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Chapter 1

Dissertation Overview

The present doctoral thesis Experimental and Modeling Analysis of Electric
Systems with High Capacitive and Inductive Couplings investigates several
kinds of electromagnetic coupling which in�uence strongly the electric system
operation.

The electromagnetic coupling is a fundamental phenomenon that governs
the behaviour of many electrical devices, but on the other hand can produce
detrimental e�ects on their performances. In particular, electrical devices
are frequently dominated by non-ideal parameters, attributable to circuital,
geometrical or environmental issues. Electrical engineering deals with the
possibility to reduce non-ideality as much as possible through appropriate
design solutions and modelling analysis.

The in�uence and the modelling of the electromagnetic coupling is strongly
dependent on the operating frequency. In order to develop a whole analysis,
two of the furthest extreme examples in the frequency range are presented and
deeply investigated in the present work. The �rst issue concerns the Rogowski
coil operating conditions at power frequency and the analysis is carried out
by means of experimental and modelling activities (Chapter 3). The second
case regards the calibration set-up of electrostatic discharge (ESD) genera-
tors, used in the EMC immunity test for electric and electronic equipment.
Since the ESD waveform is a transient characterized by short rise time and
important peaks, the stray capacitive and inductive parameters play a funda-
mental role in stating the compliance with the EMC international standards
(Chapter 4).

The intent to support in a comprehensive way the described phenomena
with a simulation tool is considered by developing a suitable numerical model,
based on the Partial Element Equivalent Circuit (PEEC) method (Chapter
5). The consideration of arbitrary three-dimensional geometry of intercon-
nections and the feature of full-wave method can allow to take into account
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properly the electromagnetic behaviour of the above electric systems.
Chapter 2 shortly summarizes the fundamentals of electromagnetic the-

ory, which are necessary to understand the following chapters. The dynamic
behaviour of passive interconnections is governed by equations of classical
electrodynamics, which are the basis for the derivation of models consid-
ered in Chapters 3 - 5. In addition, Chapter 2 introduces some important
concepts and techniques of electrodynamics: uniqueness and causality of so-
lutions, reciprocity theorem, image theory, Sommerfeld radiation boundary
condition and the Green's function method.

Chapter 3 deals with a modelling analysis which is able to predict the
Rogowski coil performances at power frequency when operating under non-
ideal conditions. The numerical tool can be employed both in the design
phase and the evaluation of the mutual inductance variation as a function of
the coil structure and the power circuit arrangement. The use of the model,
together with a propagation distribution approach based on Monte Carlo
method, allows to evaluate the measurement uncertainty for those on-site
arrangements where only a range of variations of the in�uence parameters
can be estimated.

Chapter 4 is focused on the detection and analysis of those stray and
measuring parameters related to the calibration set-up of an ESD generator,
that contribute to a�ect strongly the measurement result. The aim of the
chapter is to underline the in�uence of several critical quantities and to warn
the laboratory operators about the e�orts that should be made during the
calibration procedure.

Chapter 5 starts from the generalized formulation of the PEEC (Partial
Element Equivalent Circuit) method, which is considered one of the most
suitable numerical methods for the simulation of passive interconnections.
As all integral-equation techniques, PEEC method requires only the dis-
cretization of the conducting structures and not the total solution region.
This is the most important advantage with respect to di�erential methods,
since the number of unknowns in the resulting algebraic-equation formulation
decreases strongly, although the system matrix is fully-�lled. This chapter
is then focused on the development of an original software devoted to the
PEEC modelling, with special attention to the meshing technique issues, the
partial element computational algorithms and relative validation process. In
the end, the numerical solver for time- and frequency-domain and the future
applications are deeply explained.
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Chapter 2

Electromagnetic Fields Theory

and Computational Methods

In this chapter a brief overview is given on the basic equations and de�nitions
used in the electrodynamics theory. The intention is to introduce all the
concepts useful for this dissertation. In the end, a look at the main analytical
and numerical methods involved in the electromagnetic �elds computation
are presented [1].

2.1 Fundamental equations and de�nitions

2.1.1 Maxwell's equations

Maxwell's equations are four partial di�erential equations relating four �eld
vectors and four �eld sources at the space point r and at the time t:

∇× E(r, t) = −∂B(r, t)

∂t
−M(r, t),

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t) (2.1)

∇ ·D(r, t) = ρv(r, t)

∇ ·B(r, t) = ρmv (r, t)

where E(r, t) is the electric �eld vector, H(r, t) is the magnetic �eld vector,
D(r, t) is the electric �ux density vector, B(r, t) is the magnetic �ux density
vector. J(r, t) and M(r, t) are the electric and magnetic current density vec-
tors, respectively. ρv(r, t) and ρ

m
v (r, t) are the volumetric density of electric

and magnetic charges. Since the magnetic currents and charges do not exist
in reality, we setM(r, t)=0 and ρmv (r, t)= 0. The inclusion of these additional
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formal sources in Maxwell's equations makes the system symmetric and leads
to derivation of some important electromagnetic principles.

Maxwell's equations can be signi�cantly simpli�ed in the frequency do-
main. They are derived by the application of the direct Fourier transforma-
tion to the previous equations:

∇× E(r) = −jωB(r)−M(r)

∇×H(r) = jωD(r) + J(r) (2.2)

∇ ·D(r) = ρv(r)

∇ ·B(r) = ρmv (r)

where E(r), H(r), B(r), D(r), M(r), J(r), ρmv (r), and ρv(r) are complex
vector or scalar functions called phasors, which are the frequency-domain
counterparts for the corresponding functions calculated as follows:

A(r) = ={A(r, t)} ,

where ={} denotes the Fourier transformation, A(r,t) is a space and time-
domain function, and A(r) is its frequency-domain counterpart.

The continuity equations for electric and magnetic sources are developed
through the application of the divergence operator to the �rst and second
equations in (1.2):

∇ · J(r) + jωρv(r) = 0 (2.3)

∇ ·M(r) + jωρmv (r) = 0 (2.4)

The material equations relate the electric and magnetic �ux densities to
the electric and magnetic �eld intensities, respectively:

D(r) =
=
ε · E(r) (2.5)

B(r) =
=
µ ·H(r) (2.6)

where
=
ε =

=
ε(r, jω) is the permittivity, and

=
µ =

=
µ(r, jω) is the permeability.

In general, they are dyadic functions of space coordinates and frequency that
corresponds to a linear anisotropic and non-uniform media.

However, (2.5),(2.6) may be simpli�ed to the usually implied formulation
in the case of an isotropic linear media:

D(r) = εE(r) (2.7)

B(r) = µH(r) (2.8)
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where ε = ε0εr and µ = µ0µr, εr and µr are the relative permittivity and
permeability, ε0 = 8.854 · 10−12 F/m is the dielectric constant, and µ0 =
4π · 10−7 H/m is the magnetic constant.

The substitution of the material equations (2.5),(2.6) into Maxwell's equa-
tions (2.2) results in two independent curl equations relating the vectors E(r)
and H(r):

∇× E(r) = −jω=
µ ·H(r)−M(r) (2.9)

∇×H(r) = jω
=
ε · E(r) + J(r)

for anisotropic medium or

∇× E(r) = −jωµH(r)−M(r) (2.10)

∇×H(r) = jωεE(r) + J(r)

for isotropic one.

2.1.2 Wave equations

The system of the �rst order partial di�erential equations (2.9) can be decou-
pled into two second order partial di�erential equations called vector wave
equations:

∇× =
µ
−1
· ∇ × E(r)− ω2=

ε · E(r) = −jωJ(r)−∇× =
µ
−1
·M(r) (2.11)

∇× =
ε
−1
· ∇ ×H(r)− ω2=

µ ·H(r) = −jωM(r) +∇× =
ε
−1
· J(r)

The solution of either wave equation in (2.11) provides the complete descrip-
tion of the electromagnetic �eld in the solution region. The formulation (2.11)
for the vector wave equations is simpli�ed for an isotropic and homogeneous
medium as:

∇×∇× E(r)− k2E(r) = −jωµJ(r)−∇×M(r) (2.12)

∇×∇×H(r)− k2H(r) = −jωεM(r) +∇× J(r)

where k = ω
√
µε is the wavenumber. The scalar wave equations also named

Helmholtz equations are derived from (2.12) in view of a vector identity and
a dyadic identity as:

∇2E(r) + k2E(r) = jωµ

(
=

I +
∇∇
k2

)
· J(r) +∇×M(r) (2.13)

∇2H(r) + k2H(r) = jωε

(
=

I +
∇∇
k2

)
·M(r)−∇× J(r)
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where I is the identity dyadic, and the notation ∇∇ means dyad. Below the
Helmholtz equations for the electric and magnetic �elds (2.13) are given for
the source-free medium in the homogeneous form:

∇2E(r) + k2E(r) = 0 (2.14)

∇2H(r) + k2H(r) = 0

2.2 Some important theorems in electromag-

netics

2.2.1 Uniqueness theorem

The uniqueness theorem speci�es the necessary conditions needed for a unique
solution of an electromagnetic problem.

We consider a problem described by the wave equations (2.12) in the
solution region V constrained with a closed surface S = ∂V . Assuming the
existence of two di�erent solutions E1(r) and E2(r) for the same excitation,
we may write:

∇×∇× E1(r)− k2E1(r) = −jωµJ(r)−∇×M(r) (2.15)

∇×∇× E2(r)− k2E2(r) = −jωµJ(r)−∇×M(r)

The subtraction of the �rst equation (2.15) from the second one yields:

∇×∇× Eδ(r)− k2Eδ(r) = 0 (2.16)

with Eδ(r) = E2(r)− E1(r)

The condition Eδ(r) = 0, r ∈ V guarantees that both solutions are equal
and, consequently, unique. In order to prove this condition, we write the
volume integral over V of the scalar product E∗δ(r)· (2.16):∫∫∫

V

E∗δ(r) · (∇×∇× Eδ(r))dV = k2

∫∫∫
V

E∗δ(r) · Eδ(r)dV (2.17)

The kernel of the right-hand side integral in (2.17) may be more or equal to
zero. Since it is zero if and only if Eδ(r) = 0, the right-hand side integral
is equal to zero if and only if the solution is unique. Hence, the solution
is unique if the left-hand side integral in (2.17) is zero. The left-hand side
integral can be rewritten as:∫∫∫

V

E∗δ(r) · (∇×∇× Eδ(r))dV = jωµ

∮
S

Hδ(r) · (n̂× E∗δ(r))dS (2.18)
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One may observe (2.18) and formulate the theorem, which is proved above
for a homogeneous medium, but may be applied in all cases. The boundary-
value problem formulated as

� a wave equation with

� non contradicting boundary conditions for the tangential component of
either electric or magnetic �eld intensity

has a unique solution.

2.2.2 Sommerfeld radiation condition

The Sommerfeld radiation condition introduced by A. Sommerfeld is used
for the correct formulation of open or partially open boundary-value prob-
lems. According to the uniqueness theorem, solutions of these problems are
not unique if the boundary condition is not de�ned. The Sommerfeld radia-
tion condition de�nes the electric and magnetic �eld intensities at in�nitely
large distances from the scatterer equal to zero, which allows one to obtain a
unique solution. The apparent voluntarism of this de�nition has a rigorous
physical explanation. The solution in the proximity of the scatterer consists
of only outgoing waves, while incoming waves cannot appear there because
of the in�nite propagation time from the boundary. The outgoing waves get
the �nite energy from the scatterer. As any medium has a dissipation, the
energy of the outgoing wave decreases towards increasing the distance from
the scatterer and yields zero at in�nite distance. The Sommerfeld radiation
condition is applicable for not dissipative media also, since the arti�cial in-
troduction of a tiny dissipation does not change the solution in the scatterer
proximity, but results in zero �elds at the in�nite distance.

2.2.3 Reciprocity theorem

The Lorentz reciprocity theorem is one of the most useful tools in the elec-
tromagnetic theory. In the following, the reciprocity theorem is derived for
an anisotropic linear medium with a symmetric dyadic permittivity and per-
meability, that is

=
ε · E = E · =

ε and
=
µ · H = H · =

µ. We suppose that the
electromagnetic �eld in the volume V is excited by two various systems of
sources, we denote by E1 and H1 the �eld intensities caused by the electric
and magnetic currents J1 and M1, while E2 and H2 are resulted by J2 and
M2. Maxwell's equations (2.9) for both excitations are:

∇× E1(r) = −jω=
µ ·H1(r)−M1(r) (2.19)

∇×H1(r) = jω
=
ε · E1(r) + J1(r)
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and

∇× E2(r) = −jω=
µ ·H2(r)−M2(r) (2.20)

∇×H2(r) = jω
=
ε · E2(r) + J2(r)

The substitution of (2.19) and (2.20) into the expression ∇· (E1×H2−E2×
H1) leads to the equation:

∇ · (E1 ×H2 − E2 ×H1) = H1 ·M2 + E2 · J1 −H2 ·M1 − E1 · J2

(2.21)

which may be integrated over the volume V . The application of the Gauss
theorem to this integral gives the �nal formulation for the reciprocity theo-
rem:∮
S=∂V

(E1 ×H2 − E2 ×H1) · dS =

∫∫∫
V

(H1 ·M2 + E2 · J1 −H2 ·M1 − E1 · J2)dV

(2.22)

where S = ∂V is the closed boundary of the volume V , and the direction of
dS is the outward normal to the boundary.

2.2.4 Image theory for a perfectly conducting in�nite

plane

The electromagnetic �eld produced by a scatterer may be changed by obsta-
cles in its proximity. One of the most wide-spread obstacles, which appear in
problems related to passive interconnection structures, is the well conducting
ground plane. A large number of objects may be considered as ground planes,
e.g., the conducting earth surface, conducting device cases, metallized layers
in printed circuit boards, etc.

A scatterer located in the proximity of a perfectly conducting plane may
be simply described using the image theory, which is given in this section
for the point charge and current sources above an in�nite ground plane. In
general, the image theory may be applied not only in this case. However, this
section considers only this most important application of the image theory.

The boundary-value problem shown in Fig. 2.1a is considered. The elec-
tric �eld intensity caused by a point charge has to be computed in the higher
half space, whose lower boundary is the perfectly conducting ground plane
located in the (x, y) plane at z = 0. The point charge q is located at the point
r = (x, y, z). We consider a free-space problem, where the ground plane is
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Figure 2.1: Imaged sources for charges (a), and for vertical (b) and horizontal
(c) currents.

replaced by an image charge qi = −q located at the point ri = (x, y,−z).
We consider the tangential component of the electric �eld intensity produced
by q and qi at the point r

′ = (x′, y′, 0) of the boundary surface. As shown
in Fig. 2.1a, Et(r) = 0 at all points of the boundary. Thus, the solution
of the free-space problem satis�es the boundary condition for the tangential
component of the electric �eld intensity and, certainly, to the wave equation.
Because of the uniqueness theorem, the solution of this equivalent free-space
problem is the unique solution for the initial boundary-value problem.

The second boundary-value problem is shown in Fig. 2.1b. The charge
q moves in the vertical direction that may be considered as a point current
source J(r). According to Fig. 2.1a, the equivalent free-space problem is
obtained replacing the ground plane by the image charge qi = −q moving in
the negative vertical direction, which means a current in the same direction
as J(r).

The third boundary-value problem is shown in Fig. 2.1c. The charge q
moves in the horizontal direction that may be considered as a point current
source J(r). According to Fig. 2.1a, the equivalent free-space problem is
obtained replacing the ground plane by the image charge qi = −q moving in
the same direction, which means a current in the opposite direction (see Fig.
2.1c).

These three auxiliary boundary-value problems allow one to deduce the
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image principle. The �eld produced by a system of currents and charges in
the proximity of a ground plane may be computed using an equivalent free-
space problem, which replaces the ground plane by the mirror images of the
current and charge sources. The charges and the horizontal components of
currents are re�ected with a negative sign, while the vertical components of
currents are re�ected with a positive sign.

2.3 Green's function method

This analytic technique was developed for the solution of a particular prob-
lem, namely, Poisson equation by George Green in 1828. The electrodynamic
problems are formulated as partial di�erential equation systems completed
with boundary conditions, i.e., it is a boundary-value problem.

Nowadays, the Green's function method is the most wide-spread analytic
approach for solution of linear boundary-value problems (BVP). The Green's
function method is limited only by linear BV problems because it is based
on the superposition principle.

In the following, a linear boundary-value problem is written in the oper-
ator form:

L {f(r)} = e(r),

r ∈ V ⊂ R3, (2.23)

f(r), e(r) ∈ C

where V is the three-dimensional solution region with the closed boundary
S = ∂V , f(r) is the unknown function, e(r) is the known excitation function,
and L {} is the linear di�erential operator. Since the solution of (2.23) is
not unique, we complete it with Dirichlet, Neumann or Robin boundary
conditions:

• Dirichlet boundary condition f(r) = α(r),

• Neumann boundary condition
∂

∂n
f(r) = β(r), r ∈ S ,

• Robin (or mixed) boundary condition f(r) + γ(r)
∂

∂n
f(r) = ξ(r)

The Green's function method gives the solution of the BVP (2.23) in the
form of a space convolution integral over the solution region V :

f(r) = −
∫∫∫
V

g(r, r′)e(r′)dV ′ (2.24)
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where dV ′ means the integration over r′. g(r, r′) is named the Green's func-
tion for the BVP, r and r′ are the observation and the source points, respec-
tively. The excitation e(r) may be represented using the three-dimensional
Dirac delta function δ(r− r′):

e(r) =

∫∫∫
V

δ(r− r′)e(r′)dV ′ (2.25)

The de�nition for the Green's function is derived by the substitution of (2.24)
and (2.25) in (2.23). In view that L {} is a linear operator with respect to
r, we write:

−
∫∫∫
V

L {g(r, r′)} e(r′)dV ′ =
∫∫∫
V

δ(r− r′)e(r′)dV ′ (2.26)

The comparison of the right- and left-hand sides of (2.26) results in

L {g(r, r′)} = −δ(r− r′) (2.27)

Thus, the Green's function is the solution of the BVP at the observation
point excited by the minus Dirac delta function at the source point.

Green's functions for wave equations in free space

The most wide-spread application of the Green's function method in elec-
trodynamics is the solution of the scalar wave equation for the free space.
The free space is de�ned as the homogeneous isotropic unlimited space with
ε = ε0 and µ = µ0. The Green's function may be derived as the solution of
the wave equation for the scalar electric potential excited by −δ(r− r′):

∇2g(r, r′) + k2g(r, r′) = −δ(r− r′) (2.28)

Assuming the source point at the coordinate origin and in view of the spher-
ical symmetry, (2.28) may be rewritten in the spherical coordinates {r̂, θ̂, ϕ̂}
as follows:

1

r2

∂

∂r

(
r2 ∂

∂r
g(r)

)
+ k2g(r) = −δ(r) (2.29)

(2.29) is a linear ordinary di�erential equation (ODE) of the second order,
whose solution may be expanded in two independent functions. The functions
e±jkr

r
with k = ω

√
µ0ε0 satisfy the homogeneous equation (2.29) and, thus,
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compose the basis for the solution subspace of (2.29) in the functional space.
Hence, the solution of (2.29) may be expressed via these two functions:

g(r) = A
e−jkr

r
+B

ejkr

r
(2.30)

Since the second term in (2.30) does not satisfy the Sommerfeld radiation
boundary condition, the coe�cient B has to be zero. The coe�cient A may
be de�ned via application to the inhomogeneous di�erential equation (2.28)
the following operator:

lim
r→0

∫∫∫
V

∇ · ∇g(r)dV + k2 lim
r→0

∫∫∫
V

g(r)dV = − lim
r→0

∫∫∫
V

δ(r)dV (2.31)

where the volume V is a sphere with a radius r about the coordinate origin.
The �rst term on the left-hand side is

lim
r→0

∫∫∫
V

∇ · ∇g(r)dV = lim
r→0

∮
A=∂V

∇g(r)dA = −4πA (2.32)

The second term is

k2 lim
r→0

∫∫∫
V

g(r)dV = k2 lim
r→0

∫ r

0

4πr2A
e−jkr

r
dr = 0 (2.33)

Since the right-hand side of (2.31) gives −1, the unknown constant A is equal
to 4π, and the solution for (2.29) is

g(r) =
1

4π

e−jkr

r
(2.34)

Using (2.34), the free-space scalar Green's function for an arbitrary source
point is derived as follows:

g(r, r′) =
1

4π

e−jk|r−r
′|

| r− r′ |
(2.35)

The free-space scalar Green's function (2.35) is the fundamental solution
for the scalar wave equation (2.28), which is identical to the equations for
the scalar electric and vector magnetic potentials. Thus, the potentials may
be calculated using the Green's function method (2.24).

Applying e(r′) = −ρv(r′)/ε0, we may compute the scalar electric potential
as follows:

ϕ(r) =
1

ε0

∫∫∫
V

g(r, r′)ρv(r
′)dV ′ (2.36)
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In case of the vector magnetic potential, the excitation is e(r′) = −µ0J(r′).
Thus, we obtain the solution in the following form:

A(r) = µ0

∫∫∫
V

g(r, r′)J(r′)dV ′ (2.37)

2.4 Computational methods in electrodynam-

ics

The computational methods, which may be applied to solve the partial dif-
ferential equation (PDE) system describing the boundary-value problem, are
classi�ed as analytical, semi-analytical, and numerical.

The analytical techniques allow one to derive a closed-form solution,
which may be calculated explicitly with minor computational e�orts. Usually,
the application of analytical techniques is possible only under strict assump-
tions and for very simple structures. As an example of analytical techniques,
one can consider the separation of variables that gives the closed-form solu-
tions for some particular problems.

The pure numerical methods (di�erential methods) involve no analytical
solutions for electromagnetic problems, instead, the volume is divided into
a number of grid cells that allows one to approximate the PDE at local
cell volumes. The di�erential methods lead to a large number of algebraic
equations for three-dimensional problems. However, they may be simply
applied to the simulation of problems in anisotropic, non-uniform and non-
linear media, which is possible if assuming the medium isotropic, uniform
and piecewise linear locally at discretization cells.

The semi-analytical methods provide an implicit analytical solution for
the initial boundary-value problem that can be solved numerically involving a
signi�cantly lower number of unknowns as compared to di�erential methods.
The most signi�cant family of semi-analytical methods in electrodynamics are
based on the numerical solutions of integral equations derived from Maxwell's
equations. These methods are referenced as integral equation techniques. For
example, the most common integral equations are the electric-�eld integral
equation (EFIE) and the mixed-potential integral equation (MPIE), whose
numerical solutions may be achieved by the method of moments (MoM) and
the partial element equivalent circuit method (PEEC), respectively. As the
PEEC method is concerned, it will be thoroughly explained and developed
in Chapter 5.
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2.4.1 Weighted residual method

Since the two aforementioned methods as well as some other methods are
based on the weighted residual method, their fundamentals are introduced
here.

The method of weighted residuals is an important fundamental mathe-
matical technique used for the approximate solution of boundary-value prob-
lems written in the canonical linear operator form. As partial di�erential
and integral equations of classical electrodynamics can be represented in this
form, the majority of computational methods apply the principles of the
weighted residual method. The Finite Element method (FEM), boundary
element method (BEM), method of moments, and the PEEC method are
derived from the method of weighted residuals.

Let the boundary-value problem be formulated in a linear-operator form
as in (2.23):

L {f(x)} = g(x) x ∈ V (2.38)

f(x) = α(x),
∂

∂n
f(x) = β(x) x ∈ ∂V

where V is the solution region, α(x) and β(x) are Dirichlet and Neumann
boundary conditions. The method of weighted residuals proposes the follow-
ing approximated solution of (2.38):

f̃(x) =
N∑
k=1

akbk(x) (2.39)

where bk(x) and ak are called basis functions and expansion coe�cients, re-
spectively. The choice of the prede�ned basis functions governs the mod-
i�cation of the weighted residual method. The expansion coe�cients are
unknown. Thus, the numerical solution is obtained if the expansion coe�-
cients are calculated. As f̃(x) has to satisfy the given boundary conditions
and to approximate f(x) with a �nite precision, the substitution of f̃(x) in
(2.38) results in a residual error in all points of the solution region:

R(x) = L {f̃(x)} − g(x) (2.40)

We obtain N algebraic equations through an inner product of R(x) and N
weighting functions:

〈wm(x), R(x)〉V = 0 m ∈ 1, N (2.41)
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Equation (2.41) demands that the weighted summary residual error of the
approximation is equal to zero. The substitution of (2.39) in (2.41) results
in the general formulation of the method:

N∑
k=1

ak〈wm(x),L {bk(x)}〉V = 〈wm(x), g(x)〉V m ∈ 1, N (2.42)

Since the inner products of known functions in (2.42) result in scalar val-
ues, (2.42) yields an algebraic equation system with respect to the unknown
expansion coe�cients.

Because (2.42) applies inner products of functions, the both basis and
weighting functions belong to a functional space with an inner product de-
�ned as follows:

〈w(x), b(x)〉V =

∫
V

w(x)b(x)dx (2.43)

The weighted residual method has several important modi�cations related to
the weighting and basis functions. The method of weighted residuals with the
same basis and weighting functions is called the Galerkin's approach. The
Galerkin's approach is considered here with regard to the PEEC method
(Chapter 5), which can be derived purely on its base.
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Chapter 3

Evaluation of Flexible Rogowski

Coil Performances in Power

Frequency Applications

3.1 Introduction

Rogowski coils have been used for the detection and measurement of time-
varying electric currents for decades. They operate on a simple principle:
an air-cored coil is placed in a toroidal fashion around the conductor (the
primary circuit), whose current has to be measured. The magnetic �eld pro-
duced by the current induces a voltage across the coil, which is proportional
to the rate of change of the current.

In 1887, Professor Chattock of Bristol University used a long, �exible coil
of wire as a magnetic potentiometer and made magnetic reluctance measure-
ments in iron circuits to investigate "the more satisfactory designing of dy-
namos". The coils were calibrated by bringing their ends together around an
electric current. A recent use of the Chattock potentiometer was developed
by the CEGB (Central Electricity Generating Board) for testing the stator
cores of generators and motors. Rogowski and Steinhaus also described the
technique in 1912. They were interested in measuring magnetic potentials.
They describe a large number of ingenious experiments to test that their coil
was providing reliable measurements.

In most cases, Rogowski coils have been made by placing the winding on
a long, �exible former and then bending it round the conductor, but coils
wound on rigid toroidal formers have also been used. The current measure-
ment range is very wide from a few mA to over 1 MA.

The advantages of this type of transducer are immediately clear:
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⇒ galvanic separation of the measuring system from the primary circuit;

⇒ non-saturation and good linearity, due to the absence of magnetic ma-
terial (the probe is air-cored);

⇒ very wide bandwidth extending typically from 50 Hz to about 1 GHz.
This enables the transducer to measure and reproduce the waveform of
very rapidly transient currents;

⇒ simple circuitry and low price;

⇒ ease of installation.

The disadvantages are:

√
poor sensitivity at low frequencies;

√
problems of interference due to external electromagnetic �elds;

√
output in�uenced by the arrangement of the power circuit.

3.2 Lumped Parameter Model and Frequency

Response

The behaviour of the Rogowski coil can be represented by the lumped pa-
rameter equivalent circuit in Fig. 3.1:

Figure 3.1: Rogowski coil equivalent circuit.

where:
e(t): electromotive force induced in the coil;
Rc: series resistance;

19



Lc: series auto-inductance;
C: capacitance, which represents leakage capacitances between turns and
between the coil and the external environment. This term plays its in�uence
at very high frequency, so it is negligible in quasi-stationary conditions.

The model can be completed including the load Rm and the termination
resistance Rk, which is designed to avoid re�ection phenomena (Fig. 3.2):

Figure 3.2: Measuring system equivalent circuit.

The model is described by the following equation:

e(t) = −Mdi

dt
= Lc

dic
dt

+Ric (3.1)

Rb =
RkRm

Rk +Rm

R = Rc +Rb

where:
M : is the mutual inductance between the coil and the primary conductor;
i: is the current to be measured;
ic: is the current �owing in the coil.

The previous equation (3.1) can be rewritten in terms of Fourier trans-
form, where I(jω), Ic(jω) are the Fourier transforms of the currents de�ned
above, as:

− jωMI(jω) = jωLcIc(jω) +RIc(jω) (3.2)

If we introduce the time constant of the coil τc equal to τc =
Lc
R
, the
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transfer function G(jω) =
Ic(jω)

I(jω)
is (Fig. 3.3):

G(jω) = −M
Lc

jωτc + ω2τ 2
c

1 + ω2τ 2
c

(3.3)

Figure 3.3: Rogowski frequency response.

3.2.1 Di�erentiating mode

We de�ne as τ the time constant relative to the highest frequency component
of the current i

If τ � τc the transfer function becomes:

G(jω) ' −M
Lc
jωτc → ic ' −

M

R

di

dt
(3.4)

it means current i varies so slowly that current ic can be always considered in
steady-state condition. This operation is characterized by an upper frequency
limit, due to τc, so that it is convenient to limit the time constant with an
appropriate design (low inductance and high resistance, usually Rm → ∞).
In this case, voltage U is calculated as:

U = Rkic = −Rk
M

R

di

dt
' −Mdi

dt
(3.5)
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Disadvantages:

• An analog or digital integration of voltage U is needed to obtain a
signal proportional to the measuring current;

• High output voltages, due to the derivative of the current which am-
pli�es the output signal, could cause over-voltages on the measuring
system.

3.2.2 Self-integrating mode

If τ � τc the transfer function can be written as:

G(jω) ' −M
Lc

(3.6)

To operate in integrating mode, it needs to design the probe with a high time
constant, that means with a very high inductance and a very small resistance
(usually Rm � Rk). In this case, voltage U is:

U = Rmic ' −Rm
M

Lc
i (3.7)

Advantages:

? Measurement of the high frequency signal is very good;

? No integration process is needed.

Disadvantage:

- Low frequency signals are measured with high distortion.

Unlike current transformers and other ferromagnetic-cored devices, Ro-
gowski coils are linear. There are no e�ects from saturation and the mutual
inductance is independent of the current being measured. The only factor ap-
preciably limiting linearity would be an electrical breakdown in the winding
caused by a too high voltage being developed across the ends of the coil.

The integrator is also linear within certain predictable limitations. For
reliable operation the designer must be aware of the limitations and design
within them. Selection of components and circuit layout are also important
in achieving high-integrity measurements.

The main limitations with integrators are saturation, when the output
voltage becomes too large and a slew rate limit, which occurs when fast
current edges are being measured.
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The basic properties of this device (linearity, wide bandwidth, galvanic
isolation, lightness and low cost) make it a good alternative to conventional
current transducers, such as current transformers (CT) and shunts, and ex-
plain the large number of further applications, which include energy manage-
ment, protection systems, current transformer calibration, current sharing,
resistance welding process and measurement of partial discharges and earth
resistance of transmission towers [2�7].

3.3 Preliminary Considerations

The uncertainty of the current value measured by RCs can signi�cantly
varies, as a function of the coil characteristics and measurement conditions,
ranging from some parts in 104 to some percent. The RC is a mutual in-
ductor, whose mutual inductance can be easily estimated on the basis of its
geometry [4]:

M = µ0nA (3.8)

where n is the number of turns per meter and A is the cross-sectional area.
Equation 3.8 is obtained under the assumption of the following ideal condi-
tions:

• circular coil shape;

• power conductor of in�nite length and thin cross-section;

• power conductor placed in the coil centre;

• power conductor orthogonal to the coil plane;

• closed coil with turns uniformly distributed along the circumference;

• absence of any external magnetic �eld.

These conditions, that can be quite well reproduced in laboratory, are
seldom met when commercial coils are used during on-site measurements.
As a consequence, a variation of the mutual inductance coe�cient can arise,
as a function of the coil design characteristics and operating conditions. It
becomes then important to investigate the parameters which can a�ect the
measurement results and to predict the accuracy decrease with respect to the
reference conditions. Improvement of the RC behaviour and determination
of the in�uence quantity e�ects, such as presence of external �eld source,
position and path of the current carrying conductor and non-circular coil
shape, are often performed experimentally [7�13]. As an alternative, with
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reference to RCs for use at power frequency, some modelling approaches have
been developed [14�17]. In particular, the in�uence of the straight power
conductor position and the e�ect of the turn number are investigated in [15].
The presence of a coil terminal gap is taken into account in [16], together
with the position of the power conductor. The e�ect of the non-orthogonal
condition between the power conductor and the coil plane is described in [18],
but for a current sensor with magnetic core.

To deeply investigate and quantify the e�ect of the in�uence quantities on
actual RCs, a numerical tool has been developed and applied to the analysis
of the di�erentiate behaviour of RCs under non ideal measurement condi-
tions. The proposed model is able to simulate most of the possible RC
non-idealities together with the actual power circuit conditions. It further
allows the evaluation of the combined e�ect of several non-idealities which
occur simultaneously. The approach developed is fast enough to be included
in a Monte-Carlo procedure for the estimation of the uncertainty associated
with the coil use.

The attention is focused on openable and �exible Rogowski coils, which
are widely used owing to their ease of installation, despite their lower ac-
curacy and higher temperature sensitivity compared to both the rigid ones
and those based on printed circuit board [19]. The study is developed under
sinusoidal steady-state condition at power frequency, by modifying both the
circuital and coil parameters, such as the power conductor position, shape
and path, the presence of an external current, the uniformity of the turn dis-
tribution along the coil and the non-circular coil shape. The modelling tool,
validated through experimental measurements, also permits the evaluation of
those design actions that improve the RC behaviour and its accuracy, such
as the addition of a compensation turn or a counter-wound second wind-
ing. Taking into account the high number of parameters that can a�ect the
measurement accuracy, their combined e�ect is conveniently evaluated by a
statistical procedure. Two ranges of parameter variations are considered to
simulate the on-site operating conditions. In both cases an estimate of the
measurement uncertainty is given.

3.4 The Modelling Approach

The RC is essentially a linear mutual inductor, linked with the magnetic �eld
generated by the current i(t), which �ows in the power conductor (primary
conductor). The electro-motive force e(t) induced in the coil is given by:

e(t) = M
di(t)

dt
(3.9)
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Under the assumption of an ideal closed coil, wound with a continuous
turn distribution (in�nite number of turns), with a small cross-sectional area
and under no-load electrical operating conditions, the mutual inductance is
a constant term. Then, according to the Ampere's law, the linked magnetic
�ux does not depend on the shape and position of the in�nite length primary
conductor. Whenever one of the above conditions does not occur, a variation
of the mutual inductance coe�cient arises.

The developed RC model, based on a 3D quasi-analytical formulation,
provides the magnetic �ux linking the coil, the mutual inductance coe�cient
(coil sensitivity) and the electro-motive force induced at the transducer ter-
minals. Under the assumption of coil connected to an impedance of very
high value, the current which �ows in the winding is negligible, since the
presence of displacement currents can be disregarded under low frequency
supply. The RC is considered in an open-boundary homogeneous domain.
According to these hypotheses, the current i(t) which �ows in the �lamentary
primary conductor produces, in a given point P at the time t, the magnetic
vector potential expressed by the well-known relationship:

~A(P, t) =
µ0

4π

∫
L

i(t) d~l

ρP
(3.10)

where the propagation terms are neglected, µ0 is the vacuum magnetic per-
meability, L is the total primary conductor length and ρP is the distance
between a point of the �eld source and the point P . The magnetic �ux is
then given by the line integral of the potential along the winding pro�le Γ,
that is:

Λ =

∫
Γ

~A(P, t) · d~γ (3.11)

thanks to the divergence-free property of the magnetic �ux density and to
the Stokes' theorem. Integrals (3.10) and (3.11) are numerically solved by di-
viding the primary conductor and the coil turns into elements, whose number
has been evaluated on the basis of preliminary computations, as explained
below.

Since the input and output terminals of an opening coil are usually not
coincident, the gap between them is quanti�ed by an opening angle β. In
the more general case of an elliptical coil, each point P , which belongs to the
toroidal helix made of N turns, is de�ned by the coordinates (Fig. 3.4):

x = [r · cos γ + Smax] · cosϑ

y = [r · cos γ + Smin] · sinϑ
z = r · sin γ

(3.12)
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Figure 3.4: Coordinate system assumed in modelling the RC.

where r is the turn radius, γ is the turn angle in the plane R, z (0 ≤ γ ≤
2πN), ϑ is the angle in the plane xy whose value is (((2π−β)/2πN)γ+(β/2));
and Smax, Smin are the maximum and minimum semi-axis, respectively. A
RC with circular shape can be described by imposing Smax = Smin = R,
where R is the mean radius. In the following computations, the gap β is
always centred at x = Smax, y = 0, z = 0 as shown in Fig. 3.4.

A pitch weight vector is used to describe a non-uniform turn distribution.
The element wi of the vector is associated with the pitch of the ith turn:
according to its value, the turn pitch can be enlarged (wi > 1) or reduced
(wi < 1), with the constraint

∑N
i=1wi = N .

The relation (3.12) can be generalized to the description of RCs �tted by
a compensation turn or a counter-wound compensation winding.

The model simulates the e�ects of bulk primary conductors with di�erent
cross-section shapes (circular and rectangular), by representing them with
suitable distributions of �lamentary wires. The skin e�ect can be taken into
account by assigning proper current values to the wires.

The path of the power circuit is handled by dividing it into straight or
curvilinear segments in order to reproduce any con�guration, as for example,
straight [Fig. 3.5(a)], L-type [Fig. 3.5(b)] or turn [Fig. 3.5(c)] conductors.

In order to de�ne a reliable number of elements in the discretization pro-
cess, the results obtained with the 3D model are tested by comparing the �ux
values computed by a Finite Element Method (FEM) model. The 2D FEM
model is based on a magnetic vector potential weak formulation, which uses
a meshing technique with triangular elements and �rst order shape functions.
These calculations are performed by referring to a circular primary conduc-
tor in centred position and a Rogowski coil with the following dimensions:
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Figure 3.5: Simulated power circuit paths: (a) straight; (b) L-type; and (c)
turn conductors.

number of turns N=130, external coil radius Re=175 mm, internal coil ra-
dius Ri=150 mm, coil winding diameter d=2 mm. Under this geometrical
hypothesis, the �ux linked with the coil can be analytically computed as
well. Table 3.1 shows the results obtained by the methods described above.
The number of elements is increased progressively until the �ux values match
better the comparing model results. In the end, the residual deviation may
be explained taking into account that a continuous turn distribution is con-
sidered in FEM and analytical calculations, whereas in the 3D analysis the
magnetic �ux is linked with the actual coil helix.

Table 3.1: 3D, 2D and closed-form preliminary computations

Model Linked magnetic �ux (nWb)

3D Biot-Savart 78.647

FEM 78.213

Closed-form 78.214

The modelling analysis allows the prediction of the RC behaviour as a
function of the following power circuit parameters:

• position of the primary conductor with respect to the coil center;

• shape of the primary conductor cross-section;
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• path of the power circuit;

• tilt angle α of the primary conductor with respect to the coil plane.

Moreover, the following coil parameters can be set:

• opening angle β;

• coil eccentricity;

• non-uniform distribution of the turns along the coil;

• presence of a compensation turn or a counter-wound winding.

Figure 3.6: (a) Sketch of the open shield geometry. (b) Current density lines
induced in an open shield surrounding the turn cross-section.

Actual Rogowski coils are generally shielded by an open metallic screen
[3], [20], whose induced eddy currents could modify the magnetic �eld dis-
tribution. The evaluation of this perturbation is obtained through a �nite
element model, based on a two dimensional �ux driven T-Ω formulation [21],
which provides the induced current density in the shield (Fig. 3.6). The com-
putations are carried out in the R, z plane by imposing a sinusoidal magnetic
�ux through the turn cross-section. The shield is modeled as a hollow toroid
of circular cross-section (r = 3.6 mm), with 1 mm thickness and 30 · 106

S/m electrical conductivity (aluminium shield), as shown in Fig. 3.6. Figure
3.7 presents the time behaviour of the magnetic �ux through the turn cross-
section, computed with a closed shield, an open shield (shield break=10◦)
and without the shield. The �ux values Λ are normalized to the �ux peak
value without the shield Λ0. An amplitude variation of 0.3% with a phase
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shift of about 4◦ is detected in presence of a closed shield with respect to the
unperturbed behaviour. When the shield is open, the magnetic �ux variation
lowers to a few parts in 105. As a result of this analysis, the presence of the
open shield is disregarded and (3.10) and (3.11) can be then used.

Figure 3.7: Normalized magnetic �ux through the turn cross-section, with
closed shield, open shield, and without shield.

3.5 Experimental Validation

The validation of the model is carried out by comparing computational and
measurement results, under sinusoidal supply at power frequency. The in-
vestigation is performed on a commercial �exible Rogowski coil, in the high
current laboratory of the Istituto Nazionale di Ricerca Metrologica of Torino
(INRIM). The dimensions of the RC and the power conductors are given
in Table 3.2. To ensure a good positioning accuracy, a plexiglass disc is
employed to support the RC and hold the primary conductor in the stated
positions (Fig. 3.8).

29



Figure 3.8: Plexiglass disc support for the RC and circular primary conduc-
tor.

Figure 3.9: RC arrangement with respect to the primary and return conduc-
tors.

The current return is made with bar conductors, whose distance D from
the primary conductor can be changed (Fig. 3.9). The RC mutual inductance
M is evaluated as ratio of the linked �ux to the current value. The current is
measured by a reference CT and the �ux is obtained through integration of
the voltage induced across the RC, performed by the associated integrator.
A Y-bar system (Fig. 3.10), usually employed when performing calibrations,

Table 3.2: Rogowski coil and conductor dimensions

Primary conductor diameter 18 mm

Primary conductor length 1800 mm

Bar conductor dimensions 10 mm x 40 mm

RC mean diameter 245 mm
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Figure 3.10: Y-bar system, reference current transformer, and RC arrange-
ment.

allows minimization of stray magnetic �elds and symmetric positioning of
the supply, reference CT and device arrangement.

The scheme of the experimental set-up is shown in Fig. 3.11.
The computed and measurement results are expressed in terms of the

mutual inductance M normalized to the value M0, obtained under refer-
ence conditions, that is when the primary conductor is centred, its axis is
orthogonal to the coil plane and the return conductor is far from the de-
vice (D ≥ 1445 mm). It must be underlined that M0 does not refer to the
ideal conditions, which imply an in�nite primary conductor and can be well
approximated when the conductor total length overcomes ∼ 50 ·R.

The integrator associated with the coil is calibrated by applying reference
sinusoidal voltages, to verify its linearity and stability. From the results
obtained, a standard uncertainty contribution of 2.5 · 10−4 is attributed to
the integrator. The uncertainty associated with the M/M0 measurement
values (7 · 10−4, con�dence level 95%) is estimated by considering, besides
the contribution of the integrator, that due to the coil positioning on the
support.

Since the turn number of the commercial RC is not accurately known,
some computations are performed by increasing N from 130 to 3000. The
results show that N does not appreciably a�ect the value ofM/M0, provided
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Figure 3.11: Scheme of the experimental setup.

that all the other coil parameters are unvaried. Thus, a coil with 130 turns
is used to reduce the computational time. Table 3.3 summarizes the main
features of the model used to simulate the Rogowski coil.

Table 3.3: Model parameters

RC Mean radius R 122.5 mm

RC turn cross-section diameter 7 mm

Number of turns N 130

Primary conductor length 1800 mm

Figures 3.12 and 3.13 compare measurements and computations, when
the position of the primary and return conductors are varied, respectively.

In Fig. 3.12, the primary conductor is moved along the x axis (Fig.
3.9) and the return conductor is kept 1445 mm distant from the primary
conductor. The actual coil opening angle, which can only be estimated, is
assumed equal to 0.5◦. The maximum relative deviation between model and
experimental results is 1.5 ·10−3, when the primary conductor is very close to
the gap (xp = 100 mm). The computation is repeated by slightly increasing
the opening angle (β = 0.7◦), in order to determine the sensitivity to the
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Figure 3.12: Comparison of the measurement and model results versus dis-
placements of the primary conductor from the coil center for two gap angles
β.

gap variation. In this case, a measurement-model deviation one order of
magnitude lower is found, for the same position of the primary conductor.
As shown in Fig. 3.12, all the measurement results fall inside the strip edged
by the two modelled cases.

Figure 3.13 shows the in�uence of the return conductor distance from the
coil centre when the primary conductor is placed in two positions (xp = 70
mm, xp = −60 mm), with β = 0.5◦.

The obtained results show an agreement between measurement and com-
putation generally better than the part per thousand and make the use of
the numerical model feasible for an exhaustive analysis of the RC behaviour.

3.6 In�uence of Coil and Circuital Parameters

The analysis is carried out by simulating the RC, whose characteristics are
summarized in Table 3.3.

First, the e�ect of the primary conductor position on the mutual induc-
tance is investigated by assuming angle β as a parameter.
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Figure 3.13: Comparison of the measurement and model results as a function
of the return conductor position. The displacement of the primary conductor
is indicated as a parameter.

The results are shown in Fig. 3.14, where the conductor is moved along
the x axis from the coil centre up to 80% of the mean coil radius R. The
values shown can be referred to any coil radius R.

As shown in Fig. 3.14, when the primary conductor is close to the coil
gap, the mutual inductance decreases signi�cantly with respect to M0, even
for small angles β. To limit this e�ect, the turns close to the coil terminals
are concentrated by decreasing their pitch (Fig. 3.15). The results in Table
3.4 show that, for the primary conductor position xp/R = 0.8, the deviation
of M/M0 from unit can be strongly lowered through a suitable choice of the
number m of turns with reduced pitch weight (wi = 0.9). For larger β, m
has to be increased or the weight wi must be decreased. As an indication,
an approximated rule to optimize the compensation is given by:

2π

N

m∑
i=1

(1− wi) ' β (3.13)

This relation is derived by imposing that the linked magnetic �ux lost in
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Figure 3.14: Normalized mutual inductance versus primary conductor posi-
tion from the coil center, for gap angles β from 0◦ to 1.5◦.

Figure 3.15: Sketch of a non-uniform turn distribution along the coil.
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the gap is compensated by the compression of the m turns. It can be noted
that the results shown in Table 3.4 agree with (3.13).

In actual situations, the requirement of orthogonal condition between coil
plane and primary conductor cannot always be ful�lled. For this reason, the
e�ect of a coil tilt angle α is investigated for di�erent values of the gap β and
turn number N . In the present analysis, the primary conductor lays in the
y, z plane and is rotated around the x-axis (Fig. 3.4), in centred position. The
tilt angle ranges from 80◦ to 100◦ with respect to the coil plane (orthogonal
condition: α = 90◦). The Figure 3.16 compares the deviations of the mutual
inductance versus α for β = 1◦ computed with 130, 500 and 1000 turns. The
results show that the behaviours are almost anti-symmetric with respect to
α = 90◦ and strongly depend on the turn number. To better understand this
phenomenon, some considerations are detailed in the Appendix. It must be
observed that if the computation is repeated for β = 0◦ (closed coil), the
considered tilt α gives rise, for the considered case, to deviations which are
at least one order of magnitude lower than those found with β = 1◦.

The tilt e�ect may be considerably reduced by adding a counter-wound
winding or a counter-wound single-turn. This solution, generally adopted
to mitigate possible external magnetic �elds with components along the coil
axis (z-axis), gives advantages also in non-orthogonal conditions. By adding
a counter-wound winding with the same turn number as the main coil (Fig.
3.17a), the mutual inductance deviation reduces to less than 2 · 10−4, even in
the worst case (N = 130, α = 100◦). A counter-wound single-turn, instead
of a second winding (Fig. 3.17b), leads to a 8 · 10−4 relative deviation for the
same worst case.

All the issues previously discussed concern a primary conductor of cir-
cular shape, but in power plants busbars are frequently used. Then, the
in�uence on the mutual inductance of the cross-section dimensions of the

Table 3.4: Mutual inductance relative deviation with uniform and non-
uniform optimized turn distributions (N = 130)

Uniform distribu-
tion (10−2)

Non-uniform distri-
bution (10−2)

β = 0.5◦ -0.53 0.05 (m = 2)

β = 0.7◦ -0.75 0.10 (m = 3)

β = 1.0◦ -1.08 0.03 (m = 4)

β = 1.5◦ -1.63 -0.10 (m = 6)
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primary conductor is investigated with respect to the coil radius. To this
end, a rectangular conductor with dimensions h = 10 mm and d = 40 mm is

Figure 3.16: E�ect of non-orthogonal condition between the RC plane and
the primary conductor. The mutual inductance values are shown versus angle
α for increasing number N of turns (β = 1◦).

Figure 3.17: Sketch of (a) a second winding counter-wound with the same
turns as the main coil and (b) a counter-wound single-turn.
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Figure 3.18: Normalized mutual inductance versus the ratio of coil radius to
bar dimension.

centred at O with the major dimension along the x-axis. A 1 mm coil gap
is assumed with a turn density n = 0.172 turn/mm (Fig. 3.18). The mutual
inductance computed with the �lamentary primary conductor is considered
as the reference value M0. As far as the major bar dimension is su�ciently
smaller than the coil radius (R > 1.5d), the deviation of the mutual in-
ductance from the reference value is negligible. If the bar conductor has the
major dimension d along the y-axis, the deviation is reduced to about 6 ·10−4

when R = 0.66d.

3.7 Estimate of the On-site Measurement Un-

certainty

When using the RC for on-site measurements, the circuit arrangement can
signi�cantly di�er from the optimal one with reference to both the coil po-
sitioning around the primary conductor and the presence of the return con-
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Table 3.5: In�uence quantity ranges for situation A

In�uence quantity Range of Variation Reference condi-
tion

Eccentricity 0.0 to 0.4 0.0

Turn pitch weight 0.95 to 1.05 1.0

∆x displacement (-50 to +50) mm 0 mm

∆y displacement (-30 to +30) mm 0 mm

Return conductor dis-
tance from the coil
centre

(1.5 to 20)·R 20·R

Primary conductor
length

(3.1 to 6) m 6 m

Tilt angle α (70 to 110)◦ 90◦

ductor and/or other �eld sources. In addition, the measurement conditions
strongly vary from site to site and in most cases cannot be accurately de-
termined. This situation can lead to a degradation of the RC performances,
since the actual value of the mutual inductance M can be di�erent from the
one determined in the reference condition (M0). However, the high num-
ber of parameters, which cannot be well controlled, makes a direct analysis
unfeasible and suggests the use of a statistical approach.

An estimate of the measurement uncertainty for an on-site situation can
be performed by making use of the model previously described, starting with
the identi�cation of the in�uence parameters and their expected ranges of
variation. In the following, examples of uncertainty evaluation are given for
rough on-site measurements and better controlled measurement conditions.
The �exible and openable RC, whose dimensions are listed in Table 3.3 (β =
0.5◦), is �tted by a counter-wound compensation turn (Fig. 3.17b). The
in�uence quantities and their assumed range of variation are shown in Table
3.5 (situation A), together with the reference condition values. The path of
the primary conductor, with circular cross-section, is divided in two parts
connected in correspondence of the coil plane: the �rst one has a 3 m �xed
length and the second section can be varied, to simulate the e�ect of a turn
made by the power circuit.

A propagation distribution approach based on Monte Carlo method is
used to estimate the mutual inductance M , its standard uncertainty and the
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Table 3.6: In�uence quantity ranges for situation B

In�uence quantity Range of Variation Reference condi-
tion

Eccentricity 0.0 to 0.2 0.0

Turn pitch weight 0.99 to 1.01 1.0

∆x displacement (-5 to +5) mm 0 mm

∆y displacement (-3 to +3) mm 0 mm

Return conductor dis-
tance from the coil
centre

(5 to 20)·R 20·R

Primary conductor
length

(4 to 6) m 6 m

Tilt angle α (88 to 92)◦ 90◦

coverage interval corresponding to a 95% con�dence level [22]. The standard
uncertainty associated with the input quantities is evaluated by assuming,
as a �rst approach, a rectangular probability distribution of half width equal
to the variation range. The number of draws T is �xed to 20000, which is
su�cient to ensure statistical stabilized results [22].

A more controlled measurement situation is taken into account by con-
sidering the reduced range of variations shown in Table 3.6 (situation B).

Figures 3.19 and 3.20 compare the numerically approximated probability
density function and distribution function for the situations A and B, respec-
tively. The di�erence between the estimated mutual inductances M is quite
negligible (M = 8.1503 nH for case A andM = 8.1487 nH for case B, against
a calculated reference value M0 = 8.1487 nH). From the data shown in Fig.
3.19, standard deviations of 0.027 nH and 0.0023 nH are found for situations
A and B, respectively. A relative standard uncertainty contribution of some
parts per thousand can then be attributed to the measurement arrangement,
when the range of variations listed in Table 3.5 can be reasonably assumed.
However, in a relative more controlled situation, this contribution becomes
quite negligible or at most comparable with that associated to M0, deter-
mined in the calibration phase, provided that measurements are performed
not too far from the room temperature.
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Figure 3.19: Probability density functions for situations A and B.

3.8 Appendix

The analysis of the non-orthogonal condition e�ects is, in a general case, a
quite complicated topic. However, under the assumption that the primary
conductor is rotated around the x-axis in the plane y, z (Fig. 3.4) and the
turn number N is su�ciently high, some simpli�ed considerations can be
developed.

To this end, the RC turn opposite to the coil gap is considered. Under the
assumption of square cross-section, this turn is subdivided into four straight
segments (I, II, III, IV in Fig. 3.21), with length l. The contribution Λt to
(3.11), related to the single turn, is expressed as:

Λt =

∫
turn

~A · d~γ =

∫
I

~A · d~γ +

∫
II

~A · d~γ +

∫
III

~A · d~γ +

∫
IV

~A · d~γ (3.14)

Figures 3.22a and 3.22b show the relative orientation of the vectors in-
volved in (3.14) for segments I-III and II-IV, respectively, when α = 90◦ and
α = 90◦ + ∆α (∆α > 0). The angle δ is related to the turn pitch, which
depends on the turn number N , A90◦,i and A90◦+∆α,i are the average values
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Figure 3.20: Distribution functions for situations A and B.

Figure 3.21: Sketch of a square cross-section turn made of four straight
segments (I, II, III, and IV).

of the magnetic potential along the segment i (i=I,...,IV).
The �ux linked with the single turn when α = 90◦ is:

Λt =

∫
turn

~A90◦ · d~γ = A90◦,I l cos δ − A90◦,III l cos δ = l∆A cos δ (3.15)

where the magnetic potentials in I and III are linked by the expression A∗,I =
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Figure 3.22: Vector orientations involved in the computation of (3.14): (a)
Segments I�III. (b) Segments II�IV.

A∗,III + ∆A (∆α > 0). It should be noted that the integrals along II and
IV are null because their paths are perpendicular to the magnetic vector
potentials.

When α = 90◦ + ∆α, the magnetic �ux becomes:

Λt,90◦+∆α =

∫
turn

~A90◦+∆α · d~γ = l[∆A cos ∆α cos δ+

+ (2A90◦+∆α,III + ∆A) sin ∆α sin δ+ (A90◦+∆α,II +A90◦+∆α,IV ) sin ∆α sin δ]
(3.16)

In a similar way, when α = 90◦ −∆α is considered, the magnetic �ux is:

Λt,90◦−∆α =

∫
turn

~A90◦−∆α · d~γ = l[∆A cos ∆α cos δ+

− (2A90◦−∆α,III + ∆A) sin ∆α sin δ− (A90◦−∆α,II +A90◦−∆α,IV ) sin ∆α sin δ]
(3.17)

The deviations e90◦+∆α = (Λt,90◦+∆α −Λt,90◦) and e90◦−∆α = (Λt,90◦−∆α −
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Λt,90◦) are equal to:

e90◦+∆α = [∆A cos δ(cos ∆α− 1) + (2A90◦+∆α,III + ∆A) sin ∆α sin δ+

+ (A90◦+∆α,II + A90◦+∆α,IV ) sin ∆α sin δ] (3.18)

e90◦−∆α = [∆A cos δ(cos ∆α− 1)− (2A90◦−∆α,III + ∆A) sin ∆α sin δ+

− (A90◦−∆α,II + A90◦−∆α,IV ) sin ∆α sin δ] (3.19)

The �rst term of both (3.18) and (3.19) is smaller than the other ones,
under the above assumptions. These two relations de�ne an anti-symmetric
function of the tilt angle, which can be related to the behaviour of Fig. 3.16.
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Chapter 4

Critical Aspects in Calibration of

Electrostatic Discharge

Generators

4.1 An overview on electrostatic discharge phe-

nomena

Electrostatic discharge (ESD) problems have started to appear in the elec-
tronics industry between the 60s and 70s and have become increasingly crit-
ical due to the size of microcircuits; initially the most impacted areas were
the military, aeronautical and those involved in the production and testing
of computers. Later, owing to the presence of electronic equipment in almost
all industrial areas, negative impacts have spread out requiring special pre-
cautions in the early stages of assemblage and manipulation as well as in the
design and handling phases.

The current electronic components are exposed to ESD events (Table 4.1)
of the order of a few hundred volts (zero class - see Table 4.2), because of
their tiny dimensions.

A man is not usually able to warn such small ESD potentials through
his senses and therefore is led to ignore or underestimate this problem in
many industrial production cycles. The human perception of an ESD event
through the senses occurs in the following way:

3000 V =⇒ TOUCH
5000 V =⇒ HEARING
10000 V =⇒ SIGHT
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Table 4.1: Typical sensitivity levels of electronic components to ESD.

Component Sensitivity level (V)

Mosfet 100-200

Eprom 100

Jfet 140-7000

Cmos 250-3000

Bipolar transistor 380-7000

Schottky diodes 300-2500

Table 4.2: ESD Component Classi�cation REF EOS/ESD STM 5.1-1998.

Class Voltage range (V)

0 <250

1A 250 to <500

1B 500 to <1000

1C 1000 to <2000

2 2000 to <4000

3A 4000 to <8000

3B ≥ 8000

The presence of electrostatic �elds in a production process, whose elec-
tronic components are handled by operators, can a�ect hardly the quality
and the performance of the �nal product. The ESD faults are much more
evident where a protection plan is not carried out or where operators don't
observe the ESD standards in a ESD Protected Area (EPA). An EPA is an
area without electrostatic �elds, that could in�uence the reliability of han-
dled components. To this end, the standard [23] requires an electrostatic
�eld level lower than 100 V/cm. As concern components with ESD sensitiv-
ity threshold less than 100 V is suggested the 50% of that threshold in all
areas close to ESD parts.

The protection against electrostatic �elds in an EPA is achieved by:

• Grounding all conductive/dissipative materials including the sta�.

• Neutralizing static charges on insulating materials by means of ionization-
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shielding process.

Table 4.3: Typical discharge values in production process with respect to the
relative humidity (UR%).

Event UR%: 10-20% UR%: 65-90%

Walking on a carpet 35000 V 1500 V

Walking on a vinyl �oor 12000 V 250 V

Operator at workbench 6000 V 100 V

Vinyl envelopes 7000 V 600 V

Plastic handbag 20000 V 1200 V

Insulated chair 18000 V 1500 V

4.2 Introduction

The European Directive 2004/108/EC [24] on electromagnetic compatibility
(EMC) dictates that a lot of tests on electrical and electronic equipment
should be carried out in order to guarantee both low electromagnetic emission
levels and su�cient immunity degrees against several disturbances in the
environment.

Electrostatic discharge (ESD) immunity tests are carried out widely in
order to assess the immunity level of several electrical and electronic equip-
ment. ESD is one of the most severe sources of interference which can cause
damages, upset or permanent failures in any electronic system. In recent
years an increasing interest has been developing in the analysis of ESD phe-
nomena, both in the industrial and academic world.

ESD on electronic devices can occur when a device becomes charged by
tribo-electri�cation and approaches another conductor or when a human
charged by tribo-electri�cation handles a device. Charge accumulation by
tribo-electri�cation or induction process is at the origin of any ESD event.
The e�ects produced by ESD are usually observed by considering separately
conducted interference due to the direct injection of a discharge current in
the victim device (i.e. direct e�ect), and radiated interference related to the
coupling with the electromagnetic �eld radiated by the ESD current (i.e.
indirect e�ect).
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A great e�ort has been made by the scienti�c community in order to es-
tablish ESD standard procedures. To this aim, an important role has been
played by several experimental studies on the ESD current waveform, focus-
ing the attention on the amplitude and rise time variations as a function of the
main in�uence quantities (relative humidity, electrode shapes, etc.) [25�27].
On the other hand, modelling approaches have been developed mainly with
the aim to study the e�ect of design choices on the current and the radiated
�elds. In particular, the analysis has been carried out with satisfactory re-
sults through circuit simulation tools [28�31] and full wave electromagnetic
methods [28, 29, 32�36], such as the Finite Di�erence Time-Domain, Finite
Integration and Method of Moment techniques. Furthermore, the physical
causes of the electric discharge and the capacitive parameters have been in-
vestigated in [37,38].

The immunity test has to comply with speci�c standards [39, 40], where
immunity requirements and test methods are �xed for equipment which must
withstand ESD, either directly or indirectly. The standards consider two test
methods: the contact discharge (CD) and the air discharge (AD) methods.
In the �rst case the output of the ESD generator is kept in direct contact with
the test point and the discharge event is injected by closing a switch. In the
second method, the output of the generator is approached to the test point
until a discharge in the air is obtained. The standards de�ne ranges of test
levels which relate to di�erent environmental and installation conditions and
establish test procedures. The object is to set a common and reproducible
basis for evaluating the performance of electrical and electronic equipment
when tested with electrostatic discharges. EMC standards de�ne the typical
waveform of the discharge current, range of test levels, test equipment, test
set-up, test procedure, calibration procedure and measurement uncertainty.
They also give speci�cations for tests performed in "laboratories" and "post-
installation tests" on equipment in the �nal installation stage.

Based on the actual discharge characteristics, ESD generators are de-
signed to provide current waveforms similar to those generated by the human
body.

To improve the reproducibility of the results, the traceability of ESD
generators, obtained by periodical calibrations, has to be accomplished. The
calibration experience of INRIM (Istituto Nazionale di Ricerca Metrolog-
ica) [41,42] and international comparisons, as [43], demonstrate that consid-
erable di�erences may occur in the test results especially when generators of
di�erent manufacturers are used.

The chapter is focused on the detection and analysis of those parameters,
related to the calibration set-up, that contribute to a�ect strongly the mea-
surement result. The aim of the present chapter is to underline the in�uence
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of several critical quantities on the ful�lment of the standard requirements
and to warn the laboratory operators about the e�orts that should be made
during the calibration procedure.

An overview of the standard contents and their implications are given
in � 4.3, while the results derived from the INRIM calibration experience
and a critical analysis are carried out in � 4.4. Finally, � 4.6 is devoted to
discussion, conclusions and suggestions.

4.3 Calibration set-up

The standards [39,40] identify the CD method as the preferred test, whereas
the AD one shall be used where contact discharges cannot be applied.

With regards to the CD method, the EMC standards recommend to check
the following parameters related to the discharge current waveform: the �rst
peak value (Ip), the rise time (tr) and the current values at 30 ns (I30) and
60 ns (I60). The calibration of an ESD generator consists in measuring the
above parameters and comparing them with those of the reference waveform
(Fig. 4.1).

Table 4.4: Contact discharge current waveform parameters and tolerances
(IEC 61000-4-2).

Level Test
voltage,
kV

Ip
(±15%),
A

tr
(±25%),
ns

I30

(±30%),
A

I60

(±30%),
A

1 2 7.5 0.8 4 2

2 4 15 0.8 8 4

3 6 22.5 0.8 12 6

4 8 30 0.8 16 8

The measurement set-up employed in the calibration of ESD generators,
according to the CD mode, is made by several blocks (Fig. 4.2): the ESD
generator (also known as gun) can be modelled by means of a basic equivalent
circuit, consisting of a high voltage DC supply, a charging resistor Rc, a
charging switch S ′, an energy-storage capacitor Cs, a discharging resistor Rd,
a discharging switch S and a current return connection. The rated values of
the components, stated by the standards, range from 110 pF to 330 pF for
Cs and from 330 Ω to 2000 Ω for Rd. The immunity level is de�ned as the
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Fig. 4.1: Reference discharge current waveform (IEC 61000-4-2).

charge voltage of the capacitor Cs. The levels �xed by the EMC standards
extend from 2 kV to 25 kV.

The discharge current is measured by means of a small-inductance coaxial
shunt (the target), with nominal resistance of 2 Ω. The target is mounted in
the centre of a vertical metal plane (the ground plane). The current return
connection between the gun and the ground plane is made of a grounding
cable.

An attenuator and a coaxial cable are used to accomplish the impedance
matching and to carry the signal to a high speed digital sampling oscilloscope
(DSO), whose bandwidth has to be equal to or greater than 2 GHz [39]. The
whole measuring chain is placed inside a Faraday cage to protect the DSO
from the electromagnetic �eld radiation of the ESD. Annexes B and C of [39]
specify the requirements to build the target, together with the details of the
transfer impedance of the target-attenuator-cable chain. A deep and detailed
analysis of the whole measurement chain has been dealt with by [44, 45],
where the in�uence of the target parameters and dynamic properties of the
oscilloscope on the current "metrics" are highlighted.
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Fig. 4.2: Basic equivalent circuit of the ESD generator and block diagram of
the target-attenuator-cable chain. The scheme refers to the CD calibration
mode.

Since the ESD event is quite non-repeatable, the calibration of the ESD
generator should be carried out carefully in order to verify that the gun
ful�ls the requirements in Table 4.4. Moreover, [39] �xes limited values for
the tolerance associated to the di�erent waveform parameters.

In order to provide some uncertainty values, reference [25] shows the fol-
lowing typical uncertainty contributions (2σ) derived from many calibration
reports by accredited laboratories: 8% for the current peak value and 5-7%
for the rise time (CD mode).

4.4 Calibration Experience

During the last three years, the EMC laboratory of INRIM performed about
thirty calibrations according to both IEC and ISO standards, on fourteen
di�erent guns produced by four manufacturers. For some devices, successive
calibrations are available up to three. On the basis of the calibration data
collected in the INRIM experience [41], [42], an experimental analysis has
been carried out in order to detect the main reasons a�ecting the dispersion
of the parameters in the calibration procedure.

4.4.1 CD mode analysis

As far as the contact discharge mode is concerned, the standard calibration
chain has been set up. Referring to the scheme sketched in Fig. 4.2, two ESD
generators of the same manufacturer have been employed [46]. From here
on, they will be referred to as 30N and P18, respectively. The measurements
have been performed by means of a digital oscilloscope LeCroy Wavepro
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Table 4.5: Target input DC resistance.

Nominal value: 2.000 Ω

Measured value: 1.971 Ω

Uncertainty: 0.006 Ω

Table 4.6: Insertion loss as a function of frequency.

Frequency, MHz Insertion Loss, dB Uncertainty, dB

0.01 42.67 0.40

1 42.78 0.29

100 42.93 0.28

1000 43.08 0.28

2000 43.19 0.28

4000 42.35 0.33

760Zi, which allows to set di�erent analog bandwidths (up to 6 GHz), with
a maximum single-shot sample rate of 40 GS/s. The input impedance of the
DSO has been set at 50 Ω. The frequency response of the INRIM target
has been evaluated accurately by means of a vector network analyser up
to 4 GHz. Table 4.5 shows the good agreement between the measured DC
resistance and the requirement of the Annex B of IEC standard (maximum
2.1 Ω). The insertion loss variations, reported in Table 4.6, are well within
±0.5 dB over the whole frequency range from 10 kHz to 4 GHz, as required
by the standard (±0.5 dB up to 1 GHz, ±1.2 dB from 1 to 4 GHz). The
measurement chain has been placed inside a shielded chamber.

The tests have been carried out with the generator supported by both a
metal and a non-metal low loss tripod. In this way, a stable placement and
an orthogonal position with respect to the vertical plane is ensured and the
in�uence of the constitutive structure of the tripod can be investigated.

The analysis has been performed whilst paying special attention to the
items below with regards to the current waveform and parameters.

The situation speci�ed in the Appendix B of the IEC standard (grounding
cable connected to the vertical plane at a 500 mm distance below the target
and pulled by forming an isosceles triangle) will be referred to as the reference
con�guration. Each generator has been tested at a 4 kV level as a function
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of:

• the DSO bandwidth;

• the grounding cable cross-section;

• the grounding cable con�guration;

• the connection point of the grounding cable at the vertical plane;

• the tripod type.

E�ect of the DSO bandwidth

As mentioned above, the bandwidth of the oscilloscope used may be set at
several values, from 20 MHz to 6 GHz. Presently, the standards specify a
minimum bandwidth equal to 2 GHz. This section shows the in�uence of
wider bandwidth values mostly on the current peak value and the rise time.
The two generators have been tested in the reference situation, by varying the
DSO bandwidth from 1 GHz to 6 GHz. The percentage deviations between
the minimum and the maximum current peaks have been found equal to 3%
for the 30N gun and 10% for the P18 gun, as shown in Fig. 4.3 and Fig. 4.4,
where the peak di�erences have been enlarged. The guns are supported
here by a non-metal tripod. It can be discerned that a wider bandwidth of
the DSO would allow critical situations to be detected (values close to the
standard limits, see Table 4.4), which may in�uence the calibration result.
Moreover, it should be noted that the current waveform of the 30N gun is
slightly far from the reference one (Fig. 4.1), whereas the P18 gun complies
better.

E�ect of the grounding cable cross-section

In order to investigate the in�uence of the grounding cable cross-section,
measurements have been performed by using a circular cross-section cable of
small radius (referred to as thin) and a rectangular cross-section strap cable
(�at). Both cables have a 2 m length and are connected to the vertical plane
at a 330 mm distance from the target on its right. The bandwidth has been
set at 6 GHz. Figure 4.5 compares the waveforms discharged with the two
grounding cables and the metal tripod by the P18 gun. It should be noted
how the choice of the cable strongly modi�es the current waveform. It is
worth underlining the standards do not indicate any speci�c requirement for
the cable except for the length ((2±0.05) m).
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Fig. 4.3: In�uence of the bandwidth on the peak value of the discharge
current. The ESD generator used is 30N.

E�ect of the grounding cable connection

In order to analyse the behaviour of the discharge current as a function of the
grounding cable connection to the vertical plane, several set-up con�gurations
have been considered.

Although the EMC standards dictate a contact discharge calibration pro-
cedure (reference con�guration), often the laboratory technicians, charged
with calibrating operations, do not pay su�cient attention to the recom-
mended tips. Therefore, it is important to underline the e�ects resulting
from not following the standard prescription.

The grounding cable has been stuck to the metallic plane in two di�er-
ent points, on the right and left side of the target at a 650 mm distance,
always forming an isosceles triangle. From here on, this con�guration will
be referred to as the ∆ con�guration. For both guns, the waveforms are
very stable and show a good compliance with the standard limits (within
the indicated tolerances). Conversely, when the grounding cable is laid on
the �oor (con�guration free), the transient behaviour is quite di�erent for
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Fig. 4.4: In�uence of the bandwidth on the peak value of the discharge
current. The ESD generator used is P18.

the two guns. These measurements have been carried out by connecting the
grounding cable at 330 mm and 650 mm distances, on both the right and
the left with respect to the target. The 30N gun maintains a good stabil-
ity and repeatability, as shown in Fig. 4.6 and Fig. 4.7. Di�erently, the P18
gun shows a strong dependence on the ground strap position (Fig. 4.8 and
Fig. 4.9): in particular, the parameter I30 is often very close to the tolerance
limits �xed by the standards. The current behaviour in the time range 1
ns to 20 ns complies with the reference current, except a high second peak
which is not considered by the standards.

Tripod type

The in�uence of the type of the gun support is to be investigated here. As
mentioned above, two di�erent tripods have been used. The 30N gun is
again quite stable and does not present appreciable di�erences as a function
of the tripod type. Conversely, the P18 gun di�ers in its behaviour because
of the high capacitive couplings between the ground strap and the tripod
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Fig. 4.5: In�uence of the grounding cable cross-section on the current wave-
form. The ESD generator used is P18.

itself (Fig. 4.10).

4.4.2 AD mode analysis

As far as the AD method is concerned, EMC standards do not recommend
any speci�c calibration method. Some authors have also shown how the use
of a target for the measurement of the AD current presents a wide numerical
dispersion [25].

Only the tolerance of the charge voltage is speci�ed and set equal to ±5%
of the nominal value. Therefore, the measurement of the charge voltage may
be used for the calibration, by means of high input impedance systems. This
operation is carried out by closing the switch S' (see Fig. 4.2) and keeping the
generator tip in contact with the input terminals of a high impedance probe,
whose output voltage is read by a multimeter (Fig. 4.11). The waveform of
the voltage can be drawn on a digital oscilloscope. After an initial tran-
sient phase, the output voltage reaches a steady-state DC value, as shown
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Fig. 4.6: In�uence of the grounding cable connection at 650 mm distance
and comparison with the reference current. The ESD generator used is 30N
with a thin grounding cable.

in Fig. 4.12. Since the input impedance is very high but �nite, the measure-
ment chain exhibits a load e�ect. The aim is to �nd out the minimum input
impedance that guarantees an acceptable load e�ect, in comparison to the
required tolerance.

Many high voltage probes for DC measurements are available on the
market, with an input impedance of about 1 GΩ and a nominal divider ratio r
equal to 103 (r = Vin/Vout). By using a 40 kV probe with those characteristics,
an important load e�ect of about 15% can be detected (Fig. 4.12). The values
in the graph are all normalized with respect to the charge voltage value v0 (4
kV). This e�ect has been proved through measurements for several voltage
levels (from 1 to 15 kV) and an analogous behaviour has been found at each
step.

In order to reduce this e�ect, a resistive voltage divider with an input
impedance of 10 GΩ and r equal to 104 has been built as a voltage converter
device [41]. The voltage waveform detected by using the INRIM 10 GΩ
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Fig. 4.7: In�uence of the grounding cable connection at 330 mm distance
and comparison with the reference current. The ESD generator used is 30N
with a thin grounding cable.

divider, coupled with the DSO, shows a reduced load e�ect of about 0.8%
(Fig. 4.12).

To further reduce the voltage drop, a new resistive voltage divider with
an input impedance equal to 50 GΩ has been designed and built recently.
The design of the divider started with the choice of the high-voltage (HV)
resistors. Ten 5 GΩ resistors mounted on a dielectric support have been used
to achieve the aim of a high resistance value and a good dielectric strength.
The resistors have been selected to obtain a uniform voltage distribution
along the resistors chain (Fig. 4.13). The low voltage resistance consists of
two resistors connected in parallel. The thermal coe�cient of low voltage re-
sistors is 100 ppm/◦C, the same as the HV ones. The divider ratio (r = 104)
has been chosen according to the high input impedance/high accuracy range
of the multimeter used for measuring the output voltage. Both high and
low voltage resistors have been placed in a PMMA cylinder. Two electrodes
mounted on the top and on the bottom of the cylinder avoid the occurrence
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Fig. 4.8: In�uence of the grounding cable connection at 650 mm distance
and comparison with the reference current. The ESD generator used is P18
with a �at ground strap.

of the corona discharge. As the HV resistor values can be a�ected by surface
conductivity, the humidity in the cylinder is lowered using silica gel. The lin-
earity is ensured by making a comparison with the INRIM HV DC reference
measuring system. The scale factor of all three voltage probes is determined
at 1 kV, supplying the probes by means of a DC calibrator.

The behaviours of the three employed probes are gathered in Fig. 4.12.
As expected on the basis of the 10 GΩ divider results, a load e�ect of about
0.1% is obtained with the 50 GΩ device. The ripple on the 10 GΩ and 50
GΩ waveforms is caused by the power network interference (50 Hz), picked
up by the high input impedance of the divider.

It can be inferred that a satisfactory reduction of the load e�ect is ob-
tained through the use of a voltage divider with at least 10 GΩ input impedance.
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Fig. 4.9: In�uence of the grounding cable connection at 330 mm distance
and comparison with the reference current. The ESD generator used is P18
with a �at ground strap.

4.5 Preliminary modelling approach

With regard to the CD calibration set-up, a great e�ort has been made in
the implementation of a suitable non-commercial numerical model, which
allows to compute and identify the optimal set-up con�gurations, to improve
the measurement repeatability and reproducibility. As a full-wave model
requires a large e�ort, preliminary considerations are derived from a simple
circuital-based approach.

In the literature, some authors have proposed both circuital and full-
wave ESD generator models [28, 29,47,48]. To assure model accuracy, a key
issue is the accurate computation of those stray distributed parameters which
strongly a�ect the discharge current waveform, in particular the current tail.

A preliminary analysis of some stray parameter e�ects on the ESD wave-
form can be carried out through the circuital model [28], sketched in Fig.
4.14: In order to investigate the sensitivity of the current waveform to the
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Fig. 4.10: In�uence of the tripod type on the current waveform. The ESD
generator used is P18.

Fig. 4.11: Measurement system for the ESD generator calibration-AD mode.
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Fig. 4.13: Details of the INRIM 50 GΩ voltage divider.

stray parameters, it is interesting to analyse di�erent circuital situations,
in which one or more parameters are changed within an appropriate range.
The resulting current waveforms are then compared with the IEC reference
current. The following �gures highlight the strong sensitivity of the current
waveform to the gun-wall capacitance (Fig. 4.15), and to the characteristic
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Fig. 4.14: Circuital model of the ESD generator and the experimental set-up
(CD method).

parameters (time delay and characteristic impedance) of the ground strap
cable modelled as a transmission line (Fig. 4.16). As in the results of the

Fig. 4.15: Sensitivity of the current waveform to the gun-wall capacitance.

measurements, the current waveform in Fig. 4.15 shows the presence of a
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second high peak, while the other �gures underline the e�ects on the tail
behaviour, in particular referring to the I30 and I60 parameters. However,
the approximated approach of the circuital model does not allow an exhaus-
tive and complete modelling analysis of the whole distributed system (ESD
generator + ground strap + metallic wall), in particular as regards the inves-
tigation of the electromagnetic behaviour in the high part of the frequency
spectrum. Therefore, our aim is to develop a more accurate modelling ap-
proach to describe the system completely (Chapter 5).

4.6 Further Considerations

This chapter deals with several critical aspects of the ESD generator calibra-
tion process in order to convey ideas and advice for the procedure improve-
ment to both the scienti�c community and the laboratory technicians.

On the basis of the results presented above, some useful conclusions and
practical suggestions can be drawn.

As far as the contact discharge mode calibration is concerned, the fol-
lowing issues may be considered in the review process of the future ESD
standard editions:

� the bandwidth of the DSO should be enlarged to values greater than 2
GHz, in order to detect with higher accuracy the �rst current peak and
the rise time values. Indeed, considerable variations can be pointed out
(Fig. 4.3 and Fig. 4.4) with a DSO bandwidth ranging from 1 GHz to 6
GHz;

� Figure 4.5 highlights that the current waveform can signi�cantly vary
as a function of the used grounding cable. Therefore, as well as the
cable length, its cross-section and size also play an important role in
stating the features of the waveform. It should be desirable to make the
measurement outcome as independent as possible of the cable geometry;

� a relevant second peak often appears in the time interval between 1
ns and 20 ns (Fig. 4.8 and Fig. 4.9). That current behaviour is surely
indicative of an unevenness, which should be investigated and reduced
as much as possible in order to improve the repeatability of the calibra-
tion procedure and reduce the related uncertainty. This phenomenon
is also supported by numerical investigations in [28,47].

However, it should be noted that the compliance with the present stan-
dard requirements (i.e. the reference situation and low loss tripod) allows
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to ful�l the reference waveform parameters in a satisfactory way. Conse-
quently, this implies the laboratory technicians performing the calibration
should follow the standard recommendations with extreme care.

Taking into account the great variability of the CD calibration outcomes,
the possibility to perform a calibration process with the support of numerical
methods should be considered in the near future, giving rise to a hybrid
experimental-numerical approach in order to verify the actual performance
of the ESD generator.

As regards the air discharge mode calibration, the proposed measuring
scheme (� 4.4) can be considered suitable to ful�l the voltage requirements
of the ESD standards.
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(a) time delay (TD)

(b) characteristic impedance (Z0)

Fig. 4.16: Sensitivity of the current waveform to the ground strap parameters.
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Chapter 5

PEEC Global Approach

5.1 Introduction

The problems dealt with so far are characterized by a strong coupling be-
tween electromagnetic �elds and circuits and they cover a very wide frequency
bandwidth.

In order to support experimental outcomes and to provide a complete
engineering tool for design and laboratory activities, a suitable computational
method is sought.

A deep research in scienti�c literature on the main numerical methods
is carried out and a great attention is addressed to those ful�l the following
issues:

• Formulation in both time and frequency domain;

• Full-wave method: the mathematical formulation is based on the com-
plete Maxwell's equations, i.e. they do not introduce some principle
assumptions with respect to the wave-propagation modes;

• Full-spectrum method: model valid from DC to the maximum fre-
quency determined by the meshing;

• Low computational time.

On the basis of these requirements, the Partial Element Equivalent Circuit
(PEEC) method is considered the most suitable approach: it is based on the
circuital interpretation of the mixed-potential integral equation (MPIE, see
� 5.2) and it is characterized by a great versatility in its applications. The
classical full-wave formulation of the PEECmethod has been derived from the
MPIE for the free space by A.E. Ruehli [49] in 1974. The later perfections and
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modi�cations of the PEEC method use same derivation principles regarding
to basis and weighting functions, partial elements, and an equivalent circuit
representation.

In literature, the PEEC has been found particularly useful for modeling
many problems, for example:

↪→ non-uniform and non parallel transmission lines [50];

↪→ multilayer printed circuit boards [51];

↪→ lightning protection systems [52];

↪→ very large-scale integration chips [53];

↪→ multiconductor interconnection structures [54];

↪→ air-core reactors [55];

↪→ magnetic near �eld of a static converter [56].

Of course, no numerical method may be accepted as the best universal
tool for all kinds of electromagnetic problems, as well, the PEEC method
has advantages and disadvantages as compared to other approaches. Its
main merit is an equivalent circuit representation, which allows the full-wave
PEEC model to be directly included in a circuit-simulation code. Thus, the
simultaneous modeling of electric systems with the lumped active devices is
achieved, which is very suitable for the EMC analysis as well as the design
of electrical devices.

5.2 Basic Principles

Starting with the equation for the electric �eld E at a point r = (x, y, z) in
space:

E(r, t) = E(i)(r, t) + E(s)(r, t) = E(i)(r, t)− ∂A(r, t)

∂t
−∇Φ(r, t) (5.1)

where E(i) is the incident electric �eld and E(s) is the scattered electric �eld,
as usual described in terms of electric scalar Φ(r, t) and magnetic vector
A(r, t) potentials. Applying the Lorentz-gauge condition, the vector mag-
netic potential A and the scalar electric potential Φ are written as:

A(r, t) = µ

∫
v′
G(r, r′)Jt(r

′, t− τ)dV ′ (5.2)
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Φ(r, t) =
1

ε0

∫
v′
G(r, r′)ρt(r

′, t− τ)dV ′ (5.3)

where

- G(r, r′) =
1

4π | r− r′ |
is the free space Green's function,

- τ =
| r− r′ |

c
is the delay time due to the �nite light speed c,

- Jt = Jc + Jd represents the sum of the conduction Jc and dielectric Jd
current densities (dielectric materials, see � 5.2.2),

- ρt = ρf + ρb is the sum of the free ρf and bounded ρb charge densities
in the dielectric regions.

5.2.1 PEEC equation in a conducting region

If the �eld point r is set into a conducting region and (5.2),(5.3) are inserted
into (5.1), the mixed-potential integral equation (5.4) is developed.

E(i)(r, t) =
1

σ
Jc(r, t) + µ

∫
v′
G(r, r′)

∂Jc(r
′, t− τ)

∂t
dV ′+

+ µ

∫
v′
G(r, r′)

∂Jd(r
′, t− τ)

∂t
dV ′+

+
1

ε0

∇
∫
v′
G(r, r′)ρt(r

′, t− τ)dV ′

(5.4)

Unlike the MoM-type solution, the charge density variable is not replaced
by the current density through the continuity equation. The charges are
assumed to be located on the surface of the volumes and then the relative
integrals can be written as surface integrals.

To solve (5.4) numerically, volumes and surfaces are divided into elemen-
tary cells (partial elements). The spatial integrals over the conducting object
become sum of integrals over the single cells.

Two kind of cells have to be created:

• volume (current) cells carrying the conduction (or dielectric) current;

• surface (potential) cells carrying the surface charges.

The length of cells has to be less than λm/20, where λm is the wavelength
corresponding to the maximum frequency of interest. The current and charge
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densities are represented via pulse basis functions as:

Jt(r) =
∑
m∈M

Im
am

êmb
v
m(r), bvm(r) =

{
+1 r ∈ vm
0 r 6∈ vm

ρt(r) =
∑
i∈K

qi
Σi

bsi (r), bsi (r) =

{
+1 r ∈ si
0 r 6∈ si

(5.5)

where vm and am are the volume and the cross-section of current cells re-
spectively, êm is the unit vector giving the direction of the current in the cell
m, M is the set of current cells, Im is the current in the cell m, Σi is the
surface of potential cells, Q is the set of potential cells, qi is the charge on
the potential cell i.

Applying a Galerkin type weighting technique (basis functions equal to
weighting functions, see � 2.4.1) through an inner product operator

êα ·
1

aα

∫
vα

... dVα

Eq. (5.4) is written for the generic n-th cell, as:

ên
an
·
∫
vn

E(i)(r, t)dVn =
ên
an
·
∫
vn

1

σ
Jc(r, t)dVn+

+
µ

an
ên ·

∫
vn

∫
v′
G(r, r′)

∂Jc(r
′, t− τ)

∂t
dV ′dVn+

+
µ

an
ên ·

∫
vn

∫
v′
G(r, r′)

∂Jd(r
′, t− τ)

∂t
dV ′dVn+

+
ên · ∇
Σnε0

∫
sn

∫
s′
G(r, r′)ρt(r

′, t− τ)dS ′dSn

(5.6)

where v′, vn are called source and observation volumes, respectively, and s′,
sn are the source and observation surfaces.

The algebraic equation for a conducting volume can be then derived from
(5.6), (5.5) and the gradient in (5.6) is replaced by the di�erence quotient
that causes a shift of potential and current cells at a half of their length (Fig.
5.1).

The PEEC technique interprets equation (5.6) in terms of circuit ele-
ments. The left-hand side of (5.6) is equivalent to an independent voltage
source, the terms in the right-hand side are equivalent to a resistive, inductive
and capacitive voltage drops, respectively (Fig. 5.2). In fact, the following
quantities can be de�ned:

1

an

∫
vn

ên · E(i)(r, t)dVn , Vsn ⇒ independent voltage source (5.7)
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Fig. 5.1: A conductor divided in two capacitive PEEC cells and one inductive
cell.

∫
vn

dVn
σa2

n

, Rn ⇒ series resistance (5.8)

µ

anam

∫
vn

∫
v′m

G(r, r′)ên · êmdV ′mdVn , Lnm ⇒ partial inductance (5.9)

1

ε0ΣnΣm

∫
sn

∫
s′m

G(r, r′)dS ′mdSn , pnm ⇒ potential coe�cient (5.10)

5.2.2 PEEC equation in a dielectric region

Because we need an equation similar to (5.4) for a dielectric region, we have
to give a material equation similar to Ohm's law for dielectrics [57]. We de�ne
the dielectric current density Jd the quantity derived from the right-hand side
of the Ampere's law, as in the following:

Jc + ε0εr
∂E

∂t
= Jc + ε0

∂E

∂t
− ε0

∂E

∂t
+ ε0εr

∂E

∂t
= (5.11)

= Jc + (εr − 1)ε0
∂E

∂t
+ ε0

∂E

∂t
= Jc + Jd + ε0

∂E

∂t
= Jt + ε0

∂E

∂t

where εr is the permittivity of the medium. Since

Jd(r, t) = (εr − 1)ε0
∂E(r, t)

∂t

we get from the de�nition of the dielectric current above:

E(r, t) =
1

(εr − 1)ε0

∫ t

−∞
Jd(r, τ)dτ (5.12)
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Fig. 5.2: Elementary PEEC conductive cell between nodes j and k.

Equation (5.1) for a point on a dielectric becomes:

1

(εr − 1)ε0

∫ t

−∞
Jd(r, τ)dτ +

∂A(r, t)

∂t
+∇Φ(r, t) = E(i)(r, t) (5.13)

or

E(i)(r, t) =
1

(εr − 1)ε0

∫ t

−∞
Jd(r, τ)dτ + µ

∫
v′
G(r, r′)

∂Jc(r
′, t− τ)

∂t
dV ′+

+ µ

∫
v′
G(r, r′)

∂Jd(r
′, t− τ)

∂t
dV ′+

+
1

ε0

∇
∫
v′
G(r, r′)ρt(r

′, t− τ)dV ′

(5.14)

By applying a Galerkin approach to Eq. (5.14), we obtain the PEEC for-
mulation for a dielectric object, in which the circuital equivalence can be
obtained as well as (5.6). Instead of the series resistance parameter, the
excess capacitance C+

n can be gathered from (5.12) for a homogeneous and
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isotropic dielectric:

1

an

∫
vn

ên
(εr − 1)ε0

·
∫ t

−∞
Jd(r, τ)dτ dVn =

1

an

1

(εr − 1)ε0

∫
vn

1

an

∫ t

−∞
id(r, τ)dτ dVn =

=
1

an

1

(εr − 1)ε0

1

an

∫
vn

dVn

∫ t

−∞
id(r, τ)dτ =

1

an

1

(εr − 1)ε0

dn

∫ t

−∞
id(r, τ)dτ =

=
1

C+
n

∫ t

−∞
id(r, τ)dτ

where

C+
n =

(εr − 1)ε0an
dn

(5.15)

is simply the parallel plate capacitance between the two end surfaces of vol-
ume vn in the direction of the current �ow, assuming a dielectric of permit-
tivity (εr − 1).

The �nal circuit for a dielectric current between two dielectric surface
nodes is given in Fig. 5.3. It consists of the excess capacitance in series
with an inductance which couples to all other parallel inductances. The two
capacitive nodes couple to all other capacitive nodes, either on conductors
or on other dielectric surfaces.

Fig. 5.3: Elementary PEEC dielectric cell between nodes j and k.
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5.2.3 Retardation

The PEEC model described so far approximates a full-wave solution as long
as the wavelength of the highest frequency of interest is much larger than the
physical length of the longest coupling of interest. We include retardation
by using

tij =
| ri − rj |

c
.

where ri, rj are the center coordinate of cell i and j, respectively.
An immediate consequence of this inclusion is that the charges and po-

tentials are taken at di�erent time points.

Φi(t) =
K∑
j=1

pijqj(t− tij) (5.16)

The retardation is approximated by the time of �ight of an electromag-
netic �eld between the center points of two cells (and is zero for the self
terms). Due to the retardation it is impossible to solve (5.16) for qj to get a
capacitance equation. In other words, retarded circuits cannot be expressed
in terms of capacitances and we must �rst �nd a circuit formulation that
uses only coe�cients of potential.

A single capacitance to the reference point at in�nity is needed for each
capacitive cell. We choose

Ci =
1

pii
(5.17)

because this choice leads to a simpli�cation of the dependent voltage source
(see Fig. 5.2 and 5.3). Any other value for Ci would work as well and
therefore we call it a pseudocapacitance. At any point, Ci will hold all the
charge qi stored on conductor i. The capacitance is therefore at the potential

Φ
′

i(t) = piiqi(t) (5.18)

In order to get the correct potential Φi, we add a corrective voltage gen-
erator uCi (t) to each conductor.

uCi (t) =
K∑
j 6=i

pijqj(t− tij) =
K∑
j 6=i

pij
pjj

Φ
′

j(t− tij) (5.19)

We can derive a similar expression for replacing partial mutual induc-
tances by a dependent voltage source uLi (t) (v

′
j(t) is the voltage over a partial

auto inductance Ljj):

uLi (t) =
M∑
j 6=i

Lij
Ljj

v
′

j(t− tij) (5.20)
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5.3 PEEC Code Development

In this section a thorough and exhaustive description of the work carried
out to develop the PEEC model is presented. It is worth emphasizing that
the goal is to implement an original PEEC software, in order to have got
a tool well adapted to any situation of interest (which excludes commercial
tool). This entails numerical and programming issues that go far beyond the
common use of the PEEC.

The description is focused on the techniques, problems and solutions
adopted during the writing and validation phases of the code source. The
code has been written using the Fortran 90 programming language and a
great e�ort has been aimed at the computation e�ciency and to reduce the
computational time.

5.3.1 Meshing technique

The �rst step to create a PEEC model simulating electromagnetic couplings
between large objects is the development of a suitable meshing algorithm.

As mentioned before, conductive and dielectric objects are discretized
with two intermeshing grids, one referred to the volume cells, the other to the
surface cells (in a similar way to the cell complexes in the Finite Integration
Technique, [58]). Each volume (or inductive) cell is associated to a branch
de�ned by two consecutive nodes, whereas each surface (or capacitive) cell is
associated to a single node (Fig. 5.1).

In order to describe objects of any geometry, a meshing based on hexa-
hedron and quadrilateral cells has been chosen.

The volume grid is made of a set of three di�erent submeshes, one for
each directions (local reference system (a, b, c)), with hexahedron-type cells.
The surface grid is made of a mesh with quadrilateral-type cells, each of them
covering one node.

In order to de�ne an e�ective meshing algorithm, a basic mesh is detected
in which the edges are associated with current paths, and all nodes represent
terminals (to which impose continuity conditions), the super�cial nodes are
associated with capacitive coupling. To de�ne easily the volumes surrounding
each path and the surfaces around each capacitive node, a good strategy is
to create a mesh in which the divisions along the three directions are double
with respect to the basic mesh. Only nodes identi�ed by three odd integer
coordinates are capacitive nodes and terminals. The remaining nodes are
used to detect volume and surface cells.

Figure 5.4 shows the global meshing of a hexahedral, non-orthogonal ge-
ometry, with three nodes in the a−direction and two nodes in both the b−
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and c−directions. In this example, we obtain 3 × 2 × 2 = 12 surface cells.

Fig. 5.4: Global PEEC meshing technique.

Since we detect a number of 8 branches in the a−direction, we de�ne 8
volume cells along the a−axis. In a similar way, we detect a number of 6
branches in both the b− and c−directions and thus we de�ne 6 volume cells
along the b− and c−axis.

The above meshing approach allows to consider mutual inductive cou-
plings among di�erent axis, since in a non-orthogonal geometry the scalar
product ên · êm (n = a, b, c; m = a, b, c) in (5.9) is generally not equal to zero
and thus an inductive coupling comes out.

Implementation of a global meshing technique requires to create a very
large number of cells in all the three axis. Since most of the studied problems
concern objects with a predominant geometric dimension with respect to the
others, a favourite axis direction will be chosen in order to make the meshing
generation process easy and light.

5.3.2 Partial parameter computation

The subsections below explain the approach used to solve the volume and
super�cial integrals (5.7), (5.8), (5.9) and (5.10). The main concern is ad-
dressed to the solution of double integrals in the computation of partial
inductance and potential coe�cient parameters. In fact, in the both cases a
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strong computational e�ort and the singularity of the Green's function have
to be faced.

For an orthogonal geometry, the calculation is quite simple, since many
closed-form solutions can be found in literature, bypassing the singularity
problem. For a non-orthogonal geometry, instead, the calculation has to
be handled numerically. In this case, a Gauss-Kronrod numerical integration
technique is adopted and an isoparametric coordinate system is used to handle
the integration in a simpler way.

Isoparametric coordinate system

In order to describe elements with complex shapes, it easy to introduce the
concept of reference element, with a simple geometric shape and de�ned in an
adimensional space. The formulation is based on a one-to-one correspondence
between an element with any shape described in a (x, y, z) cartesian system
and an element with a simple shape described in a (ξ, η, ζ) natural (or local)
system (Fig. 5.5). In fact:

x =
N∑
i=1

ni(ξ, η, ζ)xi

y =
N∑
i=1

ni(ξ, η, ζ)yi (5.21)

z =
N∑
i=1

ni(ξ, η, ζ)zi

where xi, yi, zi are the cartesian coordinate of the N nodes of the element, ni
are the shape functions de�ned in the natural system (ξ, η, ζ) of the element.
The shape functions are N as the number of element nodes and vary from
1 to 0. They are equal to 1 on the node i with coordinates (xi, yi, zi) and
equal to 0 on the other nodes of the element. The natural coordinates vary
from -1 on one face to +1 on the opposite face, taking the value zero on the
"median" face.

The hexahedron coordinates of the corners are:
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Fig. 5.5: The 8-node hexahedron and the natural coordinates (ξ, η, ζ).

Table 5.1

Node ξ η ζ

1 -1 -1 -1

2 +1 -1 -1

3 +1 +1 -1

4 -1 +1 -1

5 -1 -1 +1

6 +1 -1 +1

7 +1 +1 +1

8 -1 +1 +1

The shape functions are:

n1 =
1

8
(1− ξ)(1− η)(1− ζ) n2 =

1

8
(1 + ξ)(1− η)(1− ζ)

n3 =
1

8
(1 + ξ)(1 + η)(1− ζ) n4 =

1

8
(1− ξ)(1 + η)(1− ζ)

n5 =
1

8
(1− ξ)(1− η)(1 + ζ) n6 =

1

8
(1 + ξ)(1− η)(1 + ζ) (5.22)

n7 =
1

8
(1 + ξ)(1 + η)(1 + ζ) n8 =

1

8
(1− ξ)(1 + η)(1 + ζ)
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These eight formulas can be summarized in a single expression as:

ni =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi) (5.23)

where ξi, ηi, ζi denote the natural coordinates of the i-th node.
The Jacobian matrix of (x, y, z) with respect to (ξ, η, ζ) is:

J =
∂(x, y, z)

∂(ξ, η, ζ)
(5.24)

Gauss-Kronrod integration method

The Gauss�Kronrod quadrature formula is a variant of the Gaussian quadra-
ture, in which the evaluation points are chosen so that an accurate approxi-
mation can be computed by re-using the information produced by the com-
putation of a less accurate approximation. It is an example of a nested
quadrature rule. The di�erence between a Gauss quadrature rule and its
Kronrod extension are often used as an estimate of the approximation error.

The problem in numerical integration is to approximate de�nite integrals
of the form: ∫

V

f(τ)dτ (5.25)

Let us indicate as Gn the n−point Gauss formula:

Gn =
n∑
i=1

wif(τi) (5.26)

where wi is the integration weight and f(τi) the function value at the obser-
vation point τi. This formula is exact for polynomials of order 2n − 1, by
considering n evaluation points. In order to evaluate the approximation error
of (5.26), Alexander Kronrod (1965) has considered the following formula:

K2n+1 =
n∑
i=1

aif(xi) +
n+1∑
j=1

bjf(yj) (5.27)

that reuses the function values of (5.26). Kronrod has proven that it is
possible to �nd 3n + 2 parameters ai, bj, yj so that (5.27) obtains a 3n + 1
precision degree. The two formulas (Gn, K2n+1) are called a Gauss-Kronrod
couple. The computational e�ort is 2n + 1 evaluations of the integrand
function. The di�erence | Gn − K2n+1 | is an error estimate of the integral
(5.25) approximated by K2n+1. The recommended error estimate is:

|
∫
V

f(τ)dτ −K2n+1| ≈ (200 | Gn −K2n+1 |)1.5 (5.28)
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The Gauss-Kronrod method is one of the most e�ective algorithms for
the calculation of general integrals. For example, the calculation of erf(1)
provides:

G7 = 0.842700792948824892; K15 = 0.842700792949714861;

with (200 | G7 − K15 |)1.5 = 2 · 10−15. The actual error of K15 is about
2 · 10−17. In order to compare this result, it is worth referring to a 128 points
trapezoidal rule, whose approximation error is about 4 · 10−6.

Partial inductance parameter

In order to compute the partial inductance parameter, the Gauss-Kronrod
integration method in natural coordinates is carried out. Starting with (5.9):

Lnm =
µ

anam

∫
vn

∫
v′m

G(r, r′)ên · êmdV ′mdVn

we de�ne as Nsou and Nobs the number of Kronrod nodes for source v′m
and observation vn inductive cells, where Nsou = Ns,ξ × Ns,η × Ns,ζ and
Nobs = No,ξ ×No,η ×No,ζ . The unit vectors êm and ên are de�ned along the
ζ direction, that is supposed the prevalent direction of the density current
vector in each volume cell.

The numerical integration becomes:

Lnm = µ

No,ξ∑
i=1

No,η∑
j=1

No,ζ∑
k=1

ên
ak
·

Ns,ξ∑
r=1

Ns,η∑
t=1

Ns,ζ∑
q=1

G(rijk, rrtq)
êm
aq
ws,rtqJs,rtq

wo,ijkJo,ijk


(5.29)

where wo,ijk, Jo,ijk and ws,rtq, Js,rtq are the integration weight and the determi-
nant of the Jacobian matrix for the observation and source cells, respectively.

The computational e�ort to solve Eq. (5.29) is very high, as far as the
quadrature rule for a double volume integral is concerned. Thus, we search for
a strategy to both lower the computational weight and maintain a satisfactory
numerical e�ciency. From here on, the complete calculation (5.29) is referred
to as volume-volume integration (VV) technique.

The �rst attempt to speed up the integration is the reduction of the
external volume integral to a line integral. That is:

Lnm = µ

No,ζ∑
k=1

ên
ak
·

Ns,ξ∑
r=1

Ns,η∑
t=1

Ns,ζ∑
q=1

G(rijk, rrtq)
êm
aq
ws,rtqJs,rtq

wo,kJo,k


(5.30)
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where Jo,k indicates the determinant of the linear Jacobian. The line-volume
integration (LV) is very e�cient for those cells whose distance is in the order
of over 3 times the largest cell dimension. Instead, an accurate results can not
be obtained for the auto-inductance calculation and the mutual-inductance
between near cells, because the number of nodes for the external integral is
not su�cient to accomplish the required goal.

The second attempt is addressed to the surface/line-volume integration
(SLV), where the external volume integral is factorized into a surface and a
line integrals:

Lnm = µ


No,ζ∑
k=1

wo,kJo,k
ak

No,ξ∑
i=1

No,η∑
j=1

wo,ijJo,ij ên ·

Ns,ξ∑
r=1

Ns,η∑
t=1

Ns,ζ∑
q=1

G(rijk, rrtq)
êm
aq
ws,rtqJs,rtq


(5.31)

where Jo,ij is the determinant of the surface Jacobian. It can be shown in the
tables below that this solution achieves the best results in terms of numerical
accuracy and computational speed.

The validation and comparison of the formula (5.29), (5.30), (5.31) is
mainly carried out by referring to analytical formula in literature. With
regard to the auto-inductance, the validation procedure is made by com-
parison with Eq. (15) in [59], where a closed-form formula is proposed for
rectangular conductors. Table (5.2) shows the best approximated results ob-
tained with the three approach presented above and the percentage deviation
with respect to the analytical one (AN). The integration on the source cell
is made with a progressive number of nodes Nsou until the integral reduces
under a speci�ed numerical tolerance (1 · 10−3). The result obtained with

Table 5.2: Auto-inductance comparison. The rectangular conductor has di-
mensions 1× 1× 12 cm. The inductance values are expressed in henry (H).

AN VV V V
AN

% LV LV
AN

% SLV SLV
AN

%

7.2624e-8 7.3220e-8 0.82 7.8351e-8 7.88 7.3282e-8 0.90

the VV-technique presents the most accurate value, as expected. It has to
be considered that a number Nobs = 633 of nodes is used to get a very low
percentage deviation, but a Nobs = 567 used in the SLV-technique allows to
reduce strongly the computational time and obtain a very satisfactory result.
As regards the LV-technique value, it is obtained with Nobs = 126, but the
accuracy is extremely low.

If the geometrical dimensions of the rectangular conductor are changed
(Tab. 5.3), the results support much more the considerations above.
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Table 5.3: Auto-inductance comparison. The rectangular conductor has di-
mensions 1× 1× 4 cm. The inductance values are expressed in henry (H).

AN VV (Nobs)
V V
AN

% SLV (Nobs)
SLV
AN

%

1.6078e-8 1.6106e-8 (3375) 0.17 1.6106e-8 (343) 0.17

In the VV- and SLV-techniques, the singularity of the Green's function is
overcome by subdividing the source cell in four further volumes, so that the
Kronrod nodes in the source and observation cells do not coincide during the
whole integration procedure.

As far as the mutual inductance is concerned, the validation is car-
ried out by comparing the numerical results with two examples proposed
in [59]. Ruehli obtained the mutual inductance value through a �lamentary
approach, in which a massive conductor is approximated by a �nite number
of �laments, whose coupling is computed with a closed-form solution. Tables
(5.4) and (5.5) show the comparison of the reference value (Fil) with that
obtained through the LV and SLV-techniques, for the two cases in Fig. 5.6
and 5.7, respectively.

Fig. 5.6: Mutual inductance between two cells in the same plane.

So far, the validation process has been carried out by referring to par-
allelepiped (orthogonal) geometries. In order to derive more reliable con-
siderations on the numerical accuracy, a validation test is performed with
hexahedal (non-orthogonal) geometries.

Since the auto-inductance calculation is a tricky problem due to the sin-
gularity of the Green's function, a great attention is directed to the numerical
validation of the auto-inductance parameter for non-orthogonal (NO) cells.
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Table 5.4: Mutual-inductance comparison. The reference value is obtained
with 2 �laments in x direction and 5 �laments in y direction. The inductance
values are expressed in henry (H).

Fil SLV (Nobs = 567) LV (Nobs = 630)

` = 1 mm, S = 0.1 mm 1.097e-10 1.097e-10 1.11e-10

` = 1 mm, S = 10 mm 0.091e-10 0.091e-10 0.091e-10

Fig. 5.7: Mutual inductance between two parallel cells.

Table 5.5: Mutual-inductance comparison. The reference value is obtained
with 2 �laments in x direction and 5 �laments in y direction. The inductance
values are expressed in henry (H).

Fil SLV (Nobs = 567) LV (Nobs = 630)

` = 1 mm, D = 1 mm 0.931e-10 0.931e-10 0.908e-10

` = 1 mm, D = 5 mm 0.199e-10 0.199e-10 0.199e-10

Two truncated pyramidal cells are used and the related result comparison
with the reference value (Fil) is shown in Table (5.6).

On the basis of these results, it can be discerned that the SLV approach
ful�ls our requirements, in terms of good accuracy and reasonable computa-
tional time.

As a full partial inductance matrix has to be computed, a great e�ort is
made to reduce the execution time of the entire matrix evaluation. To this
end, the following items are developed:
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Table 5.6: Auto-inductance comparison for two non-orthogonal cells. The
reference value is obtained with 20 �laments in x direction and 20 �laments
in y direction. The inductance values are expressed in henry (H).

Fil SLV (Nobs = 567) VV (Nobs = 3375)

NO cell 1 0.174e-7 0.186e-7 0.185e-7

NO cell 2 0.168e-7 0.175e-7 0.171e-7

 Only the upper (or lower) triangular part of the matrix is computed,
thanks to its symmetrical property. The matrix symmetry is guaran-
teed by the reciprocity theorem.

 The auto-inductance of those cells having similar geometrical shape
and dimensions (di�erence under a �xed small tolerance) is computed
one time for all.

 The auto-inductance of orthogonal cells are computed analytically, ac-
cording to Eq. (15) in [59].

Otherwise, the calculation is carried out numerically by adopting the SLV-
technique. The Kronrod order for the source and observation cells is chosen
by the user according to the problem geometry and the required accuracy.

Potential coe�cient parameter

In order to compute the potential coe�cient parameter, the Gauss-Kronrod
integration method in natural coordinates is carried out. Starting with (5.10):

pnm =
1

ε0ΣnΣm

∫
sn

∫
s′m

G(r, r′)dS ′mdSn

the numerical integration becomes:

pnm =
1

ε0

No,ξ∑
i=1

No,η∑
j=1

1

Σn

Ns,ξ∑
r=1

Ns,η∑
t=1

1

Σm

G(rij, rrt)ws,rtJs,rt

wo,ijJo,ij (5.32)

where ws,rt, Js,rt and wo,ij, Jo,ij are the super�cial Kronrod weights and Ja-
cobian determinants for the source and observation capacitive cells. Nsou =
Ns,ξ ×Ns,η and Nobs = No,ξ ×No,η are the total number of Kronrod nodes.

In a similar way to the partial inductance computation techniques, a LLS-
technique is developed and used. The internal integration is performed as
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a super�cial integration, whereas the external one is factorized in two line
integrations (5.33).

pnm =
1

ε0

No,ξ∑
i=1

wo,iJo,i

No,η∑
j=1

wo,jJo,j
Σn

Ns,ξ∑
r=1

Ns,η∑
t=1

1

Σm

G(rij, rrt)ws,rtJs,rt

 (5.33)

The validation process follows a scheme similar to that used for the par-
tial inductance calculation. The numerical results are compared with the
analytical formula proposed by Ruehli and Brennan in [60]. The comparison
is carried out by referring to the examples in Figg. 5.8, 5.9 and 5.10, where
the mutual potential coe�cient is evaluated for cells oriented in parallel and
perpendicular and the auto potential coe�cient is calculated for a thin square
plate.

Fig. 5.8: Mutual potential coe�cient between cells oriented in parallel.

Fig. 5.9: Mutual potential coe�cient between cells oriented perpendicular to
each other.
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Fig. 5.10: Auto potential coe�cient of a thin square plate.

For the all three example cases the numerical results deviate from the
reference values of less than 0.1%. As above, the singularity of the Green's
function is overcome again by subdividing the source cell in four further
quadrilaterals, in order to avoid the superimposition of the Kronrod nodes
in the source and observation cells.

Series resistance parameter

The series resistance parameter is evaluated according to Eq. (5.8)

Rn =

∫
vn

dVn
σa2

n

and the numerical computation is:

Rn =

No,ξ∑
i=1

No,η∑
j=1

No,ζ∑
k=1

1

σa2
n

wijkJijk (5.34)

where wijk, Jijk are the Kronrod volume weights and the Jacobian determi-
nant and σ the electrical conductivity of the conductive cell.
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Since Eq. (5.34) can be seen as a part of Eq. (5.31), the resistance value
is calculated during the partial inductance evaluation process and then the
related computational e�ort is reduced a lot.

External voltage generator

The external �eld contribution is taken into account by Eq. (5.7)

Vsn =
1

an

∫
vn

ên · E(i)(r, t)dVn

The integration is handled numerically through the Kronrod quadrature rule,
that is:

Vsn =

No,ξ∑
i=1

No,η∑
j=1

No,ζ∑
k=1

ên
an
· E(i)(rijk, t)wijkJijk (5.35)

On the basis of electric �eld values obtained from measurements or further
computations is possible to calculate the independent voltage generator in
the PEEC basic circuit by means of Eq. (5.35).

5.3.3 Numerical solver

The PEEC approach is suitable to solve electromagnetic problems both in
time and frequency domain.

In order to solve complex and varied problems, the �rst attempt is to deal
with the simplest example of electric circuit, made by the series of circuital
lumped elements and objects to be discretized (Fig. 5.11).

Fig. 5.11: Example of simple electric circuit.
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The goal of this section is to present the method to build the entire linear
system, i.e. the system matrix and the right-hand side array, together with
the numerical solver to be used.

With regard to the basic cell circuit of Fig. 5.2, the PEEC equations
are developed in the frequency-domain. Starting with the equations for the
n−cell:

vj − vk −RniLn − jωLpnniLn −
∑M

m=1,m 6=n jωLpnmiLm = Vsn
jωckvck − iLn + iLn+1 = 0

−vk + vck +
∑Q

i=1,i 6=k
pki
pii
vci = 0

(5.36)

and being M the number of inductive cells and Q the number of potential
cells, the following quantities are de�ned:

� Lp ∈ RM×M is the partial inductance matrix.

� P ∈ RQ×Q is the potential coe�cient matrix.

� R ∈ RM×M is the diagonal resistance matrix.

� v ∈ RQ×1 is the node potential array.

� iL ∈ RM×1 is the cell current array.

� vSE ∈ RM×1 is the external voltage generator array.

� vc ∈ RQ×1 is the voltage array across the pseudocapacitances.

� Cd ∈ RQ×Q is the diagonal pseudocapacitance matrix.

� A ∈ RM×Q is the connectivity matrix, where the element aij = +1
if the current arrow i points towards node j, aij = −1 if the current
arrow i points away from node j and aij = 0 if node i and node j are
not connected.

� T ∈ RQ×Q is a matrix whose elements tij =
pij
pii
.

� Π ∈ RM×M is the identity matrix.

The equation system (5.36) written in a matrix form becomes:
Av −RiL − jωLpiL = vSE
jωCdvc + AtiL = 0
−v + Tvc = 0

(5.37)
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where At is the transpose matrix of A. In order to solve the example in
Fig. 5.11, the system (5.37) has to be completed with boundary conditions,
represented by the Kirchho� laws at the source and load node terminals.

To this end, each lumped circuital element is managed as a voltage source,
that is the series of an ideal voltage source and its internal impedance. In this
way, a source, a resistance, an inductance and a capacitance can be modelled
by the same bipole, by modifying the real and imaginary parts. The only
exception is the ideal current source that is managed separately. A current
source, i.e. the parallel of an ideal current source and a conductance, is worth
being converted into a voltage source.

In order to form the global solution matrix, the following approach is
taken into account:

• Each object is preceded and followed by a lumped circuital elements.

• The unknown quantities related to an object are: a number of currents
equal to the number of inductive cells + two currents inwards and
outwards the object; a number of potentials equal to the number of
nodes and a number of capacitive voltages equal to the number of
super�cial nodes.

• The unknown quantities related to a circuital element are one current
and two potentials.

As �nal stage, the entire complex linear system:

Υx = β → x = Υ−1β

where Υ is the system matrix, β the right-side vector and x the unknown
array, is solved by the Gauss elimination method.

The circuital example of Fig. 5.11 is solved for several operating fre-
quencies in sinusoidal steady-state behaviour and an optimal agreement with
analytical results is obtained.

In order to deal with time-varying electromagnetic and circuital problems,
a step-by-step procedure solution is developed.

As the derivative function
dx

dt
can be approximated by the incremental

ratio:
dx

dt
=
x(tn)− x(tn−1)

h
(5.38)

where h = (tn − tn−1) is the di�erence between two samples tn and tn−1, the
derivative function can also be expressed through the linear combination:

dx

dt
= (1−Θ)

dx

dt
|tn−1 + Θ

dx

dt
|tn (5.39)
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The parameter Θ is the weight of the linear combination, whose value has
given rise in literature to several numerical methods for solution of di�erential
equations. The most wide-spread parameter values are: Θ = 0 (Eulero
Forward), Θ = 1 (Eulero Backward) and Θ = 1

2
(Crank-Nicholson). Due to

stability issues, a reasonable Θ would be 1
2
< Θ < 1 and the optimal value

Θ = 2
3
is usually set.

According to Eq. (5.38) and (5.39), the following equality is written:

x(tn)− x(tn−1) = h(1−Θ)
dx

dt
|tn−1 + hΘ

dx

dt
|tn

and the unknown value x(tn) can be expressed as a function of the previous
value x(tn−1), as:

x(tn) = x(tn−1) + h(1−Θ)
dx

dt
|tn−1 + hΘ

dx

dt
|tn (5.40)

In a similar way as Eq. (5.36), the PEEC equations are developed in
time-domain. Starting with the equations for the n−cell:

vj − vk −RniLn − Lpnn
diLn
dt
−
∑M

m=1,m 6=n Lpnm
diLm
dt

= Vsn

ck
dvck
dt
− iLn + iLn+1 = 0

−vk + vck +
∑Q

i=1,i 6=k
pki
pii
vci = 0

(5.41)

The equation system (5.41), written in a matrix form, becomes:
Av −RiL − Lp

diL
dt

= vSE

Cd
dvc
dt

+ AtiL = 0

−v + Tvc = 0

(5.42)

Equation system (5.42) is a di�erential equation system, where the un-
knowns are (v iL vc)

t. The di�erential operators can be handled by means
of (5.39). Then,

dvc
dt

= −C−1
d AtiL

is written as:

vc(tn)− vc(tn−1) = h(1−Θ)
[
−C−1

d AtiL(tn−1)
]

+ hΘ
[
−C−1

d AtiL(tn)
]

The variable vc at time sample tn is:

vc(tn) = vc(tn−1) +h(1−Θ)
[
−C−1

d AtiL(tn−1)
]

+hΘ
[
−C−1

d AtiL(tn)
]
(5.43)
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vc is a function of quantity iL(tn), that is unknown at the nth iteration.
In a similar way, the second di�erential equation:

diL
dt

= L−1
p (Av −RiL − vSE)

is approximated by:

iL(tn)− iL(tn−1) = h(1−Θ)L−1
p [Av(tn−1)−RiL(tn−1)− vSE(tn−1)] + hΘL−1

p [Av(tn)+

−RiL(tn)− vSE(tn)]

The variable iL at time sample tn is:

iL(tn) + hΘL−1
p RiL(tn) = iL(tn−1)− h(1−Θ)L−1

p RiL(tn−1)+

+ h(1−Θ)L−1
p Av(tn−1)− h(1−Θ)L−1

p vSE(tn−1)]+ (5.44)

+ hΘL−1
p Av(tn)− hΘL−1

p vSE(tn)

iL is a function of quantity v(tn), that is unknown during the iteration n.
Being v = Tvc, Eq. (5.43) is re-written as follows:

v(tn) = v(tn−1)− h(1−Θ)TC−1
d AtiL(tn−1)− hΘTC−1

d AtiL(tn) (5.45)

By substituting Eq. (5.45) in Eq. (5.44):

iL(tn) + hΘL−1
p RiL(tn) = iL(tn−1)− h(1−Θ)L−1

p RiL(tn−1)+

+ h(1−Θ)L−1
p Av(tn−1)− h(1−Θ)L−1

p vSE(tn−1)+ (5.46)

+ hΘL−1
p A[v(tn−1)− h(1−Θ)TC−1

d AtiL(tn−1)− hΘTC−1
d AtiL(tn)]+

− hΘL−1
p vSE(tn)

In this equation the only unknown quantity is iL(tn). In other words iL(tn)
depends only on iL(tn−1), v(tn−1), vSE(tn−1) and vSE(tn), that have been
already calculated.

In order to make clearer (5.46), the following matrices are de�ned:

Q = L−1
p R; S = L−1

p APAt; F = L−1
p A; D = PAt

and the formal expression for iL(tn) becomes:

iL(tn)[Π + hΘQ+ h2Θ2S] = iL(tn−1)[Π− h(1−Θ)Q+

− h2Θ(1−Θ)S] + v(tn−1)[h(1−Θ)F + hΘF ]+ (5.47)

− h(1−Θ)L−1
p vSE(tn−1)− hΘL−1

p vSE(tn)
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Once the value of iL is known at time tn, the node potential v at the same
time is:

v(tn) = v(tn−1)− h(1−Θ)DiL(tn−1)− hΘDiL(tn) (5.48)

The value of v(tn) allows to compute vc(tn) through vc(tn) = T−1v(tn).
When all variables are calculated at sample tn, the following iteration

(n+ 1) is able to begin from (5.47) and thereon.
Matrices in (5.47) and (5.48) have to be calculated once and the approach

step-by-step allows to handle time-varying problems in a feasible way.
One of the most relevant e�orts in the PEEC method is represented by

the skin e�ect: the numerical results are reliable until the cross-section di-
mension is small enough with respect to the penetration depth. Otherwise,
an accurate dedicated approach is necessary (see [1], [61], [62]).

5.4 Future Developments and Applications

The future developments of the present PEEC model are going to allow a
great variety of applications. In order to do that, the following improvements
are scheduled:

> Generation of circular and helicoidal objects;

> Introduction of dielectric volume cells and calculation of the excess
capacitance parameter;

> Introduction of the propagation e�ects both in time and frequency
domain;

> Development of the images method.

The above enhancements allow to use the PEEC model to study Ro-
gowski probes for high frequency and transient current applications with a
considerable accuracy. They can be able to simulate also the calibration test
environment for the ESD generators, by improving the approximated analysis
of transmission line model (� 4.5) and ful�l a hybrid numerical-experimental
calibration approach.
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