitivity analysis of the mechanical
properties of the electrodynamic bearing.

geometric parameters are shown in the quotations; a series of di�erent con�gura-
tions were tested varying one parameter each time. The geometrical values of the
parameters of each con�guration studied are summarized in the table below each
�gure from Fig. 7.6 to Fig. 7.21.

The dimensioning of the elastic connection is crucial because it works as stabi-
lization system, as described in Sec. 5.3. For this reason the dimensioning of the
parameters is di�cult since for each di�erent bearing con�guration the rotor and
stator masses must be updated and introduced in the model, and the characteristics
of the stabilization system are calculated.

A simple strategy to devise the elastic connection of the stabilization system is
to use a viscoelastic material. A relevant aspect in the dimensioning phase is that
with the best technological solutions available, a loss factor ranging from 0.6 to 0.84
is achievable. Moreover, the mechanical characteristics of the material taken into
consideration doesn't allow to consider a sti�ness smaller than 200 kN m−1 because
the stress on the material can cause excessive displacement due to the weight of the
suspended mass and eventually rupture.

Given the above considerations, the eigenvalues of Eq. (5.14) can be obtained for
di�erent values of sti�ness and damping of the elastic supports and the stabilization
speed calculated as the minimal speed for which all roots have negative real parts.
The value of stabilization speed threshold can thus be plotted with respect to the
characteristic of the stabilization system in a contour map. This kind of map is
shown beside the �nite element result curves in Fig. 7.6b to Fig. 7.21b. The

76



7.1 � Electrodynamic Bearing

di�erent colour regions evidence a region where the stabilization speed threshold is
within the values evidenced by the contours. In the �gures there is one contour every
5000 rpm. In the same plot the values of the loss factor are also evidenced. The
loss factor is approximated with the classical representation for mass-spring-damper
oscillating systems as:

η =
cs√
ksms

(7.1)

All results from these design and dimensioning phases are shown in the following
�gures. The �nal con�guration of the prototype is chosen to be con�guration 16,
whose properties and characteristics are shown in Fig. 7.21. This con�guration
is chosen because it represents the best compromise between stabilization speed
threshold, loss factor and sti�ness of the elastic elements, and the electrodynamic
bearing's properties. Also the mechanical feasibility of the bearing has been taken
into account for this choice.
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Figure 7.6. Electrodynamic bearing in con�guration 1.
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Figure 7.7. Electrodynamic bearing in con�guration 2.
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Figure 7.8. Electrodynamic bearing in con�guration 3.
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Figure 7.9. Electrodynamic bearing in con�guration 4.
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Figure 7.10. Electrodynamic bearing in con�guration 5.
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Figure 7.11. Electrodynamic bearing in con�guration 6.
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Figure 7.12. Electrodynamic bearing in con�guration 7.
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Figure 7.13. Electrodynamic bearing in con�guration 8.
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Figure 7.14. Electrodynamic bearing in con�guration 9.
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Figure 7.15. Electrodynamic bearing in con�guration 10.
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Figure 7.16. Electrodynamic bearing in con�guration 11.
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Figure 7.17. Electrodynamic bearing in con�guration 12.
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Figure 7.18. Electrodynamic bearing in con�guration 13.
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Figure 7.19. Electrodynamic bearing in con�guration 10.
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Figure 7.20. Electrodynamic bearing in con�guration 15.
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Figure 7.21. Electrodynamic bearing in con�guration 16.
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7 � Test rig design

7.1.3 Flexibility of the rotor

To guarantee the validity of the analyses developed previously it is necessary ensure
that the shaft behaves as a rigid body inside the working range of speed. To this end
a �nite element rotordynamic analysis of the shaft taking into account the masses of
the bearing's and motor's discs can be performed. The Dynrot 8.3 Matlab toolbox
for rotordynamics developed at Politecnico di Torino has been used to perform the
analysis. The analysis is performed considering a rotor that is already the result
of the mechanical feasibility study that is presented in sec. 7.3. Assuming that
the motor's disc, EDB's disc, and washers, do not contribute substantially to the
mechanical sti�ness of the shaft, but strongly a�ect the mass properties, they are
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Figure 7.22. Finite element rotordynamic analysis of the shaft. a) FE model of
the shaft; b) Campbell diagram of the �rst 3 natural frequencies; c) modal shape of
the �rst bending mode of the shaft.
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modelled as non-structural elements. This assumption is nevertheless conservative
as it should reduce the values of the natural frequencies. Figure 7.22a shows the FE
model evidencing the structural elements with bold lines and non-structural ones
with dashed lines.

The Campbell diagram presented in Fig. 7.22b evidences that the natural fre-
quency of the �rst bending mode of the shaft is 1054.7 Hz, and is well above the
line ω = Ω; the relative mode shape is displayed in Fig. 7.22c. Since the operating
speed of this shaft ranges from 15000 to 20000 rpm, any �exural behaviour of the
shaft during operation is excluded, thus con�rming the validity of the models used
in the previous analyses.

7.2 Stabilization system

In past research on electrodynamic bearings the rotordynamic stability has been of
great concern. A stabilization system is an important part of the test rig. It is the
structure responsible for introducing the non-rotating damping that stabilizes the
lateral dynamics of the shaft.

The structure is designed relying on viscoelastic materials to introduce the sti�-
ness and damping needed. The use of viscoelastic materials in this case reduces the
complexity of the system because damping and sti�ness are associated with one sin-
gle mechanical component of simple manufacturing, thus convenient for a prototype.
An alternative is to use �uid �lm dampers or electromagnetic dampers associated
with mechanical springs, but in both cases the system gains in complexity.

To build the test rig a material commercially available under the name An-Vi was
chosen. This material presents outstanding damping characteristics, having a rather
robust structure. A qualitative comparison of its properties with respect to those
of other common viscoelastic materials is shown in Figs. 7.23a and 7.23b. In Fig.
7.23c the real pieces of the AN-VI material are shown. Cube shaped samples with
shore hardness ranging from 36 to 65 are available. Bearing in mind the physical
properties of the material while analysing the stabilization speed maps presented in
sec. 7.2, it is possible to de�ne a region of physically feasible systems within those
studied. In Fig. 7.24 this region is evidenced by the white ellipse.

In order to have a preliminary evaluation of the damping properties of this mate-
rial, an impact test was conducted. During the test a known mass connected to the
basing using the very same method intended for the test rig is hit with an instru-
mented hammer, and the accelerations of the mass are measured. The results were
compared to those of an analytical model of a simple mass-spring-damper, where
sti�ness and damping were identi�ed in order to �t the experimental results. This
method for characterizing the material represents an oversimpli�cation as the test
sample is not subject to a sinusoidal excitation, but, for this design phase is an
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Figure 7.23. Characteristics of AN-VI material. a) and b) Qualitative compari-
son of the damping properties of AN-VI material with respect to other common
viscoelastic materials; c) Presentation of the material in cubes.

acceptable method. Figure 7.25 shows the comparison between experimental and
analytical results.

One important aspect to be considered when using viscoelastic dampers is that
the material usually works better when working under shear loads. For this reason a
con�guration where the elastic connections between stator of electrodynamic bearing
and casing of the machine work manly under shear stress is designed.

At this point, this data can be used to de�ne the geometry of the element con-
necting the stator of the electrodynamic bearing to the case of the machine. The
sti�ness of the elastic connections is calculated considering that the material is
submitted to pure shear as:

88



7.2 � Stabilization system

kstab =
AG

l
, (7.2)

where A and l are the cross section area and length of the connecting element,
respectively, and G is the shear modulus of the material.

The �nal layout of the electrodynamic bearing implementing the solution of Fig.
7.21 and the stabilization system described is shown in Fig. 7.26.
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7 � Test rig design

Figure 7.26. Final mechanical layout of the stator of the electrodynamic bearing
and the elements of viscoelastic material of the stabilization system.

7.3 Mechanical layout

In the previous sections of this chapter the properties and mechanical layout of the
main components of the electrodynamic suspension have been de�ned. This section
presents the mechanical layout of the whole test rig designed to test the feasibility
of passive radial electrodynamic levitation. The mechanical layout is de�ned trying
to keep it close to that of a real application specially concerning the dimensions and
mass of the rotating part.

The main characteristics expected from this prototype are:

� Realize passive radial levitation relying exclusively on electrodynamic bea-
rings.

� Operating speed range 15000 to 20000 rpm.

� Stabilization system based on the use of elastic connections between bearing's
stator and machine case.

� Non rotating damping introduced by means of a viscoelastic element.

� Possibility of monitoring the rotordynamics with position probes.

� Possibility of monitoring the electrodynamic bearing's stator with accelerome-
ters.

Since the EDB system cannot provide levitation forces at zero spin speed, a
disengaging mechanical system using regular ball bearings supports the rotor until
operating speed is reached. Above this speed the system is stable and can run
virtually at any speed within the constraints imposed by the material's mechanical
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Table 7.1. Main parameters of the electrodynamic bearing test rig.

Parameter Symbol Value Unit
Mass m 4.05 kg
Polar moment of inertia Jp 5.69e− 3 kg m2

Transversal moment of inertia Jt 16.26e− 3 kg m2

Electrodynamic bearing stator's mass ms 1.90 kg
Distance between bearing and centre of mass a 72 mm
Distance between bearing and centre of mass b 72 mm
Elastic connection approximated sti�ness ks 240e3 N m−1

Elastic connection approximated damping cs 510 N s m−1

strength limits. For this application the maximum speed is limited to 20000 rpm
for safety reasons.

Within these constraints, the electric motor used to drive to rotor was designed
exclusively for this application. The axial �ux con�guration was chosen for its
reduced axial dimension and reduced introduction of lateral forces that can disturb
the dynamic operation. The designed motor is an ironless, dual stator, permanent
magnet motor. During the design phase the possibility of using it as an axial self-
bearing motor to provide axial levitation was also considered. The design of the
motor will not be addressed any further here, but it's important to notice that the
inertia properties of the motor disc were taken into account during the design of the
electrodynamic suspension and stabilization system.

The test rig is composed of three main parts: (a) the structure, (b) the magnetic
circuit that forms the stator of the electrodynamic bearing and (c) the rotating shaft.
In Fig. 7.27 the main components of the system are identi�ed, and an overview of
the �nal structure can be obtained looking at the isometric section on Fig. 7.28.

Each part contains a di�erent number of subsystems. The structural part is
composed by four stainless steel columns clamped to three aluminium layers (6)
(one central and two end plates) that ensure a sti� construction. The connection
of this structure to a seismic base is done by means of two steel pro�les (7). One
structural part dedicated to the housing of radial position probes is screwed to each
of the two end plates (5). The two housing of the position probes serve also as
support for the movable housings (4) of the two ball bearings that allow supporting
the shaft during the acceleration phase.

The stator of the electrodynamic bearing (2) contains four NdFeB N42 perma-
nent magnets oriented in attraction. The magnetic circuit closure is done using two
plates of soft iron that are kept separated by an aluminium structure. This part is
connected to the test rig's structure using a viscoelastic element (3), whose design
is described in Sec. 7.2.
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Figure 7.27. Cross section of the test rig model.
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Figure 7.28. Isometric section of the test rig model.
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Figure 7.29. Picture of subsystems composing the test rig. a) Outer structure, b)
electrodynamic bearing, c) rotor, and d) assembled test rig.

The rotating parts (1) of the test rig contain a stainless steel shaft to which are
attached the copper discs of the electrodynamic bearings (9) and the disc of the
motor (10).

Another important part for the working of the test rig is the stator of the electric
motor (8). In this part are located the coils of the motor together with three Hall
e�ect sensors used to control the commutations of the phase currents.

The main parts of the real system are shown singularly in Figs. 7.29a, 7.29b and
7.29c, and the assembled test rig is presented in Fig. 7.29d. The bullets indicate
the number of the part with respect to the description given above.
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Chapter 8

Conclusions

This dissertation presented the analysis of electrodynamic suspensions for high speed
rotors. A study of the electromechanical interactions generated between rotor and
bearing is presented being strongly based on previous works of a number of resear-
chers. The work was designed to be a step towards the �nal goal of demonstrating
the feasibility of radial electrodynamic bearings as contactless supports for high
rotational speed applications. The main aspects covered in the work were:

1. A relatively wide bibliographic review is carried out aiming to cover the majori-
ty of journal and conference papers, doctoral and master theses, and technical
reports available.

2. A general electromechanical model of electrodynamic bearings is derived from
the analytical solution of the magnetic �eld in the air surrounding the rotating
conductor.

3. The bearing's model is validated with experimental results obtained under
quasi stationary conditions.

4. A study of the dynamics of rotors on electrodynamic bearings is conducted
devoting special attention to the study of stability.

5. The design of a prototype of an electric spindle on full electrodynamic radial
suspension is presented addressing many of the problems arising during the
design phase.

The main �ndings obtained with the research conducted on electrodynamic
bearings and that were presented in this dissertation are summarized as:

1. The uni�cation of the modelling of electrodynamic bearings that allows ana-
lysing the di�erences and similarities between homopolar and heteropolar
electrodynamic bearings.
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2. The demonstration of the intrinsic �ltering capabilities of homopolar electro-
dynamic bearings, evidencing the notch �lter e�ect for vibrations introduced
by rotor's unbalance.

3. The demonstration of the occurrence of instability on rotors supported by
EDBs due to the conical rotor mode.

4. A stabilization method for the unstable conical mode relying on gyroscopic
e�ect is identi�ed and described.

The technology of electrodynamic levitation of rotors is still some steps away
from the industrial application because the damping technologies available are still
very di�cult to be dealt with. In order to keep the research on this �eld in the
direction of industrialization of the technology it is necessary to improve the accuracy
of the modelling of the viscoelastic elements used to stabilize the rotordynamics.
Otherwise it is necessary to use an alternative approach that can be modelled using
simpler methods. Considering one of the main contributions of this work, that is the
presentation of how the design of the suspension can be approached, it is necessary
to con�rm the correctness of the approach by performing experimental veri�cation.
To verify the validity of the design approach it is necessary to test every step done
in the design phase of rotor, electrodynamic suspension, and stabilization system.
This work would require the following activities:

1. Performing an experimental modal analysis of the rotor.

2. Measuring the EDB's properties using the procedure presented in this disser-
tation.

3. Measuring the vibrating response of the EDB's stator with constrained rotor
at di�erent values of spin speed of the rotor to verify the modelling of the
viscoelastic stabilizing element.

The research requires following these steps before stable radial suspension pro-
vided by electrodynamic bearings can be demonstrated, but the way for this tech-
nology is wide open and to the current level of knowledge the possibilities for it in
industrial applications are very encouraging.
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