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Abstract

particular oligothiophenes.

This study is focused on the realization of nanodevices for nano and molecular electronics, based on molecular
interactions in a metal-molecule-metal (M-M-M) structure. In an M-M-M system, the electronic function is a
property of the structure and can be characterized through 1/V measurements. The contact between the metals
and the molecule was obtained by gold nanogaps (with a dimension of less than 10 nm), produced with the
electromigration technique. The nanogap fabrication was controlled by a custom hardware and the related
software system. The studies were carried out through experiments and simulations of organic molecules, in

1 Introduction

Electrical nanogap devices are emerging because of their
possibility to be the building blocks for connecting [1],
analyzing [2], and using molecules, and so for imple-
menting nano-metric electronic devices [3]. The main
advantage of these systems is, in general, the ability to
measure and to transduce events of specific molecules
into useful electrical signals [4]. As a consequence,
nanogaps have nowadays a high level of interest in
research. There are a lot of techniques for obtaining
nanogaps, but a process to totally control the gap size
has not been found yet. Electromigration effect is the
simplest technique useful for obtaining the break of the
two terminals structures where the nanogap is built
[5,6]. Electro-induced break junction (EIBJ) can generate
an instantaneous and random break, but to obtain
reproducible and stable devices it is very important to
control the width of the nanogap [7,8]. For this reason,
the quantity of current used to stimulate the electromi-
gration effect must be controlled with a custom feed-
back circuit that manages all the fabrication steps. The
authors defined a method for producing nanogaps inside
gold structures, and the controlled use of the electromi-
gration enabled to build gaps under ten nanometers.

2 Experimental section
2.1 Realization of the chip
The electromigration is mainly dominated by the cur-
rent density [9] and by the temperature of the wire [10].
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Both these quantities can be controlled by a proper geo-
metry of the probe [11] and by the applied voltage
waveform [12]. Using electromigration as technique for
creating nanogaps, the wire has to have optimized geo-
metries to facilitate the phenomenon and make it more
controllable. From this point, to avoid a too high input
current, it is necessary to have a small section of the
wire [11]; moreover, if the section of the wire is too
small, the thermal conductance decreases and the tem-
perature of the wire tends to become excessive, leading
to the melting of the wire.

For these reasons, it is fundamental to have a model
that can simulate the behavior of the physical phenom-
ena during the electromigration. In particular, it is inter-
esting to know and to anticipate the temperature inside
the gold wire and for this it is necessary to model the
geometry of the probe with a software simulation tool.
The objective is therefore to achieve a wire section as
small as possible, to trigger the electromigration also at
lower current, obtaining a better control and a more
regular shape. Figure 1a shows the geometry of our
probe described in Comsol Multi-physics, while Figure
1b shows the single wire. To evaluate the temperature
behavior during the voltage application, we performed a
large number of simulations using different values of
wire length, keeping in mind that there is a lower limit
for the length of the wire that will allow electromigra-
tion to occur (the Blech length [13-15]). Figure 1c
shows the best parameters for generating a temperature
profile quite sharp in a way that should be possible to
focus the electromigration phenomenon in the center of
the wire. The temperature profile along wire length was
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Figure 1 Comsol model of the probe. (a) Geometry of the probe;
(b) single wire level; (c) best parameters for generating a sharp
temperature profile: wire length I_wire = 8 um; wire width s_wire =
2 um; wire thickness au_z = 25 nm); substrate thickness bios_z =
200 nm.

modeled with the equations:

Q= pcp% — V(KVT) (1)
Q=o|VV]? (2)
J=oVV 3)

Equation (1) is the law of conservation of energy: Q is
the power transferred to a point, p is the mass volume
density, C, is the heat capacity, T is the temperature, ¢ is
the time and K is the thermal conductivity. Equation (2)
gives the power dissipation (Joule effect): o is the electri-
cal conductivity and V'is the electrical potential. Finally,
Equation (3) is the Ohm’s law in local form: J is the cur-
rent density. All the equations are related to an infinitesi-
mal point of space. Comsol uses the nodes of the mesh
geometry to make a spatial sampling and integrates the
equations in the volume using the nodes as points of
integration: if the sampling is quite dense, the error is
negligible. As result we have obtained the plot shown in
Figure 2a that represents the temperature variation in the
wire length. The geometry created also allows a uniform
distribution of current density (Figure 2b).

For having a useful platform where to produce the
nanogaps, a silicon chip was realized, containing eight
gold probes as shown in Figure 3b, each of these con-
nectable by bonding. In this way, it is possible to realize
on the same chip eight nanogap structures, and each
one is independent, so an high number of measure-
ments is individually achievable. The final dimension of

Current Density [A/cmA2]

(a) Temperature [degC] (b). .

@ |

Figure 2 Results of the electrothermal simulation made with
Comsol. (@) Temperature profile; (b) current density profile.

the chip is 2.4 x 4.1 mm, giving the possibility to insert
it in heads of instruments as a cryostat or FESEM/
AFM/STM microscopes, for doing for example mea-
surement in vacuum and at very low temperatures. The
chip is also ready to be wire bonded to a PCB (Figure
3a). It is possible to perform wet analysis too, for mole-
cule characterizations, just spinning on the chip the
solution that has to be measured. Obviously molecules
in solutions must have some suitable sites for bonding
with gold, such as thiol groups, in this way it is possible
to obtain the desired M-M-M structure.

The realization of the chip starts from a silicon wafer
capped by 200 nm of SiO,; the wafer is, then, inserted
in a plasma oxygen machine for increasing the oxygen
atoms concentration on the surface. Hydroxylation pro-
cess is developed with a piranha solution, and so, after
rinsing and drying, the surface of the wafer exposes
-OH groups, fundamental for the anchoring of the
organic compound that is evaporated on. In fact, to

Figure 3 The chip. Picture of the final chip containing the
eight probes. (a) The chip bonded on the PCB; (b) layout of the
chip; (c) zoom of one of the probes: G1 and G2 indicate the pads

of the gates.
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promote the adhesion of gold on the SiO, surface, an
insulating layer of MPTMS

(3-Mercaptopropyl)trimethoxysilane is then deposited
[16,17]. The insulation property is important because
has to be avoided any alternative path of current, that
has to flow through the gold layer only. After, a gold
film of 25 nm is grown on the MPTMS layer using an
EVA600 evaporator. The wafer is inserted in a EVG-
SUSS MAG6 where a photolithographic mask process is
performed employing a positive photoresist, afterwards
the gold etching is done thanks to Iodine/Potassium
solution. A second photolithographic process is per-
formed through a second mask that allows the realiza-
tion of the chip’s pads, built with a thin layer of
titanium of 100 nm and an aluminum layer of 700 nm
(see Figure 4).

The custom hardware

To control the experiments, a custom electronic board,
connected to a Linux-embedded system, has been rea-
lized. To provide the current density of 1084/ cm?,
needed for the activation of the electromigration pro-
cess, the circuit must be able to supply a current of at
least 50 mA, because of the dimensions of realized geo-
metries. The front-end must also be able to measure the
real time current flowing in the wire, to evaluate resis-
tance variations, from hundreds of mA (when the cur-
rent is high and the break is not yet created) to some
pA (for measuring the tunnel current inside the nano-
gap). The block diagram of the system is showed in Fig-
ure 5, where it is possible to see that the gold probe is
connected to the circuit that receives the signal from
the embedded Linux (analog input) and generates the
desired current for inducing the electromigration. The

Figure 4 Chip structure representation. 3D representation of the
final chip with the gold pads.
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current in the probe, and so the resistance, is measured.
These values are sent to the embedded Linux in which
are implemented the algorithms for controlling the cur-
rent to inject into the probe. In this way, the fabrication
of the nanogap is checked, avoiding thermal runaway
that can create too large breaks [18-22], not useful for
the desired applications.

The custom system consists of a driver board that
hosts a digital-to-analog converter that realizes the input
voltage waveform; a measurement board composed by a
transimpedance amplifier with variable feedback, in
order to measure a wide range of currents, and an ana-
log-to-digital converter; a switch board to allow the con-
nection of external instrumentation; a digital board that
provides electrical power supplies and the bus connec-
tion between all boards. The embedded Linux system is
built with a real-time custom kernel, so that the electro-
nic components of the other boards are driven in a
deterministic way. We have developed a wireless con-
nection between this board and a host computer for
sending the experimental data. This solution allows also
the use of the system in chambers where a wire inter-
connection can create difficulties.

The custom algorithm

Nanogaps are produced using a specific algorithm, custo-
mized for an optimal nanogap fabrication and with sev-
eral goals: current management, feedback controlled
breaking, temperature control for avoiding the thermal
runaway. A simplified schematic of the process flow is
reported in Figure 6. The software controls the voltage
Vbias applied to the probe and stops when the resistance
exceeds the value of 13 kQ, that means that the nanogap
is produced. In fact this resistance value is about the
inverse of the quantum conductance 2/ = 77.6 uS and
represents the conductance of a single atom of gold
placed between two electrodes [23]. As it is possible to
see always in Figure 6, there are two feedback mechan-
isms. The first one performs an absolute control over the
initial resistance R, and when (R - Ry)/Ry >0.02 the V};as
is set to the 85% of its value; this is done for controlling
the temperature of the wire and for preventing melting
and surface tension effects, that can be the cause of
much larger gaps and gold island formation [18-20]. The
second mechanism performs a check of the resistance
value relative to a circular buffer of n samples, when (R -
R;)/R; >0.01, with R; the average of the last i samples, the
Viias is decreased to the 95% of its value. The second
feedback mechanism performs a check of the resistance
in order to control the electromigration effect: the
increase of the resistance is no longer linear as in the
Joule Heating, but exponential, and we need to promptly
react to stop the phenomenon. We also noted in many
experiments performed by us, that, after the activation of
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Figure 5 Block diagram of the electronic system. The system and its modularity.

Probe

the feedback, the resistance value decreases due to the
acceleration of the grain growth by Joule heating of the
wire [24]. In this case, the first mechanism becomes use-
less and then the process is controlled only by the second
one. Figure 7 shows the probe resistance as a function of
the voltage applied: when the temperature increases, the
resistance of the wire tends to increase too.

The higher resistance causes a current reduction, but
increasing the voltage in this case creates a mechanism
by which the current flow tends to be constant. In fact
the first increase in resistance (linear growth) is only
due to this heat effect, but, when the temperature
reaches high values and the current density is near to
10% A/cm?, the electromigration starts (exponential
growth) and the structure begins to change.

The experimental time of electromigration has been
estimated to be about 50-60 min. All the experimental
data obtained by the electromigration tests are stored in
an internal database in the Linux board, but on the host
computer too, that collects information through the
wireless connection. This makes possible to generate
very accurate statistics. To evaluate the outcome of our
experiments, we performed the analysis of gap widths
with a FESEM microscope. Example of a fabricated
nanogap is shown in Figure 8.

3 Results

The method used to fabricate nanogaps, through these
“ad hoc” software and electronic circuit, has produced
nanogaps under 3 nm as the one shown in Figure 8. It
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Figure 6 Flowchart of the algorithm governing the feedback-controlled electromigration process. The two feedback mechanisms: the
first one is used to avoid the thermal runaway and the second one is used to control the electromigration effect.

is interesting to observe that the gap has an almost con-
stant width for a relative long path. Analyzing the
experimental results, fabricated nanogaps show an aver-
age dimension of less than 10 nm. Statistical analysis

about the final dimension of the gaps confirm that the
authors are now able to create nanogaps under 10 nm
with an high reproducibility (Figure 9), in fact about the
80% of the nanogaps are under 10 nm.
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Figure 7 Monitoring plot of the probe resistance. R/V plot of an EIBJ experiment.
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Figure 8 FESEM image of a nanogap. 2.49 nm nanogap. Image captured by Field Effect Scanning Electron Microscope (FESEM), 100 kx
magnification (700 kx magnification for the zoom zone).
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Figure 9 Plot of the distribution of the nanogap dimension.
Statistical dispersion of nanogap dimensions, 80% of them are
under 10 nm.

To evaluate the use of nanogaps as electrodes for
molecular electronics, a solution of oligothiophenes
molecules (2,2":5',2":5”,2"-bis-quaterthiophene) in Tetra-
HydroFuran (THF) has been deposited using the
method of spin coating. The choice of this type of mole-
cules is due to the presence of a sulfur atom in the aro-
matic ring: it binds easily to the gold of the nanogap
electrodes. After the insertion in the nanogaps, the
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molecular solution was characterized by current-voltage
(I/V) measurements (Figure 10), made by a Sub-Fem-
toamp Remote SourceMeter (Keithley 6430). The blue
line, reported in Figure 10, shows a profile with the
expected trend (see the characterization of molecular
wires in [25-29]). The red line represents the character-
istic of the solvent THF in an open nanogap: the values
reported show that the contribution of both the solvent
and the tunneling current dependent on the size of the
nanogap are negligible. It is interesting to mention that
the curve is asymmetric, indicating that the contacts
between the molecule and the electrodes are not per-
fectly symmetric [30-32].

The molecular length plays a key role in the electrical
conduction.

Experiments have found that the conductance G
decreases exponentially with molecular length L [33]
and can be described by

G=Ae Pt (4)

where A is a constant and f3 is a decay constant vary-
ing between 0.09 and 0.16 A" for the oligothiophenes
[28,29]. Figure 11 shows an ab initio simulation of the
molecule placed between the electrodes where the mole-
cule orientation was performed with the software Gaus-
sian 09. Different orientations are possible, but less

1Al o

-a0

L/

|/

-1000 -900 -800 700 -600 -500 -a00 -300 200 -100

o 100 200 300 00 500 600 700 800 900 1000
Vimv]

Figure 10 I/V characteristic of the M-M-M system. |/V plot of the M-M-M system with the oligothiophene molecule inside the gap (blue line)
and the THF solvent (red line). The concentration of the solution contain the molecules deposited on the chip was 100 nM. The size of the

nanogap is 4,7 nm.
A\
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Figure 11 Orientation of the oligothiophene molecule. Ab initio simulation of the molecule placed between the electrodes. The figure shows
the orientation of the molecule after the optimization.

probable. Moreover, our simulations show a variation of
the current less than 30% respect to the optimized case,
keeping the same shape of the I/V curve.

4 Conclusions

A system composed by a software interface and an elec-
tronic control circuit for the nanogap realization has
been implemented, and all the technological steps for
arriving at the final nanogap production has been pre-
sented in this study. The probe geometries were opti-
mized through electrothermal simulations performed
with the COMSOL Multi-physics software. The method
applied demonstrated the possibility to build nanogaps
under 3 nm with controlled feedback, having a good sta-
tistical yield with about the 80% of the nanogaps below
10 nm (Figure 9). In the experimental phase an oli-
gothiophene molecule was successfully inserted in the
nanogap, producing a first Metal-Molecule-Metal sys-
tem, and it was characterized by current-voltage (Figure
10) measurements, taking into account that the coupling
between metal and molecule plays a key role. Future
study will be focused on the optimization of the system
for the realization of integrated molecular devices.
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