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Abstract: The paper addresses sensor bias calibration when only differential bias is of interest as
in relative calibration of different sensors. Temperature sensors are considered. Relative
calibration is of interest in control problems where precise thermal gradients must be generated,
or uniform and stable temperatures must be guaranteed. Static (or steady-state) and dynamic
calibration are compared both theoretically and experimentally. Dynamic calibration has the
advantage of employing any available measurement, but requires that a suitable dynamic model of
the calibration equipment be available. A simple equipment with three sensors is considered in the
paper, but the results can be extended to more complex ones. As a further advantage, calibration
can be performed on any apparatus with the constraint (used in the paper) that the dynamic
model is of the same order as the sensor size. Identifiability conditions are proved. Calibration is
obtained through a nonlinear weighted least squares problem, which is solved in an iterative way.
Convergence, consistency and asymptotic efficiency are proved and verified with Monte Carlo simulations.
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0 Introduction

The paper addresses sensor bias calibration
when only differential bias is of interest as in the
relative calibration of different sensors. Temperature

Relative calibration is
[1]

sensors are considered.
distinguished from calibration by comparison
where a sensor is calibrated with respect to a
reference. Here none of the sensors need to be a
reference. but instead their differential uncertainty
is estimated, and no effort is done of relating
uncertainty to either sensor. As such, calibration
by comparison is a specific case of relative calibration,
since the estimated uncertainty is entirely related to
non reference sensors. The principles of dynamic
calibration are outlined and employed in the paper,
marking a difference from the usual calibration by
comparison, as the latter is performed under steady
state conditions and only aims to identify the sensor
response uncertainty. Dynamic calibration, to be
performed under any sensor condition, calls for system
(nonlinear) identification. Among the several methods
available in the Refs. [ 2-5] covariance inversion is

A brief

outline and discussion of the different concepts that

justified and compared to other methods.

have been just expressed, follows.

( I ) Relative calibration

Calibration by comparison is a method for
estimating the response curve of sensors. In the
case of thermometers, two sensors (one to be
calibrated and the other to be used as a reference)
are brought to the same temperature by placing
them inside a thermal well. The reference sensor
measures the varying temperature of the well.
Moving the well along a pre-specified scale of
temperatures, a table is obtained, relating the
calibrated to the well

sensor output to be

temperature. Each pair of tabulated values is

b

accompanied by the uncertainty of the temperature
value, which is sometimes called “tolerance” (see
Ref. [1] for terminology). The tabulated uncertainty
of the temperature values is obtained by combining all
uncertainty sources affecting the calibration™™,

It is common to find applications where the
absolute temperature of some objects is not of
particular interest; on the contrary, the
uncertainty of the difference between two or more
temperatures at two or more points is of interest.
This occurs in applications where temperature
must be uniform and stable, such as in Refs. [7]
and [ 8], or when precise thermal gradients must
be generated as in Ref. [9]. In fact, the results
shown here are motivated by the design of a
temperature regulator for an optical cavity which
must generate precise thermal gradients to create
along the

appropriate profiles

[10]

temperature
cavity' In these applications, calibration by
comparison can be employed even in the absence of
a high quality reference sensor. The analysis of the
reduction of the differential uncertainty after
calibration by comparison is reported in Ref. [11].
To mark the difference between calibration with
respect to a reference (calibration by comparison)
and calibration of the differential uncertainty, the
term relative calibration is adopted.
(Il ) Dynamic relative calibration

ol calls for a

Relative calibration
thermodynamic equipment in which the sensors
being calibrated are placed inside a calibration well
and are taken to the same temperature, thus
reducing as much as possible any gradient among
them. Design errors, such as inappropriate or
asymmetrical ambient insulation, lead to
calibration errors. Sensors are moved to the same
temperature by a symmetrical heating system and

by waiting enough time for the assembly to reach
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steady-state conditions. However gradient reduction
cannot be obtained when calibrating large sensor
networks and regression with respect to sensor
location can be a solution assuming steady statel'?.

In this paper an extension is considered.
Instead of assuming that sensors are at the same
temperature and that the assembly has reached a
steady-state condition, a thermodynamic model of
the equipment is considered. Based on this model,
significant parameters of the calibration equipment
can be estimated, improving the estimation of the
sensor bias as well. To this end, the estimation
algorithm includes the dynamical behavior of the
assembly, which renders it unnecessary to wait for

Here

calibration is applied to a pair of sensors, but it can

the steady-state. dynamic and relative
be extended to an arbitrary set of sensors.

(1) Identification method and results
applying

regression to dynamic models are affected by

The measurement equations for

colored noise and correlation between the past
As a

result, the parameter estimate loses consistency,

variables entering the regression matrix.

and alternative methods like prediction error or
instrumental variables methods are employed to
recover consistency™. The regression variables are
filtered to create a prediction error which is white
and therefore uncorrelated with the past
variables®. Error whitening being the goal, an
alternative method is to directly whiten the error
by inverting the covariance matrix, which may
become awkward in the case where the error
covariance depends on unknown parameters as in
the cases treated here and in Ref. [2]. It is shown
that covariance inversion becomes effective if the
error components affected by unknown parameters
can be made sufficiently negligible, without
impairing identification performance.
Consider the first-order multivariate ARMAX
model™
yGi+1) =— Ay(D) + Bu(id) + e(i+ 1) — Ce(d)
(D

where y is the output vector, u is a known input

vector, eis an unknown vector, and A, B and C are
matrices to be identified. Differences from Eq. (1) can
be appreciated by writing the calibration equation to be
investigated with notations similar to Eq. (1) (other
notations will be used throughout), namely
(I— H(A) y(i+1) — y(i) =

ACy() — s) + BCu(i) —s,) +

e(i+1) —e(i) — Ae(i) — Be, (D) (2)

The regression is nonlinear (actually bilinear
in the parameters) because of the unknown biases s
and s, affecting output and input vectors and
because of the matrix H ( A). The unknown
matrices A and B enter the error component. If
|A|<<1, |B|<1, |HI<K1, and the variance of Be,
is of the same order of e, then the error in Eq. (2)
can be approximated to e(i+ 1) — e(i), which
justifies the covariance inversion.

Monte Carlo runs confirm that the differential
bias estimate is unbiased also for a finite number of
observations unlike the static case. The overall
parameter estimate is proven to be consistent and

asymptotically efficient.
1 Dynamic model

1.1 State and measurement equations
Fig. 1

consists of two bodies of capacitance C, and G

The thermodynamic apparatus in
(unit: J/K) where the sensors to be calibrated are

immersed. The sensors measure the mean
temperatures (unit: K) 0 and 0, of the bodies.
Each body is supplied with thermal power by
separate actuators, whose commands w and w
represent the fraction of the peak power Py .y » k=
1,2. The bodies are thermally linked (g (unit: W/
K) in Fig. 1) to facilitate thermal equilibrium. The
ambient surrounding the bodies is a metal chamber

which can be thermally regulated, but not in this

9&

@
CJ ga] gaz Cg
2 v &

Py a1V Py max(t2tvi2)

Fig. 1 Lumped-parameter model of the thermal apparatus
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treatment. The ambient temperature 0, is
measured by a third sensor. The thermal
conductances body-to-chamber (g, = g. + Ag.»

ge= g« — Ag, Cunit: W/K) in Fig.1) are much
lower than g and nominally equal to g,.

The pairs (6, 6,) and Cw , uz) are denoted
with the vectors 0 and u, respectively. Using the
total capacitance C;, = C, + G, as a scale factor, the
continuous-time dynamic model of the assembly in

Fig. 1 can be written as

0D = AO(D + B0, (D + B,(u+tv) (D, 6(0) = 8,
(3)

where
A=TI'G, B, =TI"G,, B,=T"'P 4

and

— 87 8a g
| e
g — 8 8w

_ [Pl,max O :]’ G“ _ ]:gul}
0 Py s g

Given a time unit T and the discrete time i the

sampled-data version of Eq. (3) becomes
(I—H G+ 1) — (D)) =
FO() + F.0,() + F.(ut+v)(D) (6)
where the correction matrix H holds

H=1—F("— D' —1= F/2(I+ F/3+ )

7
Entries of the matrices in Eq. (6) are
F— AT — [ Q1 7 qal q }
Q2 — @ T g
F, = BT = [q“l} (8)
qa2
u 0 —l
R=BJ={m |
0 quw2
Parameters in Eq. (8), namely
q = gT/(Curr)
@ = gT/(C(1— 7))
a = ga T/(Ciz7)
qal gal 12 N1 9)

Qe = g2 T/(Cra (1 — 7))
qa = Prme T/CCam)
G — PZ,max T/((:ll (1 — " ))

are collected in the vector

¢=la & qu g @ ¢] A0
The measurement equations are
y() = 0() + s+ v(D) + e(i)l
y.(D = u(d) - (1D
y. (1) = 0,(D) + 5, + 0, (D J
where all the variables in the first two equations
are bi-dimensional vectors. In Eq. (11) sis the bias
vector of sensors 1 and 2, s, is the bias of the
ambient sensor, v and v, are zero-mean white
noises, and e is the model error encoding the
neglected dynamics of the model. The covariance
matrices of the noise vectors in Egs. (6) and (11)
are defined by
S = vV (D= &l l
S, = v (Dv (D)= oll (12)
G (D)= o J
Replacing Eq. (11) in Eq. (6), the following
calibration equation is obtained
(I— D (yG+ 1D —v(ii+ 1) —y(d) +v)) =
Fly(d) —s— v(D) + F,(y,(D) — 5, — v,(D)) +
F.(y, (D) —v) (13)
The parameters to be estimated are the
differential biases
As= s — 55 As, = 5,— 8 14
to be collected into ¢ =[ As As, ], and the vector
q, in Eq. (10). Eq. (13) can be rewritten in a
compact form by separating parameters, known
terms and errors as follows
(I—H)Ay(D) = W(Dq+ e(d) (15
To this end, let wus

firstly  define the

measurement differences
W= T Ve Ya = Ve Vs Yo = Ye— 3 (16)
Then, the matrix W, the vector Ay, the parameter

vector q and the error ein Eq. (15) are found to be

Ay() = y(i+ 1) — y(D)
W(i) =
[yzl 0 Ya 0 ya O —a %J

O —wm 0 3y 0 3y ¢tge —aq
¢ =[a q']
e(1) = (I— H)(v(i+1) —v() —

Fv(0) — F,v,(i) + Fv, (D)
an
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Only differential biases As and As,» and not
the absolute s and s,, enter the unknown vector q,
in accordance with the concept of relative
calibration. The vector size is m=38. Clearly Eq.
(17) is a bilinear form in the unknown parameters.
Bilinear identification usually calls for bilinearity in
the output and input signalst*"",
1.2 Differential steady state equation

The main goal of a relative -calibration
procedure is to estimate As under uncertain

dynamics. It is of interest to compare Eq. (13) to

steady-state conditions. Assuming 020 in Eq. (3

and equal commands w; = u; » one obtains

Ag, (0, — O U, — ,
@Z o 61 — g - P._-l’]]dX Uiz Pl-de UVt + 771
g+ g./2 2g+ g -
0= (6 +6)/2 J

(18
where 7 accounts for deviations from the steady state,
and Ag, is the unknown deviation of g, and g, from
the nominal value g,. Taking the difference y, =y, —
yi in Eq. (11) and replacing & — 6, with Eq. (18), one
finds the calibration equation
Yo~ ¥ FAse —AY/2 4 v, —

g+ g./2

N1 = As— Aga

P‘Z.mnx V2 Pl ymax Vul

2¢g+ g,

where y and v denote mean values like 6 in Eq.

+‘Ug*‘1}1+7] (19)

(18). The second term in the right-hand side of
Eq. (19) with the unknown Ag, polarizes the
estimate of As. For such a reason, y,— yis usually
regulated to be sufficiently small. To show
consistency and efficiency of dynamic calibration,

the worst-case of unregulated y, is considered.

2 Calibration equations and identifiability

2.1 Static calibration
Static calibration is obtained from Eq. (19)
which is rewritten in discrete time as
o (i) = WD p+ e (i) + pr Gi) - (20D
where ,(i,=0,1,++, N,— 1) refers to appropriate
steady state intervals k(k=0,+-, K—1) where Eq.

(20) holds. The total measurement size is

K—1

M= >N, < N ©2)

k=10

which is usually much less than the available data
length N.
Assuming ‘ Ag, | << 2g the entries of Eq. (20) hold

W= |1 Ay=y.—y
: 2] } (22)
pf =[As —Ag./(g+ g./2)]

and
= p— Ag.(As, — As/2) /(g + g./2)
e = (Py Vi — Proova )/ 2g+ g) + v — v }
(23)
Assuming covariance matrices as in Eq. (12),
and Prpn = Paxs k = 1, 2, the

covariance becomes

noise

Pmax
28+ g

Then, splitting Ay in Eq. (22) into the mean Ay

G::il: (({ egl} - 2[ ]Qci#} Zﬁi (24)

and the alternate component Ay, i. e. into Ay=
AngA;), denoting the RMS of the alternate
component with ¢4,, and the form factor as ¢,, =

GA},/AQJ, the Cramer-Rao matrix results
S o [ 1+ e
=~ o}, (W'W) ! == Nﬂ

2 2
— Ay oay Oay

—Ayoal]
= J<25>

Lo

Assuming stationary zero-mean noise e; in
Eq. (20), calibration is obtained through ordinary
least squares as

p= (W'W) "Wy, (26)

Neglecting the noise component of y, — y in
W, the polarization of the differential bias can be
shown to be approximated by the mean value of
in Eq. (23), namely

E{As)— As = E{ ) 2D
which is a combination of % and of the unknown
conductance uncertainty Ag,. The variance of
&{As)—As tends to be larger than the entry (1,1)
in Eq. (25) because of 7%, as confirmed by Monte
Carlo runs in Section 4.

A goal of dynamic calibration is to provide
unbiased and efficient estimates of the differential
bias without wasting measurement data.

2.2 Dynamic calibration

Upon collection of N measurement pairs
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Ay(i), i=0, -, N— 1, equation Eq. (15) is
rewritten in the vector form

Ay(q) = W(@q+ e(q (28)
where dimAy= 2N. Dependence of W and of its
entries on q will be usually dropped to simplify
notations. Splitting the two components of Ay(1)
and e(7) in Eq. (28) into separate vectors Ay, and
e, j=1,2, Eq. (28) can be block partitioned into

st v TS S
Y Ay, W, 1 €

and the blocks of W can be arranged as

"= ll-

[)’21 0 Ya 0 Y 0
O —wm 0 y2o O ye

—an —damn
(¢ +q2)u %}TJ
(30)
The vectors y,(x=21,al,a2,ul,u2) in Eq. (30)
have N components y,(7), and all components of 1 are
unitary.
Eq. (28) is bilinear because W is a function of
q, and the same holds for Ay and e. The latter is
also correlated between successive samples. As a
result, the error covariance matrix S is non
diagonal and band-type as
S? R - 0
s= % S 0 (31)
0 0 e 87
Using Egs. (12) and (8) the sub-matrices in Eq.
(31) hold
S = (I—HDQI+FF)(I—ID" +1
o.F . F, + o'F.F, ¢ (32)
R(@ =—o,(I— H+ F) J
The treatment of Eq. (28) is based on the
following assumption.
Assumption 2. 1 The noise variances o> and o>
are of the same magnitude and denoted with o7,
The norm of the command noise covariance ¢°F ,F}
in Eq. (32) is much lower than ¢°. The sampling
time T in Eq. (8) is selected such that the entries
of F, F, and F, are sufficiently smaller than unit.
matxices In

Asumption 2.1 implies that

%42 %

Eq. (32) can be simplified as follows
S (@ = o* 21+ o | q|)) = 26°L, o( | q|*) < 11
R(Q =— o (I+o(|q|)) =— "L o(|q]) <1
H=0 J
(33)

The first consequence of Eq. (33) is that S
can be rearranged into a block-diagonal matrix
2 —1 - 0

) rss 07 , =1 2 e 0
&;L 9J,s;)=a- A N 25
0 & : : E

The second consequence goes to the entries of

0 0 oo 2

W. The neglected covariance terms in Eq. (33)
derive from noisy variables entering W. Therefore,
Assumption 2. 1 allows treating matrix W as noise-
free. The third issue calls for a design of T capable
of satisfying Eq. (33). Computation of the Cramer-
Rao bound would show that calibration efficiency
could be improved to some extent by increasing the
discrete-time poles ¢.» x=1,2,ain Eq. (9), which
can be achieved by a larger T. Thus a design trade-
off can be looked for, as mentioned in Section 4.
2.3 Identifiability conditions

Analysis of the matrix W in Eqgs. (28) and
(30) reveals identifiability conditions. Since the
theorem to be proven calls for time-varying
measurements (equivalent to persistent excitation
in identification’® ), identifiability conditions are
proved assuming noise-free measurements in W.
Indeed, noisy measurements in W improve time
employed to

Thus

conditions that are proved assuming noise-free W

variability ( noise is guarantee

persistent  excitation ). identifiability
may be referred to as “robust”.

Theorem 2.1 A necessary and sufficient
condition for the parameter vector q to be
“robustly” identifiable from Eq. (28) is that at least
one of the pairs (¢ »qz)s (g»sqa) and (qg»qa) is
noise-free

nonzero, and each triple of

{y2r0y2sye !

contains time varying and linear independent signals.
Proof The first statement derives by taking

four blocks of Eq. (17)

measurements { ys1 5 yu»Ya ) and

containing rows at
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successive times, say i, i+ 1,1+ 2,1+ 3, and
building the relevant m X m matrix W(i, i+ 3),
which has the same form as of Eq. (30), but the
(30) are

dimensional sub-vectors. Since the detW(i,i+3) is

vectors of Eq. replaced by four
a minor of W, nonzero minor guarantees rank W=
m. The determinant holds

detW(i,i+3) = (q1qe + @ qa + quqa)d (35)
where d only depends on the four-dimensional
triples { ¥215 Ya» Yu ) and { y21» Yoo » Yo }. Assuming
without loss of generality the pair (q;,qs) is zero,
and reordering columns and rows, W(i,i+3) can

be made block-diagonal as follows

0
WJ [ (36)

W, = [)’21 +Asr| Ya JFASJI Ya T Qa ﬂ]J

where W, has a similar form to W,. The necessity

W,
W(i,i+3) = [O

for each triple {ys1»yas>Ya ) and { ¥+ Yo sye ) to

contain linearly independent and time-varying

signals emerges from Eq. (36). Sufficiency is
proved by reducing variability to the form

W]Z

(D) + As ya (D) + As, ya (D) — Qu
wG+HD+As yaG+1 +As, ya (D — Qu
w (41D 4 As ya (D) + As, yaG+1D —aqu

i (D + As ya+1D+As, yaG+1D —aqu

37

Indeed, the determinant of Eq. (37) holds
AW, =— qu (v, (D — ya i+ 1)) X
(1 (D — 3 G+ 1) (ya (D — ya G+H1)) - (38)
and is non zero if and only if the command y, and
the differential temperatures vy, and vy, are time-

varying and linearly independent.

3 Weighted least squares

3.1 Maximum likelihood

Assuming the error e in Eq. (28) is zero-mean
Gaussian distributed with the covariance matrix
S2(@) in Eq. (31), the log-likelihood function of e,
given ¢. is found to be
—log L.(e,q) =— logdetS.(¢ +

%(Ay(q) WP QTS (@ (Ay(q) — W Q)

39

The functional (39) is not in the Gauss-Markov
form because of the unknown covariance S2(q) and
of the parameter-dependent matrix W (q). To
approximate Eq. (39) with a nonlinear weighted
least squares (WLS) functional. a value q of the
parameter vector is assumed to be known. The
uncertainty Aq in ¢= q+ Aq becomes the unknown
parameter vector to be identified.

Assumption 2.1 in Section 2 allows to
approximate the submatrices in Eq. (32) of the
covariance matrix as constant matrices as in Eq.

(33), or more accurately as
S =8 +do|Ag) =S (g =§

_ (40)
R(@ = R(@ + ¢’ o | Aq|) = R(p = R

Thus detS. becomes known, and detS, can be
pushed out of the log-likelihood function which

latter simplifies as follows
—log L(q) = J(@) = L (Ay( —W(Q@" -

S(,Z(g)(Ay(q)*W(q)q) 4D
The functional (41) is in the WLS form.
One can now compute and set to zero the

gradient vector of (41), namely
.
VI = g = Q(%L”sﬂ— Ay+Wp =0 (42)

IJ(Wq)/dq denotes the 2N X m

Jacobian matrix

d d
MZW‘F[ﬂq eee VWQ}:W‘FAW:W,
(7(1 (’)(h ‘7(1”:

where

43>
The second term AW in Eq. (43), which is
dependent on g, can be shown to be a function of
the unknown differential biases in Eq. (14), and
the  total matrix W,  contains unbiased
measurements.
Employing the Jacobian matrix (43) and the
following weighted matrices and vectors
U, = S,'W,, AU = S,'AW
Ay, = S.'Ay=Uq+ e., e, = S.'e
the gradient Eq. (42) can be rewritten into the

} “1)

“modified” WLS equations
Ul (— Ay, + (U, — AU @ = 0}

. (45)
q= F'U (Ay.+ AU
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Theorem 2.1 provides the conditions for the

Fisher information matrix (parameter dependent)
F(q¢ = Ul (U, (@ (46)

which has been employed in Eq. (45), to be
invertible. The solution ¢ in Eq. (45) is the
parameter estimate to be achieved iteratively as
outlined in Section 3.2. The meaning of Eq. (45)
is as follows: the measurement vector Ay, is made
unbiased by AUq. Known or zero differential bias
would turn Eq. (45) into a classical WLS equation,
because of zero AW,
3.2 Least squares iterative solution

The modified WLS Eq. (45) is nonlinear in the
parameter vector ¢ and must be solved as an
iterative least squares problem. The recursive
equation at the kth step, k=0,1, - derives from
Eq. (45) and takes the form
q(k+1 = F'UL(Ay.+ AUq(R), q(0) = g

F, = U.,U..» U, = U (q(k), AU, = AU(q(R)

U7
where F, is the Fisher information matrix (46)
computed for q=q(k). Consider the expression of
Ay, in Eq. (44) and substitute it in Eq. (47). The
latter equation converts into the classical recursive
equation
qCk+1) = q(k) + B(k) e, (k) = q(k) — F,'g(k)
q(0) = q, B(k) = F,'U;,

48)
where —g(k) =U!,e. (k) is the negative gradient
in Eq. (42) computed at q=q(k) and F, is positive
definite for N= N,u. = m such that F, is full rank
for any k=0. Thus Eq. (48) is a Newton-Raphson
algorithm in the average because F, can be proven
to be the expected value of the Hessian matrix.
Convergence in the mean is expressed by the
following Lemma.

Lemma 3.1 The iterative Eq. (48) decreases
the expected value of the functional (41) at each
step as soon as

Tré{(Upy —UD"(Upy —UDF,' <IN (49)
Condition (49) is always satisfied, since the

left-hand side does not depend on N, being the

ratio of two Fisher matrices. Convexity in the
mean of Eq. (41), that can be proven, and Lemma
3.1 imply that Eq. (48) quickly converges to the
argument of the minimum of the log-likelihood
functional ] in Eq. (40). Monte Carlo simulations
have proven that a few iterations are sufficient
(<{5). Whether the argument of the minimum
equals or not the unknown parameter value q is a
problem of consistency.
3.3 Consistency and efficiency
To investigate polarization and covariance, let
us rewrite the solution (47) in terms of the
unknown “true” q as follows
q=q+F (U (e, (50)
In the case of a noise-free U,(q) , as implied by
Assumption 2.1 in Section 2, the estimate is
unbiased since ¢{e,}=¢{e} =0. To be complete,
the noise-free assumption is abandoned by considering
that U,(q) is a “random” matrix because of the
measurement noise. By separating the noisy
component V, as U, = U, + V,, inversion in Eq.
(50) can be approximated to the first order as
F'= WUy = F'(I-2V/U,F")
F, = ULU,
Eq. (50),
(51), becomes
4= q+ F'((U, + VD' —2VIU, F,'U e (@
(52)
The expected value of Eq. (52) is approximated by
{qy= q+ {F,'VI(I—2U,F,'U}e,} (53)

and shows that (5'{{1} is biased, since the second

(3D

rewritten with the help of Eq.

term in the right-hand side is not zero owing to
the correlation between V, and e,. Since U, F, 'U}
is a projection operator, one can assume the projected
error is negligible, which simplifies Eq. (53) to
Q)= q+ F'¢(Vie.) = q+ F's,
g >~ No’[—1 —1 —1 —1 0 0 0 0] G0
Moreover, since F, can be shown to contain a
factor Y (N)C N*, v>1, it follows
limé{q}=q (55)
The following Theorem achieves one of the targets

stated in Section 2. 1.
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Theorem 3.1 The estimate é of the
differential bias vector g, is unbiased for a length
N=Nuin=m of the measurement vector in Eq.
(28) such that F, in Eq. (47) is full rank for any
k=0. The estimate q is consistent.

Proof The first part descends from the last
two entries of Eq. (54) being zero. The second
part descends from Eq. (55).

The second target aims at lowering the bias
covariance with respect to static calibration in
Section 2.1. Take the expected value of the
estimate error in Eq. (50), i.e.

HQ—q—')=

EF (U (e (Qel(U (@ F ' (¢}

(56)
Assuming that U, (q) is noise-free, Eq. (56)
reduces to the inverse of the Fisher matrix in Eq.
(46), and the estimate q can be said to be
efficient. In the generic case, a first-order
development as in Eq. (51) can be exploited leading
to the Theorem.

Theorem 3.2 The estimate q, is asymptotically
efficient.

The lack of space forbids further analysis of
the Fisher matrix and comparison of dynamic and
static covariance.

Comparison is left to Monte

Carlo runs in Section 4.

4 Simulated results

Two kinds of Carlo
experiments have been performed in agreement
with Tab. 1.

power supply was provided to both sensors,

simulated Monte

(I ) Case 1. The same staircase

increasing their temperature from about 290 to 350
K. Steps are long enough to reach steady state.
Profiles of this kind are suitable to calibrate the
whole measurement

sensor response in the

5] Here a priori sensor calibration error has

range
been assumed to be constant (bias). ([ ) Case 2.
Power has been supplied in the form of a square
wave so as to improve identifiability in agreement
with Theorem 2. 1. The simulated parameters and

their uncertainty are reported at the end of this

Tab. 1 Simulated parameters

No. Parameter Symbol  Unit Value
0 Duration s 5250
1 Time unit T s 5
2 Sensor noise oy K 0. 005
3 Power noise Ou 0. 001
4 Power step 0.1
5 Power peak Promax W 10
6 Conductance g W/K 1+20%
7 idem Za W/K 0.1+20%
8 Asymmetry Age  W/K  0.005
9 Capacitance G J/K  20£20%
10 Capacitance Cs J/K  24+20%
11 True bias As K —0.1
12 True bias Asq K 0.1
13 Known biases As.Asa K 0
14 Monte Carlo trials 500
15 Samples: dynamic case N 1 050
16 Static case M 140

section. The temperature profiles of both cases are

shown in Fig. 2 and Fig. 3.

360

3401
nd
= 320

300

2800 2000 4000 6000

t/s

Fig.2 Temperature profile of the Case 1 (staircase)

measure
315

310

305

T/K

300

295

290 i i
0 2000 4000 6000

tls

Fig.3 Temperature profile of the Case 2 (square wave)

The differential measurements 1y, and vy
entering the calibration matrix W in Eq. (30) are

shown in Figs. 4 and 5.
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l— yo—yy, Case 1:staircase
02F . | ==~ yr—w1, Case 2:square wave |

1000 2000 3000 4000 5000 6000
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Fig. 4 Differential measurement of the sensors under calibration

Differential temperature

20
——-¥~W, Case 2:square wave
— ¥, Case l:staircase
0 My, . . . .
e
T T T T, §
~
_40 ....................................................... .
-60 '- :
0 2000 4000 6000

t/s

Fig. 5 Differential measurement: Ambient to sensor 1

In both cases, static and dynamic calibration

have been performed. Dynamic calibration is
performed employing all the set of measurements.
In static calibration only a small interval of N,=20
samples at the end of each step k= 0, *=+, 6 is

employed as shown in Fig. 6.

Residuals-Static
0.02 T T
ootk b “‘ ______ ) _________ ] ]
o 0 ‘ X A i
=~ :
001k ] SR G (S S i
_0‘02 ................. .. e ..E......... s
_0‘030 2000 4000 6000

tl's
Fig. 6 Static calibration residuals in the Case 1:
The measurement intervals are marked by non zero residuals
Mean value and RMS of the a posteriori
calibration error
e = As— As (57

are summarized in Tab. 2.

Tab. 2 Calibration of differential bias

No. Case Type Mean/mK ~ RMS/mK
0 1, staircase Static —2.2 2.3
1 Dynamic 0.3 0.6
2 2, square wave Static 5.1 4.2
3 Dynamic <0.1 1.1

The histograms of the estimated bias As in
Eq. (14), obtained from Monte Carlo trials, are
shown in Figs. 7 and 8. Histograms from static

dashed

converted to

calibration are plotted using a line.

Histogram ordinates have been
probability density forcing the underlying area to

be unitary.

: —— dynamic calibration, Case 1
0p O — —- static calibration, Case 1

Prob. density
.
(=]

=1 i

0.095 —0.09 —0.085

) ;
-0.11 —0.105 —0.1

differential bias As / K
Fig.7 Case 1: Histograms of static and dynamic calibrations
|— dynamic calibration, Case 2
40} ---......{— — - static calibration, Case 2
'a-\ 30 T
5
©
.D. 20 Lo T
E .
= :
10F bt mg
: I
: -7
0..........._;.___'._ II ........i..._..'!.-r.n._;'_._..
-0.11 -0.10 -0.09 -0.08
differential bias As / K

Fig.8 Case 2: Histograms of static and dynamic calibrations

Results in Tab. 2 and comparison of Figs.7
and 8 suggest that the staircase profile performs
both  the

This occurs because of the higher

better under dynamic and static
calibrations.
RMS of the input and measured signals as Fig. 2 to
Fig.5 show. As a confirmation of the Case 2
(square wave) and of the dynamic calibration,

Fig. 9 shows a significant RMS reduction when the
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input step fraction increases from 0.1 to 0.3
(dashed histogram). Improvement cannot be fully
applied to static calibration since steady state
conditions become remoter, and consequently

polarization doubles the value of Tab. 2.

70
— —- dynamic, Case 2, input step 0.3
60| —— dynamic, Case 2, input step 0.1 |
N T- - N
50_...._..._._.._...._:T.-:_:; ...............................
z .
z GOF - Lo
° l
_§ 30 | s T T T T
[-™
20 | P S "SRRy o ARCALIREREIRES SERARERS
I{) b ........ SRRRE |_ ......................
| : I
0 il i S i
-0.104 -0.102 -0.100 -0.098 -0.096 -0.094
differential bias As / K

Fig. 9 Calibration improvement in the Case 2

due to input step increase

According to Tab. 2 static calibration suffers
from a higher RMS with respect to dynamic
calibration, which is due to a much smaller size of
measurements (about 15%). Given the same input
profile (either Case 1 or 2), RMS could be reduced
by enlarging the measurement interval at the end of
each input step, but to the detriment of
polarization.

Optimization of the time unit T, as mentioned
in Section 2, has been made through Monte Carlo
trials. Given the measurement length N, the input
profile in Tab. 1 and keeping fixed the correction
matrix H in Eq. (7), increasing T reduces the
calibration RMS to the detriment of polarization.
This fact occurs because discrete-time matrices in
Eq. (8) tend to become approximate as soon as
|H| in Eq. (13) increases. Polarization can be
appreciated from residuals as the latter ones are
affected by the polarization of the parameter vector
q, in Eq. (10).

A pair of test results reported in Tab. 3
confirms the previous analysis and indicates that
T=2.5 s is near optimal. The unbiased residuals
of both sensors under the smaller time unit in
Tab. 3 are shown in Fig. 10. The residual RMS of

about 7 mK in Fig. 10 equals [26,, where o, is the

sensor noise standard deviation reported in Tab. 1.
The sensor noise dominates e in Eq. (17) because
of Assumption 2. 1. Finally Cramer-Rao bound is
compared to Monte Carlo RMS in Tab. 4.

Tab.3 Time unit optimization (Case 1, dynamic)

T=5s T=2.5s

No. Parameter/mK
Mean RMS Mean RMS

1 Bias error —0.2 0.6 0.0 0.7
2 Residuals —2.9 7.2 —0.5 7.1
0.03 T
— - Sensor 1
.................... —_ Sensor 2

-0.03

0 500 1000 1500 2000 2500 3000
tl's

Fig. 10 Sensors 1 and 2 calibration residuals

under the smaller time unit T in Tab. 3

Tab.4 Cramer-Rao bound and Monte Carlo RMS

No. Case Type  Cramer-Rao/mK RMS/mK
0 1, staircase Static 1.1 2.3
1 Dynamic 0.6 0.6
2 2, square wave Static 2.4 4.2
3 Dynamic 1.1 1.1

Cramer-Rao bounds in Tab.4 have been
obtained from Eq. (25) (static case) and by
inverting the Fisher matrix in Eq. (46) (dynamic
case). Both were adjusted through the RMS of the
calibration residuals. Static calibration shows a
large discrepancy because of the term 7 in Eq. (22)
which

conditions.

expresses deviation from steady state

5 Conclusion

It has been shown how to use a dynamic model
to improve differential calibration of the bias for
temperature sensors against a steady-state
calibration, given the same suite of measurements.

The main concept is that the uncertainty on the
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sensor bias estimation is due to asymmetries of the
thermal link with the ambient and to a limited
amount of data. Polarization can be eliminated and
efficiency can be improved by including a
thermodynamic model of the equipment, which
allows using all the available data, including the
equipment transient response and not only steady-
state conditions. The dynamic model is constrained
in the present formulation to have the same order
of the sensor size. Such a model constraint, which
simplifies equations, must be tested in the presence
of modeling errors, a subject not treated here. A
simple model (second order) has been used in the
paper, but it can be extended to more complex
apparatus. The proposed method has the
advantage of being not limited to calibration wells,
but it can be applied to any apparatus. To this end
no specific condition has been demanded to the

of the

(ambient) , and the latter can be left unregulated,

temperature surrounding  chamber

as in the simulated trials.
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