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The scanning electron microscope (SEM) is widely used to acquire high resolution 
images. In order to reconstruct the third dimension of surface features, photogrammetry 
methods can be adopted. A specimen is imaged in the SEM acquiring two images, the 
stereo-pair, by scanning the same area from two different perspectives. The stereo-
matching problem is solved by area- or feature-based methods implemented in 
commercial software. Piazzesi provided a first model for deriving surface topography 
from eucentric stereo-pairs. An uncertainty evaluation for the vertical elevation has been 
performed in a recent work for a cylindrical item. The aim of the present work is to 
extend the uncertainty evaluation to all surface coordinates. The proposed approach is 
based on the multivariate law of propagation of uncertainty (MLPU). Some preliminary 
results are also presented and discussed. 
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1.    Introduction 

The scanning electron microscope (SEM) has some unique properties that, 
combined together, are matched by no other kind of microscope. It allows image 
ranges from 1 mm2 to 1 μm2 with an ultimate resolution of about 1 nm, 
comparable to the scanning probe microscope (SPM). Furthermore, the SEM is 
very promising for measuring surfaces having high aspect ratios. Main 
application areas are the semiconductor industry, life sciences, materials 
research and many industrial fields related to nanotechnology. 

Nevertheless, many developments are still needed in order to transform the 
usage of SEMs into a technique where the complete topography of a surface can 
be determined by a truly 3D characterization, developing metrologically correct 
techniques and producing traceable measurement results. SEM images are 
purely two dimensional; a possible way to overcome this limitation is to the use 
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SEM in conjunction with image processing of stereographs [1]. This method, 
called the 3D-SEM technique, is based on photogrammetry and allows 
reconstruction of the third dimension of surface features. It has been extensively 
studied starting from the theoretical description given by Piazzesi [2]. 

This measuring procedure, together with relevant uncertainty evaluation, 
was examined in the case of a cylindrical item [3]: a wire gauge from TESA 
Technology with an external calibrated diameter of 250 μm. It can be positioned 
and fixed horizontally to the SEM stage to perform eucentric tilting; multiple 
views of the item can be acquired at different tilt angles. Another possibility is, 
instead, to position and clamp the cylindrical object vertically on the SEM stage, 
and then to tilt it by 90°. In this case, multiple views of the item can be obtained 
by performing rotations along the main axis of the cylinder. Figure 1 shows the 
moving stage of the SEM employed. 
 

 
Figure 1. SEM Inspect ‘S’ stage, from FEI company, enabling translations along x, y and z-axis, yz 

tilt and rotation around the z-axis [3]. 
 
The aim of this work is to extend the uncertainty evaluation of stereo-pair 

reconstructions implemented in [3], relative to both tilting and rotation 
strategies, allowing for correlation between the input quantities of the 
measurement model.  

2.   Basic Principles of 3D SEM Stereophotogrammetry 

To produce a stereoscopic reconstruction, a specimen is imaged in the SEM 
acquiring two images, the stereo-pair, by scanning the same area from two 
different perspectives, achieved by eucentric tilt of the sample. The image-
matching problem mainly encompasses automatic identification in the stereo-
pair of homologous points, representative of corresponding features. Nowadays 
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this procedure is performed using commercial software where the stereo-
matching is done using an area- or a feature-based method [4]. In most SEMs, it 
is possible to take the two different stereo viewpoints by tilting the specimen 
about a horizontal axis x. Assuming that the surface region on the x-axis is 
brought into focus, the SEM focal plane then coincides with the reference xy-
coordinate plane. The stereo-pair technique may be defined using the 
geometrical definitions given in Figure 2; further details are given in [5]. 
 
   

 
Figure 2. Geometrical definitions relative to a point P on the specimen surface. The working 
distance d is not shown to scale (under scaled) for ease of interpretation [5]. 
 

Piazzesi [1] provided a model for deriving surface topography from 
eucentric stereo-pairs, exploiting the physical P coordinates (ξ, η, z). 
Subsequently, Bariani et al. [6] simplified this model fixing the constraint 
d1=d2=d, i.e. constant working distance between the two images. The equation 
for the z-coordinate has been further rewritten in [3] assuming that the distance 
between two points in a digital picture is given by the number of pixels n 
counted between the two points multiplied by the single pixel dimension (pixel 
size) p. Proceeding similarly for ξ- and η- coordinates gives 
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  (1) 

where the indices 1 and 2 refer, respectively, to the first image (tilted by an 
amount -Δφ) and the second image (tilted by an amount +Δφ) being used for the 
calculation.  

A theoretical uncertainty evaluation for the z-coordinate, according to GUM 
[7], has been performed in [3] starting from Eq. (1), considering p, ny1, ny2, d and 
Δφ as independent variables. It has been checked that a linear approximation of 
the measurement function is acceptable within the range of variation of input 
quantities. Furthermore, in a first approximation, the hypothesis of non-
correlation among input quantities has been made based on empirical 
considerations [3]. 

The aim of this work is to extend the uncertainty evaluation to the vector 
(z, ξ, η)T, considering the possible presence of correlations among input 
quantities.  

3.   Propagation of Uncertainties 

System (1) can be formally written as follows: 

( ) ,=Y f X   (2) 

where the vector of input quantities is 

( )T
1 2 1 2x x y y ,p n n n n d= ΔϕX   (3) 

while the vector of output quantities is 
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( )Tz .= ξ ηY   (4) 

The uncertainty corresponding to Y may be estimated using the multivariate 
law of propagation of uncertainty (MLPU) described in [8], following the lines 
of GUM [7]. The covariance matrix Σ̂Y  associated with the estimate Ŷ  is given 
by 

Tˆ ˆ ,Σ Σ=Y XJ J   (5) 

where Σ̂ X  is the covariance matrix associated with the estimate X̂ and J is the 
Jacobian of f(X) evaluated at X̂ . Due to the difficulty in obtaining analytical 
expressions of the partial derivatives of f, J is approximated numerically. The 
covariance matrix is assigned according to GUM; for each pair of estimates xi 
and xj of input quantities, the covariance ( ),i ju x x  is related to the uncertainties  

( )iu x and ( )ju x  through the relation  

( ) ( ) ( ), ,i j ij i ju x x u x u x= ρ   (6) 

where ρij is the correlation coefficient for the estimates. 

4.   Evaluation of Uncertainty Contributions 

The cases of uncorrelated input quantities (section 4.1) and correlated input 
quantities (section 4.2) have been both considered for the application described 
in previous sections [3].   

4.1.   Uncorrelated Input Quantities 

According to the hypothesis in [3], as a first approximation, the covariance 
matrix associated with X can be reduced to the following diagonal matrix: 
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(7) 

Since the same considerations apply to the numbers of pixels relevant to 
coordinates x and y, it has been assumed that: 
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( ) ( ) ( ) ( )1 2 1 2 .x x y yu n u n u n u n= = =   (8) 

Uncertainty evaluation for the cylindrical item, relative to both tilting and 
rotation strategies, reported in tabular form in [3], is now rewritten in matrix 
form. In the case of rotation, the covariance matrix associated with X results 
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while in the case of tilt 
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Units of the International System (SI), without any multiples or 
submultiples, are used in the two previous, and in all subsequent, equations. 
Calculations have been performed for the item in a particular position of the 
measurement space. However, as a first approximation, values of Σ̂ X  can be 
assumed to be the same for the whole measurement space. 

Applying Eq. (5), i.e. MLPU, in the case of rotation gives 
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while in the case of tilt 
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4.2.   Correlated Input Quantities 

Considering now the possible presence of correlation, based on the physics of 
the process, the following covariance matrix associated with X should be 
adopted: 
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Elements below the main diagonal of Σ̂ X  in Eq. (13) are not displayed since it 
is a symmetric matrix. 
For non-zero terms not on the main diagonal, it is assumed complete correlation 
(|ρij| equal to 1). The signs of the correlation coefficients were obtained, as a first 
approximation, using the functional relationships between the variables and 
previous experimental analysis. Eq. (13) becomes 
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Applying Eq. (5), i.e. MLPU, in the case of rotation gives 
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while in the case of tilt 
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5.   Final Remarks 

The proposed approach based on MLPU is simple and completely automatic, 
furthermore it takes into account covariance contributions. 

Both in the case of uncorrelated input quantities (Eq. (11) and (12)) and in 
the case of correlated input quantities (Eq. (15) and (16)), according to the 
geometry of the problem (Figure 2), variance contributions for ξ and η are lower 
than those for z by about one order of magnitude. Moreover, covariance 
contributions are always comparable with the variance contributions for ξ and η.  

The inclusion of terms representing correlation between the input quantities 
leads to the variance contribution for z being lower in case of rotation (Eq. (11) 
and (15)). 
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