
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO

Dottorato in Ingegneria Informatica e dei Sistemi – XXIV ciclo

Tesi di Dottorato

Speaker and Language
Recognition Techniques

Sandro Cumani

Tutore Coordinatore del corso di dottorato
prof. Pietro Laface prof. Pietro Laface

Il Signore disse: “Ecco, essi sono un solo

popolo e hanno tutti una lingua sola; questo è

l’inizio della loro opera e ora quanto avranno

in progetto di fare non sarà loro possibile.

Scendiamo dunque e confondiamo la loro

lingua, perché non comprendano più l’uno la

lingua dell’altro”.

Bibbia, Libro della Genesi 11, 1-9

Poi disse a me: “Elli stessi s’accusa;

questi è Nembrotto per lo cui mal coto

pur un linguaggio nel mondo non s’usa.

Lasciànlo stare e non parliamo a vòto;

ché così è a lui ciascun linguaggio

come ’l suo ad altrui, ch’a nullo è noto”.

Dante Alighieri, La Divina Commedia -

Inferno: C. XXXI

Oh freddled gruntbuggly thy micturations are to

me

As plurdled gabbleblotchits on a lurgid bee.

Groop I implore thee, my foonting

turlingdromes.

And hooptiously drangle me with crinkly

bindlewurdles,

Or I will rend thee in the gobberwarts with my

blurglecruncheon, see if I don’t!

Prostetnic Vogon Jeltz, Douglas Adams, The

Hitchiker’s Guide to the Galaxy

Summary

In this work we give an overview of different state–of–the–art speaker and language
recognition systems. We analyze some techniques to extract and model features from
the acoustic signal and to model the speech content by means of phonetic decoding.
We then present state–of–the–art generative systems based on latent variable models
and discriminative techniques based on Support Vector Machines.

We also present the author’s contributions to the field. These contributions
cover the different topics presented in this work. First we propose an improve-
ment to Neural Network training for speech decoding which is based on the use
of General Purpose Graphic Processing Units computational framework. We also
propose adaptations of latent variable models developed for speaker recognition to
the field of language identification. A novel technique which enhances the gener-
ation of low–dimensional utterance representations for speaker verification is also
presented. Finally, we give a detailed analysis of different training algorithms for
SVM–based speaker verification and we propose a novel discriminative framework
for speaker verification, the Pairwise SVM approach, which allows for fast utterance
testing and allows to achieve very good recognition performance.

iv

Acknowledgements

I would like to thank my parents, to whom I dedicate this work.

I would also like to thank professor Pietro Laface for his support during these last
three years, and all the people I had the opportunity to work with:

• The people from Brno University of Technology, in particular Oldřich Plchot,
Ondřej Glembek, Pavel Matějka, Lukáš Burget and Mehdi Soufifar, with whom
I had the pleasure to collaborate sharing many interesting thoughts, ideas and
great moments, Honza Cernocký, for hosting me twice at BUT, and all the
other people from Brno who made me have a great and profitable time there.

• The guys from Agnition, Niko Brümmer and Edward de Villiers, for all the
discussions about generative and discriminative models and many memorable
moments in Brno,

• All the other people who participated to the Bosaris workshop.

• The people from Loquendo, in particular Daniele Colibro and Claudio Vair,
for the profitable collaboration in the last three years.

• My former collegues, Stefano Scanzio and Fabio Castaldo, with whom I had
the opportunity to profitably work.

• All the people who I had the pleasure to interact with during workshops and
conferences.

v

Contents

Summary iv

Acknowledgements v

1 Introduction 1

1.1 Speaker Recognition . 1
1.2 Language Recognition . 2

2 Modeling the acoustic signal 5

2.1 Acoustic Features . 5
2.1.1 Sampling, quantization and filtering 5
2.1.2 Mel–Frequency Cepstral Coefficients 7
2.1.3 Shifted Delta Coefficients . 9

2.2 Gaussian Mixture Models . 9
2.2.1 Gaussian Mixture Model . 9
2.2.2 Maximum likelihood estimate of a GMM 11

2.3 Hidden Markov Models . 12
2.3.1 Topological structure . 12
2.3.2 Probabilistic structure . 13
2.3.3 Forward-Backward algorithm 15
2.3.4 Viterbi algorithm . 16
2.3.5 Training . 17

2.4 Artificial Neural Networks . 18
2.4.1 Structure . 18
2.4.2 Feed–forward Neural Network and Perceptron 19
2.4.3 Training . 20
2.4.4 ANN–HMM . 21

2.5 Phonotactic features . 24
2.5.1 Bags of n-grams features for language identification 25
2.5.2 Phonetic decoders . 28
2.5.3 Loquendo ASR . 29

vi

2.5.4 Speeding up ANN training . 29

3 Latent variable models for speaker and language recognition 35

3.1 Speaker verification problem . 35
3.2 Universal Background Models and GMMs 36
3.3 Factor analysis models . 37

3.3.1 Statistics and likelihoods . 38
3.3.2 MAP adaptation . 40
3.3.3 Eigenvoice models . 41
3.3.4 Eigenchannels . 41
3.3.5 Joint factor analysis of speaker and channel 42

3.4 Front–end JFA . 42
3.5 I–vectors . 43

3.5.1 I–vector posterior distribution 44
3.5.2 Training the T matrix . 45
3.5.3 Speeding up the i–vector extraction 46

3.6 Probabilistic Linear Discriminant Analysis 53
3.6.1 Two covariance model . 55
3.6.2 Speaker verification likelihood 56
3.6.3 PLDA . 57
3.6.4 Training the PLDA hyperparameters 58

4 Discriminative Training and Support Vector Machines 61

4.1 Support Vector Machines and Logistic Regression 61
4.1.1 Support Vector Machines . 61
4.1.2 Logistic Regression . 69
4.1.3 Regularized LR and SVM . 71
4.1.4 Multiclass SVM and LR for language recognition 72
4.1.5 Multiclass Score Backprojection 73

4.2 SVM–based language identification 74
4.2.1 GSV–SVM and pushed–GMM 75
4.2.2 Language factors . 76
4.2.3 Acoustic i–vectors . 77
4.2.4 Phonetic models . 78

4.3 Large–scale SVM algorithms . 79
4.3.1 Dual solvers . 80
4.3.2 Primal solvers . 82

5 SVM–based Speaker Recognition 87

5.1 GMM–SVM . 87
5.2 Pairwise SVM . 89

vii

5.2.1 Two–covariance model and pairwise SVM 89
5.2.2 Pairwise SVM feature space 91
5.2.3 Pairwise SVM as likelihood approximation 91
5.2.4 Polynomial Feature Mapping 92
5.2.5 Fast scoring . 94

6 Experimental Results 97

6.1 GPU–based ANN training . 97
6.2 Language Identification . 99

6.2.1 Language Factors . 100
6.2.2 Phonotactic i–vectors . 101

6.3 Large–scale linear SVM training . 103
6.3.1 SVM algorithms implementation 103
6.3.2 Algorithms for language recognition 104
6.3.3 Algorithms for speaker recognition 105
6.3.4 Language Recognition task results 106

6.4 Pairwise SVM . 110
6.4.1 Pairwise SVM and PLDA . 110
6.4.2 Gender Independent PSVM 112
6.4.3 Performance on non–NIST datasets 114
6.4.4 Training the PSVM system 116

6.5 I–vector extraction . 118

7 Conclusions 121

Bibliography 123

A Expectation–Maximization and HMM algorithms 133

A.1 The EM algorithm . 133
A.2 The Forward–Backward algorithm . 135
A.3 The Viterbi algorithm . 138
A.4 HMM training through the EM algorithm 140

viii

List of Tables

2.1 Timing profiles for MLP training using CUDA 33
6.1 Training time for different ANN training algorithms 99
6.2 ANN speed–up for different datasets 99
6.3 Min DCF and (%EER) for the core closed set tests in LRE07 102
6.4 Cavg × 100 for different systems on NIST LRE09 102
6.5 Cavg × 100 for different systems on NIST LRE09 with HDA 103
6.6 Phonetic system: asymptotic values Cavg and EER 108
6.7 Phonetic system: time required to achieve 1% SVMLight Cavg accuracy 108
6.8 Pushed–GMM: Cavg and EER for different training algorithms 110
6.9 PSVM and GPLDA on NIST 2010 SRE 111
6.10 Improved PSVM and GPLDA on NIST 2010 SRE 112
6.11 GI PSVM results on NIST SRE 2008 114
6.12 GI PSVM results on NIST SRE 2010 114
6.13 EER and DCF for different systems on different datasets 115
6.14 SRE 2010 female tel–tel performance for BMRM and Pegasos 118
6.15 NIST 2010 results for different i–vector extractors 120

ix

List of Figures

2.1 The A and µ laws . 6
2.2 Gaussian Mixture Model . 10
2.3 Left–to–right (Bakis) model . 13
2.4 Topological structure of a Multi–Layer Perceptron net 19
2.5 Example of a HMM used in combination with a MLP 22
4.1 Maximum margin hyperplane . 63
4.2 LR and SVM loss functions . 72
6.1 CUDA matrix–matrix multiplication 98
6.2 MinDCF for different language factor subspaces 101
6.3 Phonetic system: Cavg as a function of the training time 109
6.4 EER and DCF vs subspace dimensionality for a GPLDA system . . . 113
6.5 SRE-10 DCF of Pegasos bunch sizes 116
6.6 DCF10 and DCF08 with respect to training time for primal solvers . 117
A.1 Hiiden Markov Model . 135
A.2 HMM Trellis . 136

x

Chapter 1

Introduction

The growth of possible applications and the increase of computational power of
processors has produced in the last years an increasing interest of both scientific
community, industries and governments in automatic systems able to extract signif-
icant information from spoken utterances. Research has developed on three main
branches, namely speech, speaker and language recognition.
Speech recognition is involved with the creation of automatic transcriptions of
speech, whose applications include device control through spoken commands or vir-
tual typing.
Speaker recognition can be summarized as the creation of automatic systems which
are able to answer questions regarding the identity of the person who is talking.
Among speaker recognition applications we can cite authentication procedures, au-
dio indexing, forensic activities.
Language recognition deals with identification of the language (e.g. English, Italian)
used in a given utterance. This field includes applications in multilingual answering
systems or as front–end for language–dependent speech recognizers.

The goal of this work is to present the author’s contributions to speaker verifi-
cation and language recognition and, at the same time, offer an overview of state–
of–the–art technologies for these fields.

1.1 Speaker Recognition

The goal of speaker recognition systems is to automatically make inferences about
the identity of the speaker of a test utterance. Two main branches belong to speaker
recognition, namely speaker identification and speaker verification.

Speaker identification can be described as a multiclass classification problem.
Given a test utterance, we want to identify which, among a set of enrollment speak-
ers, is the speaker of that utterance. The assumption of whether the test speaker

1

1 – Introduction

belongs or not to the enrollment set gives places to two different classification prob-
lems, closed–set speaker identification and open–set speaker identification, the latter
being more difficult.

Speaker verification requires a system to answer whether a test utterance belongs
to a given speaker, or, equivalently, whether a set of recordings (e.g. one enrollment
and one test segment) belong to the same speaker. While these two formulations
are very similar, they correspond to two completely different discriminative speaker
verification approaches.

1.2 Language Recognition

Similar to speaker identification, language recognition can be described as a multi-
class classification problem where the goal is to classify an utterance according to
its language. Again we can have both open–set and closed–set problems, depending
on whether the test utterance is known to belong to given set of languages.

In this work we focus on the speaker verification problem and on closed–set
language identification. These tasks are characterized by similar problems and share
some modeling tools such as Gaussian Mixture Models, Factor Analysis or Support
Vector Machines. The systems described in this work are characterized by a set
of common modules, namely feature extraction, creation of models (e.g. speaker
or language models, background models), test utterance scoring, normalization and
calibration of scores.

This work details the contributions of the author to the state–of–the–art, and at
the same time provides an overview of different language and speaker recognition
technologies related to the first three modules. While score normalization and score
calibration play an important role in real applications, they fall out of the scope
of this work. References and details about score normalization techniques can be
found in [1, 2, 3, 4, 5], while [6] is an interesting treatise about calibration.

The outline of this work is the following.

• Chapter 2 describes the feature extraction process both for speaker recognition
and language recognition systems and details some basic feature modeling
techniques such as Gaussian Mixture Models, Hidden Markov Models and
Neural Networks.

• Chapter 3 describes generative techniques for speaker recognition based on
latent variable models.

• Discriminative techniques are the main focus of Chapter 4, where Support

2

1.2 – Language Recognition

Vector Machines (SVM) are introduced and applied to language identification
problems.

• Chapter 5 presents two frameworks for SVM–based speaker verification.

• Experimental results regarding the author’s contributions to the state–of–the–
art are presented in Chapter 6.

• Conclusions are drawn in Chapter 7.

3

Chapter 2

Modeling the acoustic signal

In order to perform automatic speech recognition it is necessary to build mathe-
matical models of the acoustic signal which can be used by a machine. In this
chapter we analyze different techniques to transform the acoustic signal into a set of
features which can be used to model the acoustic characteristics of speakers and lan-
guages. The feature extraction techniques presented in this chapter form a common
front–end to many different speaker and language recognition systems.

2.1 Acoustic Features

The first section of this chapter is devoted to acoustic feature extraction, i.e. to the
steps which allow transforming an analog signal into a discrete set of features suited
for speaker and language recognition systems.

2.1.1 Sampling, quantization and filtering

The first step in audio analysis consists in the transformation of the analog acoustic
signal into a discrete version that can be processed by a machine. This representation
is obtained by sampling and quantization of the acoustic analog signal.

Time–domain sampling corresponds to a multiplication of the input signal by a
sequence of impulses

∑
k δ(t− kts) where ts is the sampling interval. Formally

ys(k) =
∑

k

[y(kts)δ(t− kts)] (2.1)

where y(t) is the input signal and ys(k) is the sampled signal. This is equivalent,
in the frequency domain, to the convolution of a sequence of impulses with the
spectrum of the analog signal, which gives

Ys(ω) =
1
ts

∑

k

Y

(
ω +

2πk
ts

)
(2.2)

5

2 – Modeling the acoustic signal

where Y (ω) is the Fourier transform of y(t) and Ys(ω) is the Fourier transform of
ys(t). In general the signal cannot be completely reconstructed due to the over-
lapping of replicas of the original spectrum (aliasing). However, since the human
apparatus is sensitive only to frequencies lower than 4 kHz, it follows from Nyquist
theorem that a sufficient sampling frequency for a speech signal corresponds to
8 kHz.

Quantization maps continuous values to discrete ones, thus it is always a lossy
process. The simplest way to perform quantization consists in uniformly dividing
the input range and assigning to each value the index of the corresponding interval
(linear quantization). With this method, the quantization error corresponds to one
least significant bit and, more important, its absolute value is constant for any given
input value. The amplitude distribution of the acoustic signal signal is highly non–
linear. To cope with this problem, a logarithmic quantization is usually performed,
that is the logarithm of the acoustic signal is linearly quantized. In this way, the
relative quantization error becomes constant. Since the logarithmic function is not
defined in zero, slightly different functions are used in practice, as the µ–law (used
in American communication nets) or the A–law (used in European communication
nets) [7]. For telephone speech usually values are represented on 8 bits. In practice,

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.1 -0.05 0 0.05 0.1

A-law
u-law

Figure 2.1: The A and µ laws

logarithmic quantization is done by performing linear quantization using a greater
number of bits and then applying one of the laws in Figure 2.1 to map them to 8 bits.

6

2.1 – Acoustic Features

Finally, in order to make the signal spectrum flatter in the given frequency band,
the discrete samples are filtered by a first order pre–emphasis filter with transfer
function

H(z) = 1− az−1 (2.3)

which is equivalent, in the time domain, to

Ŷ (k) = Y (k)− aY (k − 1) (2.4)

where a is a constant. Usually a = 0.95 in real applications.

2.1.2 Mel–Frequency Cepstral Coefficients

A standard representation of acoustic signal used in state–of–the–art speaker recog-
nition systems is given by Mel–Frequency Cepstral Coefficients (MFCC) [8, 7], which
provide a short–term representation of the power spectrum of the acoustic signal.

Since the acoustic signal can be considered stationary over time spans of the
order of milliseconds, it can be split into frames (usually covering about 10 ms)
which group together a set of samples. This operation can be described as

Xt(n) = Ŷ (Mat+ n) 0 ≤ n ≤ Na − 1, 0 ≤ t ≤ T − 1 (2.5)

where Na is the grouping window size, Ma is the size of the shift (i.e. Ma = Na/2),
T is the duration in frames of the signal (the number of frames we split the signal
into).

Since the grouping in frames results in a distortion of the spectrum of the samples
of each frame (Gibbs phenomenon), the influence of samples near the borders of a
frame is reduced, usually by means of a Hamming window

X̂t(n) = Xt(n)W (n) 0 ≤ n ≤ Na − 1, 0 ≤ t ≤ T − 1 (2.6)

where

W (n) =

{
c+ (1− c) cos

(
πn
N−1
− π

2

)
if 0 ≤ n ≤ N − 1

0 otherwise
(2.7)

In real applications a typical value for c is c = 0.54. While this approach allows to
obtain a better approximation of the original signal spectrum, it penalizes informa-
tion contained in border samples of each frame. To compensate for this problem the
window is shifted only by half its size. In this way, samples which are on the border
of a frame are in the middle of either the previous or the next one.

The following step consists in performing the Fourier transform over the data of
each frame

Xf (j) = F
(
X̂t(n)

)
(j) 0 ≤ n, j ≤ Na − 1, 0 ≤ t, f ≤ T − 1 (2.8)

7

2 – Modeling the acoustic signal

This spectrum is processed using filters which emulate the human apparatus. A
simple but effective model represents the human auditory system as a filter bank.
The acoustic signal spectrum is therefore divided according to frequency bands. We
consider a filter bank where bands are constructed according to the Mel scale [7].
For each band the energy of corresponding samples is evaluated as

Ei(f) =
Hi∑

j=Li

|Xf(j)|2 1 ≤ i ≤ Nf (2.9)

where Ei(f) is the energy of the i–th band, Li is the lower bound of the corresponding
band and Hi is its higher bound. Nf is the number of bands (e.g. usually Nf = 13).
Finally, MFCCs are computed as the Discrete Cosine Transform of the logarithm of
the energy parameters Ei(f)

Ci(k) =
Nf∑

j=1

log(Ej(k)) cos

[
i
(
j − 1

2

)
π

Nf

]
0 ≤ i ≤ Nf − 1 (2.10)

where Ci(k) denotes the i–th MFCC for frame k [7].
The total energy of the frame can be evaluated as

E(k) =
Nf∑

j=1

Ej(k) (2.11)

Since the energy information contained in C0(k) is the same information given by
E(k), usually the cepstral parameter C0(k) is discarded. Moreover, it can be shown
that cepstral parameters have decreasing variance as their indices grow, so high
index parameters can be discarded, since they convey less information. Usually, the
number p of cepstral parameters used ranges from p = 12 to p = 24.

In order to better model the acoustic signal, generally MFCCs are combined with
their differential counterparts (depstral parameters). These parameters are evalu-
ated through an approximation of the temporal derivative of MFCCs, for example
using a polynomial expression over a given number of consecutive frames such as

∆C̄i(k) = G
N∑

j=−N

jC̄i(k − j) 1 ≤ i ≤ p (2.12)

where G is a gain used in order to have a similar variance between the set of cepstral
and the one of depstral parameters and N is half the size of the window used to
approximate the derivative. In the same way it is also possible to evaluate the
differential energy as

∆E(k) =
N∑

j=−N

jE(k − j) (2.13)

8

2.2 – Gaussian Mixture Models

State–of–the–art systems usually also compute second–order derivatives of cepstral
coefficients in a similar way. The set of cepstral parameters and their first and
second order derivatives becomes then observed feature vector

Ot = {C̄1(t), . . . , C̄p(t),∆C̄1(t), . . . ,∆C̄p(t),∆∆C̄1(t), . . . ,∆∆C̄p(t),

E(t),∆E(t),∆∆E(t)} (2.14)

To make systems more robust, often post–processing techniques are applied to
MFCCs, as for example feature warping [9]. These techniques try to compensate
short–term distortions due to noise and channel mismatches.

2.1.3 Shifted Delta Coefficients

While MFCCs allow very good results in speaker recognition, language identification
model performance can be improved by using Shifted Delta Cepstral (SDC) [10, 11].
SDCs allow including additional temporal information with respect to standard
MFCCs and have been motivated by the success of phonotactic approaches, whose
features are based on longer temporal time spans than MFCCs (Section 2.5). SDCs
are specified by 4 parameters, N , d, P and k, where N is the number of cepstral
coefficients for each frame, d is the size of the delay for delta computations, k is the
number of blocks whose delta coefficients are concatenated in the final feature vectors
and P is the time shift between consecutive blocks [10, 11]. The SDC coefficients
∆cj(i, t) at time t are computes as

∆cj(i, t) = C̄j(t+ iP + d)− C̄j(t+ iP − d) (2.15)

where C̄j(t) is the j–th MFCC coefficient for time t.

2.2 Gaussian Mixture Models

The acoustic signal can be interpreted as a piecewise stationary stochastic process.
Acoustic features can be interpreted as realizations (observations) of some random
variables. An effective technique to model the underlying distribution of such vari-
ables is given by Gaussian Mixture Models (GMMs) [12].

2.2.1 Gaussian Mixture Model

Given a (multivariate) random variable X with its own probability density function
(pdf) f(x), a Gaussian Mixture Model (GMM) can be used to approximate an
estimate of f(x) from a set Xs = {x1, . . . , xn} of samples of X. A GMM [12] is

9

2 – Modeling the acoustic signal

a weighted sum (mixture) of a set of m (multivariate) normal distributions of the
form

P (x|M) =
m∑

i=1

wiN (x|µi,Σi) (2.16)

where P (x|M) is the probability of x given the GMM model M and ci are the
mixture weights. N (x|µi,Σi) is a normal pdf with mean µi and covariance matrix
Σi

Ni(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)

(2.17)

where D denotes the dimensionality of input space. The weights wi are also called
mixing coefficients and are constrained by

m∑

i=1

wi = 1 (2.18)

wi ≥ 0, i = 1 . . .m (2.19)

-10
-5

 0
 5

 10-10

-5

 0

 5

 10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

z

y

x

z

Figure 2.2: Gaussian Mixture Model

10

2.2 – Gaussian Mixture Models

An interesting formulation of a GMM can be given in terms of discrete latent
variables [12]. Let Z = [z1, . . . , zm] be a m–dimensional random variable such that
zi ∈ {0, 1} and

∑m
i zi = 1, i.e. one single element of Z is equal to 1 while all the

others are equal to 0. Let the distribution of zk be defined in terms of the mixing
coefficients wi as

p(zk = 1) = wk (2.20)

that is, since only one term of Z is equal to one and the others are equal to zero,

p(Z) =
m∏

i=1

wzi

i (2.21)

The realizations of Z can be interpreted as representations of m mutually exclusive
states, of which only one is active. Assuming that, for each state, the conditional
probability p(x|z) of random variable X given state zk = 1 is

p(x|zk = 1) = N (x|µk,Σk) (2.22)

the marginal probability of X can then be obtained by summing the joint distribu-
tion p(x|z)p(z) over all values of Z

p(x) =
∑

z

p(z)p(x|z) =
m∑

i=1

wiN (x|µi,Σi) (2.23)

which has the same form of our original Gaussian Mixture model (2.16).
The main advantage in using GMMs is their capability to accurately approximate

any probability density function, given enough components in the mixture. However,
we have to estimate GMMs parameters ϑ = {ci, µi,Σi} describing model M from a
sufficiently large set of samples of the random value. A possible approach consists
in performing a Maximum–Likelihood (ML) estimate [13, 12], which looks for the
solution of

ϑML = arg max
ϑ

P (Xs|ϑ) (2.24)

One of the advantages of representing a GMM as a latent variable model is that it
allows for an easy derivation of a ML training procedure through the Expectation–
Maximization algorithm (more details about the EM algorithm can be found in
Appendix A.1).

2.2.2 Maximum likelihood estimate of a GMM

The Maximum Likelihood estimate of a GMM can be computed by means the
Expectation–Maximization (EM) algorithm [12, 14, 15, 16, 13]. Let w0, µ0,Σ0 denote
the initial (random) values for the GMM parameters. The EM algorithm iterates

11

2 – Modeling the acoustic signal

between the E and M steps as follows. During the E–step, for each observation xi
the posterior distributions of hidden variables Zi associated to observation xi, given
the current model parameters wc, µc,Σc, is computed as

p(zik = 1|xi, θc) = γik(θc) =
wckN (xi|µck,Σc

k)∑m
j=1w

c
jN (xi|µcj,Σc

j)
(2.25)

The parameters are updated in the M step to maximize the EM auxiliary func-
tion Q(w, µ,Σ, wc, µc,Σc) =

∑
i p(zi|xi, wc, µc,Σc) log p(xi, zi|w, µ,Σ). The update

formulas are

wk =
∑n
i=1 γik(θc)∑n

i=1

∑m
j=1 γij(θc)

(2.26)

µk =
∑n
i=1 γik(θc)xi∑n
i=1 γik(θc)

(2.27)

Σk =
∑n
i=1 γik(θc)(xi − µk)T (xi − µk)∑n

i=1 γik(θc)
(2.28)

A commonly used stopping criterion for the algorithm is the convergence of the
likelihood P (X|w, µ,Σ).

Since estimating full covariance matrices is often difficult due to the scarcity of
data and a increasing computational load, usually GMMs are estimated under the
assumption that covariance matrices are diagonal. The loss in terms of modeling
capabilities of the GMM is compensated by an increase in the number of components
in the mixture [13].

2.3 Hidden Markov Models

Gaussian Mixture Models provide a compact and powerful representation of a set
of acoustic features. However, temporal information is lost, since all frames are
considered independent. A possible solution to account for temporal evolution of
the acoustic signal consists in the use of Hidden Markov Models (HMM) [17, 12].

A HMM is a finite state machine characterized by two stochastic processes. The
first one is responsible for the discrete temporal evolution across the system states,
while the second generates the observation samples which form the acoustic event.
The first process cannot be directly observed (hidden), but can be estimated from
the frame sequence generated by the model.

2.3.1 Topological structure

From a topological view, a HMM is a directed graphG(S,E) where S = {S1, . . . , SN}
are the nodes or states of the model and E denotes the edges. Although the general

12

2.3 – Hidden Markov Models

Markov model allows each state to reach any other state, in speaker and language
recognition systems usually a simplified structure is adopted, which follows the tem-
poral evolution of the acoustic event.

This simplified model, named Bakis linear model or left–to–right model [17],
is characterized by a well established topological order of the nodes and presents
only three kinds of edges: self–loop edges, forward edges (those ending in adjacent
states) and skip edges (those ending in non adjacent states). Backward edges are
not present, so the graph does not present any loop apart from self–loops. Each
state identifies a stationary interval of the acoustic event, while the presence of self–
loops allows to remain on the same state for longer periods, thus granting this model
the capability to dynamically align the acoustic segment to the model. Moreover,
this model imposes a minimal duration of the acoustic event, corresponding to the
shortest path linking the first node to the final one.

s 1

L 0.3

s 2
F 0 .5

s 3

S 0 .2

L 0.4

F 0 .4
s 4

S 0 .2

L 0.7

F 0 .3

L 1.0

Figure 2.3: Left–to–right (Bakis) model

2.3.2 Probabilistic structure

The evolution through the states of a HMM is controlled by a stochastic process
described by transition probabilities. Given qt, the system state activated at time
t, we can define π = (π1, . . . , πN) as the array of initial probabilities, that is the
probabilities of being in state Si at time t = 1

πi = P (q1 = Si) 1 ≤ i ≤ N (2.29)

N∑

i=1

πi = 1 (2.30)

Transition probabilities are described by a matrix

A = {aij} 1 ≤ i, j ≤ N (2.31)

13

2 – Modeling the acoustic signal

where aij = P (qt+1 = Sj|qt = Si) is the probability of reaching state Sj from Si in a
single step. As such, the following properties hold

aij ≥ 0 ∀(i, j) (2.32)

N∑

j=1

aij = 1 ∀i (2.33)

In theory transition probabilities could also depend on the time t and on the
observed sequence X. However, a simplified approach considers the transition prob-
abilities as a stationary, first order Markovian process, for which the following prop-
erties hold

P (qt = Si|qt−1 = Sj, x1, . . . , xt−1) = P (qt = Si|qt−1 = Sj) (2.34)

and
P (qt = Si|qt+1 = Sj) = aij ∀t = 1 . . .N − 1 (2.35)

that is, transition probabilities do not depend neither on time nor on observed
features.

Each state is associated to a stochastic function fi(xt) which represents the
probability of generating feature xt when the system is in Si. Usually it is assumed
that acoustic features are generated independently given the state, that is

P (xt|qt = Si, x1, . . . , xt−1) = P (xt|qt = Si) (2.36)

In many real systems the functions fi are, in fact, GMMs. An example of
applications of these systems is speech decoding, where the GMMs are used to
model the distribution of acoustic features given the HMM state [7]. Often, in these
models the state–dependent GMMs share mean and covariance values. In this case,
each fi(x) has the form

fi(x) =
N∑

j=1

wijN (x|µj, Uj) 1 ≤ i ≤ N (2.37)

where the mean vectors µj and covariance matrices Uj do not depend on the state,
while the weights wij still do. This approach allows for a reduction in the number
of parameters with respect to a model where mean vectors and covariance matrices
depend on the state.

In the following three sections we analyze the three main problems related to
the use of HMMs [17], namely how to compute the probability of a set of observed
features given the model parameters, how to evaluate the state sequence which
best explains the observations (where “best” is defined according to a Maximum
Likelihood criterion) and how to estimate the model parameters as to maximize the
likelihood of some observations.

14

2.3 – Hidden Markov Models

2.3.3 Forward-Backward algorithm

The first problem we address is how to evaluate the probability of a sequence of
observed features O = {o1, . . . , oT} given the model M . This could, in theory, be
done by summing over all possible T–long sequences of states Q = {q1, . . . , qT} the
joint probability of the sequence Q and of the observations O

P (O|M) =
∑

Q

P (O|Q,M)P (Q|M) (2.38)

Under the assumption of statistically independent observed features, this becomes

P (O|M) =
∑

Q

T∏

t=1

P (ot|Q,M)P (Q|M)

=
∑

Q

T∏

t=1

P (ot|qt,M)P (Q|M)

=
∑

Q

T∏

t=1

fqt
(ot)P (Q|M) (2.39)

where P (Q|M) can be evaluated as

P (Q|M) = πq1

T−1∏

t=1

aqtqt+1
(2.40)

Assuming independent features is conceptually incorrect, since the acoustic signal
presents a high degree of correlation between consecutive frames. However, this
assumption is often used because it greatly simplifies the computations related to
these kind of models. In the following we will assume feature independence. The
approach of (2.39) is computationally unfeasible, since it requires a number of op-
erations which grows exponentially with T (its complexity is O

(
TNT

)
[17]). The

Forward–Backward algorithm [17, 18] allows a much faster evaluation of P (O|M)
(complexity O (TN2) [17]), exploiting that the probability of being in state Si at
time t having observed the sequence o1, . . . , ot can be evaluated from the probability
of being in each state Sj at time t− 1.

Let αt(i) denote the forward probabilities of being in state Si at time t having
observed the sequence o1, . . . , ot and βt(i) denote the backward probabilities of ob-
serving, from time t + 1 to T , the sequence ot+1 . . . oT given that the system is in
state Si at time t, i.e.

αt(i) = P (qt = Si, o1, . . . , ot|M), α1(1) = f1(o1) (2.41)

βt(i) = P (ot+1, . . . , oT |qt = Si,M), βT (f) = 1 (2.42)

15

2 – Modeling the acoustic signal

where S1 is the initial state and Sf is the final state. The forward probabilities at
time t+ 1 can be computed from the forward probabilities at time t as

αt+1(j) =
N∑

i=1

αt(i)aijfj(ot+1) (2.43)

while for the backward probabilities the following holds

βt(i) =
N∑

j=1

βt+1(j)aijfj(ot+1) (2.44)

The computation of the forward and backward probabilities can then be done in
O (TN2). The quantity P (O|M) can be obtained from the forward and backward
probabilities as

P (O|M) =
N∑

j=1

αt0(j)βt0(j) (2.45)

where t0 represents any frame, thus the overall complexity is O (TN2). More details
about the forward–backward algorithm are given in Appendix A.2.

2.3.4 Viterbi algorithm

The second problem involving HMMs consists in finding the sequence of states Q =
{q1, . . . , qT} which best explains the observed features O = {o1, . . . , oT}. Different
criteria might be chosen to define optimality. In this context we assume that the
best sequence refers to the sequence of states which is jointly most likely, that is the
sequence S∗ defined as

S∗ = arg max
S

P (Q = S,O|M) = arg max
S

P (Q = S|O,M) (2.46)

A possible solution can be computed through the Viterbi algorithm [17, 18],
which is equivalent to a minimum path search algorithm over the trellis associated
to the HMM (for more details and the derivation of the algorithm see Appendix
A.3)

Assuming that the HMM has a single starting node S1, the algorithm evaluates,
for each time frame, the probability of the best path ending in state k at time t
(denoted as δt(k)) and keeps the pointer ψt(k) to the node for which the probability
of reaching state k at time t is maximum.

The algorithm proceeds as follows

1. initialize δ1(1) and ψ1(i) as

δ1(1) = f1(o1) (2.47)

ψ1(i) = 0 1 ≤ i ≤ N (2.48)

16

2.3 – Hidden Markov Models

since the starting state has no parent node

2. iteratively evaluate the δ value of each node as t increases as

δt(i) = max
j

(δt−1(j)aji) fi(ot) (2.49)

and update the corresponding backpointer ψt(i) using

ψt(i) = arg max
j

(δt−1(j)aji) (2.50)

The best sequence Q̂ = {q̂1, q̂2, . . . , q̂T} can be evaluated by setting q̂T = Sf and
following the backpointers up to the first frame q̂t = Sψt+1(q̂t+1). The probability of
the best path is δT (f), where f is the index of the final state Sf .

2.3.5 Training

Training a HMM consists in evaluating the model parameters θ = (A,B, π) with
A = {aij}, B = {fi(x)} and π = {π1, . . . πN} in order to maximize the likelihood of
an observed sequence given the model P (O|θ), this to adapt the model parameters
so that they best describe the training data. Once again, this can be done by per-
forming Maximum–Likelihood estimation through the Expectation–Maximization
algorithm [17, 12].

In this section we give the re–estimation formulas for the model parameters at
each iteration. The full derivation of these formulas can be found in Appendix A.4.

Let θc represent the current estimate of the model parameters (which are identi-
fied by the superscript c) and αct(i), β

c
t (i) be the forward and backward probabilities

of state Si at time t respectively, with α0(j) = πj and βT (j) = 1, computed through
the forward–backward algorithm using the current estimate of the model parame-
ters. The new parameters can be evaluated as

aij =

∑T
t=1 α

c
t−1(i)acijβ

c
t (j)

[∑
k w

c
k,jN (ot|µck,j,Σc

k,j)
]

∑T
t=1 α

c
t−1(i)βct−1(i)

(2.51)

wi,j =
∑T
t=1 α

c
t(j)β

c
t (j)

∑T
t=1 α

c
t(j)βct (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)

(2.52)

µi,j =

∑T
t=1 α

c
t(j)β

c
t (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)
ot

∑T
t=1 α

c
t(j)βct (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)

(2.53)

17

2 – Modeling the acoustic signal

Σi,j =

∑T
t=1 α

c
t(j)β

c
t (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)
(xt − µi,j)T (xt − µi,j)

∑T
t=1 α

c
t(j)βct (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)

(2.54)

2.4 Artificial Neural Networks

Another set of models which have broad applications in speech technology are Arti-
ficial Neural Networks. In particular, in the context of speech recognition Artificial
Neural Networks are often used in combination with HMM to provide a fast and
discriminative way to perform speech decoding [19].

2.4.1 Structure

An Artificial Neural Network [20] (ANN) is a directed graph G(I,N,O,E) where
I denotes the set of input nodes, O denotes the set of output nodes, N is the set
of internal nodes and E is the set of edges. Input nodes receive their inputs from
outside the net, while output nodes expose values out of the net. Each non–input
node has associated a set of parent nodes as described by the graph edges. An edge
from node ni to node nj will be denoted as ξi,j, the set of input units of a given
node as S(i) and the set of output units of a given node as D(i).

Each unit of the net ni is characterized by an input value ni(t), an activation
value ai(t) and an output value oi(t). These values depend on the input pattern of
the net x. Each edge ξi,j has associated a weight wi,j (or, which is equivalent, each
unit has associated a set of weights, one for each of its input units).

The output value is evaluated as a function of the current activation value

oi(t) = Fi(ai(t)) (2.55)

while the new activation value is updated using a function of the current activation
value and the inputs of the unit as

ai(t+ 1) = fi(ai(t), ni(t)) (2.56)

where fi(x) is called activation function. The output function Fi(x) is usually either
the identity function Fi(x) = x, a threshold function or a stochastic function (e.g.
Gaussian). The activation function fi(x) usually is either a threshold function, a
semi–linear function (e.g. sigmoid, hyperbolic tangent) or a stochastic function (e.g.
Gaussian).

Artificial Neural Networks are able to “learn” an association between input pat-
terns and output patterns by adjusting the weights of the net in such a way that

18

2.4 – Artificial Neural Networks

the net output corresponds to a given pattern when the net is fed a given input.
Several types of network exist, the main differences lying in the topological struc-
ture and in the learning algorithm used. Since in speech recognition we mostly deal
with feed–forward networks usually derived from the Multi–Layer Perceptron, the
following sections will focus on this kind of networks.

2.4.2 Feed–forward Neural Network and Perceptron

Feed–forward neural networks are characterized by the absence of cycles. The units
are organized in layers (Figure 2.4)

i1

h 3 h 4h 1 h 2

i2 i3

h 7 h 8h 5 h 6

o 1 o 2 o 3

Figure 2.4: Topological structure of a Multi–Layer Perceptron net

A very popular feed–forward network is the Multi–Layer Perceptron [20], which
is characterized by the presence of one or more hidden layers between the input
and the output layer. When used in speech recognition the activation functions
are usually sigmoid functions. Sometimes output units have a soft–max activation
function (Section 2.4.4).

Each unit evaluates its input value as

ni(t) =
∑

j∈S(i)

wj,ioj(t) + bi (2.57)

where bi is a fixed bias. The output is evaluated as

oi(t) = ai(t) = f(ni(t)) (2.58)

19

2 – Modeling the acoustic signal

with
f(x) =

1
1 + e−x

(2.59)

The strength of the MLP consists in being able to approximate any kind of
division surface given enough hidden nodes and enough hidden layers (i.e. two hidden
layers [21]). Usually, the number of hidden layers is limited to 1 or 2.

2.4.3 Training

The training algorithm used with feed–forward networks goes under the name of
backward propagation [22] and tries to minimize the classification error of the net-
work. Let xp = (x1p, . . . , xNp) be an input pattern p of the net (which has N input
units), tp = (t1p, . . . , tMp) be the M target output values corresponding to xp and
op = (o1p, . . . , oMp) the output values of the net given input pattern xp. The set of
output units will be denoted as O. The error function can be expressed as

E =
∑

p

E(p) (2.60)

where the error E(p) for a given pattern p can be expressed as the sum of the errors
ej(p) of each output unit nj

E(p) =
∑

j∈O

ej(p) (2.61)

The back-propagation algorithm minimizes the error function using gradient de-
scent in the weights space. Weights are adjusted according to

∆wi,j = −k ∂E

∂wi,j
= −kδj

∂nj
∂wi,j

= −kδjoi (2.62)

with

δj =
∂E

∂oj

∂oj
∂nj

(2.63)

The update rule for the output layer weights is straightforward, since ∂E
∂oj

depends
only on the form of E(p).

The back–propagation algorithm allows to update hidden layer weights by back–
propagating (hence the name) the output layer error through the network. In par-
ticular, in order to update weights for nodes in layer L we need to compute the
values of δj for such nodes. The term ∂oj

∂nj
depends only on the node structure (i.e.

its activation function). For the error term ∂E
∂oj

we make explicit its dependency on
input values of layer L+ 1 as

∂E

∂oj
=

∑

i∈D(j)

(
∂E

∂ni

∂ni
∂oj

)
(2.64)

20

2.4 – Artificial Neural Networks

Since ∂E
∂ni

= δi and ∂ni

∂oj
= wi,j we can rewrite the derivative of the error function as

∂E

∂oj
=

∑

i∈D(j)

(δiwi,j) (2.65)

Therefore, in order to compute δj for a layer in L we only need errors δi of nodes
in layer L+1. The backpropagation consists then in a gradient descent optimization
where the weights are updated according to

∆wt+1
i,j = −ηt

∂E

∂wti,j
= −ηtδtjoti (2.66)

wt+1
i,j = wti,j + ∆wt+1

i,j (2.67)

where ηt is the learning rate at time t and wti,j is the value of weight wi,j at iteration
t. In order to improve the convergence rate often a momentum term [20] is added,
which also partially allows to avoid getting stuck in local minima. Let β denote the
momentum coefficient. The update rule then becomes

∆wt+1
i,j = −ηtδtjoti + β∆wti,j (2.68)

wt+1
i,j = wti,j + ∆wt+1

i,j (2.69)

The back–propagation algorithm can be initialized using small random values as
initial guess of the net weights.

2.4.4 ANN–HMM

An attractive alternative to GMM–based HMM is given by hybrid HMM–ANN
models [19]. In these models an ANN is used in place of a GMM to estimate
posterior probabilities of states given the observations. ANNs allow for a faster
computation of posteriors than GMMs and are intrinsically discriminative. However,
neural networks are designed to classify static patterns, which makes training more
complex, and, moreover, require a large amount of training data. On the other
hand, while GMMs are based on the assumption of statistical independence between
consecutive frames, this is not the case of ANN–HMMs. In fact ANN–HMM models
are often trained using a frame together with its left and right contexts [23].

Structure

A classical topology for the ANN part of the model consists in a Multi–Layer Per-
ceptron (MLP) where consecutive layers are fully connected (Figure 2.5).

In this case, the net is fed a frame together with its context and each node of
the net is associated to a node of the HMM.

21

2 – Modeling the acoustic signal

o(t-1)

i1

o(t-2) o(t)

i2

o (t + 1)

i3

o (t + 2)

h 1

h 2

h 3

o 1o 2 o 3

h 3 h 4h 1 h 2

h 7 h 8h 5 h 6

Figure 2.5: Example of a HMM used in combination with a MLP

22

2.4 – Artificial Neural Networks

The output value of the net is the probability associated to the corresponding
HMM node for the given frame (thus it has the same role of GMMs in GMM–based
HMMs). Usually, input and hidden layers have sigmoidal activation functions.

Output units, instead, are often characterized by softmax activation functions,
which allow to interpret the network outputs as posterior class probabilities P (ci|xt)
for class ci given the observed feature vector xt. The output of the networks are
computed as

oi =
eni

∑
j∈O e

nj
(2.70)

so that
0 ≤ oi ≤ 1 ∀i ∈ O (2.71)

and ∑

i∈O

oi = 1 (2.72)

The main disadvantage of these kind of models is the need to retrain the complete
model when a new class is added. In speaker recognition, for example, where it is
usual to add new speakers, this can pose some issues since training a neural network
is a time consuming task.

Usually we are interested in the class–conditional probability of observed features
P (xt|ci). This can be evaluated resorting to the Bayes theorem as

P (xt|ci) =
P (ci|xt)P (xt)

P (ci)
(2.73)

If we make the hypothesis of equiprobable distribution for P (xt) we have

P (xt|ci) ∝
P (ci|xt)
P (ci)

(2.74)

This way, we can compute the posterior probability of an observed vector given a
class up to a multiplicative factor. The prior probability can be taken into account
by including it in the biases of the last layer as

bnewi = bi − logP (Ci) (2.75)

Training

The main problem when using hybrid ANN–HMM models lies in the training stage,
since training an ANN would require to have fixed targets for each pattern, while
in speech recognition this is not the case. The change of target values is due to the
segmentation process used to label the given utterance (i.e., when using ANN–HMM
models as phonetic recognizers, we need to identify phonemes corresponding to each

23

2 – Modeling the acoustic signal

part of the sentence). Since manual segmentation is not feasible due to the high cost
it would require, automatic segmentation is used, which, in turn, is not completely
accurate but depends on the model used to perform it: the better the model, the
better the segmentation. As we refine our ANN–HMM model, the segmentation
itself usually changes, thus causing the change of target values (i.e. if we label a
given segment with a different phoneme, then the ANN units corresponding to that
phoneme would have one as target value; when we change the label, those units will
have zero as target value). Training such a system requires an initial segmentation,
often obtained by using other kind of models such as GMM–HMMs.

The procedure used to perform training can be described as

1. initialize the network with small random weights

2. load the actual segmentation (or the initial one if this is the first iteration)

3. train the model with several iterations of the back propagation algorithm in
order to obtain a model which approximates the targets given by the actual
segmentation

4. compute the new segmentation using the current model

5. update the current segmentation by taking into account both the old and the
new segmentation (e.g. the new segmentation target values can be evaluated
as a weighted sum of the old target values and of those computed during the
previous step)

6. repeat from 2.

Computing the actual segmentation can be done using the Viterbi algorithm and
labeling the sentence with the symbols associated with the states of the best path
of the Markov model [7].

2.5 Phonotactic features

Acoustic features are often directly used to create speaker and language models, as
described in the next chapters. While acoustic models allow very good performance
both for speaker and language verification, state–of–the–art systems often employ
models based on higher level features which provide useful complementary infor-
mation to acoustic models. In this section we will focus on the use of phonotactic
features and phonetic models for language recognition.

While acoustic techniques are based on direct modeling of acoustic features,
phonetic techniques build models based on the phonetic content of sentences, and

24

2.5 – Phonotactic features

in particular on the occurrences of phoneme sequences (called n–gram, where n is
the sequence length). These techniques share a common front–end, which is based
on speech recognition technology used to perform phonetic decoding of utterances.
Various implementations of n–grams have been presented. They may use a single
phone recognizer followed by language dependent modeling (PRLM) or multiple
phone recognizers followed by the same kind of language modeling (PPRLM), n–
gram evaluation can be based on the first hypothesis made by the phone recognizer
(1–best decoding) or on a set of hypothesis (lattice decoding), the decision rule
could be implemented using maximum likelihood or discriminative classifiers such
as Support Vector Machines.

2.5.1 Bags of n-grams features for language identification

Language identification can be described as looking for the language with highest
posterior probability P (L|X,Λ,Φ) given the speech segment X, the phone acoustic
models Λ and the phonotactic models Φ (phonotactic models describe a–priori re-
lations between phonemes). Under the assumption of equiprobable languages, the
standard approach consists in finding

L∗ = arg max
L

∑

H

f(X|H,L,Λ)P (H|L) (2.76)

where L∗ is the hypothesized language, H is a hypothesized sequence of phonemes
or words (transcription), f is the likelihood of speech segment X given H , L and
the phone models Λ and P (H|L) is the prior probability of H estimated through a
phone n–gram model [24]. The model can be simplified by taking into account only
the most relevant term of the summation,

L∗ ≃ arg max
L

max
H

f(X|H,L,Λ)P (H|L) (2.77)

which leads to the so called parallel phone recognition (PPR) approach [25]. Since
PPR systems don’t give better results than similar phonotactic models, they will
not be described in this work. By making the phone models language–independent
we can simplify equation (2.77) by replacing f(X|H,L,Λ) with f(X|H,Λ). The
resulting model, however, still consider all possible phone labellings. Further sim-
plifications can be obtained by considering only the most likely phone sequence
H∗ = arg maxH f(X|H,Λ) and by replacing (2.77) with

L∗ ≃ arg max
L

P (H∗|L) (2.78)

Sometimes the best hypothesis is evaluated as the one maximizing the posterior
probability P (H|X,Λ), The two formulations would be equivalent if we could assume

25

2 – Modeling the acoustic signal

that all hypotheses are a–priori equiprobable. Although this is not the case, usually
the latter expression is used when dealing with HMM–based phone recognizer, since
it can be evaluated using the standard algorithms for HMMs (Section 2.4.4). To
compensate for the simplification of phone models independence from language,
multiple parallel phone recognizers are often used in practice [26] (PPRLM systems).

Best–hypothesis systems are attractive due to the relative simplicity of the eval-
uation of the most likely labeling hypothesis. However, neglecting less likely hypoth-
esis is a potential source of performance degradation [24]. In order to cope with this
problem phonetic lattices are used to take into account also less likely hypothesis.
Phone lattices are directed acyclic graphs whose nodes represent timing constraints
and edges represent phone hypotheses and have associated an acoustic score. The
idea behind lattices is to replace the approximation leading to 1–best decoding by
Expectation–Maximization of logP (H|L) over all the possible phone sequences in
the speech segment [24]

L∗ ≃ arg max
L

EH [logP (H|L)|X,Λ, L] (2.79)

Bags of n-grams

Standard PRLM systems use the best hypothesis generated by a single phone recog-
nizer to evaluate the (log)–likelihood of that hypothesis given a language L (2.78).
From (2.78) we can also write that the target language is

L∗ = arg max
L

logP (H∗|L)

= arg max
L

N∑

i=1

logP (hi|ĥi, L) (2.80)

where ĥi is the set of phones that precedes hi in H . Assuming that a phoneme only
depends on the m preceding ones, this becomes

L∗ = arg max
L

L∑

i=1

logP (hi|hi−(m), . . . , hi−1, L) (2.81)

where L is the length of the sequence. This is equivalent to

L∗ = arg max
L

∑

ĥ,h

P (ĥ, h|H∗) logP (h|ĥ, L) (2.82)

where the summation is taken over all the possible distinct n–grams (ĥ, h).
This can be evaluated by estimating n–gram occurrences in a large training set.

First of all, we evaluate context–dependent n–grams probabilities for each speech

26

2.5 – Phonotactic features

segment in the training set (that is, the probability of a symbol given its trailing
context which, together with the symbol, forms a n–gram) as

P (hi|ĥni , Hk) =
count(ĥni , hi|Hk)

count(ĥni |Hk)
(2.83)

where Hk is the best phone hypothesis for speech segment k, hi identifies the i–th
symbol of Hk, ĥni is the sequence of n− 1 symbols which precede hi in Hk, n is the
n–gram order and count(x|Hk) is the number of occurrences of sequence x in Hk.
Different methods can be used to approximate P (hi|ĥni) from the statistics gathered
from the training set. The simplest way consists in averaging the context dependent
n–gram frequencies over all the (M–sized) training set, that is evaluating P (hi|ĥni)
as

P (hi|ĥni) =
1
M

M∑

j=1

P (hi|ĥni , Hj) (2.84)

Another possibility consists in computing the sum of the same n–gram frequencies
weighted by the hypothesis probability for each speech segment Xj

P (hi|ĥni) =
M∑

j=1

P (hi|ĥni , Hj)P (Hj|Xj) (2.85)

In [27] the authors describe a way to approximate n–gram distribution by an inter-
polated model where P (hi|hni) in (2.81) is substituted by

P̃ (hi|ĥni) =
n∑

k=0

αkPk(i) (2.86)

where P0(i) is the reciprocal of the number of different symbol types, P1(i) = P (hi)
and Pk(i) = P (hi|ĥki) for 2 ≤ k ≤ n evaluated as in (2.83). The coefficients αj can
be evaluated through the Expectation–Maximization algorithm.

The (joint) probability of an n–gram given the phone hypothesis Hk can be
evaluated as

P (ĥni , hi|Hk) =
count(ĥni , hi|Hk)

∑M
j=1 count(ĥ

n
j , hj|Hk)

(2.87)

While n–gram counts can be used to evaluate language models and directly to
perform classification of unknown utterances, state–of–the–art systems tend to use
bags of n–grams as high–level features which are combined with different classifiers
(e.g. Support Vector Machines). Some of these approaches are presented in Section
4.2.4

27

2 – Modeling the acoustic signal

2.5.2 Phonetic decoders

In order to create models based on n–gram frequencies it is necessary to associate
phonetic labels to a given utterance. This process is called phonetic decoding. In
this context we are interested in a model that allows estimating the phone labeling H
which maximizes the likelihood of the observed features P (X|H,Λ, L) = P (X|H,Λ)
(for 1–best decoding) or which allows evaluating the posterior probability of an
hypothesis given the observations P (H|X,Λ, L) (for lattice based decoding). An
answer to this problem is given by HMMs.

State–of–the–art phone recognizers are implemented through the use of HMMs
in conjunction with either GMMs [7] or ANNs [19]. A possible approach to HMM–
based phonetic decoding consists in associating a small left–to–right Markov model
to each phoneme. The global HMM is obtained by linking the final state of each
phoneme to the starting state of each other [23, 28]. Moreover, along with phonemes,
these models often present units associated to transitions between different phonemes
in order to improve recognition accuracy. In this case, usually grammatical con-
straints are imposed between transitions and stationary states (those corresponding
to phonemes).

While a complete analysis of speech recognition technology is beyond the scope
of this work, in the next sections we briefly present how speech recognizers can be
used to extract high–level features suitable for a language recognition tasks and we
briefly detail the speech decoders used in our experiments.

1–best decoding

1–best decoding [25] looks for the most likely labeling hypothesis, that is, the most
likely sequence of states of the HMM. This can be computed by means of the Viterbi
algorithm [25].

Lattice decoding

In order to evaluate (2.79) we could compute, over all possible phoneme sequences,
the probabilities of a particular sequence together with its n–gram statistics. This
corresponds to applying a PRLM scheme on each possible hypothesis and summing
up the results weighted by the sequence probability. However, this approach is
unfeasible since due to the prohibitive computational load when the n–gram order
grows, even for short utterances and low–order n–grams. Dynamic programming
algorithms exist that allow for a much faster creation of the lattice through a mod-
ified Viterbi algorithm in which the most promising paths only are expanded and
added to the lattice at each frame (e.g. through a beam search).

A lattice comprises most of the labeling hypothesis for a given utterance. The
great number of paths does not allow directly computing n–gram statistics by graph

28

2.5 – Phonotactic features

inspection. However, n–gram statistics can be efficiently computed by means of the
forward–backward algorithm [24].

2.5.3 Loquendo ASR

The decoder used in our experiments is the Loquendo ASR [29, 23, 28]. The decoder
replaces the GMM part of the HMM with an ANN. The use of an ANN is mainly
motivated by the small amount of time required to compute the class posteriors
required during decoding. Moreover, the neural network is inherently a discrimina-
tive system. The ANN part of the decoder is a 3–layers Multi Layer Perceptron.
Stationary Transitional Units (STU) [23] are used to model the phonetic content
of utterances. The net is fed with a sequence of frames. The hidden layers have
between 300 and 500 nodes with sigmoid activation function, while the output layer
has between 700 and 1000 nodes (the number is language dependent) with softmax
activation units. The network is fed with patterns consisting of seven frames, the
central frame and three frames for the left and right contexts, respectively. Training
is done by means of back–propagation. The main back–propagation flavors are batch
mode and online mode [30]. In the former weights are updated after all patterns have
been processed, in the latter weights are updated after each pattern. Online mode
usually allows for faster convergence of the algorithm and better accuracy. However,
online training is intrinsically sequential and as such cannot be parallelized. In order
to allow for some degree of parallelism our ANNs are trained in bunch mode [31],
that is, weights re–estimation is carried out after a (small) bunch of patterns have
been processed. The HMM part of the network consists in left–to–right models with
self loops for each class. These models are then connected together to form the full
HMM. All states transition probabilities are equal [28]. The complete training steps
are similar to the ones detailed in Section 2.4.4.

2.5.4 Speeding up ANN training

ANN–HMMs allow good accuracy with a decoding time which is much lower than
with GMM–HMMs. However, ANNs require large amounts of data to avoid overfit-
ting problems. Training of a ANN–HMM can thus require very long time (e.g. even
in the orders of one month [32]). Speeding–up ANN training would allow to either
reduce the training time or to achieve better performance by using larger datasets.
In this section we present some results about ANN training speed–up using single
core and multicore CPUs and Graphic Processing Units (GPU). These results were
first published in [33, 32].

29

2 – Modeling the acoustic signal

Single–core and multi–core CPU

The first step towards our fast training algorithm for ANN training consists in
rewriting forward and backward procedures in matrix notations. Let WL be the
matrix of weights between layer L − 1 an L, i.e. WLi,j = wL

j,i. Assume we want to
process a bunch of B patterns. Let oL be the matrix of outputs of layer L for the
considered patterns, i.e. oLi,j is the output of node i for pattern j, and let nL be
the matrix of inputs of layer L, i.e. nLi,j is the input value for node i corresponding
to pattern j The forward step computations can be evaluated as

nL = WLoL−1 (2.88)

while the activation function can be applied independently on all elements of n in
a vectorized fashion. For the backpropagation step we use as error function the
cross–entropy between the net outputs o and the target values t. The negative
cross–entropy is defined as

e(p) = −ti,p log oi,p − (1− ti,p) log(1− oi,p) (2.89)

The derivative of the error function with respect to the outputs for the last layer
LN node is then given by

eLN
= (1− t) ◦ (1− oL)◦−1 − t ◦ o◦−1

L (2.90)

where symbol ◦ denotes elementwise operations (multiplication and inverse). The
backpropagation update rules for the different layers can then be computed as

δL = (1− oL) ◦ oL ◦ eL (2.91)

eL−1 = WT
LδL (2.92)

∆W t+1
L = −ηδLoTL−1 + β∆W t

L (2.93)

Wt+1
L = Wt

L + ∆W t+1
L (2.94)

where η is the learning rate and β is the momentum coefficient. The simplest
optimization of ANN training consists then in the use of highly optimized matrix–
vector multiplication routines [34].

A different and complementary approach to speed up the training is the so called
focused–attention back–propagation (FABP) learning strategy [35]. In FABP the
attention is focused on patterns which are more difficult to learn while discarding
the easy patterns. The forward step is computed for all patterns, while only those
patterns having Mean Square Error (MSE) greater than a given threshold are used
in the back–propagation step. In our applications FABP reaches a skip ratio of
almost 80%. For this reason, the bunch size of the forward step is larger than the

30

2.5 – Phonotactic features

one used for back–propagation. The bound of the forward step bunch size is due
to the need to perform the forward computations for the same pattern more than
once, should the FABP select more patterns than the back–propagation bunch size
(this is due to the change in the weights that takes place after the back–propagation
step).

Straightforward multi–core implementations can be obtained by using multi-
thread matrix multiplication routines as well as by parallelizing vectorized opera-
tions. In the next section, however, we show how a faster implementation can be
obtained by exploitation of the multi–processing capabilities of Graphical Processing
Units.

Graphical Processing Units for ANN training

Graphical Processing Units (GPUs) are graphics-oriented dedicated processors suited
to computationally expensive but highly parallelizable tasks such as 3D graphic ren-
dering. GPUs are characterized by the presence of a high number of floating core
processors able to perform parallel computations in a vectorized fashion. Since most
of the ANN computations are characterized by fine–grain parallelism, GPUs provide
an interesting tool to speed–up ANN training. The General Purpose computing on
Graphical Processing Units (GPGPU) framework has been boosted in recent years
by the development of high–level programming languages which facilitate GPU–
based algorithm implementations. Among these frameworks, we use the NVIDIA
CUDA (Compute Unified Device Architecture [36]) programming language, which
provides both a C–like high–level language for GPU programming and an efficient
implementation of the BLAS library (CuBLAS). In the CUDA framework the pro-
grammer has access to a grid of thread blocks where each thread executes a single
instruction set called kernel [36].

CUDA–based optimizations of ANN training have been proposed in the past, e.g.
in [37] for recurrent networks, [38] for the forward step, or [39] for a MLP under the
assumption that all patterns can be stored on the GPU memory. The approach we
presented in [33, 32] is similar to the latter, however it takes into account problems
related to the use of ANNs for speech recognition. First of all, training patterns
easily exceed some millions, thus they cannot be stored in main memory. Moreover,
convergence problems suggest that bunch–mode back–propagation with FABP is a
better training strategy for phonetic decoders. Finally, the presence of a softmax
output layer poses some problems due to the presence of a sum over all output units
of the network.

The implementation we presented in [33, 32] allows keeping bunch–mode FABP
while still allowing good performance in terms of speed–up. First of all, matrix
multiplication operations are mapped onto CuBLAS equivalents (e.g. cublasSgemm,
a fast and hardware-optimized implementation of matrix product functions) both in

31

2 – Modeling the acoustic signal

the forward and backward steps. Carefully tailored kernels have been implemented
for the softmax and sigmoid functions, the MSE evaluation, and the update of the
network weights. Zero–padding has been adopted to have matrices whose dimensions
are multiples of powers of 2. This allows achieving better performance when using
CuBLAS routines. Due to the limited amount of GPU memory, patterns are loaded
in bunches and only weights are kept in the GPU RAM. Finally, the computation
of the softmax sum is performed in parallel with respect to the patterns, although
we adopt a simple sequential approach for each pattern.

The core steps of the training algorithm can be summarized as follows:

• Load a bunch of F input patterns on the GPU memory.

• Compute the net outputs (forward step) and the MSE for each pattern.

• Transfer both the bunch MSEs and the output patterns from the GPU to the
main memory (the outputs are needed by the Viterbi algorithm to refine the
segmentation).

• Test bunch MSEs to select patterns to be back–propagated (FABP).

• Stack the selected patterns on the GPU into a matrix used for backpropagation
(the copy of the vectors allows for a faster back–propagation step).

• Repeat from beginning until a sufficient number of patterns B have been se-
lected.

• Execute the back–propagation procedure.

• Discard selected patterns which did not fit the back–propagation bunch (they
have to be re–submitted to the forward step).

• Repeat from beginning until all patterns have been processed.

These steps are iterated until convergence criteria are met.
Experimental results covering the speed–up obtained by the different implemen-

tations (single core, multicore, GPU) are given in Section 6.1. Here we observe that
our implementation proves to be memory efficient, in that less than 10% of training
time is spent in GPU/main memory transfers. Moreover, most of the training time
is spent in CuBLAS functions, while a fraction is required to transfer patterns se-
lected by FABP to the back–propagation structure. This step is mandatory because
only a fraction of the patterns are selected and memory contiguity allows for a much
faster back–propagation step. Finally, the time spent in computation kernels covers
about only one forth of all training time. This motivates our decision not to push
any further kernel optimizations. These results are summarized in Table 2.1, which

32

2.5 – Phonotactic features

shows how training time is split among the different steps and where “type” refers
to the kind of function used to perform the operations (cudaMemcpy for memory
transfers, cublasSgemm for matrix multiplications and kernel for tailored kernels).

Table 2.1: Timing profiles for MLP training using CUDA

Function Time (%) Type

Memory transfer CPU/GPU 8.7 cudaMemcpy
Forward step 32.5

Computation of network inputs n 22.8 cublasSgemm
Softmax function 7.2 kernel
Sigmoid function 2.5 kernel

Memory transfer GPU/GPU 10.0 kernel
Backpropagation step 48.8

Cross–entropy 1.2 kernel
Error derivative 2.4 kernel
Error propagation 20.1 cublasSgemm
Weights gradient 17.0 cublasSgemm
Weights update 8.1 kernel

33

Chapter 3

Latent variable models for speaker
and language recognition

Latent (or hidden) variable models offer an interesting approach to build probabilis-
tic models of speakers and languages. Latent variable models provide a probabilistic
framework to model observed features in terms of more tractable conditional distri-
butions instead of complex marginal distributions [12]. Often these variables have
associated strong meanings, e.g. they can interpreted as representing the speaker
identity or the channel.

Another interesting use of hidden variable is dimensionality reduction. In fact,
latent variables provide a probabilistic framework to estimate low–dimensional man-
ifolds where most of the data points live.

The first set of models we describe use latent variables in the GMM space to
build robust speaker models. We then describe how these models can be applied
to perform dimensionality reduction and how latent variable models can be used to
perform inference using these low–dimensional features.

3.1 Speaker verification problem

The task we address in this chapter is speaker verification. We are therefore inter-
ested in systems which can be used to asses whether a test utterance is spoken by a
target speaker or not. In particular, we are interested in systems which are able to
produce verification scores or, even better, (log–)likelihoods [6]. Two main flavors
of the problem exist. In the first case models for the target speakers are built us-
ing a set of enrollment utterances and then test utterances are scored against these
models. In this case the role of enrollment and test utterances are not symmetric.
More recent approaches, instead, rely on background models of speaker and noise
distributions to directly estimate log–likelihood ratios given the hypotheses that

35

3 – Latent variable models for speaker and language recognition

both enrollment and test utterances are from the same speaker and the hypothesis
that they are from different speakers. These systems, where enrollment and test
utterances play the same role, prove to be more effective in terms of recognition
accuracy.

The next sections focus on generative speaker recognition models.

3.2 Universal Background Models and GMMs

GMM–based systems use mixture models to represent the distribution P (X|s) of
observed acoustic features for a given speaker s. This distribution can be used to
compute the likelihood of acoustic features for a test utterance, and the resulting
likelihood can be interpreted as the probability that utterance X with associated
acoustic observations X = [x1, . . . , xn] is spoken by speaker s [13], i.e.

logP (X |s) = logP (X|s)

=
n∑

j=1

logP (xj |s) (3.1)

Log–likelihood ratios between target and non–target hypotheses can then be com-
puted once we are able to evaluate the likelihood of the data under non–target hy-
pothesis P (X|s̄) (for the importance of log–likelihood ratios see [6]). However, the
computation of this term poses some issued due to the difficulty in the definition of a
suitable model. A possible solution consists in training separate background models
for many different background speakers and combining their likelihoods [40, 41]. An-
other approach, called GMM–UBM [41, 42], pools together a large set of utterances
coming from many different speakers and trains a single GMM over these data. The
resulting GMM, referred to as Universal Background Model, can also be interpreted
as representing the common characteristics of the acoustic space. Training the UBM
is usually done by means of the EM algorithm (Section 2.2.2).

The simplest approach to estimate a speaker model in the GMM framework
consists in training a GMM for the target speaker to maximize the likelihood of the
observed features for this speaker [13]. Given enough training data this approach
would accurately capture the speaker’s characteristics. However, most of the time
enrollment data is limited. In this case, better models can be built by Maximum–a–
Posteriori (MAP) adaptation [43, 42] , i.e. by estimating the models incorporating
prior information on the model parameters. If we denote g(θ) the prior probability
of the parameter set θ, ML estimate evaluates the parameters as

θML = arg max
θ
P (X|θ) (3.2)

while MAP adaptation evaluates the parameters as [43]

θMAP = arg max
θ
P (X|θ)g(θ) (3.3)

36

3.3 – Factor analysis models

Classical GMM MAP adaptation estimates the speaker dependent GMMs by
adapting the speaker independent UBM. MAP estimates can be computed by means
of the EM algorithm [43]. Usually only mean vector adaptation is performed, so that
each speaker can be represented by the set of his adapted means and shares with all
other speaker models the remaining UBM parameters. Define

Ni =
n∑

t=1

γit (3.4)

FX,i =
1
Ni

n∑

t=1

γitxt (3.5)

where the terms γit are the occupation probabilities defined as

γit =
wiN (xt|µi,Σi)∑
j wjN (xt|µj,Σj)

(3.6)

and µi, Σi are the UBM mean and covariance matrices. Relevance MAP [42] mean
adaptation can be computed as

µ̂i = αiFX,i + (1− αi)µi (3.7)

where µ̂i is the adapted mean for Gaussian i, µi is the UBM mean for Gaussian i
and

αi =
Ni

Ni + r
(3.8)

The term r is a fixed relevance factor that acts as a trade–off between the ML
estimate and the UBM.

MAP adaptation provides a way to estimate speaker models when training data
is scarce, while also allowing to asymptotically reach the ML solution when enough
training data is available. However, when a speaker lacks observations for a par-
ticular mixture Gaussian, MAP adaptation is forced to fall back on the speaker–
independent UBM supervector values for that component. A solution to this prob-
lem can then consist in performing Eigenvoice–MAP adaptation [44, 45] (Section
3.3.3).

3.3 Factor analysis models

In this Section we introduce a set of techniques based on Factor Analysis [12]. These
techniques provide a probabilistic framework to perform MAP estimate of speaker–
dependent GMMs while taking into account inter–session variability [46, 45, 47, 48].
JFA models were first introduced for HMMs. However, they can easily be extended

37

3 – Latent variable models for speaker and language recognition

to Gaussian Mixture Models. In this and subsequent sections we will assume that
acoustic features are F–dimensional column vectors. The number of components of
the mixture models will be denoted as C.

Before venturing into the details of Factor Analysis models we give some defini-
tions which will be used through this section.

3.3.1 Statistics and likelihoods

It is useful to define a set of statistics for a given utterance. Assume that, given a set
of observations X(s) = {x1, . . . xn} for speaker s, we have computed the alignment
of X over the components of a GMM, i.e. we have associated each observation to
a single mixture component. Let Xi(s) denote the set of observations associated to
component i. Following [47] we define the (Viterbi) zero–order statistic Ni(s) as the
number of frames associated to Gaussian i. We also denote with Fi(s) and FX,i(s)
the Viterbi first order and centered first order statistics respectively defined as

Fi(s) =
∑

t|xt∈Xi(s)

xt (3.9)

and

FX,i(s) =
∑

t|xt∈Xi(s)

(xt − µi)

= Fi(s)−Ni(s)µi (3.10)

where µi is the mean of the GMM used to estimate the statistics (usually the UBM),
The Viterbi second order and centered second order statistics are given by

Si(s) =
∑

t|xt∈Xi(s)

xtx
T
t (3.11)

and

SX,i(s) =
∑

t|xt∈Xi(s)

(xt − µi) (xt − µi)T

= Si(s)− 2Fi(s)µi +Ni(s)µiµ
T
i (3.12)

Finally, we denote by N(s) the CF × CF block–diagonal matrix whose blocks are
F × F matrices NiI, by F(s) and FX(s) the stacking of vectors F (s) and FX(s)
respectively and by S(s), SX(s) the block–diagonal matrices whose elements are the
matrices Si(s) and SX,i(s), respectively.

38

3.3 – Factor analysis models

Given these statistics and the observations alignment the data log–likelihood for
a given GMM supervector g can be expressed as

logP (X) =
C∑

c=1

Nc(s) log

1

(2π)
F
2 |Σc|

1

2

− 1
2

∑

t|xt∈Xi(s)

(xt − µc)TΣ−1
c (xt − µc)

=
C∑

c=1

Nc(s) log
1

(2π)
F
2 |Σc|

1

2

− 1
2

tr
(
Σ−1
c SX,c(s)

)

, GΣ(s) (3.13)

Assume now that the alignment of features with Gaussian components is not
known, so that the full GMM model has to be used in the likelihood computations.
In this case, the structure of the log–likelihood would require as to deal with sums of
exponentials inside a logarithm. An approximation of the correct likelihood, which
still allows us to use the formal expressions given in this chapter, consists then in
replacing the Viterbi statistics with Baum–Welch statistics [47], defined by

γit =
wiN (xt|µi,Σi)∑
j wjN (xt|µj,Σj)

(3.14)

Ni(s) =
n∑

t=1

γit (3.15)

Fi(s) =
n∑

t=1

γitxt (3.16)

Si(s) =
n∑

t=1

γitxtx
T
t (3.17)

FX,i(s) = FX(s)−Ni(s)µi (3.18)

SX,i(s) = Si(s)− 2Fi(s)µi +Ni(s)µiµ
T
i (3.19)

Again, we denote by N(s) the CF × CF block–diagonal matrix whose blocks are
F × F matrices NiI, by F(s) and FX(s) the stacked vectors of F (s) and FX(s)
respectively and by S(s), SX(s) the block–diagonal matrices whose elements are the
matrices Si(s) and SX,i(s) respectively. In this case, the likelihood is still given by

logP (X) =
C∑

c=1

Nc(s) log
1

(2π)
F
2 |Σc|

1

2

− 1
2

tr
(
Σ−1
c SX,c(s)

)

, GΣ(s) (3.20)

where the Viterbi statistics are replaced by the Baum–Welch statistics. In the
following we will use Baum–Welch statistics and assume a likelihood of the form
(3.20).

39

3 – Latent variable models for speaker and language recognition

3.3.2 MAP adaptation

An interesting interpretation of MAP adaptation in terms of hidden variable models
has been given in [46]. Consider the following latent variable model

g(s) = µ + Dz(s) (3.21)

where g(s) is the speaker–dependent supervector, µ is a supervector (usually it is
assumed to be equal to the UBM supervector), D is a diagonal CF × CF matrix
and z(s) are CF speaker–dependent hidden variables. Let the prior distribution for
z(s) be standard normal

z(s) ∼ N (z|0, I) (3.22)

The posterior for z(s) can be obtained as follows.
Let N(s) and F(s) denote the zero and centered first–order statistics for speaker

s, defined as in 3.3.1. Dropping the reference to s, the joint likelihood of the observed
data X and the hidden variables is given by

P (X, z) = P (X|z)P (z) ∝
(

zTDT
Σ

−1FX −
1
2

zTDT
Σ

−1NDz− 1
2

zTz
)

(3.23)

The posterior for z is then

P (z|X) ∝ P (X, z) ∝
(

zTDT
Σ

−1FX −
1
2

zTDT
Σ

−1NDz− 1
2

zTz
)

(3.24)

By inspection we recover that the posterior for z is also Gaussian

z|X ∼ N (z|µz,Λ
−1
z) (3.25)

with mean and precision matrix given by

Λz =
(
DT

Σ
−1ND + I

)
=
(
D2

Σ
−1N + I

)
(3.26)

µz = Λ−1
z DT

Σ
−1FX (3.27)

The mean of the posterior for the speaker dependent GMM g is then

E[g] = µ + DE[z] = µ +
(
D2

Σ
−1N + I

)−1
D2

Σ
−1FX (3.28)

Let r = D−2
Σ. We can rewrite the adapted GMM as

E[g] = µ + DE[z] = µ + (N + r)−1FX (3.29)

Assuming that the first order statistics are the Baum–Welch statistics, this corre-
sponds to the MAP adaptation formula (3.7).

40

3.3 – Factor analysis models

3.3.3 Eigenvoice models

A different approach to MAP estimation of GMM supervectors, more suitable when
sparse enrollment data is available, consists in eigenvoice MAP adaptation [44, 45].
The eigenvoice MAP model assumes that the covariance matrix of speaker GMMs
has a low rank compared to the supervector space dimensions. Speaker GMMs are
then constrained by the model to live in a low–dimensional manifold corresponding
to a translation of the range subspace of the supervectors covariance matrix. The
name eigenvoice comes from the fact that this subspaces is identified by the eigen-
vectors of the covariance matrix corresponding to non–zero eigenvalues, which are
referred to as eigenvoices. The model can be formalized as

g(s) = µ + Vy(s) (3.30)

where V is an CF × M matrix, with M ≪ CF . As in classical MAP, y(s) is a
latent variable assumed to have a standard Gaussian prior distribution. However,
compared to classical MAP, the dimension of y(s) is much smaller than the dimen-
sion of z(s). Again, we can compute the posterior of y(s) for a given speaker. Since
the derivations are almost the same as for classical MAP, we just give the final
expression for the posterior

y|X ∼ N (y|µy,Λ
−1
y) (3.31)

with mean and precision matrix given by

Λy =
(
VT

Σ
−1NV + I

)
(3.32)

µy = Λ−1
y VT

Σ
−1FX (3.33)

3.3.4 Eigenchannels

So far we have not considered the effects of session mismatch between recordings,
i.e. we have presented models which do not explicitly model inter–session variability.
Inter–session variability is assumed to be mostly due to channel effects, although
other factors may be responsible for differences between enrollment and test utter-
ances. We therefore refer to these kinds of noise as channel effects. While techniques
exist to perform channel compensation directly in the feature space the Factor Anal-
ysis framework allows performing model–level compensation.

A popular set of techniques to compensate channel effects for GMM–based mod-
els consists in feature mapping [49]. These techniques can be interpreted as per-
forming model–based channel compensation under the assumption that a GMM
supervector for a given recording h can be expressed as the contribution of two
terms [47]

gh(s) = s(s) + ch(s) (3.34)

41

3 – Latent variable models for speaker and language recognition

where s(s) denotes a speaker–dependent component and ch(s) denotes the channel
component for recording h. Again, different approaches can be used to estimate
and compensate channel effects. One of them is eigenchannel adaptation [44]. This
technique assumes that the channel component ch(s) lies in a small dimensional
subspace [44, 46, 47], i.e.

ch(s) = Uxh(s) (3.35)

where U is a rectangular CF ×RC matrix with RC ≪ CF and xh(s) is a standard
normal distributed hidden variable representing the channel effects.

3.3.5 Joint factor analysis of speaker and channel

Classical, eigenvoice and eigenchannel MAP can be combined in a single model,
referred to as Joint Factor Analysis (JFA) of speaker and session variability [46,
48]. JFA provides a unified framework to estimate model parameters and posterior
distributions for the different components.

The JFA model can be summarized as

gh(s) = µ + Vy(s) + Uxh(s) + Dz(s) (3.36)

where the different terms have the same meaning as in the previous sections. We
will therefore refer to y(s) as speaker factor, to x(s) as channel factors and to
z(s) as common factors. Different strategies to learn matrices V, U and D have
been proposed, for example decoupled estimation of the different terms, to simplify
the computational load of training the parameters. The JFA framework allows to
directly perform channel compensation by integrating out the channel effects as in
[47]. However, classical JFA is very demanding from a computational point of view.
Different techniques have thus been proposed which make use of the JFA model
to perform feature level channel compensation [50, 51], and which approximate the
JFA scoring with different and faster techniques [52, 51]. After the introduction
of i–vectors (Section 3.5), however, the popularity of these techniques has lowered.
Since most state–of–the–art speaker recognition systems are nowadays based on i–
vector technology, we skip the details of the different flavors of JFA and refer to [53]
for a much broader overview of JFA–based techniques. In the following, we will only
focus on the aspects of JFA connected to i–vectors.

3.4 Front–end JFA

JFA provides a framework for speaker modeling and scoring of test utterances while
taking into account channel effects. In recent years, however, the focus has shifted
from JFA as a full framework to JFA as a feature extractor. The reasons can be

42

3.5 – I–vectors

traced back to the success of discriminative techniques in the GMM space, which
can benefit from the low dimensionality of speaker factors.

In [54] the authors propose to combine the JFA models with discriminative clas-
sifiers based on Support Vector Machines (SVM). This approach has been motivated
by the success of GMM supervector–based SVM systems with Nuisance Attribute
Projection (NAP) [55] to compensate for channel effects (Section 5.1). The systems
proposed in [54] are conceptually very similar to the GMM supervectors – SVM ap-
proach [56, 55]. However, instead of training a SVM in the GMM space the classifier
is trained in the much smaller speaker factors space. Nuisance Attribute Projection
is replaced by a two–step channel compensation which makes use of JFA channel
factors estimates (i.e. both speaker and channel factors are estimated) and then ap-
plies within–class covariance normalization [57] in the speaker factors space. Finally,
the authors show how a simple linear kernel or a cosine distance kernel allow obtaing
results which are comparable to classical JFA–based scoring in terms of accuracy
with a much lower computational load.

The success of JFA as front–end for discriminative speaker identification moti-
vated the development of similar approaches for language verification [58]. These
techniques apply JFA models to language GMMs, assuming that speaker informa-
tion can be mostly compensated in the feature space so that the factors y of the
JFA model (3.36) can be interpreted as language factors. More details about this
approach are given in Section 4.2.2.

3.5 I–vectors

JFA–based speaker factors proved to be effective at modeling speakers by means
of low–dimensional vectors. JFA provides an explicit mechanism to estimate and
compensate channel effects. It was shown, however, that channel factors can contain
useful speaker information, although the model assumes that channel factors model
only channel and noise effects [59]. To overcome this problem the JFA model was
adapted so that a single subspace is estimated, which is assumed to contain most of
the useful information [60, 61]. Channel compensation is then deferred to successive
post–processing (e.g. Within–Class Covariance Normalization [62, 3]).

The underlying latent variable model can be formalized as

g(s) = µ + Tw(s) (3.37)

where T is a CF ×M matrix whose columns span the subspace where the GMMs
are assumed to live (and should include both channel and speaker information) and
w(s) is a latent variable representing a GMM in the subspace associated to T.
The T matrix is sometimes referred to as total variability matrix. As in previous
JFA models, the prior for w is assumed to be standard normal distributed. The

43

3 – Latent variable models for speaker and language recognition

point–estimate of the posterior is called i–vector (in some cases we will use the term
i–vector also to refer to the hidden variable w).

The i–vector model is formally equivalent to the eigenvoice model of Section 3.3.3.
However, while in eigenvoice MAP recordings from the same speakers are assumed
to share the same values for the hidden variables, the i–vector approach assumes
that each recording has its own hidden variables.

3.5.1 I–vector posterior distribution

The derivations of the posterior distribution for an i–vector given the T matrix and
assuming a standard normal prior are very similar to the ones given in Section 3.3.2
for classical MAP. However, we briefly recall some aspects of this derivation which
will be useful in the next sections.

Again, let N(s) and FX(s) denote the zero and centered first–order statistics for
a given utterance, defined as in 3.3.1. Denoting with Tc the F ×M matrix whose
entries are the elements of T corresponding to Gaussian c, the conditional likelihood
of the observed data X given an i–vector w and the subspace matrix T is given by

logP (X|w,T) =
C∑

c=1

Nc(s) log

1

(2π)
F
2 |Σc|

1

2

−1
2

∑

t

(xt − µc −Tcw)TΣ−1
c (xt − µc −Tcw)

]

=
C∑

c=1

Nc(s) log
1

(2π)
F
2 |Σc|

1

2

− 1
2

tr(SX,c(s)Σ
−1
c)

−1
2

(
−2wTTT

c Σ−1
c FX,c(s) +Nc(s)w

TTT
c Σ−1

c Tcw
T
)]

= GΣ(s) + wTTT
Σ

−1FX(s)− 1
2

wTTTN(s)Σ−1Tw (3.38)

The joint likelihood of the observed data X and the hidden variable is given by

P (X,w|T) = P (X|w,T)P (w)

= KΣ exp
(

wTTT
Σ

−1FX −
1
2

wTTT
Σ

−1NTw− 1
2

wTw
)

(3.39)

where the term KΣ is a normalization term which does not depend on w and on T.
Thus, the posterior for w is proportional to

P (w|X) ∝ P (X,w) ∝ exp
(

wTTT
Σ

−1FX −
1
2

wTTT
Σ

−1NDw− 1
2

wTw
)

(3.40)

44

3.5 – I–vectors

that is, the posterior for w is Gaussian distributed

w|X ∼ N (w|µw,Λ
−1
w) (3.41)

with mean and precision matrix given by

Λw =
(
TT

Σ
−1NT + I

)
(3.42)

µw = Λ−1
w TT

Σ
−1FX (3.43)

The i–vector corresponds to the MAP estimate of w, i.e. it is given by the mode of
the posterior distribution for w.

3.5.2 Training the T matrix

Similar to classical JFA, training of the i–vector extractor is usually done through
Maximum–Likelihood. While the model parameters µ and Σ can, in theory, be also
re–estimated, we don’t have evidence that such re–estimation significantly improves
i–vector extraction in terms of recognition accuracy. Moreover, a full re–estimation
would entail a bigger computational load. Therefore, we will restrict our analysis
to training T matrix only. The UBM mean µubm and covariance matrices Σubm will
be used for the terms µ and Σ of the model. Moreover, we assume that statistics
are always computed from the UBM.

The ML estimate of T can be computed by means of the EM algorithm [45].
We already showed that the posterior for w corresponds to a multivariate Gaussian
with mean and covariance matrix given by (3.41). In order to derive the EM update
formulas we define the EM auxiliary function using w as hidden variables [45]. The
EM function to maximize is given by

Q(T|Told) =
∑

s

Ew|X(s),Told[logP (X(s),w|T)] (3.44)

where P (X(s), z|Told) is the joint probability of the observations X(s) and the hid-
den variables (here s denotes an utterance, not a speaker). Since for each utterance
the joint probability (3.39) can be written as

P (X(s),w|T) = logP (X(s)|w,T) + logP (w) (3.45)

and
P (w) ∼ N (0, I) (3.46)

then maximizing (3.44) is equivalent to maximizing

∑

s

Ew|X(s),Told[P (X(s), |z,Told)] =
∑

s

∫
logP (X(s)|w,T)P (w|X(s),Told) (3.47)

45

3 – Latent variable models for speaker and language recognition

Considering the expression for the likelihood (3.39), we know that the term KΣ

doesn’t depend on T, thus the maximizer of (3.47) corresponds to the maximizer of
∑

s

Ew|X(s),Told [HT,Σ(s,w)] (3.48)

=
∑

s

Ew|X(s),Told

[
wTTT

Σ
−1FX −

1
2

wTTTNΣ
−1Tw

]
(3.49)

which, dropping the reference to
(
w|X(s),Told

)
for sake of readability, corresponds

to
∑

s

tr
[
Σ

−1
(

FXE

[
wT

]
TT − 1

2
NTE

[
wwT

]
TT

)]
(3.50)

In order to maximize this function we take the derivatives with respect to the ele-
ments of T and equal them to zero. In matrix form, we need to solve

∂

∂T

∑

s

tr
[
Σ

−1
(

FXE

[
wT

]
TT − 1

2
NTE

[
wwT

]
TT

)]
= 0 (3.51)

that is, ∑

s

Σ
−1
(
FXE

[
wT

]
−NTE

[
wwT

])
= 0 (3.52)

The solution is given by

Ti
∑

s

Ni(s)E[w(s)wT (s)] =
∑

s

Fi
X(s)E[wT (s)] (3.53)

where Ti, Fi
X(s) and Ni(s) are the i-th row of T, FX(s) and N(s) respectively. The

solution for T can be found by simply solving the linear systems (3.53), where the
expectation E[w] is computed as the mean of the posterior of w given Told and

E[wwT] = E[w]E[wT] + Λ−1
w (3.54)

Again, Λw is the covariance matrix of the posterior for w given Told.

3.5.3 Speeding up the i–vector extraction

I–vectors extraction as detailed in the previous section requires the computation of
the full covariance matrix of the posterior. The time complexity of a naïve imple-
mentation of (3.42) requires O(CFM2) operations and, in practice, can represent
a bottleneck in the i–vector extraction process. A faster implementation can be
obtained by observing that the computation of the posterior covariance can be ex-
pressed as the combination of C M ×M matrices as

Λw =
(
TT

Σ
−1NT + I

)
= I +

C∑

c=1

TT
c Σ−1

c NcTc (3.55)

46

3.5 – I–vectors

where, again, Tc is the part of matrix T associated to Gaussian c, Σc is the UBM
covariance matrix for Gaussian c and Nc is the zero–order statistics for Gaussian c.
Since we can pre–compute matrices TT

c ΣcTc, this approach allows reducing the time
complexity to O(CM2), however the memory requirements increase from O(CMF)
to O(CMF + CM2), making this approach less attractive for limited–memory de-
vices. Moreover, both approaches still need O(M3) time to perform matrix inversion
and O(CMF) to compute the i–vector given the covariance matrix. In this section
we analyze a set of techniques which allow to improve i–vector extraction perfor-
mance in terms of required time and memory, while at the same time trying to keep
the i–vector accuracy as high as possible.

Before describing the two main techniques which allow achieving these goals,
we note that we can apply a transformation to first–order statistics and to the T
matrix which allows to effectively remove all Σ terms from the i–vector posterior
expressions. The transformation is given by

F̃X,c = Σ
− 1

2
c FX,c (3.56)

T̃c = Σ
− 1

2
c Tc (3.57)

where Σ
− 1

2
c can be computed from the Cholesky decomposition of Σc. In this way,

the posterior for the i–vector is given by

w|X ∼ N (w|µw,Λ
−1
w) (3.58)

with mean and precision matrix given by

Λw =
(
T̃TNT̃ + I

)
= I +

C∑

c=1

NcT̃
T
c T̃c (3.59)

µw = Λ−1
w T̃T F̃ (3.60)

Diagonalized i–vectors

The first approach we consider tries to reduce all the T̃T
c T̃c matrices to diagonal

form, so that the memory requirements for storing such matrices becomes O(CM)
and the time required to compute the covariance matrix becomes O(CM) including
the time required for the inversion. The extraction time would therefore be domi-
nated by the O(CMF) operations required to compute the i–vector mean given the
covariance matrix Λ−1

y .
In order to achieve this goal the authors of [63] assume that all the T̃T

c T̃c matrices
can be simultaneously diagonalized, i.e. they assume the existence of an (orthogonal)
matrix Q such that

Q−1T̃T
c T̃cQ (3.61)

47

3 – Latent variable models for speaker and language recognition

is diagonal for any c. While this is not true in practice, the authors propose a
way to estimate an orthogonal projection matrix such that the T̃T

c T̃c are “almost”
diagonal, so that approximating them with their diagonal does not cause too much
degradation of the i–vectors. The eigen–decomposition of the weighted average
covariance matrix

W =
C∑

c=1

ωcT̃
T
c T̃c = QΛWQT (3.62)

where ωc is the weight of the c–th GMM in the UBM supervector and QΛWQT is
the eigenvalue decomposition of W, allows obtaining a suitable orthogonal transfor-
mation in this sense [63]. Therefore, Λy can be computed as

Λy = I +
C∑

c=1

NcT̃
T
c T̃c ≈ Q

(
I +

C∑

c=1

NcDc

)
QT (3.63)

where
Dc = I ◦QT T̃T

c T̃cQ (3.64)

Note that Dc is diagonal, therefore the computation of Λy only requires to compute a
linear combination of C M–dimensional vectors. The inverse of Λy can be computed
as

Λ−1
y ≈ Q

(
I +

C∑

c=1

Dc

)−1

QT (3.65)

therefore requiring only the inversion of a diagonal matrix.
While this technique allows very fast i–vector extraction with low memory re-

quirements (the required memory is essentially the memory needed to store the T̃
matrix), the resulting i–vectors prove to be slightly inferior in terms of performance
when used as features for state–of–the–art systems such as PLDA.

In [63] the authors also propose better estimates of the Q matrix based in Het-
eroscedastic Linear Discriminant Analysis [64, 65]. This technique allows improving
the i–vector quality, however some degree of performance degradation is still present.

Variational Bayes approximation of the posterior

Another set of i–vector extraction techniques which allow for faster and accurate
i–vectors are based on variational approximations of the i–vector posteriors [12].
Variational inference offers a framework to estimate an approximation of the poste-
rior distribution of random variables given some data which are optimal in the sense
that they minimize the KL divergence between the approximation and the true pos-
terior [12]. The approach is similar to the Expectation Maximization algorithm:
given a random variable X and hidden variables Z we decompose the log–likelihood
of the data as

logP (X) = L(q) +D(q‖p) (3.66)

48

3.5 – I–vectors

where

L(q) =
∫
q(Z) log

P (X,Z)
q(Z)

dZ (3.67)

and

D(q‖p) = −
∫
q(Z) log

p(Z|X)
q(Z)

dZ (3.68)

is the KL divergence between the approximated posterior q(Z) and the true pos-
terior p(Z|X). The constraints on the form of the posterior allow us to estimate
approximations which might be more tractable than the true posterior.

In order to extract i–vectors we assume a variational approximation of the pos-
terior q(w) ≈ PT(w|X) such that

q(w) =
∏

i

qi(wi) (3.69)

that is, an approximation which factorizes over the different i–vector dimensions.
The VB solution for the distributions qi(wi) is given by

log qi(wi) = Ej /=i [logP (X,w)] + c (3.70)

for some constant c [12]. The expectation is taken over all variables wj with j /= i.
Let

wi = [w1, . . .wi−1,wi+1, . . .wM]T

T i = [T1, . . .Ti−1,Ti+1 . . .TM] (3.71)

so that the product Tw can be written as

Tw = T iwi + Tiwi (3.72)

Substituting the expression for the joint likelihood of the data and the hidden vari-
ables in (3.70) and ignoring all terms which do not depend on w we obtain

log q(wi) = Ej /=i

[
T iwiΣ

−1FX + TiwiΣ
−1FX

− 1
2
wT
i T

T

i NΣ
−1T iwi −wiTiNΣ

−1T iwi

− 1
2
wT
i T

T
i NΣ

−1Tiwi −
1
2
wT
i wi −

1
2
wT
i wi

]
+ c (3.73)

By inspection of (3.73) we can notice that the distribution qi(wi) is again Gaussian

q(wi) ∼ N (wi|µi,Λ
−1
i) (3.74)

49

3 – Latent variable models for speaker and language recognition

with mean and precision matrix given by

Λi =
(
T T
i NΣ

−1Ti + I
)

(3.75)

and

µi = Λ−1
i T T

i Σ
−1
(
FX −NT iE [wi]

)
(3.76)

= Λ−1
i T T

i Σ
−1
(
FX −NT iµi

)

Variational Bayes thus allows the posterior distribution to be computed by it-
erating the estimation of the means of the different distributions qi(wi). Denoting
FX,i the first–order statistics centered around the new supervector mean m +T iµi,
µi can be computed as

µi = Λ−1
i T T

i Σ
−1FX,i (3.77)

Observe that similar results can be obtained by considering a factorized distribution
where the wi are blocks of variables instead of single variables. The formal expression
for the posterior remains the same.

Given enough iterations, this approach converges to the original i–vector esti-
mate. We can rewrite equation (3.76) as

E [wi] = Λ−1
i T T

i Σ
−1
i (FX −NTE [w] + NTiE [wi]) (3.78)

Multiplying both sides by Λi and rearranging we obtain

T T
i NΣ

−1TE [w] +
(
Λi − T T

i NΣ
−1Ti

)
E [wi] = T T

i Σ
−1FX (3.79)

Replacing Λi by (3.75) we finally get

T T
i NΣ

−1TE [w] + E [wi] = T T
i Σ

−1FX (3.80)

Thus, the optimal values for the set of µi = E [wi] are given by the solution of the
linear system (

T TNΣ
−1T + I

)
wX = T T

Σ
−1FX (3.81)

that is,

wX =
(
T TNΣ

−1T + I
)−1

T T
Σ

−1FX (3.82)

which corresponds to the mean of the posterior PT ,Σ(w|X) given in (3.41).

50

3.5 – I–vectors

Efficient VB estimate of i–vectors

A naïve implementation of (3.77) with a block size equal to 1 would make the
complexity of this approach O(CFM2K), where K is the number of performed iter-
ations. This is due to the computation load of T T

i Σ
−1FX,i, which has a complexity

of O(CF (M − 1)).
An efficient implementation is, however, possible by defining and updating a

vector Fc that stores the first order statistics centered around the current supervector
mean. At the beginning of the iterations the vector is set to

Fold
c = FX −NTµ0

= FX −
∑

j>0

Tjµ
0
j (3.83)

Assume a variational approximation where the w variables are split among B blocks
of size b. Let Ki = Λ−1

i T T
i Σ

−1, The i-th component of the new i–vector is then
computed at iteration k as

µk+1
i = Ki

(
FX −NT iµi

)

= Ki

FX −N

∑

j<i

Tjµ
k+1
j −N

∑

j>i

Tjµ
k
j

= Ki

(
Fc + NTiµ

k
i

)
(3.84)

and the new vector of the centered first order statistics becomes

Fnew
c = FX −N

∑

j≤i

Tjµ
k+1
j −N

∑

j>i

Tjµ
k
j

= Fold
c + N

∑

j<i

Tjµ
k+1
j + N

∑

j≥i

Tjµ
k
j −

N
∑

j≤i

Tjµ
k+1
j −N

∑

j>i

Tjµ
k
j

= Fold
c + NTiµ

k
i−NTiµ

k+1
i (3.85)

Without considering the complexity needed to estimate the variances Λi and
their inverses, this approach requires O(KCFM) operations to update the first
order statistics and project them over the T matrix and O(KbM) to compute the
product between the projected statistics and the covariance matrices Λ−1. This
complexity has to be compared with the O(KCF (M − b)M/b) operations needed
by the naïve VB implementation to compute the terms FX − NXT iµi and the
O(KCFM) operations needed to multiply the T matrix with the centered statistics
FX .

51

3 – Latent variable models for speaker and language recognition

As far as the computation of the covariance matrices is concerned, the same ap-
proaches used for the classical posterior estimate can be adopted. However, instead
of computing a single M ×M covariance matrix, we only need to compute B b× b
covariances matrices. The complexity of this approach therefore is O(CFMb) for
the slow approach, which does not require additional memory, and O(CMb) for the
faster approach, which, however, has memory requirements of the order of O(CMb).
In both cases, the inverse of the matrices can be computed in O(Mb2) operations.

A very small block size would result in faster iterations. However, in practice
we have to take care not to make the size too small, because this would indirectly
affect the number of iterations required to reach accurate results. In Section 6.5 we
will show that the fast VB technique allows to achieve the same performance of the
standard approach using less than 20% of its memory for standard–size size GMMs.

VB estimates as the solution of a linear system

Consider again equations (3.81) and (3.82). VB provides a way to iteratively solve
the system in an efficient way. The algorithm itself is very similar to a classical
algorithm for solving linear systems, the Gauss–Seidel method [66]. In fact, if we
denote as b the product TT

Σ
−1FX , the Gauss–Seidel algorithm allows to compute

an estimate of the i–vector w = Λ−1d by iterating the update rule

wk+1
i =

1
Λii

di −
∑

j<i

Λijw
k+1
j −

∑

j>i

Λijw
k
j

 , i = 1, . . . , n. (3.86)

where the superscript denotes the algorithm iteration. The algorithm is guaranteed
to converge since matrix Λ is positive definite. While the VB algorithm essentially
implements the Gauss–Seidel method, however it directly provides an elegant and
efficient way to avoid the computation of the off–diagonal terms Λij of the precision
matrix.

Other techniques exist in literature to iteratively solve a linear system without
the need to compute and invert the system matrix. Of particular interest in our
case is the Conjugate Gradient (CG) technique [67, 66]. CG proceeds iterating from
an initial guess w0 and generating successive vectors that are closer to the solution
w that minimizes the quadratic function

f(w) =
1
2

wTΛw−wTb (3.87)

An interesting characteristic of CG is that it does not require neither the system
matrix nor its inverse. Instead, the algorithm only needs to compute the residual,
defined as

rk = b−ΛXwk (3.88)

52

3.6 – Probabilistic Linear Discriminant Analysis

Note that, while in expression (3.88) the precision matrix is present, what we really
need is just to be able to compute the matrix product between Λ and a generic
vector. This product can be efficiently computed as

ΛXwk = (T TNΣ
−1T)wk + Iwk (3.89)

where the first term is computed by the sequence of operations

Z = Twk

Z ← NΣ
−1Z

Z ← T TZ

ΛXwk = Z + wk (3.90)

The order of the operations is important, since it allows to avoid to explicitly com-
pute the dot product TTNΣ

−1T. Note that in this way, matrix Λ is never actually
computed or inverted. Since the variance matrix is positive definite, the CG algo-
rithm is guaranteed to converge [66].

The computation complexity of the CG method is O(KCFM) for the first and
third operations, plus O(KCF) for the second and fourth ones in (3.90). The
memory requirements of the algorithm are O(CFM), since only the T matrix has
to be stored.

3.6 Probabilistic Linear Discriminant Analysis

The use of i–vectors as features poses again the problem of channel and nuisance
compensation. The first works introducing i–vectors solve this problem by a sim-
ple Linear Discriminant Analysis (LDA) projection step followed by Within–Class
Covariance Normalization (WCCN) [68, 62, 60].

Linear Discriminant Analysis allows to further reduce the dimensionality of the
i–vectors by removing dimensions which have high intra–speaker variability due to
channel effects and low variability between speakers. Formally, given a set of D–
dimensional patterns xi belonging toK classes Ck, we look for a linear transformation

yi = WTxi (3.91)

where W is a D
′×D matrix, with D

′ ≤ K−1, which maximizes the Fisher criterion
[12]

J(W) = tr
[
(WS−1

W WT)(WSBWT)
]

(3.92)

53

3 – Latent variable models for speaker and language recognition

SW and SB are the within–class and between–class covariance matrices, defined as

SW =
K∑

k=1

∑

i|xi∈Ck

(xi − µk)(xi − µk)
T (3.93)

SB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (3.94)

with

µk =
1
Nk

∑

i|xi∈Ck

xi (3.95)

µ =
1
N

K∑

k=1

Nkµk (3.96)

and Nk, N denote the number of patterns for class k and the total number of
patterns, respectively. The solution for W is then given by the eigenvectors of
S−1
W SB corresponding to the D

′

largest eigenvalues [12].
Within–Class Covariance Normalization (WCCN) was first introduced in [57]

as the minimizer of false positive and false negatives error bounds in the context
of one–vs–all Support Vector Machine–based speaker recognition with generalized
linear kernels (more details about SVMs and speaker recognition are given in the
next chapters) and was then adapted to the i–vector framework. WCCN essentially
estimates a linear transform

z = By (3.97)

where B is a square matrix which allows whitening the within–class covariance of
the transformed features z. B can be computed as the Cholesky decomposition
BTB = S−1

W of S−1
W , where SW is defined as in (3.94)

While LDA and WCCN prove to be quite effective for noise compensation, more
advanced models have been proposed which allow for better modeling of nuisance
and improve recognition accuracy. One of these models is the Probabilistic Linear
Discriminant Analysis (PLDA) model [69, 70]. PLDA is a generative model which
tries to describe the i–vector generation process in terms of probability distributions
which can then be used to infer log–likelihood scores. In particular, the model
assumes that an i–vector can be represented as the sum of different terms [70]

φr = m+ U1x1 + U2x2r
+ ǫr (3.98)

where r denotes the speaker segment. In analogy with JFA, the terms x1, x2r
and

ǫr are latent variables representing, respectively, the speaker identity, the channel
effects and the residual noise. Similar to JFA, it is assumed that speaker and channel

54

3.6 – Probabilistic Linear Discriminant Analysis

factors live in a small subspace. Moreover, recordings from the same speaker are
assumed to share the same hidden variable x1.

In its simplest form PLDA assumes Gaussian priors for the latent variables [69,
70], i.e.

x1 ∼ N (0, I)

x2r
∼ N (0, I) (3.99)

ǫr ∼ N (0,Λ−1)

with Λ diagonal. We will refer to this model as Gaussian PLDA (GPLDA).
A more complex model for PLDA was proposed in [70], where the priors where

assumed to be Student’s t distributed, i.e.

x1 ∼ N (0, u−1
1 I), u1 ∼ G(n1/2, n1/2)

x24
∼ N (0, u−1

2r
I), u2r

∼ G(n2/2, n2/2) (3.100)

ǫr ∼ N (0, v−1
r Λ−1), vr ∼ G(ν/2, ν/2)

This heavy–tailed model (HTPLDA in the following) allows much better accuracy
when no preprocessing of i–vectors is performed [70]. However, since posteriors
cannot be computed in closed form, the time required both for training and testing
greatly increases. Since it was shown that proper normalization of the i–vectors,
e.g. length normalization [71], allows the simpler GPLDA model to achieve the
same level of accuracy in the following we will focus only on the GPLDA model.

3.6.1 Two covariance model

Before analyzing the GPLDA model we consider the simplified model known as
two–covariance model [72], where both the speaker and channel subspaces are as-
sumed full rank. In this case, the residual noise term can be neglected, since it
is already accounted for by the channel term (or, equivalently, we can neglect the
channel factors and assume a full covariance noise term). The resulting model can
be formalized as

φ = y + zr (3.101)

where y is the speaker factor and zr accounts for all the noise components. The
priors for y and zr are assumed to be Gaussian

P (y) ∼ N (y|µ,B−1) (3.102)

P (φ|y) ∼ N (φ|y,W−1) (3.103)

characterized by the (between–speaker) covariance matrix B−1 and the (within–
speaker) covariance matrix W−1 (hence the name of the model).

55

3 – Latent variable models for speaker and language recognition

The posterior for y given a set of i–vectors {φ1, . . . , φn} belonging to the same
speaker can be computed in closed form by observing that the prior (3.102) is con-
jugate to the likelihood (3.103). This results in a normal posterior given by

P (y|φ1, . . . , φn) ∼ N (y|L−1γ, L−1) (3.104)

with

γ = Bµ+W
n∑

i=1

φi (3.105)

L = B + nW (3.106)

3.6.2 Speaker verification likelihood

Before moving to a more general PLDA model we analyze how these kind of models
can be used to perform inference about the speaker identity.

Given a set of enrollment i–vectors φe1
, . . . , φen

for a given speaker se and a set of
test segments (usually one) of speaker st with corresponding i–vectors φt1 , . . . , φtm
the question whether the test segments and enrollment segments are from the same
speaker can be solved by computing the likelihood of the observed i–vectors under
the same speaker and different speaker hypothesis [72, 70]. Formally, we want to
compute the log–likelihood ratio

l = log
P (φe1

, . . . , φen
, φt1 , . . . , φtm |Hs)

P (φe1
, . . . , φen

, φt1, . . . , φtm |Hd)
(3.107)

where Hs and Hd represent the same and different speaker hypotheses respectively.
Considering, for simplicity, the case where we have a single enrollment i–vector

φe and a single test i–vector φt, the log–likelihood ratio (3.107) can be computed as

l = log
P (φe, φt|Hs)
P (φe, φt|Hd)

= log
∫
P (φe|y)P (φt|y)P (y)dy

[
∫
P (φe|y)P (y)dy] [

∫
P (φt|y)P (y)dy]

= log
∫
P (φe|y)P (φt|y)P (y)dy

P (φe)P (φt)
(3.108)

where we used the assumption of conditional i–vector independence given the speaker
factors. Given more than one enrollment or test utterances the log–likelihood ratio
between same–speaker and different speaker hypothesis becomes

l = log

∫ ∏n
i=1 P (φei

|y)
∏m
j=1 P (φtj |y)P (y)dy

[
∫ ∏n

i=1 P (φei
|y)P (y)dy] [

∫ ∏m
i=1 P (φei

|y)P (y)dy]
(3.109)

56

3.6 – Probabilistic Linear Discriminant Analysis

Note that the log–likelihood ratio computation entails the evaluation of integrals
of the form ∫

P (φ1, . . . , φN |y)P (y)dy = P (φ1, . . . , φN |Hs) (3.110)

which correspond to the probability of observing a set of i–vectors under the as-
sumption that they all belong to the same speaker. In fact, the speaker verification
problem can be cast as a particular instance of the speaker partitioning problem [72]
and the same–speaker and different speaker hypotheses correspond to the choice of
a single set for all i–vectors and to the choice of two different sets for enrollment
and test i–vectors.

The integral (3.110) does not have a closed form in the general case. The use
of conjugate priors however allows us to avoid explicit computation of this integral
observing that the probabilities P (φ1, . . . , φk|Hs) can be expressed as

P (φ1, . . . , φk|Hs) =
P (φ1, . . . , φk|y0)P (y0)
P (y0|φ1, . . . , φk)

(3.111)

where y0 is any value of the hidden variable which does not cause the denominator to
be zero. The integral has now implicitly moved in the computation of the posterior
for y. However, we already showed how to compute the posterior for y given a set
of i–vectors in the particular case of Gaussian priors.

The log–likelihood can then be expressed as

l = log
Q(φe1

, . . . , φen
, φt1 , . . . , φtm))

Q(φe1
, . . . , φen

)Q(φt1 , . . . , φtm)
(3.112)

with

Q(φ1, . . . , φk) =
P (y0)

P (y0|φ1, . . . , φk)
(3.113)

Note that in Q we dropped the (irrelevant) term P (φ1, . . . , φk|y0), which would
cancel out anyway in the likelihood computation.

Finally, by fixing a value for y0 (e.g. y0 = 0) we can derive a closed form for Q
(and therefore for the log–likelihood ratio)

logQ(φ1, . . . , φk) =
1
2

(
log |B| − µTBµ− log |LS|+ γTSL

−1
S γS

)
(3.114)

where S denotes the set of i–vectors φ1, . . . , φk and LS , γS are the parameters (3.106)
for the posterior distribution of y given the i–vectors in S [72].

3.6.3 PLDA

We now consider a slightly general model, where the channel factors still occupy the
whole space, but the speaker factors are entailed to live in a smaller subspace. The

57

3 – Latent variable models for speaker and language recognition

model can be expressed formally as

φ = µ+ Uy + z (3.115)

where the matrix U is a M × K matrix whose columns span the speaker factor
subspace.

Again, we assume Gaussian priors for both hidden variables. As in the two–
covariance model case, the posterior for y given a set S of i–vectors φ1, . . . , φk can
still be computed in closed form by observing that

logP (y|S) = logP (S|y) + logP (y) + c

= −1
2

k∑

i=1

(φi − µ− Uy)TΛ (φi − µ− Uy)− 1
2

yTy + c (3.116)

where Λ−1 is the covariance matrix of the prior for z and c is some normalization
constant. The posterior is then again Gaussian distributed

P (y|S) ∼ N (y|µy,Λ
−1
y) (3.117)

with

Λy =
(
kUTΛU + I

)
(3.118)

µy = Λ−1
y UTΛ

k∑

i=1

(φk − µ) (3.119)

The case where the channel factors are not merged with the residual noise (i.e.
U2 /= 0) is slightly more complex, since the hidden variables x1 and x2 are correlated
in the posterior. A closed form solution can still be computed [69], although it re-
quires the inversion of Rs × Rs block matrix, where Rs is the number of recordings
for speaker S. A Variational Bayes solution to this problem was proposed in [70],
together with the extension to non–Gaussian priors. However, since for most ap-
plications the GPLDA with merged channel and noise factors model achieves very
good performance, we will skip the analysis of these more complex models.

3.6.4 Training the PLDA hyperparameters

So far we have discussed how the PLDA model can be used to compute verification
log–likelihood scores given the model parameters. In the following we will focus on
estimating the hyperparameters of the model. A broadly used technique to solve
this problem consists in training the PLDA model in a maximum–likelihood fashion,
that is, estimating the speaker subspace U and the noise precision matrix Λ as to
maximize the likelihood of a given set of i–vectors with known speaker label [69, 70].

58

3.6 – Probabilistic Linear Discriminant Analysis

A complete solution in the general heavy tailed case was given in [70]. In this
section we apply the same derivations to the simpler single subspace PLDA model.

Let P (S) denote the likelihood of the set of i–vectors belonging to speaker s.
The objective function we want to maximize is given by

∑

s

P (S) (3.120)

where the sum extends over all speakers in the training set. It is possible to rewrite
this likelihood for a single speaker s as [12]

logP (S) = L(q) +KL(q(y)‖p(y|S)) (3.121)

where q(y) is a distribution for y and KL(q‖p) denotes the Kullback–Leibler diver-
gence between the distribution q and the posterior for y. L is defined as

L(q) =
∫
q(y) log

(
P (S,y)
q(y)

)
dy (3.122)

Observe that, if the distribution q(y) equals the posterior for p(y|S) then the diver-
gence goes to zero and

logP (S) = L(p(y|S))

=
∫
p(y|S) log

(
P (S,y)
p(y|S)

)
dy

= Ey|S

[
log

(
P (S,y)
p(y|S)

)]
(3.123)

In [70] the authors assume that q is a variational approximation to the posterior.
However, in our case this is not necessary since the posterior can be computed in
closed form.

Maximum Likelihood

We want to maximize
∑

s

L(s) (3.124)

59

3 – Latent variable models for speaker and language recognition

Dropping the reference to the speaker we can write

L(s) = Ey|S [logP (S|y)]

= Ey|S

Rs∑

i=1

log
1

(2π)
F
2 |Λ−1| 12

− 1
2

(φr − Uy −m)TΛ(φr − Uy−m)

= Ey|S

Rs∑

i=1

log
1

(2π)
F
2 |Λ−1| 12

− 1
2

(φr − Ū ȳ)
T
Λ(φr − Ū ȳ)

=
Rs∑

r=1

log
1

(2π)
F
2 |Λ−1| 12

− 1
2

tr
(
φTr Λφr

)

+tr
(
Ey|S

[
ȳT
]
ŪTΛφr

)
− 1

2
tr
(
ŪTΛŪEy|S

[
ȳȳT

])
(3.125)

where we set

ȳ =

[
y

1

]
Ū = [U m] (3.126)

The maximum of L1 with respect to Ū can be obtained by setting to zero the
derivative of (3.125) with respect to Ū , which gives

Ū
∑

s

Rs∑

r=1

Ey(s)|S(s)

[
ȳ(s)ȳT (s)

]
=
∑

s

Rs∑

r=1

φrEy(s)|S(s) [ȳ(s)] (3.127)

which can be easily solved for Ū given the first and second order moments for the
posterior of ȳ(s)

Ey|S [ȳ] =

[
µy

1

]

Ey|S

[
ȳȳT

]
=

[
Λ−1

y + µyµ
T
y µy

µTy 1

]
(3.128)

where µy and Λy are defined as in (3.119).

Following the success of the PLDA model a discriminative approach to PLDA
parameters training has been proposed in [73, 74]. This approach will be discussed
in Chapter 5.

60

Chapter 4

Discriminative Training and
Support Vector Machines

In this chapter we analyze discriminative models based on linear classifiers like
Support Vector Machines and linear Logistic Regression. While generative models
try to describe the process which generates the observed features, discriminative
techniques try to estimate a decision rule which optimizes some criterion over a set
of training patterns.

4.1 Support Vector Machines and Logistic Re-

gression

Among all possible discriminative optimization criteria two important ones are op-
timization of the classification margin between classes, which gives place to Support
Vector Machines, and the cross–entropy between classifier scores and target labels,
which corresponds to Logistic Regression. Support Vector Machines and logistic re-
gression are among the most successful discriminative classifiers thanks to relatively
easy training procedures and good classification performance.

4.1.1 Support Vector Machines

A Support Vector Machine (SVM) [75, 76, 12] is a two–class (linear) classifier which
looks for the hyperplane that best discriminates two given classes of patterns ac-
cording to a maximum separation margin criterion.

61

4 – Discriminative Training and Support Vector Machines

Linear Classifier

Given a set of n m–dimensional pattern vectors xk belonging to either of two classes
C1 and C2 a linear classifier is a hyperplane with form

wTx + b = 0 (4.1)

where w ∈ R
m and b ∈ R. The decision function D(x) is

D(x) = wTx + b =
m∑

i=1

wixi + b (4.2)

and the distance between the hyperplane and a vector x is D(x)
‖w‖ . If we assume that a

separation margin M between the class boundary and the pattern vectors belonging
to that class exists, for each pattern the following inequality is verified [77]

ykD(xk)
‖w‖ ≥M (4.3)

where yk is defined as

yk =

{
1 if xk ∈ C1

−1 if xk ∈ C2
(4.4)

The objective of a maximum–margin linear classifier is to find the parameter vector
w that maximizes M

w = arg max
w

M (4.5)

subject to
ykD(xk) ≥M, k = 1, . . . , n (4.6)

and
‖w‖ = 1 (4.7)

which corresponds to the margin

M∗ = max
w,‖w‖=1

M (4.8)

The bound M∗ is attained for those patterns xk satisfying

ykD(xk) = M∗ = min
j
yjD(xj) (4.9)

which are called support vectors. To find the maximum margin hyperplane therefore
requires to solve a minimax problem of the form

‖w‖ = arg max
w,‖w‖=1

min
k
ykD(xk) (4.10)

62

4.1 – Support Vector Machines and Logistic Regression

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 1.5 2 2.5 3 3.5 4

class 1
class 2

D(x) < 0
D(x) > 0
D(x) = 0

Figure 4.1: A maximum margin hyperplane and corresponding support vectors

The condition (4.7) is imposed in order to find a solution among the infinite set of
solutions differing only in scaling. However, instead of fixing the norm of w, it is
possible to fix the value of the product of the margin M and of w such that

M‖w‖ = 1 (4.11)

In this way, maximizing the margin is equivalent to minimizing the norm of w, so
the problem becomes

w∗ = arg min
w
‖w‖2 (4.12)

under constraints
ykD(xk) ≥ 1, k = 1, . . . , n (4.13)

and the margin M∗ becomes

M∗ =
1
‖w‖ (4.14)

This problem can be solved using numerical methods, however, when the set
dimensionality increases, this approach can become unfeasible, and, moreover, it
does not give any information about support vectors.

63

4 – Discriminative Training and Support Vector Machines

Another way to solve the problem consists in considering the dual Lagrangian
problem [78, 12, 77]

L(w, b,α) =
1
2
‖w‖2 −

n∑

k=1

αk(ykD(xk)− 1)

s.t. αk ≥ 0, k = 1, . . . , n (4.15)

where αk are the Lagrange multipliers and satisfy

αk(ykD(xl)− 1) = 0, k = 1, . . . , n (4.16)

The fraction 1
2

does not change the solution and has been introduced to ease suc-
cessive simplifications.

The hyperplane w∗ can now be found by looking for a saddle point of L(w, b,α)
which is a minimum of L(w, b,α) with respect to w and a maximum with respect to
α. Let α∗ and w∗ denote the value of α and of w respectively at the saddle point.
In correspondence of w∗ and α∗ we have

∂L

∂w

∣∣∣∣∣
w∗

= w∗ −
n∑

k=1

α∗
kykxk (4.17)

that is

w∗ =
n∑

k=1

α∗
kykxk (4.18)

From (4.16) we have α∗
k = 0 for each pattern that does not satisfy ykD(xk) = 1,

so w∗ only depends on the remaining vectors, which are the support vectors.
Using (4.2) and (4.18), we can remove the dependence of L(w, b,α) from w by

substituting w with w∗, which leads to

L(α, b) =
1
2

n∑

k=1

αkykx
T
k xk −

n∑

k=1

n∑

j=1

αkykαjyjx
T
k xj −

n∑

k=1

αk(1− byk)

=

[
n∑

k=1

αk(1− byk)
]
− 1

2
αTHα (4.19)

(4.20)

subject to
αk ≥ 0, k = 1, . . . , n (4.21)

Here H is a square m×m matrix with elements

hkj = ykyjx
T
k xj (4.22)

64

4.1 – Support Vector Machines and Logistic Regression

In order for a unique solution to exist, H must be positive definite. In this
case, the solution is obtained, for fixed b, by maximizing L(α, b) under the given
constraints. The optimal bias b∗ can be computed as

b∗ = −1
2

(w∗Txc1
+ w∗Txc2

)

= −1
2

n∑

k=1

ykα
∗
k(x

T
c1

xk + xTc2
xk) (4.23)

where xc1
and xc2

are, respectively, a support vector of class C1 and one of class
C2. This is due to the fact that the maximum margin is obtained when the decision
boundary is halfway between the two classes. Since the decision function D(x)
becomes

D(x) = w∗Tx + b

=
n∑

k=1

ykα
∗
kx

T
k x + b, (4.24)

with
α∗
k ≥ 0 k = 1, . . . , n (4.25)

Finally, b∗ can be can be obtained by evaluating D(x) in correspondence of xc1
and

xc2
, which leads to (4.23) (more robust estimates might, however, be obtained by

taking an average over all support vectors [12])

Non linear classifier

Non linear classification in input space can be achieved through to linear classifi-
cation in an expanded feature space. The use of the kernel trick allows then to
compute the decision boundary without the need to explicitly expand the features
[79, 77]. From Mercer’s theorem [80] we have that a positive semi–definite function
of two arguments in a measurable space K(xi,xj) can be evaluated as the inner
product of the mapping of its arguments in a higher dimensionality space, that is
there exists a function

ϕ : ℜN → ℜF (4.26)

where F is the feature space dimensionality, such that

K(xi,xj) = ϕ(xi)
Tϕ(xj) (4.27)

The support vector machine decision function becomes

D(x) = wTϕ(x) + b =
F∑

k=1

wiϕ(xi) + b (4.28)

65

4 – Discriminative Training and Support Vector Machines

Here w is a vector representing the direction of the optimal hyperplane in the ex-
panded feature space. Using the same approach as for linear classification, we can
find the optimal value of w, obtaining

w∗ =
F∑

k=1

α∗
kykϕ(xk) (4.29)

Equation (4.19) still holds if we replace H with a F × F matrix H
′

whose elements
are

H
′

jk = yjykϕ(xj)
Tϕ(xk) = yjykK(xj ,xk) (4.30)

and the resulting decision function becomes

D(x) = w∗Tϕ(x) + b

=
F∑

k=1

ykα
∗
kK(xk,x) + b (4.31)

where xk are the support vectors. As far as the bias b is concerned, it can be
estimated in the same way as in linear classification, which leads to

b∗ = −1
2

(w∗Tϕ(xc1
) + w∗Tϕ(xc2

))

= −1
2

F∑

k=1

ykα
∗
k[K(xc1

,xk) +K(xc2
,xk)] (4.32)

where xc1
and xc2

have the same meanings as in (4.23).
It is interesting to observe that no explicit expansion of input space patterns has

to be made in order to evaluate the decision function of the optimal hyperplane in the
expanded feature space, since all we need is the kernel evaluation. As an example,
a classifier with polynomial decision surfaces of order d [12] could be implemented
using the kernel

K(xi,xj) = (xTi xj + 1)
d

(4.33)

without having to explicitly evaluate the polynomial expansion of input vectors.

Soft margin hyperplane

It is not unusual that the classes we want to discriminate between are not completely
separable, that is we cannot find a hyperplane which discriminates the training
samples of the classes without errors. However, in this case, we can still look for the
hyperplane separating the two classes with a minimal number of errors. To solve

66

4.1 – Support Vector Machines and Logistic Regression

this problem we introduce slack variables ξi ≥ 0 for each pattern [81, 82] and we
consider the functional

Φ(ξ) =
n∑

i=1

ξσi (4.34)

with σ > 0 and subject to the constraints

yiD(xi) ≥ 1− ξi, i = 1, . . . , n (4.35)

and

ξi ≥ 0, i = 1, . . . , n (4.36)

For small values of σ the functional Φ(ξ) can be interpreted as the number of
training errors. By minimizing it we can find a minimal subset of training errors and,
excluding them from the training set, we can separate without errors the remaining
data using the maximum margin hyperplane. Formally, this can be expressed as
minimizing the functional [82]

1
2
‖w‖2 + Cf

(
n∑

i=1

ξσi

)
(4.37)

subject to the constraints (4.35) and (4.36), where c is a constant and f is a mono-
tonic convex function. However, in the general form the problem is NP–complete.
The minimum value for σ which allows to avoid NP–completeness is σ = 1. It can
be shown that, for sufficiently large values of c, letting σ = 1 gives the hyperplane
minimizing the sum of deviations ξ of training errors and maximizing the margin of
correctly classified vectors. If the classes are completely separable, this hyperplane
coincides with the maximum margin hyperplane [82].

The same approach used for the maximum margin hyperplane can be followed.
However, this time the Lagrangian of the functional becomes

L(w, b,α, ξ, r) =
1
2
‖w‖2 −

n∑

k=1

αk(ykD(xk)− 1 + ξk) + Cf(ξ)−
n∑

k=1

rkξk (4.38)

subject to

αk ≥ 0, k = 1, . . . , n

rk ≥ 0, k = 1, . . . , n (4.39)

To minimize this functional with respect to wi, b and ξi we look for a saddle

67

4 – Discriminative Training and Support Vector Machines

point of the Lagrangian

∂L

∂w
(w∗) = w∗ −

n∑

k=1

αkykxk = 0 (4.40)

∂L

∂b
(b∗) =

n∑

k=1

αkyk = 0 (4.41)

∂L

∂ξi
(ξ∗
i) = c

∂f(ξ)
∂ξ

∂ξ

∂ξi

∣∣∣∣∣
ξ∗

i

− αi − ri = 0 (4.42)

If we define δ = C ∂f(ξ)
∂ξ

(ξ∗), since ξ =
∑n
i=1 ξ

σ
i we have

δσξ∗
i
σ−1 − αi − ri = 0 (4.43)

Substituting these expressions in the Lagrangian functional we have

L(α, ξ, r) =
n∑

k=1

αk −
1
2
αTHα + Cf(ξ∗)−

n∑

k=1

δσξ∗
k
σ (4.44)

Since δ = C ∂f(ξ)
∂ξ

(ξ∗) = Cf
′

(ξ∗) we can write that

ξ∗ =
n∑

k=1

ξ∗
k
σ = f

′−1
(
δ

C

)
(4.45)

and the Lagrangian becomes

L(α, δ) =
n∑

k=1

αk −
1
2
αTHα + Cf

(
f

′−1
(
δ

C

))
− f ′−1

(
δ

C

)
δσ (4.46)

From the constraints αi + ri = δ and ri ≥ 0 it is possible to conclude that the
maximum value for δ corresponds to δ = αmax = maxi(α1, . . . , αn) Therefore, the
soft margin hyperplane, which has the form w∗ =

∑n
i=1 αiyixi can be evaluated by

solving the convex programming problem [82]

max
α

L(α) = max
α

n∑

k=1

αk −
1
2
αTHα + Cf

(
f

′−1
(
αmax
C

))
− f ′ −1

(
αmax
C

)
αmaxσ

s.t. αk ≥ 0, ∀k (4.47)

If we assume σ = 1 and we choose as function f the linear function f(x) = x
we recover the standard hinge–loss (L1–loss) SVM formulation whose corresponding
primal is given by

w∗, b∗ = arg max
w,b

1
2
‖w‖2 + C

n∑

i=1

ξi (4.48)

s.t. yi
(
wTxi + b

)
≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

68

4.1 – Support Vector Machines and Logistic Regression

or, equivalently,

w∗, b∗ = arg max
w,b

1
2
‖w‖2 + C

n∑

i=1

max
(
0, 1− yi

(
wTxi + b

))
(4.49)

and the corresponding dual problem is

α∗ = arg max
α

αTe− 1
2
αTHα

s.t. 0 ≤ αk ≤ C, ∀k (4.50)

where e denotes a vector of all ones. The relationship between primal and dual
solution is given by

w∗ =
n∑

i=1

αiyixi (4.51)

Choosing the regularization coefficient

Training an SVM entails the selection of an appropriate value for the regularizer term
C. A complete discussion of optimal selection of the SVM regularization parameter
and the connections between regularizers and SVM generalizations capabilities are
beyond the scope of this work. Although different approaches can be undertaken
to estimate a good regularizer, for example cross–validation or the approach of [83],
where SVMs are fitted for all possible regularizers, we found that in practice a simple
expression for the regularizer which can be computed from the data is sufficient to
produce accurate models. The expression for the regularizer we used is the same
adopted by SVMLight [84] for the default regularizer parameter, and corresponds to

C =

(
1
N

N∑

i=1

‖xi‖
)−2

(4.52)

where xi are the N patterns in the training set. We believe that the reasons this
regularizer allows to obtain good results are connected to theoretical results on
generalization properties of SVM [76], however we have no theoretical proofs to
support this statement.

4.1.2 Logistic Regression

Another widely used linear classifier is the Logistic Regression (LR) classifier [12].
LR allows to evaluate a classification boundary which can be interpreted as a log–
likelihood ratio between class–conditional likelihoods.

69

4 – Discriminative Training and Support Vector Machines

LR model

Let x be the pattern to classify, belonging to one of two classes C1, C2. Let also
P (x|Ci) denote the likelihood of pattern x given the class Ci. The class posterior
can then be evaluated using Bayes rule as

p(Cj|xi) =
p(xi|Cj)p(Cj)

p(xi|C1)p(C1) + p(xi|C2)p(C2)
(4.53)

which can be rewritten, for class C1, as

p(C1|xi) =
(
1 + e(−s)

)−1
(4.54)

where s is the log–posterior ratio

s = log
p(C1|x)
p(C2|x)

= log
p(x|C1)
p(x|C2)

+ log
p(C1)
p(C2)

(4.55)

and σ is the logistic sigmoid function. Under the assumption of uniform priors
s reduces to the log–likelihood ratio. Assume that s be represented as a linear
function of some (unknown) parameters w and b, that is s = wTx + b. Of course
this is not true in the general case. However, if we assume that the class–conditional
likelihoods P (x|Ci) are Gaussian distributed with common covariance matrix it is
possible to show that the functional form for s becomes exact [12]. LR provides then
a discriminative framework to compute an estimate of parameters w and b which
maximizes the likelihood of the training set class labels.

Estimate of the LR decision boundary

As with the SVM we consider a set of mN–dimensional pattern vectors xk belonging
to either of two classes C1, C2 with associated labels ti. In this case, we assume that
labels belong to the set {0, 1}. Let γi = σ(wTx + b) denote the class posterior
probability p(C1|xi). The log–likelihood of target labels can then be expressed as
[12]

log p(t1, . . . , tn|w) = −
n∑

i=1

(ti log γi + (1− ti) log (1− γi)) (4.56)

which corresponds to the cross–entropy between target labels and class posteriors.
ML estimate of hyperparameters w is obtained by minimizing this function.

Simple ML estimate of LR hyperparameters may incur in extreme overfit in the
separable classes case [12]. In order to avoid this phenomenon we can put a prior
over the hyperparameters and perform MAP estimate of the class boundary. The
resulting model is called regularized logistic regression (the reason is that a prior
over w can be interpreted also as a regularization term).

70

4.1 – Support Vector Machines and Logistic Regression

4.1.3 Regularized LR and SVM

Let consider again the LR objective function (4.56) and assume the same label
encoding used for the SVM, i.e. let yi = −1 whenever ti = 0 and yi = 1 when ti = 1.
The optimal hyperplane can be evaluated as

w∗ = arg min
w,b
−

n∑

i=1

(ti log γi + (1− ti) log (1− γi))

= arg min
w,b
−

n∑

i=1

{
ti log

[
σ
(
wTx + b

)]
+ (1− ti) log

[
−σ

(
wTx + b

)]}

= arg min
w,b

1
n

n∑

i=1

log
(

1 + e−yi(wT xi+b)
)

(4.57)

where we have used the properties of the sigmoid function σ(a) = 1
1+e−a

σ(−a) = 1− σ(a) (4.58)

a = log

(
σ(a)

1− σ(a)

)
(4.59)

and the fact that ti = yi+1
2

. We also scaled the function by the number of patterns,
which does not change the result in the case of unregularized LR.

Finally, we consider a regularizer of the form λ
2
‖w‖2, which corresponds to an

isotropic Gaussian prior on w. The regularized LR objective function fLR(w, b) is
then

fLR(w, b) =
λ

2
‖w‖2 +

1
n

n∑

i=1

log
(

1 + e−yi(wT xi+b)
)

(4.60)

We can observe the similarities with the SVM objective function

fSVM(w, b) = ‖w‖2 + C
n∑

i=1

max
(
0, 1− yi

(
wTx + b

))
(4.61)

Let λ = 1
nC

. A new, equivalent objective function can be devised for the SVM as

f
′

SVM(w, b) =
λ

2
‖w‖2 +

1
n

n∑

i=1

max
(
0, 1− yi

(
wTx + b

))
(4.62)

LR and SVM objective functions then differ only for the form of the loss term
l(wi

Txi, yi). The difference between the two loss functions is depicted in Figure 4.2.

In particular, both the SVM and regularized LR can be interpreted as instances of
a broader class of problems which go under the name of regularized risk minimization
problems, i.e. problems of the form

min
w

λΩ(w) +Remp(w) (4.63)

71

4 – Discriminative Training and Support Vector Machines

�4 �2 0 2 4
�1

0

1

2

3

4

5

SVM
LR

Figure 4.2: LR and SVM loss functions

where Ω is a convex regularization term and Remp is the empirical risk, i.e.

Remp =
1
n

n∑

i=1

l(w,xi, yi) (4.64)

with l(w,xi, yi) being a convex loss function. This allows to elaborate a training
framework which can to accommodate both SVM and regularized LR [85, 86]. In
Section 4.3.2 we will present a techniques based on bundle methods. This technique,
however, might fail when the regularizer term λ is small. The LR optimization
problem, on the other hand, can efficiently be solved also with different second–
order optimization techniques, e.g. Newton–Rhapson updates [12, 87].

4.1.4 Multiclass SVM and LR for language recognition

SVM and LR can be generalized to multiclass problems [12]. For multiclass SVM and
multiclass LR, the parameter w is actually a matrix W = [w1, . . .wr] representing

72

4.1 – Support Vector Machines and Logistic Regression

a set of hyperplanes, one for each class. Labels are no more binary since each class
has its own label.

The class scores for test patterns are given by the projection of test patterns over
set of hyperplanes wi.

Multiclass SVM

Let the r classes be labeled as {y1, . . . yr}. The loss function for multiclass SVM [88]
is an extension of the binary loss function given by

l(W,xi, yi) = max
y

′
wT
y′ xi −wT

yi
xi + ∆(y

′

, yi) (4.65)

where ∆(y1, y2) is the cost of misclassifying class y1 for y2. In this work we use
∆(yi, yj) = 1− δij , where δij is the Kronecker delta. Multiclass SVM can be inter-
preted as a joint optimization of r SVMs where the hyperplanes are trained as to
maximize the margin between each class and all the remaining classes [12].

Multiclass LR

As for multiclass SVM, multiclass logistic regression is an extension of binary lo-
gistic regression. While binary LR minimizes the binary cross entropy between
labels, multiclass LR optimizes the multiclass cross entropy for training labels [12].
Multiclass LR assumes that the posterior for each class can be computed as

P (Ci|x) =
ewT

i
x

∑
k e

wT
k

x
(4.66)

LR then allows to estimate the parameters W which maximize the likelihood of
the training labels, which corresponds to the minimization of the multiclass cross–
entropy between the posteriors and the training labels. This corresponds to the loss
function

l(W,xi, yi) =

log

∑

y′

e
wT

y
′ xi

−wyi

x (4.67)

4.1.5 Multiclass Score Backprojection

The last approach to multiclass classification we consider consists in training binary
classifiers for each pair of classes (i.e. we train 1

2
r(r− 1) classifiers for r classes) and

then transform the scores so that they can be interpreted as multiclass scores [89].
Assuming that class–conditional log–likelihoods are available, log–likelihood ra-

tios between a set of two classes can, in fact, be computed as the difference between
the scores for the two languages. Therefore, we can map multiclass scores to binary

73

4 – Discriminative Training and Support Vector Machines

scores with a simple linear transformation represented by a rectangular N× 1
2
r(r−1)

matrix whose entries are in {−1, 0,+1}. Each row of the matrix maps the multiclass
scores to a binary score and thus has exactly one element valued +1 and one ele-
ment valued −1. Starting from binary scores, we can recover the original multiclass
log–likelihoods by simply solving an overdetermined linear system.

In general, when binary scores are produced by different classifiers the solution to
this system does not exist. However, we can interpret the binary scores as affected by
noise and estimate the multiclass scores as the least squares solution of the system.
The mapping between binary scores and multiclass scores is then simply given by
the projection of the binary scores on the pseudo inverse of the multiclass–to–binary
transformation matrix.

4.2 SVM–based language identification

In this section we present several state–of–the–art SVM–based techniques for lan-
guage recognition. The next section is dedicated to an analysis of different SVM
algorithms and their usability for the different techniques described in this section.

Language identification (LID) usually comes under the form of a closed set iden-
tification problem [90, 91, 92], where the goal is to estimate, for a given utterance,
the conditional log–likelihood of that utterance given the different target languages.
Log–likelihood scores allow to derive decision rules for different sets of problems by
simply applying Bayes decision rule with different language priors. While speaker
verification can be cast as a two–class problem, where the classes correspond to “ut-
terances from the same speakers” and “utterances from different speakers” (see also
Chapter 5), language recognition is naturally posed as a multiclass problem where
each language corresponds to a single class. While LR can be easily extended to
model multiclass posteriors, SVMs are usually cast as binary classifications prob-
lems. In Section 4.1.4 we showed some extensions for multiclass SVM, however
state–of–the–art systems tend to stick with the binary SVM formulation. In order
to produce multiclass scores SVMs are therefore trained in a one–versus–all fash-
ion, i.e. for each language one SVM model is trained. The SVM classes are defined
according to the “target language” versus “non–target” language division, i.e. all
non–target language utterances are pooled together against the utterances of the
target language [26]. Since SVMs do not produce log–likelihood scores, some trans-
formations (e.g. score calibration [6]) might be required before the scores can be
used to perform language inference. The systems presented in the next two sections
are based on this framework.

74

4.2 – SVM–based language identification

4.2.1 GSV–SVM and pushed–GMM

The first two techniques we present are based on acoustic modeling of utterances
by means of GMM supervectors (GSV). The first approach builds an SVM model
for each target language using MAP–adapted GMM supervectors as features [93,
94, 95]. Test utterance GMMs are then directly scored against the different SVM
hyperplanes. A suitable distance function between GMM supervectors has been
proposed in [93]. Assuming diagonal covariance UBM/GMMs, this distance can be
interpreted as an upper bound of the Kullback–Leibler divergence [96] between the
considered GMMs ga, gb

D(ga‖gb) =
∫

Rn
ga log

ga
gb

(4.68)

This upper bound is defined as [97, 93]

d(ga‖gb) =
m∑

i=1

wi(µai − µbi)TΣ−1
i (µai − µbi) (4.69)

From distance (4.69) a corresponding kernel can be derived as [93]

K(ga, gb) =
m∑

i=1

(
w

1

2

i Σ
− 1

2

i µai

)T(
w

1

2

i Σ
− 1

2

i µbi

)
(4.70)

Observe that the corresponding kernel is linear, and, as such, can be interpreted as
performing a normalization of the feature vectors. In this way, a simple linear SVM
model can be trained in the normalized feature space.

While GSV–SVM models allow obtaining reasonable results, more effective mod-
els based on this approach combine SVMs and GMMs to provide discriminatively
trained generative models.

The main flavor of this approach is the so–called pushed–GMM approach [98, 95],
where the discriminative GMM models are derived from the generative ones, by
exploiting the information provided by the non–null Lagrange multipliers obtained
by training a SVM. In particular, SVM training is first performed using the GMM-
SVM approach, then two GMMs are created for each language: one for the target
language g+ and the other for the non–target languages (anti–model) g− according
to

g+ =
1

∑
i|yi>0 αi

∑

i|yi>0

αigi (4.71)

g− =
1

∑
i|yi<0 αi

∑

i|yi<0

αigi (4.72)

where gi is the GMM of the i–th utterance of the target language. Thus, the target
model is a weighted combination of the GMMs belonging to the target language,

75

4 – Discriminative Training and Support Vector Machines

and the weights are the Lagrange multipliers α∗ obtained from the dual solution of
the SVM problem. The target language anti–model is a weighted combination of the
GMMs of the non–target languages utterances. Language log–likelihood ratios are
then computed from model and anti–model. The pushed–GMM approach requires
the dual solution of the SVM problem, which, depending on the algorithm, may not
be available when the SVM problem is solved in its primal form.

4.2.2 Language factors

The success of eigenvoice models in speaker recognition has motivated the analysis
and development of similar systems for language recognition. In [99] the authors
propose to use a simple factor analysis model to represent language GMMs. The
model is similar to that of JFA introduced in Section 3.3.5, that is, a GMM g is
decomposed as

g = µ + Vy + Ux (4.73)

In [99] the authors propose two methods to train the subspace V. The first approach,
called speaker compensated eigenvoices, trains the subspace matrix from speaker–
compensated features. In particular, an inter–speaker (and partially intersession)
subspace matrix U is estimated using a large set of differences between models
generated by different speakers of the same language. Feature–level compensation
is then carried out as in [100]. Given the occupation probabilities for each Gaussian
γit for observation ot, the compensated features are computed as

ôt = ot −
m∑

i=1

γitUix (4.74)

where x is the channel factor associated to the utterance. The subspace matrix V
is then computed as to estimate the eigenvoices of the feature–compensated utter-
ances. The assumption behind this approach is that speaker–compensated eigen-
voices would retain less speaker (and channel) information, and would therefore
capture more language information. The second approach starts from speaker–
compensated features and tries to find directions that further enhance the discrim-
ination among languages. To find these directions the authors consider a polyglot
speaker that utters a set of phonetically rich sentences in different languages. GMM
supervector differences for utterances spoken by such speaker in different languages
would factor out the speaker characteristics and enhance the acoustic components
of a language with respect to the others. To cope with the difficulty in finding such
a speaker, the authors propose to consider differences between GMMs of speak-
ers of two different languages without caring about speaker identity, assuming that
speaker–compensation has successfully removed most of the speaker information.
PCA is then used to estimate the V matrix. In order to reduce the complexity

76

4.2 – SVM–based language identification

of estimating all cross–pair differences, the authors propose to compute only the
difference of each GMM from the centroid of the GMMs of each other language.

One of the main advantages of language factors consists in their low dimension-
ality, which makes SVM training easier when the datasets are large. In [99] a way to
adapt the standard GSV–SVM with KL kernel to language factors is shown. SVM
training is performed in the language factor space, which has very few dimensions
compared to the GMM one. Moreover, the KL kernel can be effectively implemented
as a linear kernel in the language factor space [99]. To show this, consider UBM–
centered GMMs, i.e. ĝ = g − µubm. The KL distance (4.69) is invariant to space
translations, thus we can keep the expression for the kernel given by (4.70). We can
rewrite (4.70) as

K(ĝa, ĝb) =
(
W

1

2Σ
1

2 Vya
)T(

W
1

2Σ
1

2 Vyb
)

= yTa V̂T V̂yb (4.75)

where W is a diagonal matrix whose values are the UBM weights repeated F times
(F denotes the feature dimensionality), Σ is a block–diagonal matrix whose elements
are the UBM covariance matrices and V̂ = W

1

2Σ
1

2 V. If we denote with Λ
T
Λ =

V̂T V̂ the Cholesky decomposition of V̂T V̂ the kernel (4.75) can be rewritten as

K(ĝa, ĝb) = yTaΛ
T
Λyb = ŷTa ŷb (4.76)

where ŷi = yiΛ. The KL kernel thus corresponds to a linear kernel in the language
factor space.

Finally, the pushed–GMM approach can be also applied by simply computing
the language model and anti–model as

g+ = µubm + V
∑

i|yi>0

1
∑
i|yi>0 αi

αiyi

g− = µubm + V
∑

i|yi<0

1
∑
i|yi<0 αi

αiyi (4.77)

4.2.3 Acoustic i–vectors

Following the success in speaker modeling, language recognition systems have seen
the recent introduction of language i–vectors. Language i–vectors share all the
modeling techniques used for speaker i–vectors, however they are usually built over
SDC features instead of MFCCs. The low–dimensionality of i–vectors allows to
directly build multiclass SVM and LR models where the i–vectors are the features.
Although these systems are very simple, since just a single multiclass LR or SVM
has to be trained over all set of i–vectors, they proved to be effective in recent NIST
evaluations.

77

4 – Discriminative Training and Support Vector Machines

4.2.4 Phonetic models

Acoustic models are often combined with another set of powerful models which
provide complementary information. These models are based on phonetic features
extracted by a phone or word tokenizer. Most of these models represent utterances as
bags of n–grams, that is, the occurrences of different sequences of tokens (usually up
to third or fourth order) are stacked in a single vector associated to the utterance.
The n–grams (Section 2.5.1) are extracted either by 1–best decoding or through
lattice decoding.

SVM–based phonetic models

While language models can be built using directly n–gram counts (Section 2.5.1),
a successful approach to phonotactic language verification consists in training a
discriminative classifier in the n–gram vector space [101, 102, 103, 104]. The concept
is similar to the GSV–SVM approach (Section 4.2.1), that is, for each language a
SVM is trained in a one–versus–all fashion using as features the n–gram statistics.
Many different kernels have been proposed in the last years, a popular one being
the Term Frequency Log Likelihood Ratio (TFLLR) kernel [101, 103]. The TFLLR
kernel is a linear kernel and can therefore be expressed as a normalization of n–gram
features

x̂ik =

√
1
fi

xik, fi =
n∑

j=1

xij (4.78)

where xik denotes the i–th component of the n–gram vector xk associated to utter-
ance k.

Phonotactic i–vectors

Following the success of low–dimensional subspace representations for acoustic GMMs,
subspace models have been recently extended to phonetic systems. In analogy with
the acoustic i–vector approach the phonotactic i–vector framework [89, 105] assumes
that stacked n–gram vectors can be represented by a small dimensional vector which
can be estimated in a maximum likelihood fashion. The main idea consists in inter-
preting n–gram counts as counts of exclusive events, so that they can be modeled
by a multinomial distribution whose underlying parameters are constrained to live
in a small subspace [89, 105, 106]. The model can be formalized as follows. Let νi
denote a supervector of n–gram counts (i.e. the vector of stacked counts) for utter-
ance i. We assume that this supervector has been produced by a discrete process
governed by a multinomial distribution with parameters φi, so that the likelihood
of the observed data is given by

logP (νi|φi) =
∑

c

νic log φic (4.79)

78

4.3 – Large–scale SVM algorithms

where νic and φic denote the c–th element of supervector νi and parameter vector
φi respectively. The complete data log–likelihood is given by

logP (D) =
∑

j

∑

c

νjc log φjc (4.80)

where D denotes the complete set of utterances. The subspace model proposed in
[105, 106] assumes that the utterance–dependent multinomial parameters φi actually
lie in a small r–dimensional subspace defined by

φic =
emc+tcwi

∑
j e

mj+tjwi
(4.81)

where w is an r–dimensional vector which, in analogy to acoustic i–vectors, rep-
resents channel and speaker information of utterance i. The row vectors tc are
the rows of the subspace matrix T and mc is a bias term. This expression can be

simplified replacing wi by w̄i =
[
wT
i 1
]T

and tc by t̄c = [tcmc] as

φic =
et̄cw̄i

∑
j e

t̄jw̄i
(4.82)

Maximum Likelihood estimation can be used to estimate the model parameters
T. In [105, 106] the authors propose an iterative algorithm which alternates esti-
mates of T and wi. Each step is then optimized with an iterative algorithm similar
to Newton–Rhapson updates [12, 87].

4.3 Large–scale SVM algorithms

In this chapter we have presented many successful language recognition techniques
based on SVMs and other discriminative classifiers. We did not, however, consider
the issues involved in training the SVM classifiers for these systems. The increase of
the size of corpora and the dimensions of the feature patterns do not, in general, allow
the use medium–scale training algorithms, which assume that all the datasets can
be stored into main memory. While this is not a problem for i–vector and language
factor systems, both the GSV–SVM and the classical phonotactic approaches have
to deal with patterns which can easily exceed some tens of thousand dimensions.
Moreover, classical SVM algorithms are characterized by a squared time complexity
with respect to the database size. Thus, linear memory and linear time algorithms
become more and more appealing. Many algorithms have been proposed to handle
SVM optimization for large–scale problems. While most of them are efficient only
for linear kernels, this does not cause many problems since the most used kernels in
language recognition are in fact linear (Section 4.2). Following the work in [107, 108]

79

4 – Discriminative Training and Support Vector Machines

this section details five large–scale training algorithms and their usability in language
(and speaker) recognition systems. In the following sections n denotes the number
of patterns in the training set and d is the pattern dimensionality. Following the
convention in Section 4.1, C denotes the regularization parameter of the SVM. We
also denote by ε the optimization accuracy.

4.3.1 Dual solvers

In this section we analyze three dual SVM problem solvers, whereas in Section 4.3.2
we will describe two primal solvers and the steps to derive their corresponding dual
solutions, needed by the pushed–GMM approach. For ease of reading, we rewrite
the dual SVM problem (4.50)

α∗ = arg max
α

αTe− 1
2
αTHα

s.t. 0 ≤ αk ≤ C, ∀k (4.83)

SVMLight

A popular “fast” linear–space SVM solver is SVMLight [84]. SVMLight decomposes the
SVM problem into a set of subproblems and iteratively optimizes these subproblems.
Its memory occupation scales linearly with the number of training patterns and of
support vectors. Since SVMLight solves the dual problem it provides the Lagrange
multipliers needed in language recognition by the pushed–GMM approach.

The main limitation of this algorithm comes from its time complexity, which
has been empirically shown to be O(n2d). If memory is not a constraint, a fast
implementation of SVMLight can be obtained by caching all the kernel evaluations.
Of course, the kernel matrix has a size, and thus a computational cost, which still
grows quadratically with the training set size.

Dual Coordinate Descent

In [109] the authors propose to solve the dual problem by means of a coordinate
descent approach, referred to in the following as Dual Coordinate Descent Method
(DCDM). The multivariate problem is split into a sequence of univariate optimiza-
tions which are iteratively solved until convergence to the optimal multivariate so-
lution is attained. Assuming that a sub–optimal solution α of the dual problem
(4.83) is known, the i–th component of the optimal solution, given all the other
coordinates, can be evaluated by solving

min
h
f(α + hei) subject to 0 ≤ αi + h ≤ C (4.84)

80

4.3 – Large–scale SVM algorithms

where ei denotes the unit vector with i–the element equal to one. The objective
function is quadratic in h

f(α + hei) =
1
2
Hiih

2 +∇if(α) +K (4.85)

for a given constant K. The minimization of this function leads to the update rule
[109]

αi ← min

[
max

(
αi −

∇if(α)
Hii

, 0

)
, C

]
(4.86)

where the gradient ∇if(α) is

∇if(α) =
n∑

j=1

Hijαj − 1 (4.87)

The computation of the gradient is in general expensive, but for linear SVMs it
simplifies to

∇if(α) = yiw
Txi − 1 (4.88)

The cost of evaluating w given α would be linear with the size of the training set.
However, by keeping the previous value of w it can be updated according to

w← w + (αi − αoldi)yixi (4.89)

where αoldi refers to the value the parameter αi had before being updated. Since
DCDM solves the dual formulation of the SVM problem, it directly provides the
Lagrange multipliers required by the pushed–GMM approach. The time complexity
of the algorithm is O

(
nd log

(
1
ε

))
. DCDM is very fast, however it cannot take

advantage of a distributed environment because the solution is updated after each
pattern is processed.

SVMPerf

One of the most effective linear–time SVM solvers is SVMPerf [110, 111, 112]. Though
the package provides different algorithms for solving the SVM problem, its main
innovation is the Cutting–Plane Subspace–Pursuit (CPSP) approach [112]. Cutting–
Plane algorithms are based on a different formulation of the primal problem (4.49)

min
w,ξ

1
2

wTw + Cξ

subject to ∀ŷ1 . . . ŷn ∈ {−1,+1} : (4.90)

1
2

wT

[
n∑

i=1

(yixi − ŷixi)
]
≥

n∑

i=1

∆(yi, ŷi)− ξ

81

4 – Discriminative Training and Support Vector Machines

where ∆(y, ŷ) is the zero–one loss function, which takes value 1 when its arguments
are equal, and value 0 otherwise.
The solution is found by iteratively building a working set of constraints over which
a Quadratic Problem (QP) is solved. An accuracy of ε can be obtained using at
most O

(
1
ε

)
constraints. The CPSP algorithm modifies the traditional Cutting–

Plane algorithm by iteratively building a set of basis vectors {b1, . . .bk} whose
span is approximatively the sub–space where the optimal solution lies [112]. The
approximate solution is thus given by

w∗ ≈
k∑

i=1

βibi (4.91)

The rationale for the introduction of the basis vectors is to reduce the number of
kernel evaluations for non–linear classification. Since basis vectors are associated
with the Cutting Plane constraints, which are supposed to be a constant number
with respect to the training set, the hyperplane can be represented similarly to
(4.51) but using a much smaller set of patterns. It is worth noting that since the
basis vectors do not belong to the training set, it is not possible to exploit the
possible speedup coming from the pre-computation of the kernel matrix. Moreover,
computing the kernel matrix is unfeasible for large datasets.

Due to the nature of the algorithm, it can be easily modified to be executed in
a distributed environment.

4.3.2 Primal solvers

In this section we describe two primal solvers and the steps to derive their cor-
responding dual solutions, which are necessary for the pushed–GMM approach in
language recognition (Section 4.2.1). For ease of reading we rewrite the primal SVM
problem (4.50)

w∗, b∗ = arg max
w,b

1
2
‖w‖2 + C

n∑

i=1

max
(
0, 1− yi

(
wTxi + b

))
(4.92)

In the following we will not consider the bias term b. In order to estimate the bias
we can nevertheless append to the features a constant and then include the bias in
the hyperplane. Although this slightly modifies the optimization problem, since the
regularizer shouldn’t depend on the bias, choosing a large constant to append to the
training patterns allows to reduce the impact of the bias on the regularizer.

Pegasos

The first solver is based on gradient descent in the primal solution space. Standard
gradient descent techniques try to reach the minimum of the objective function

82

4.3 – Large–scale SVM algorithms

by iteratively moving an approximate solution along the direction that gives the
greatest decrease of the objective function. For the hinge–loss function this leads to
the update rule

wt+1 = wt − ηt
[
wt + C

n∑

i=1

∇w max(0, 1− yiwTxi)|wt

]
(4.93)

where ηt is the learning rate at iteration t. The selection of the learning rate values
is crucial for fast convergence of the algorithm. Since the SVM loss function is not
completely differentiable but still convex, a subgradient of the loss function can be
computed as

∇w max(0, 1− yiwTxi) =

{
−yi if yiwTxi ≤ 1
0 otherwise

(4.94)

Stochastic Gradient Descent (SGD) approximates the gradient computation step
by evaluating the subgradient of the objective function on a pattern (or on a small
subset of patterns)

wt+1 = wt − ηt [wt + nC∇wl(w,xit , yit)|wt
] (4.95)

where it is chosen randomly for each iteration.
Pegasos [113] combines SGD descent of the SVM L1–loss function with a pro-

jection step ensuring faster convergence to the optimal solution. A set of training
patterns At is randomly chosen at each iteration. The subgradient of the objective
function is estimated from this subset as

∇t = wt −
nC

|At|
∑

i|xi∈At

yiw
T xi<1

yixi (4.96)

and the hyperplane is updated as

wt+ 1

2

= wt − ηt∇t (4.97)

The optimal SVM solution is bounded by ‖w‖ ≤
√
nC [113]. Therefore, the

current solution is projected onto a ball of radius
√
nC by scaling wt+1/2 according

to

st = min

{
1,

√
nC

‖wt+1/2‖

}
(4.98)

wt+1 = stwt+1/2 (4.99)

83

4 – Discriminative Training and Support Vector Machines

This projection step, combined with a fast–decaying learning rate, allows bounding
to O

(
1
ε

)
the average number of iterations required to achieve ε optimization accu-

racy [113].
Since Pegasos solves the primal formulation of the SVM problem it does not pro-
duce the Lagrange multipliers, which are necessary in the pushed–GMM approach.
In [113] the authors propose an extension of their algorithm that allows the hy-
perplane to be estimated as a linear combination of training patterns w =

∑
i αixi

where the set of α’s are iteratively obtained as

αt+1 =

[
αt − ηt

(
αt +

nC

|At|
χit

)
st

]
(4.100)

with

χit =

{
1 if xi ∈ At
0 if xi /∈ At (4.101)

Since Pegasos is based on stochastic gradient descent, which performs sequential
updates, it cannot take advantage of a distributed environment.

Bundle Methods

Bundle methods approximate a convex function by means of a set of tangent hyper-
planes (subgradients) and solve the simpler optimization problem on the approxi-
mated function. The approach is similar to SVMPerf, where a small and incremental
subset of constraints is built until the solution approximates the optimal solution
up to a given error. Bundle Methods for Regularized Risk Minimization (BMRM)
[85, 86] offer a general and easily extensible framework to general risk regularization
problems, of which SVM is an example. In particular, an incremental working set of
approximate solutions {w0,w1,w2, . . . } is built by defining, at each iteration, the
set of hyperplanes which are tangent to the objective function in the working set
points (starting from w0 = 0)

ft(w) = lemp(wt) +∇lemp(wt) · (w−wt) (4.102)

where lemp(w) =
∑n
i=1 l(w,xi, yi) is the empirical loss. At each iteration, a new

working point is selected as the minimizer of the approximation function

wt+1 = arg min
w

[
1
2
‖w‖2 + C ·max

(
0, max

t′≤t+1
ft′ (w)

)]
(4.103)

In [85] it is shown that this problem is equivalent to the dual quadratic problem

min
β
Di(β) = C

2
βTATAβ − βTb (4.104)

subject to β ≥ 0, eTβ ≤ 1

84

4.3 – Large–scale SVM algorithms

where e is a vector of ones, A is the matrix [a1a2 . . . ai] of gradients at+1 = ∇lemp(wt)
and b is the vector [b1b2 . . . bi]

T of offsets bt+1 = lemp(wt)−aTt+1wt. The new solution
is obtained as

wt+1 = −CAβ (4.105)

This quadratic problem is not expensive because its complexity does not increase
with the size of the training dataset, but with the number of iterations only.
The BMRM algorithm does not directly provide the Lagrange multipliers for the
dual SVM problem. However, the dual solution can still be computed as follows
[107, 108]. The hinge loss function can be rewritten to make explicit its dependency
on the dot product between w and a given pattern x as

l(w,x, y) = l̃(wTx, y) (4.106)

and its gradient with respect to w as

∇wl(w,x, y) =
∂l̃(wTx, y)
∂wTx

x (4.107)

Defining an array ãt = [l̃1l̃2 . . . l̃n]
T
, where l̃i = ∂l̃(wT xi,yi)

∂wT x
, we can express at as

at = Xãt (4.108)

where X is the complete set of training patterns represented as a matrix. Matrix A
in (4.104) can then be evaluated as A = XÃ with Ã = [ã1ã2 . . . ãt], and (4.105) can
be rewritten as

wt+1 = −CXÃβ (4.109)

Setting α = −CY −1Ãβ, where Y is the diagonal matrix of the target labels Yii = yi,
allows obtaining the separation hyperplane in terms of a linear combination of the
training patterns w = XYα =

∑
i yixiαi as in (4.51).

The BMRM algorithm converges to its optimal solution up to the accuracy ε in
O
(

1
ε

)
iterations. Usually the number of required iterations is small, thus the time

required to solve sub–problems (4.104) can be neglected, and the global complexity
of the algorithm is O

(
nd
ε

)
.

Similarly to SVMPerf, BMRM incrementally builds a working set of approximate
solutions, thus this algorithm can be easily modified to run in a distributed envi-
ronment.

An extension to the BMRM algorithm has been proposed in [114]. The Opti-
mized Cutting Plane Algorithm (OCAS) approach [114, 86] tries to simultaneously
optimize the original and the BMRM approximated objective function and to select
cutting planes that have higher chance to actively contribute to the approximation
of the objective function around its optimum. This is done using a linear search

85

4 – Discriminative Training and Support Vector Machines

algorithm to optimize the SVM loss function over the line connecting the BMRM
solution at a given iteration with the solution obtained in the previous step. OCAS
choices of cutting planes allow to reduce the number of iterations needed for con-
vergence, at the expense of a higher execution time per iteration. In particular,
OCAS complexity is O(n logn), however usually logn ≪ d. In the latter case the
global complexity of the algorithm is dominated by the factor O(nd) needed for the
computation of dot–products and gradients.

86

Chapter 5

SVM–based Speaker Recognition

In this chapter we present two frameworks for discriminative SVM–based speaker
verification systems. The first approach, GMM–SVM [93, 94], consists in training a
model for each target speaker that is able to discriminate between utterances from
that speaker and utterances from different speakers. This technique shares many
similarity with the GSV–SVM approach in language identification (Section 4.2.1).
In particular, both techniques use GMMs as features for an SVM classifier trained in
a one–versus–all fashion. However, while in language verification many utterances
are available for each language, in speaker verification usually few recordings (as
low as one in NIST evaluations) are available for a target speaker. This poses some
issues on how to effectively train the discriminative classifiers. Some improvements
have been proposed (e..g. Nuisance Attribute Projection [115, 94]), however recently
the focus has shifted on a different training framework, called Pairwise SVM [73, 74],
which solves this problem by completely changing the definitions of the classes.

5.1 GMM–SVM

The GMM–SVM approach [93] builds a model for each speaker using MAP adapted
GMMs as features for an SVM–based discriminative classifier. Similarly to the
LID GSV–SVM model (Section 4.2.1), a possible choice for the SVM kernel is an
approximation of the Kullback–Leibler divergence between two GMMs

D(ga‖gb) =
∫

Rn
ga log

ga
gb

(5.1)

The corresponding approximated distance is given by

d(ga‖gb) =
m∑

i=1

wi(µai − µbi)TΣ−1
i (µai − µbi) (5.2)

87

5 – SVM–based Speaker Recognition

which corresponds to the kernel function [93]

K(ga, gb) =
m∑

i=1

(
w

1

2

i Σ
− 1

2

i µai

)T(
w

1

2

i Σ
− 1

2

i µbi

)
(5.3)

A technique for channel compensation in these kind of models, Nuisance At-
tribute Projection (NAP), was introduced in [116, 115, 94]. NAP assumes that
channel effects can be compensated by removing a low number of dimensions in the
mapped feature space. Let A = [ϕ(g0), . . . , ϕ(gn)], where ϕ is the mapping function
corresponding to a chosen kernel function. Formally, NAP looks for a projection
matrix

P = I −
∑

i

uiu
T
i ‖ui‖ = 1 ∀i (5.4)

where the ui are vectors spanning the “noisy” dimensions. Projecting away those
dimensions results in a new kernel function

K
′

(ga, gb) = (Pϕ(ga))
T (Pϕ(gb)) (5.5)

and a corresponding kernel matrix K
′

given by

K
′

= K −Kv(Kv)t (5.6)

where K is the original kernel matrix Ka,b = K(ga, gb) and u = Av. The condition
on the norm of u becomes vTKv = 1.

A possible criterion for selecting the discarded dimensions consists in finding the
projection matrix which minimizes the distances between projected points having
different channels [94]. This corresponds to finding P as

P = arg min
P̄

∑

i,j

Uij‖P (φ(gi)− φ(gj))‖2 (5.7)

where the elements of matrix U are

Uij =

{
1 xi and xj have different channels
0 otherwise

(5.8)

Let Ū denote the diagonal matrix whose diagonal is given by U1, where 1 is a vector
of all ones. It can be shown [116] that v can be computed as the solution to the
generalized eigenvalue problem

KZKv = λv (5.9)

where Z = Ū −W .
Some more refinement of the NAP approach have been proposed (e.g. weighted

NAP [117]), however all this techniques suffer from the very limited amount of
training data for the target speaker. In the next sections we propose a novel dis-
criminative framework which allows solving some of the GMM–SVM approach issues
and, similar to PLDA models, allows reachong state–of–the–art results without the
need to train a different model for each speaker.

88

5.2 – Pairwise SVM

5.2 Pairwise SVM

Although, GSV–NAP based systems allow good performance, they require a careful
selection of the background impostor cohorts, and they need to train an SVM system
for each speaker. The main drawback of GSV–NAP systems is the small size of the
target speaker class, since the enrollment segments can be as few as just a single
utterance. This makes an estimate of the hyperplane unreliable, thus requiring
some sort of “compensation” (which is achieved by NAP). This problem is due to
the formulation of the task, i.e., the model can be interpreted as a natural solution
to the problem of identifying whether a test segment belongs to a target speaker,
given a set of enrollment utterances over which the model is built. This statement
naturally allows to view speakers as classes, and can be translated directly into
the one–vs–all training scheme of GSV–NAP systems. The roles of enrollment and
test segments are therefore different, as happens with Factor Analysis based models
illustrated in Section 3.3.

On the other hand, the speaker verification task can equivalently be defined as the
problem of classifying whether two sets of utterances belong to the same speaker or
to different speakers. For generative systems this translates into PLDA–like models,
which score these sets of utterances without forcing any interpretation on them and
perform generally better than JFA–based and GSV–SVM based systems. We can
still refer to the two sets as enrollment and test set, however the role of the utterances
has become symmetric. Assume now that we use as features for a classifier these sets
of utterances. The natural classes of this problems become then the same–speaker
(target) class and the different speaker (non–target) class [118, 73, 74]. Thus, the
multiclass speaker verification problem can be recast as a binary problem where the
features are pairs (or sets) of utterances. This is similar to what is done in the PLDA
framework, where the models provide likelihood–ratios between same speaker and
different speakers hypotheses.

In this section we describe how to build a non–linear SVM which is able to dis-
criminate between these two classes. We also show how the SVM kernel is connected
to the PLDA–like models of Section 3.6 and that it can be efficiently implemented for
medium–size (around 20 thousand utterances) datasets [73, 74]. A similar approach
holds for a LR model [74].

5.2.1 Two–covariance model and pairwise SVM

We consider a single–conversation recognition problem, i.e. where we have a single
enrollment utterance with an associated i–vector φ1 and a single test utterance
with an associated i–vector φ2 (the roles of φ1 and φ2 are interchangeable). We
also consider a two–covariance model (Section 3.6.1) with within–covariance W and
between–covariance B. The likelihood–ratio l between same speaker and different

89

5 – SVM–based Speaker Recognition

speaker hypotheses can be written as

log l =
1
2

(log |B| − µTBµ+ log |Λ̃|+ γT1,2Λ̃γ1,2)

− 1
2

(2 log |B| − 2µTBµ+ 2 log |Γ̃|+ γ1
T Γ̃γ1

+ γ2
T Γ̃γ2) (5.10)

where
Λ̃ = (B + 2W)−1 Γ̃ = (B +W)−1

γ1,2 = Bµ+W (φ1 + φ2) γi = Bµ+Wφi
(5.11)

Combining all the terms which do not depend on the i–vectors into a single term k̃
we can rewrite the log–likelihood ratio as

log l = k̃ + γT1,2Λ̃γ1,2 − γ1
T Γ̃γ1 − γ2

T Γ̃γ2 (5.12)

Replacing (5.11) in (5.12) to make explicit the role of the two i–vectors in the log–
likelihood ratio computation we obtain

log l =
1
2

(
[Bµ+W (φ1 + φ2)]T Λ̃[Bµ+W (φ1 + φ2)] (5.13)

− (Bµ+Wφ1)
T Γ̃(Bµ+Wφ1) (5.14)

− (Bµ+Wφ2)
T Γ̃(Bµ+Wφ2) + k̃

)
(5.15)

which can be rewritten as

log l = φT1 Λφ2 + φT2 Λφ1 + φT1 Γφ1 + φT2 Γφ2 + (φ1 + φ2)
T c+ k (5.16)

where

Λ =
1
2
W T Λ̃W

Γ =
1
2
W T

(
Λ̃− Γ̃

)
W

c = W T
(
Λ̃− Γ̃

)
Bµ

k =
1
2
k̃ +

1
2

(Bµ)T
(
Λ̃− 2Γ̃

)
(Bµ) (5.17)

This formulation shows that the log–likelihood ratio can be expressed as a
quadratic form of the two considered i–vectors, where the original model param-
eters are function of Λ,Γ, c and k.

The pairwise SVM approach presented in [73, 74] starts from this formal expres-
sion for the log–likelihood ratio and discriminatively trains the transformed model
parameters Λ,Γ, c and k. The classes are assumed to be same speaker pair (target)
and different speaker pair (non–target), corresponding respectively to a positive and

negative log–likelihood ratio, and features are pairs of i–vectors Φ1,2 =
[
φT1 φ

T
2

]T

90

5.2 – Pairwise SVM

5.2.2 Pairwise SVM feature space

The score function (5.16) is clearly non–linear in Φi,j, however it can be shown that
there exists a transformation of the feature vectors ϕ(Φi,j) such that the scoring
function can be expressed as a dot–product between the model parameters and the
transformed features. To find this transformation, we recall that the computation of
the bilinear form xTAy can be expressed in terms of the Frobenius inner product as
xTAy = 〈A,xyT 〉 = vec(A)Tvec(xyT), where vec(·) is is the operator that stacks the
columns of a matrix into a vector and 〈A,B〉 denotes the dot–product

∑
i

∑
j ai,jbi,j

between matrix A = {ai,j} and matrix B = {bi,j} . Hence, the expression for the
speaker detection log-likelihood can be rewritten as

log l = 〈Λ, φ1φ
T
2 + φ2φ

T
1 〉+ 〈Γ, φ1φ

T
1 + φ2φ

T
2 〉

+ cT (φ1 + φ2) + k (5.18)

If we stack the parameters as

w =

vec(Λ)
vec(Γ)
c
k

 =

wΛ

wΓ

wc
wk

 (5.19)

and we expand the i-vectors pairs as

ϕ(Φ1,2) =

vec(φ1φ
T
2 + φ2φ

T
1)

vec(φ1φ
T
1 + φ2φ

T
2)

φ1 + φ2

1

 =

ϕΛ(φ1, φ2)
ϕΓ(φ1, φ2)
ϕc(φ1, φ2)
ϕk(φ1, φ2)

 (5.20)

the scoring (5.16) can be expressed as

S(Φ1,2) = S(φ1, φ2) = log l(φ1, φ2) = wTϕ(Φ1,2) (5.21)

that is, the score is computed as the dot–product between the hyperparameters w
and the expanded features ϕ(Φ).

5.2.3 Pairwise SVM as likelihood approximation

We now derive the same formulation without considering the generative 2–covariance
model. Suppose that the speaker detection log–likelihood ratio is some analytic
function of the i–vectors Φ = (φ1, φ2) given by s = s(Φ) = s(φ1, φ2), invariant to

91

5 – SVM–based Speaker Recognition

i–vector swapping, i.e. s(φ1, φ2) = s(φ2, φ1). We can write the Taylor expansion for
s around some generic point Φ̂ as

s(Φ) =
+∞∑

k=0

((
Φ− Φ̂

)
· ∇

)k
s|Φ̂

k!
(5.22)

where ∇ is the gradient operator

∇ =

(
∂

∂Φ1

, . . . ,
∂

∂Φd

)
(5.23)

A second order approximation of this function around Φ̂ = 0 is

s(Φ) = s(Φ̂) + (Φ · ∇s|Φ̂) + ΦT (H(s)|Φ̂)Φ (5.24)

where H(s) is the Hessian of function s. We can rewrite (5.24) as

s(φ1, φ2) = k + (φ1 + φ2)
T c+ φT1 ΛφT2 + φT2 Λφ1 + φT1 Γφ1 + φT2 Γφ2 (5.25)

where

s(Φ̂) = k

H(s)|Φ̂ =

[
Γ Λ
Λ Γ

]
(5.26)

∇s|Φ̂ = c

The problem now consists in estimating the coefficient matrices of the Taylor ex-
pansion. We note that the choice of Φ̂ = 0 is not restrictive, since any other choice
would lead to a formally equivalent expression for s(Φ). We obtained the same
formal expression as in (5.16).

This derivation is interesting because it provides a rationale for a straightforward
extension of the PSVM approach to Gender Independent training [119]. In particu-
lar, since PSVM can be interpreted as an approximation of the log–likelihood ratio
function, we can assume that probabilistic modeling of gender labels can be implic-
itly learned by the classifier by simply using a mixed–gender training set. Some
care, however, might be necessary to balance data according to gender.

5.2.4 Polynomial Feature Mapping

Finally, we show that the quadratic form (5.16) corresponds to a slightly modified
polynomial kernel of degree 2. The kernel function describing polynomial kernels is

K(xa,xb) = (xTa xb + 1)
d

(5.27)

92

5.2 – Pairwise SVM

where d is the kernel degree (in our case d = 2). Let Φa,b = [φa φb] and Φw,z = [φw φz],
with φa, φb, φw, φz i–vectors, i.e. the SVM patterns are i–vectors pairs. The kernel
expression (5.27) becomes

K(Φa,b,Φw.z) = K([φa φb], [φw φz]) = (φTa φw + φTb φz + 1)
2

(5.28)

that is,

K(Φa,b,Φw,z) = φTa φwφ
T
wφa + φTb φzφ

T
z φb + 2φTa φwφ

T
z φb + 2φTa φw + 2φTb φz + 1

= 〈φaφTa , φwφTw〉+ 〈φbφTb , φzφTz 〉
+2〈φaφb, φwφz〉+ 2φTa φw + 2φTb φz + 1 (5.29)

= 〈[φaφb1][φaφb1]T , [φwφz1][φwφz1]T 〉
= ϕ̃(φaφb)

T ϕ̃(φwφz)

where ϕ̃(Φ1,2) is the feature mapping

ϕ̃(Φ1,2) = vec([φ1φ11][φ1φ21]T) ∼

vec(φ1φ
T
2)

vec(φ2φ
T
1)

vec(φ1φ
T
1)

vec(φ2φ
T
2)

φ1

φ1

φ2

φ2

1

(5.30)

Symbol ∼ is used to denote equivalence of vectors up to reordering of entries. Finally
consider the log–likelihood (5.16) and transform the (unknown) parameter c as c̃ =
c/2, so that the linear term of the log–likelihood becomes 2c̃T (φ1 + φ2). Then the
feature expansion (5.20) becomes

ϕ(Φ1,2) =

vec(φ1φ
T
2 + φ2φ

T
1)

vec(φ1φ
T
1 + φ2φ

T
2)

2(φ1 + φ2)
1

 (5.31)

In this case it is easy to verify that

ϕ(Φa,b)
Tϕ(Φw,z) = ϕ̃(Φa,b)

T ϕ̃(Φw,z) (5.32)

Therefore, apart from a scaling of the linear term, the PSVM kernel corresponds to
a polynomial kernel of degree 2.

93

5 – SVM–based Speaker Recognition

5.2.5 Fast scoring

Since the number of i-vector pairs is of the order of hundred of millions in our
experiments, the evaluation of a kernel matrix would be clearly unfeasible. However,
if we use a primal SVM solver, we need only to evaluate the SVM loss function and
its gradient with respect to the hyperplane. Both evaluations require, in principle,
a sum over all the i-vectors pairs, but in the next two subsections we show that for
feature mapping (5.20) the loss function and the gradients can be computed without
an explicit expansion of all the i-vectors pairs [73, 74]. This allows an efficient
training technique based on primal solvers as, for example, BMRM (Section 4.3.2).

Loss function evaluation

Let D denote the matrix of all stacked training i-vectors φi

D = [φ1φ2 . . . φn] (5.33)

Also, let Θ ∈ {Λ,Γ, c, k} denote a component of the hyperplane, and SΘ be the
score matrix of training patterns due to component Θ, i.e. SΘi,j = SΘ(φi, φj). From
(5.16) the score matrices can be evaluated as

SΛ(φ1, φ2) = φT1 Λφ2 + φT2 Λφ1 = 2DTΛD (5.34)

SΓ(φ1, φ2) = φT1 Γφ1 + φT2 Γφ2 = S̃Γ + S̃Γ
T

(5.35)

Sc(φ1, φ2) = cTD (5.36)

Sk(φ1, φ2) = k · 1 (5.37)

where

S̃Γ = [dΓ . . . dΓ︸ ︷︷ ︸
n

] (5.38)

dΓ = diag (DTΓD) (5.39)

diag is the operator that returns the diagonal of a matrix as a column vector, and
1 is an n× n matrix of ones. Let S be the sum of these partial score matrices. The
SVM loss function can then be expressed as

L(D,Z) = C
∑

i,j

max
[
0, 1− ζi,jwTϕ(φi, φj)

]

= C〈1,max(0, 1− (Z ◦ S)〉 (5.40)

where 0 is an n×n matrix of all zeros, Z is the n×n matrix of labels for trial (φi, φj),
Zi,j = ζi,j ∈ {−1,+1}, and ◦ is the element-wise matrix multiplication operator.

94

5.2 – Pairwise SVM

Gradient Evaluation

The gradient of the loss function can be evaluated from its derivative with respect
to the m-th dimension of w as

∂L

∂wm
=

∑

i,j

∂lL1(w, (φi, φj), ζi,j)
∂(wTϕ(φj, φj))

∂wTϕ(φj, φj)
∂wm

=
∑

i,j

gi,j
∂Si,j
∂wm

(5.41)

=
∑

i,j

gi,jϕ(φi, φj)m

where gi,j is the derivative of the loss function with respect to the dot product

gi,j =

0 if Si,jζi,j ≥ 1

−ζi,j otherwise
(5.42)

Let G be the matrix Gi,j = gi,j, then

∇L =

∇ΛL
∇ΓL
∇cL
∇kL

 =

vec
(∑

i,j gi,j
(
φiφ

T
j + φjφ

T
i

))

vec
(∑

i,j gi,j
(
φiφ

T
i + φjφ

T
j

))

∑
i,j gi,j (φi + φj)∑

i,j gi,j

=

2 · vec
(
DGDT

)

2 · vec ([D ◦ (1AG)])DT

2 · [D ◦ (1AG)] 1B

1
T
B
G1B

(5.43)

where 1A is a n×M matrix (M is the i–vector dimensionality) of ones and 1B is a
size n column vector of ones.
Again, no explicit expansion of i-vectors is necessary for this evaluation.

Computing the regularization coefficient

Finally, we consider the problem of estimating the regularizer coefficient (Section
4.1.1). In order to estimate the norm of the expanded features we observe that, from
(5.28), the norm of the expanded features ϕ(φ1, φ2) for i–vector pair Φ = (φ1, φ2)
can be computed as

‖ϕ(φ1, φ2)‖ = K(Φ1,2,Φ1,2)
1

2 = φT1 φ1 + φT2 φ2 + 1 (5.44)

95

5 – SVM–based Speaker Recognition

The regularization parameter C can then be computed as

C =

 1
n2

n∑

i=1

n∑

j=1

‖ϕ(φi, φj)‖

−2

=

 1
n2

n∑

i=1

n∑

j=1

(
φTi φi + φTj φj + 1

)

−2

=

(
1 +

2
n

n∑

i=1

‖φi‖2

)−2

(5.45)

96

Chapter 6

Experimental Results

This chapter presents some experimental results for the different contributions of
the authors to language and speaker verification presented in this work. Most of the
speaker and language recognition techniques are evaluated according to the protocols
defined by the American National Institute of Standards and Technology (NIST) for
their Language and Speaker Recognition Evaluations [90, 91, 120].

6.1 GPU–based ANN training

The first set of results we present are related to the speed–up of ANN training
for speech decoding. The reference architecture is detailed in Section 2.5.4. The
experiments were run on an HP xw8600 workstation equipped with a quad-core
3.0 GHz CPU, 1600 MHz FSB, 8 GB RAM, NVIDIA GTX280 GPU, and running
Linux RedHat RHEL 5.2 EM64T. The GPU–accelerated computations are com-
pared to a single–thread MKL [121] implementation and to a multi–thread MKL
implementation [33, 32]. The first set of experiments we report were done to asses
the capabilities of the CUDA framework for medium–scale matrix multiplications.
In particular, we measured the time required by the different techniques to per-
form matrix multiplications for square matrices of different sizes. The results of
these experiments are shown in Figure 6.1 where the execution times are plotted
in logarithmic scale. As expected, using a multi-threaded architecture increases the
performance of the MKL implementation. CuBLAS matrix multiplication routines,
on the other hand, outperform the MKL routines for matrices with medium to large
sizes, however, for smaller matrices, the overhead due to memory transfers cannot
be neglected (in Figure 6.1 we report times both with and without taking into ac-
count memory transfers). This suggests to use large bunch sizes for training the net
to reduce the impact of memory transfers We can also observe that efficiency peaks
are obtained, with the CUDA framework, in correspondence of matrix sizes which

97

6 – Experimental Results

Figure 6.1: Time required for matrix–matrix multiplications for squared matrices of
different sizes

are multiple of powers of two. This motivates the use of padding.
Next, we analyze the performance in terms of training time for the different

implementations. The task consists in training an English model using the Wall
Street Journal corpus [122], a relatively small database of 7236 files, which represents
a popular case study in Automatic Speech Recognition. This corpus has been used
as a validation set for the algorithms and for tuning the training procedure.

Table 6.1 shows the elapsed training time, and the relative speed–up of the three
analyzed implementations together with a baseline standard C implementation. In
order to obtain a fair comparison between MKL and GPU implementations the
forward bunch size was set to 15 for MKL in order to reduce the significant overhead
of re–processing patterns accepted by FABP but exceeding the BP bunch size. The
GPU bunch, on the other hand, is set to 32 in order to reduce the memory transfer
overhead. The MKL implementation achieves a speed–up of 3.7 times with respect
to the naïve C implementation. On the other hand, the GPU accelerated training
is about 19 times faster than the baseline and more than 5 times faster than the
single–thread MKL implementation.

Table 6.2 shows the results of another set of experiments. This time different
language models were trained with the same setup using large corpora collected for
creating the models used by the Loquendo decoder. Since different bunch sizes can
result in slightly different models (due to the presence of FABP), these experiments

98

6.2 – Language Identification

Table 6.1: Training time for different ANN training algorithms

Training implementation
Elapsed time Speed–up w.r.t. Speed–up w.r.t.

(hh:mm) standard C MKL
Standard C 42:35 - -
Single–thread MKL 11:36 3.7× -
Multi–thread MKL 9:41 4.4× 1.2×
GPU and CUDA w/o padding 2:29 17.1× 4.7×
GPU and CUDA with padding 2:14 19.1× 5.2×

were also used to asses the quality of the GPU–based decoders. Errors are measured
in terms of Word Accuracy (WA) and compared to the standard Loquendo ASR
models. The results show that GPU–based training allows to achieve the same
accuracy as the MKL implementation and both achieve the same results as the
baseline system. Using GPUs for training the ANN models allows to achieve an
average of 6 times speed–up with respect to the single–thread MKL implementation.

Table 6.2: Speed–up and recognition accuracy for different algorithms on different
datasets

Languages Loquendo ASR Single–thread MKL GPU–CUDA
WA (%) WA (%) ∆ WA WA (%) ∆ WA Speed–up

Italian 93.1 93.0 +0.1 93.0 +0.1 4.9×
Spanish 93.2 93.3 -0.1 93.2 0.0 5.4×
French 90.2 90.2 0.0 90.0 +0.2 6.5×
German 89.4 89.7 -0.3 90.0 -0.6 7.0×
English 84.6 84.5 +0.1 84.1 84.2 6.0×
Brazilian 84.1 84.7 -0.6 84.2 -0.1 6.7×

Average 89.1 89.2 -0.1 89.1 0.0 6.1×

6.2 Language Identification

In this section we present some results for FA–based techniques applied to language
identification. In particular, we will analyze the language factor approach (Section
4.2.2) and the use of phonotactic i–vectors combined with discriminative classifiers
(Section 4.2.4).

99

6 – Experimental Results

6.2.1 Language Factors

The first set of experiments we present are related to the language factors model
(Section 4.2.2). The results are reported for the NIST 2007 Language Recognition
Evaluation (LRE) [90] which comprises 14 languages, with approximately 6500 test
utterances uniformly distributed for durations of 3, 10, and 30 seconds. The reported
evaluation measures are the NIST–defined minimum Decision Cost Function score
(minDCF) and the percent Equal Error Rate (% EER) uniformly weighted over the
languages [90]. Raw scores are transformed by means of a SVM–based back–end.
In particular, a small SVM has been trained over the raw scores using a held–out
development set, taking care to balance the cost factor of the different classes [58].

In these experiments we asses the performance of language factors for both
GMM–SVM and pushed GMM approaches (Section 4.2.1). In order to estimate
language factors a gender independent 2048 components gender independent UBM
was trained using the Callfriend corpus [123]. Acoustic features are Cepstral plus
Shifted Delta coefficients (Section 2.1.3). For each utterance a MAP adapted GMM
is estimated using a small relevance factor. Language and speaker compensated
eigenvoice subspaces are estimated using all data from the 23 languages in the Call-
friend Corpus [123], half of the NIST LRE07 development corpus, half of the OSHU
corpus provided by NIST for LRE05 [124] and the Russian through switched tele-
phone network corpus [123], resulting in a total of approximately 14000 segments.
The backend was trained using the second half of the NIST LRE07 development
corpus, the second half of the OSHU corpus and the development and test sets
provided by NIST for LRE03. The backend data amounts to approximately 6000
segments for each of the 30s, 10s and 3s duration conditions defined by NIST.

The first set of experiments was done to asses the performance of a linear SVM
classifier with respect to the type of subspace modeling used and the dimension of
the subspaces. Figure 6.2 shows the minimum DCF (minDCF) for the two different
subspace models for the 30s condition. The first thing to notice is that language fac-
tors perform always better than speaker compensated eigenvoice models. Moreover,
the former models are more stable with respect to the subspace dimensionality: with
100 factors the performance are just 10% worse than using 600–dimensional factors.
Therefore, we restrict out analysis only to the language factor subspace model.

A second set of experiments was conducted to compare the language factor per-
formance with a classical GMM–SVM system. Table 6.3 summarizes the results.
We can observe that the language factor approach outperforms the classical GMM–
SVM approach for both short and long duration conditions. Moreover, a linear SVM
proves to achieve the same performance as the more theoretically sound KL kernel.
The second part of Table 6.3 shows the performance of the language factors in
combination with the pushed–GMM approach. While the pushed–GMM approach
performs better than the classical GMM–SVM approach when using MAP–adapted

100

6.2 – Language Identification

Figure 6.2: MinDCF as a function of the number of language factors for two different
language subspaces

supervectors, the combination of language factors and GMM pushing does not im-
prove the performance of the language factors models with respect to standard SVM
modeling. However, in both cases language factors allow for much faster SVM model
training due to the much smaller dimensionality of the features.

6.2.2 Phonotactic i–vectors

We now focus on the phonotactic i–vector approach. In this section we compare
different classifiers based on SVM and Logistic Regression, both in a one–vs–all
framework and in a multiclass framework (Section 4.2.4). In particular, for the
multiclass problem we also analyze the performance of binary classification followed
by score back–projection as described in Section 4.1.5. All models are trained using
the default SVM regularizer (Section 4.1.1).

The classifier features are 600–dimensional i–vectors extracted from tri–gram
counts using the BUT Hungarian phone recognizer [89]. Our baseline system is
a binary one–vs–all LR classifier [89]. A preprocessing step is carried out which
centers the i–vectors and perform Within–Class Covariance Normalization. After
the classification step all scores are calibrated by means of a multiclass Logistic

101

6 – Experimental Results

Table 6.3: Min DCF and (%EER) for the core closed set tests in LRE07

Model 30s 10s 3s

GMM–SVM (KL kernel SVM)
0.029 0.085 0.201
(3.43) (9.12) (21.3)

GMM–SVM (Linear SVM)
0.031 0.087 0.200
(3.71) (9.51) (21.0)

LF–SVM (KL kernel SVM)
0.026 0.083 0.186
(3.13) (9.02) (20.4)

LF–SVM (Linear SVM)
0.026 0.083 0.187
(3.11) (9.13) (20.4)

Discriminative GMMs
0.021 0.069 0.174
(2.56) (7.49) (18.5)

Discriminative LF (KL kernel SVM)
0.025 0.084 0.186
(2.97) (9.04) (19.9)

Discriminative LF (Linear SVM)
0.025 0.084 0.186
(3.05) (9.05) (20.0)

Regression backend [125].
Results are given for the 2009 NIST Language Recognition Evaluation [91] in

terms of Cavg as defined by NIST.
Table 6.4 shows the results in terms of Cavg [91] using the classifiers described

in Section 4.2.4. LR and SVM entries refer to the one-versus-all systems, MC-LR
and MC-SVM denote to the multiclass systems and SP-LR and SP-SVM refer to
the binary pairwise systems with Score Projection. Following the success of LDA

Table 6.4: Cavg × 100 for different systems on NIST LRE09 Evaluation task over
30s, 10s and 3s conditions.

System Scores type 30s 10s 3s
LR one-to-all 2.98 8.25 21.37
SVM one-to-all 3.07 8.55 21.68
MC-LR multiclass 3.16 8.66 21.82
MC-SVM multiclass 3.89 10.60 23.92
MC-SP-LR projection 2.93 8.14 21.32
MC-SP-SVM projection 3.91 9.86 23.03

and length normalization for acoustic i–vectors in speaker verification problems, we
also analyzed different preprocessing techniques. In particular, it was found out

102

6.3 – Large–scale linear SVM training

that Heteroscedastic Discriminant Analysis [126] followed by WCCN and length
normalization of the i–vectors allow effectively improving the performance for all
the systems. Table 6.5 shows the results of the same classifiers used before with this
particular preprocessing. We can observe that the different classifiers, trained in

Table 6.5: Cavg × 100 for different systems on NIST LRE09 Evaluation task over
30s, 10s and 3s conditions after HDA, WCCN and length normalization.

System Scores type 30s 10s 3s
LR one-to-all 2.83 8.09 21.34
SVM one-to-all 2.83 8.09 21.34
MC-LR multiclass 2.79 8.06 21.35
MC-SVM multiclass 2.81 8.05 21.33
SP-LR projection 2.80 8.09 21.31
SP-SVM projection 2.82 8.04 21.33

this 22 dimensional subspace, achieve almost the same performance, with multiclass
systems giving slightly better results than binary systems. I–vector postprocessing
proves to be valuable to improve the system performance.

6.3 Large–scale linear SVM training

In Section 4.3 we have described different SVM training algorithms for large–scale
linear classification problems. In this section we analyze the behavior of these dif-
ferent algorithms for a set of language and speaker verification tasks. In particular,
we compare the algorithms in terms of time required to reach convergence, scala-
bility towards large datasets and recognition performance. The tasks we take into
consideration are the phonotactic GMM–SVM and the pushed–GMM approaches
for language identification (Section 4.2.1) and the pairwise SVM model for speaker
identification (Section 5.2).

We begin with an analysis of the implementation details of each algorithm.

6.3.1 SVM algorithms implementation

DCDM, BMRM and Pegasos algorithms have been implemented from scratch using
a Python/C framework, where the modules requiring expensive computations are
either written in C language or are evaluated by means of fast and parallelized
NumPy/BLAS functions [127]. In order to reduce the mixed Python/C framework
overhead, we adopted a bunch mode training approach, where bunches of patterns
are loaded into main memory and processed together. In particular, Python was

103

6 – Experimental Results

used for preparing and loading the patterns, while the computation intensive tasks
are performed by fast external libraries (NumPy/BLAS) and C code. Large bunches
minimize the communication overhead between Python and the library routines.

6.3.2 Algorithms for language recognition

The language identification systems we presented require training of a single one–
versus–all SVM model for each language. However, all the models share the same
data, the difference being only in the label associated to each pattern. For this
reason, all SVMs algorithms used for language identification, with the exception
of SVMLight, have been implemented as to jointly train all the language models in
parallel in order to minimize disk accesses. SVMLight has been modified to effectively
compute by means of multi threaded NumPy/BLAS libraries the kernel matrix, and
to cache it in memory. Thus, all the language models share the same kernel matrix
computed just once. This approach has proven to be faster than caching kernel
computations on the fly.

Dual Coordinate Descent Method

The Dual Coordinate Descent Method has been implemented as described in Sec-
tion 4.3.1. Shrinking [84] has been used to speed–up the training [109]. A multi–
threaded implementation of DCDM (referred to as MTDCDM) was also developed.
Since DCDM is intrinsically a sequential algorithm, the parallelism was obtained by
allocating a thread to each of the different language models. The obtained speed–up,
however, is not very significative.

Bundle Methods for Regularized Risk Minimization

The BMRM algorithm has been implemented as described in Section 4.3.2. The
quadratic problem (4.104) is solved by means of the CVXOPT Python solver [128].
The shrinking technique was not adopted in the BMRM algorithm, which solves the
problem in its primal formulation, thus each iteration of the algorithm performs a
full scan of the training dataset. The α’s needed for the pushed–GMM approach
have been evaluated as outlined in Section 4.3.2.
Since, at each iteration, the gradient computations can be performed in parallel, a
distributed version of BMRM has been implemented (referred to as MPBMRM in
the following) where the dataset is split among different processes, and each process
exploits the multi–thread capabilities of the NumPy/BLAS functions.

104

6.3 – Large–scale linear SVM training

Pegasos

Our implementation of Pegasos (Section 4.3.2) slightly modifies the stochastic gra-
dient descent step by introducing the concept of epoch. Each epoch denotes a block
of training iterations which are performed on a randomly selected subset of the full
training dataset. In particular, at the beginning of each epoch a block of randomly
selected training patterns is loaded in memory, and the hyperplane update is per-
formed using only the patterns belonging to this subset. Pegasos provides the primal
solution to the SVM problem. However, a set of α’s for the pushed–GMM approach
was computed as described in Section 4.3.2. Note, however, that stopping the algo-
rithm before convergence does not guarantee that the obtained values correspond
to a dual feasible solution. Due to its sequential update rule we did not implement
a multi–threaded version of Pegasos.

SVMPerf

Finally, SVMPerf (Section 4.3.1) was modified to fit the data format of the other
implementations and to read the training patterns on demand rather than loading
all the dataset in main memory. A multi–threaded implementation (referred to as
MTSVMPerf in the following) was obtained by modifying the original code with the
OpenMP [129] instructions that allow core computations to be parallelized.

6.3.3 Algorithms for speaker recognition

The pairwise SVM problem (Section 5.2) requires some additional considerations.
First of all, patterns are pairs of i–vectors, thus the number of the training trials
grows as O(n2), where n is the number of i–vectors in the training set. Moreover, if
d denotes the i–vector dimensionality, the feature mapping described in Section 5.2
produces mapped features having O(d2) components, thus the global dataset size is
O(n2d2). Caching the complete kernel matrix is impractical even for relatively small
sized datasets because it would require O(n4) memory. SVM training of the i–vector
pairs by means of SVMLight is not viable because, as shown in Section 4.3.1, its time
complexity is O(n4d). In DCDM the hyperplane is updated for each pattern, thus it
requires either the complete dataset of mapped features (O(n2d2) memory) or online
feature mapping (O(n2d2) operations for each iteration). Since in our experiments d
equals 400 and n is approximately 20000, these dual algorithms cannot be directly
used to train the models for our discriminative approach.

Training is feasible, instead, by using primal solvers such as BMRM and Pegasos
because it is possible to efficiently evaluate the loss function and its gradient with
respect to w over appropriate subsets of trials (Section 5.2.5.

105

6 – Experimental Results

The BMRM approach allows to easily plug–in the formulas given in Section
5.2.5. Pegasos, on the other hand, requires some more considerations. The expres-
sions given in Section 5.2.5 are effective only when blocks of i–vectors are scored
together considering all cross pairs. In fact, evaluation of the scores of all pairs
would otherwise require O(n2d2) time. On the other hand, in stochastic gradient
descent usually a small number of patterns are scored before a hyperplane update.
For this reason, Pegasos has been slightly modified: instead of randomly picking a
bunch of trials among all possible trials, at each iteration all the i–vector trials for
a set of random speakers are selected, and the hyperplane is adapted according to
the approximation of the gradient evaluated on this set of trials only. This reduces
the risk of selecting “different speaker pair” trials only.

6.3.4 Language Recognition task results

The NIST 2009 LRE [91] core condition task comprises 23 languages and three dura-
tion conditions, corresponding to 30s, 10s and 3s nominal utterance duration. Test
data comprises both Conversational Telephone Speech and telephone bandwidth
broadcast radio speech. The results reported in this section cannot be compared
to those of state–of–the–art systems, which usually are the combination of different
subsystems. Since the goal here is to compare the relative performance of different
SVM algorithms, a single channel–independent system is considered.

Our training set for the acoustic system consists of 17521 utterances taken from
the Callfriend corpus, the corpora provided by NIST for the 2003, 2005 and 2007
Language Recognition Evaluations [130, 124, 90], the Russian through switched
telephone network [123], the OGI corpus [123] and the Voice of America corpora
[91]. References for these data and the details on the selection process for training
patterns are given in [131].

2048–Gaussian mixtures are used for the UBM and language GMMs, while fea-
tures are 7 Mel frequency cepstral coefficients and their 7–1–3–7 Shifted Delta (SDC)
coefficients, 56 acoustic features in total, compensated for nuisances in the feature
domain as in [100].

The phonetic system is trained using the same dataset, though 2005 LRE utter-
ances were split into chunks of approximately 30s. This results in 20543 training
utterances.

The first issue in training SVM classifiers is class balancing. It can be faced by
appropriately filtering the dataset, or by replicating the patterns of the less pop-
ulated classes, or even better, by giving different weights to the loss function of
patterns belonging to different classes. The first method is not attractive because
it reduces the amount of training patterns. The second approach increases the sec-
ondary memory accesses, and makes difficult jointly training the different language
models because language dependent datasets have to be generated from the full

106

6.3 – Large–scale linear SVM training

dataset. In our experiments, all the SVMs have been trained with the third method
of class balancing, except for SVMPerf, which does not provide a simple and direct
way to apply this technique.

Concerning the C parameter, the default one described in Section 4.1.1 was used,
which proves to produce good models and reasonable results in a large variety of
experiments.

System performance is presented in terms of Equal Error Rate (EER) and Cavg

as defined by NIST [91]. Scores are normalized by means of a Gaussian back–end
trained on a held–out set [132]. The performance is given as a function of time
by testing models obtained after a variable number of iterations. Timings were
evaluated on a HP DS160G5 server equipped with two Xeon X5472 3 GHz quad-
core processors, 32 GB of DDR2-800 RAM and a SATA 7200 RPM hard disk. All
results are given in terms of wall clock time.

Phonetic system

The first set of experiments we present compares the performance of the SVM train-
ing algorithms for the phonetic GMM–SVM system (Section 4.2.1). We take as
accuracy reference the models produced by SVMLight after convergence has been
reached. The time required to obtain these models is used as reference time for this
algorithm (we are not interested in measuring the time for less accurate SVMLight

models since this algorithm would not scale linearly with the dataset size anyway).
As far as SVMPerf is concerned, again we consider only the final training time

since this technique is less attractive for our applications due to the difficulties in
class balancing, which lead to worse recognition results.

Table 6.6 compares the asymptotic accuracy (i.e. the accuracy obtained by mod-
els after a large number of iterations) of the different phonetic models in the 30,
10, and 3 seconds conditions for the NIST LRE09 tests. Both DCDM and BMRM
models converge, in terms of Cavg and EER, to the results provided by the baseline
SVMLight–based model. Models trained with Pegasos give slightly worse perfor-
mance, and SVMPerf does not produce models as good as the other approaches due
to the lack of class balancing.

The convergence properties of the different techniques can be appreciated looking
at Table 6.7, which reports the time required by each algorithm to estimate a model
that reaches an accuracy within 1.0% of the Cavg value obtained using a model
trained by SVMLight, and in Fig. 6.3, which shows, in logarithm scale and for
the 30s condition, the tradeoff between training time and Cavg. In Table 6.7 the
conditions which did not reach convergence are indicated by a “–” sign. Similar
trends have been observed for EER and for the different duration conditions.

Restricting our analysis to single–thread implementations, we can observe that
DCDM is the fastest algorithm to reach convergence. Moreover, the estimated model

107

6 – Experimental Results

Table 6.6: Phonetic system: asymptotic values Cavg and EER

Algorithm 30s 10s 3s

SVMLight 0.0375 0.0858 0.2037
3.972% 8.881% 20.772%

BMRM
0.0375 0.0860 0.2032
3.941% 8.981% 20.842%

DCDM
0.0376 0.0861 0.2031
3.965% 8.948% 20.785%

SVMPerf 0.0434 0.0944 0.2061
4.583% 9.782% 21.057%

Pegasos
0.0392 0.0879 0.2032
4.198% 9.116% 20.979%

Table 6.7: Phonetic system: time required to achieve 1% SVMLight Cavg accuracy
(“-” means not reached)

Algorithm 30s 10s 3s

SVMLight 6991s 6991s 6991s
BMRM 6672s 5563s 1598s

MPBMRM 1493s 1148s 210s
DCDM 184s 143s 96s

MTDCDM 85s 66s 46
SVMPerf - - -

MTSVMPerf - - -
Pegasos - - 3364s

behaves even better than the asymptotic one, probably because of less overfitting
of the training data. The other solvers are much slower, and BMRM is faster and
slightly better than Pegasos.

The parallel implementation of DCDM and BMRM takes into account the dif-
ferent characteristics of the two approaches. For MTDCDM we use 23 threads (one
for each language model), while in MPBMRM parallelism is exploited at computa-
tion level by distributing the load among 4 processes, each one using 8 threads for
NumPy/BLAS operations. As expected, the DCDM algorithm is not able to gain
much from the increased number of cores, whereas BMRM benefits from multiple

108

6.3 – Large–scale linear SVM training

101 102 103 104

Time (s)

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

BMRM
MPBMRM
DCDM
MTDCDM

Pegasos

SVMPerf

MTSVMPerf

SVMLight

C
a

v
g

Figure 6.3: Phonetic system: Cavg as a function of the training time for the 30s
condition

processes because training is done in batch mode. It takes also advantage of multi–
threading for the NumPy/BLAS operations. While for this dataset single–thread
DCDM has faster convergence rate than multi–process BMRM, massive paralleliza-
tion of BMRM could easily outperform DCDM for larger datasets.

Pushed–GMM system

Similar to what was done for the phonetic system we measured the performance of
pushed–GMM systems with respect to training time. However, due to the much
larger time required for testing these kind of models, fewer samples were taken than
for the phonotactic system. SVMPerf cannot be used in this context since it does not
provide the dual solution required to build the pushed–GMM model and anti–model.

Table 6.8 shows the results in terms of accuracy (Cavg and EER) and time re-
quired to reach 1% of reference (SVMLight) accuracy. Note that the model used for
testing is the same in all conditions (although for the different conditions the same
algorithm might require a different number of iterations to provide accurate enough
models). Also, training times are sampled in correspondence to algorithm iterations,
thus the measured times are the same when the target Cavg is reached at the end of
the same iteration.

The first thing we observe is that all models asymptotically achieve SVMLight

accuracy. DCDM is again the fastest algorithm to reach convergence, followed by
the BMRM algorithm. Pegasos is much slower but its models give slightly better
results, probably due to the fact that its algorithm for the evaluation of the Lagrange
multipliers does not impose constraints to the α values.

It is worth noting, however, than even the first BMRM model provides quite

109

6 – Experimental Results

Table 6.8: Pushed–GMM: asymptotic values for Cavg and EER, and time required
to achieve 1% SVMLight Cavg accuracy

Algorithm 30s 10s 3s

SVMLight 0.0276 0.0621 0.1616
3.120% 6.592% 16.594%
2871s 2871s 2871s

BMRM
0.0276 0.0626 0.1618
3.153% 6.587% 16.579%
1194s 723s 311s

DCDM
0.0276 0.0626 0.1619
3.157% 6.596% 16.592%

655s 655s 121s

Pegasos
0.0272 0.0617 0.1605
3.112% 6.543% 16.623%
8433s 1800s 938s

good results. This is interesting since the Lagrange multiplier corresponding to this
model are all equal, which means that model and anti–model are computed simply
as the average of target and non–target GMMs[107].

6.4 Pairwise SVM

In this section we provide some experimental results concerning the pairwise SVM
approach (Section 5.2). In particular, we compare the recognition performance
of this model with respect to state–of–the–art PLDA models and we analyze how
different SVM training algorithms behave in this particular context.

6.4.1 Pairwise SVM and PLDA

The first set of results we present are preliminary results comparing classical Gender
Dependent (GD) GPLDA (i.e. without any preprocessing of i–vectors) and Heavy–
Tailed PLDA models with a GD pairwise SVM system on the NIST 2010 SRE [120]
tel–tel condition (condition 5) for both the male and female subsets. All the three
systems are trained using the NIST SRE 2004, 2005 and 2006 train and test corpora
[133, 134, 135], the Switchboard II Phase 2 and 3 corpora and the Switchboard
Cellular part 1 and 2 corpora [123]. In these set of experiments the pairwise SVM
regularization parameter was estimated using an approximated expression. The
use of a worse regularizer also forced us to adopt some kind of class balancing,
which, on the other hand, proves to be not necessary anymore when the default

110

6.4 – Pairwise SVM

regularizer is correctly computed. 400–dimensional i–vectors were extracted from
a 60–dimensional features, full–covariance, 2048 Gaussians UBM [136]. While no
normalization was used for PLDA, the presence of the regularizer term in SVM
training requires some kind of normalization of the SVM features. For this reason,
i–vectors were centered and whitened by means of WCCN before training the PSVM.
PLDA systems were trained using 200 speaker factors and full rank channel factors.

The results are shown in Table 6.9 in terms of Equal Error Rate (EER), 2008
SRE DCF (oldDCF) and 2010 SRE minimum and actual Detection Cost Function
(minDCF and actDCF respectively). All scores have been calibrated on using NIST
SRE2008 data [137].

Table 6.9: EER, DCF as defined in SRE 2008 (oldDCF), minimum DCF (minDCF)
and actual DCF (actDCF) as defined in SRE 2010 for the extended tel–tel core
condition (condition 5) of NIST SRE10

Male Set
System EER oldDCF minDCF actDCF

GPLDA 3.82% 0.165 0.401 0.442
HTPLDA 1.55% 0.082 0.313 0.364
PSVM 1.50% 0.074 0.308 0.355

Female Set
System EER oldDCF minDCF actDCF

GPLDA 4.08% 0.179 0.448 0.531
HTPLDA 2.29% 0.118 0.412 0.415
PSVM 2.35% 0.108 0.394 0.398

All
System EER oldDCF minDCF actDCF

GPLDA 4.21% 0.183 0.470 0.498
HTPLDA 1.98% 0.102 0.379 0.393
PSVM 1.94% 0.095 0.373 0.378

We can observe that the pairwise SVM outperforms Gaussian PLDA and per-
forms even slightly better than Heavy–Tailed PLDA. Moreover, the PSVM approach
allows achieving testing time similar to that of GPLDA and much faster than with
HTPLDA.

The second sets of experiments we present were performed to compare an im-
proved PSVM system (i.e. with an exact evaluation of the regularization parameter

111

6 – Experimental Results

and without class balancing) with respect to the GPLDA models created using
length–normalized i–vectors. In both cases WCCN was applied to whiten the i–
vectors. The results shown in Table 6.10 show the performance of the improved
GPLDA system trained with 120 speaker factors and the improved PSVM system.

Table 6.10: DCF and EER for improved GPLDA and PSVM systems

System EER (%) oldDCF minDCF

Female
GPLDA 2.10 0.101 0.355
PSVM 2.21 0.102 0.342

Male
GPLDA 1.24 0.074 0.284
PSVM 1.96 0.082 0.262

In these conditions, the behavior of the two systems is similar (and in both cases
much better than classical GPLDA). GPLDA performs slightly better than PSVM,
however the choice of the number of speaker factors poses some problems and can
influence the performance, as shown in Figure 6.4. The PSVM, on the other hand,
does not need any parameter tuning.

6.4.2 Gender Independent PSVM

Another set of experiments was conducted to asses the performance of the PSVM
approach in a Gender Independent (GI) framework [119]. In this case gender la-
bel is assumed to be unknown at test time, whereas the previous models assumed
that gender information was available. While in NIST evaluations the gender la-
bel is given, in real applications it might not be available, thus we have to either
estimate it from the data or to train a GI system which is able to model both gen-
ders. As described in Section 5.2.3 the PSVM approach can handle GI detection
by simply training the system on a dataset with mixed gender utterances. In this
section we compare the performance of this approach with the Gender Dependent
(GD) PSVM system in order to asses the quality of the GI model. In particular,
we compare the performance of three types of pairwise SVM systems: a fully GD
system (GD), where both i–vector extraction and SVM training is gender depen-
dent, a partially gender independent system (PGI) where the i–vectors are gender
independent, whereas SVM is trained using GD trials, and finally a totally gender
independent (GI) system, where both i–vectors and SVM are trained without using
gender labels. For GD and PGI systems gender labels are provided at test time,
while for the GI system no gender information is used to score trials. Pairwise SVMs

112

6.4 – Pairwise SVM

0 50 100 150 200 250 300 350 400
Subspace dimensionality

0.08

0.09

0.10

0.11

0.12

0.13

0.14

ol
dD

CF

GPLDA female
SVM female

0 50 100 150 200 250 300 350 400
Subspace dimensionality

0.05

0.06

0.07

0.08

0.09

0.10

0.11

ol
dD

CF

GPLDA male
SVM male

0 50 100 150 200 250 300 350 400
Subspace dimensionality

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
in

D
CF

GPLDA female
SVM female

0 50 100 150 200 250 300 350 400
Subspace dimensionality

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
in

D
CF

GPLDA male
SVM male

Figure 6.4: EER and DCF versus speaker subspace dimensionality for a GPLDA
system

are trained according to [73], applying Within–Class Covariance Normalization to
the i–vectors.

Results are reported in Tables 6.11 and 6.12 for the telephone condition in the
NIST 2008 and for the extended tel–tel condition in the NIST 2010 evaluations,
respectively, and for 400 and 600 dimension i–vectors. Note that, since a slightly
different training dataset was used to estimate the i–vector subspace matrix, the re-
sults cannot be directly compared to the previous reported results for GD modeling.

Considering the performance of the 400-dimension i–vector systems on SRE08,
the GI system gives results which are comparable to the GD and to the PGI systems.
Surprising results were obtained with the 600-dimension i–vector system on the same
data: the minDCF is similar to the 400 i–vector GI and the PGI systems, but the
EER is worse. The 600 GI system, on the contrary shows a substantial improvement
mostly for male speakers.

On the more meaningful extended telephone tests of SRE10 the GI systems, both
with 400 and 600 i–vectors, are comparable to the PGI systems and not far from
the GD systems.

Overall, these experiments show that the performance of a fully gender indepen-
dent pairwise discriminative SVM model is comparable to that of a gender dependent

113

6 – Experimental Results

Table 6.11: Results for the SRE2008 tests in terms of % EER and minDCF08 with
400 and 600 dimension i–vectors

Gender Female Male
System EER minDCF08 EER % minDCF08

400 GD 2.65 % 0.081 1.26 0.053
400 PGI 2.69 % 0.077 1.34 0.056
400 GI 2.54 % 0.078 1.29 0.056

600 GD 2.64 % 0.078 1.74 0.055
600 PGI 2.59 % 0.076 1.42 0.052
600 GI 2.39 % 0.067 1.18 0.044

Table 6.12: EER and minDCFs for the SRE2010 tests with 400 and 600 dimension
i–vectors

Gender Female Male
System EER DCF08 DCF10 EER DCF08 DCF10

400 GD 2.21 % 0.109 0.360 1.73 % 0.081 0.303
400 PGI 2.49 % 0.115 0.369 1.84 % 0.084 0.298
400 GI 2.51 % 0.115 0.382 1.82 % 0.087 0.309

600 GD 2.32 % 0.106 0.342 1.76 % 0.077 0.290
600 PGI 2.59 % 0.103 0.358 1.82 % 0.082 0.274
600 GI 2.51 % 0.108 0.383 1.80 % 0.078 0.307

PSVM trained on the same i–vectors, so that most of the degradation between GD
and GI PSVM systems can be explained as due to the lower accuracy of GI i–vectors
over GD i–vectors.

6.4.3 Performance on non–NIST datasets

Finally, to asses the quality of the PSVM models we presents the results of a compar-
ative study of different speaker recognition technologies on datasets with different
characteristics than those provided by NIST for SRE evaluations and using smaller
UBM models which require less computational power and time. The complete anal-
ysis can be found in [5].

The compared systems are based on different acoustic features and different UBM
sizes. In particular, we trained a 45–PLP 1024 components UBM system and a 25–
MFCC 512–components UBM system, both gender–independent. 400–dimensional
i–vectors have been extracted in both cases and used to train a GPLDA model with

114

6.4 – Pairwise SVM

WCCN and length normalization, a HTPLDA model, a cosine distance model based
on LDA and WCCN and a PSVM model with WCCN. All the i–vector systems and
the UBMs were trained using 1000 hours of speech data selected from the NIST SRE
2004, 2005 and 2006 [133, 134, 135], LDC Callfriend [123], and Italian, Portuguese
and Swedish SpeechDat2 corpora [138].

The test dataset was created using 9 two-side conversational telephone speech
corpora distributed by Appen Pty. Ltd. [139]. In each corpus the conversations are
carried out between 200 native speakers of a given language. The primary use of
the Appen databases is language identification of telephone speech. It is, however,
possible to use these corpora also for speaker recognition evaluation, because almost
all the speakers made two different calls. These calls can be used to create both
target and impostor speaker trials. Each Appen conversation side typically lasts
5 minutes, twice as much as the SRE08 segments. On the other hand, all the
target speaker’s trials are affected by handset and channel mismatch, because the
Appen specifications impose that each speaker makes two calls: one from a fixed
telephone line, and the other one from a mobile phone. The Appen datasets we
used include the following languages: Bulgarian, Dutch, Hebrew, Croatian, Italian,
European Portuguese, Romanian, Russian and Turkish. One call of each speaker
has been randomly selected as an enrollment segment, and the other call is used as
a target speaker trial. The set of impostor trials is populated by all the segments
having the same language (i.e. belonging to the same corpus) and same gender
speakers, not previously selected as enrollment segments. The total number of
female target and impostor speaker trials is 810 and 71817, respectively. These
numbers increase to 1028 and 117365, respectively, for the male speakers. The trials
are evenly distributed among the nine languages.

Table 6.13 shows the results of the different systems in terms of EER and 2008
SRE DCF. All scores have been normalized by means of AS–norm [5]. Again,
the PSVM approach achieves very competitive results compared to other non–
discriminative state–of–the–art approaches.

Table 6.13: EER and DCF for different systems on different datasets

System
Male Female Male Female

45 PLP 1024G 25 MFCC 1024G
EER (%) DCF08 EER (%) DCF08 EER (%) DCF08 EER (%) DCF08

Cosine 4.47 0.163 5.19 0.171 5.74 0.188 5.43 0.231
GPLDA 4.28 0.165 4.69 0.169 4.98 0.185 4.79 0.218
HTPLDA 4.67 0.175 4.69 0.162 5.35 0.199 4.71 0.213
PSVM 3.99 0.166 4.45 0.144 4.56 0.180 5.18 0.197

115

6 – Experimental Results

6.4.4 Training the PSVM system

Finally, we resume the analysis of Section 6.3 about the performance of different
SVM algorithms applied to the PSVM training problem. As already mentioned in
Section 5.2.5 BMRM and Pegasos are the most attractive approaches to solve this
problem, so we restrict our analysis to this two algorithms. The results we report
are relative to the first PSVM system presented in the previous sections.

The first problem we address is the selection of an appropriate size of Pegasos
bunches. Different bunch sizes can, in fact, affect performance: too small bunches
do not allow to exploit the efficient scoring and gradient computation techniques
described in Section 5.2.5, while too big bunches tend to reduce the algorithm to a
standard gradient descent. The effect of the bunch size on training time is shown
in Figure 6.5, where DCF10 versus training time is plotted for different bunch sizes
(expressed as percentage of the full dataset). These results suggest to use moderately
low bunch sizes (in the following we will use the 3% bunch size system).

5000 10000 15000 20000
Time (s)

0.5

0.6

0.7

0.8

D
CF

10

Pegasos 100.0%
Pegasos 30.0%
Pegasos 10.0%
Pegasos 3.0%
Pegasos 1.0%

Figure 6.5: SRE-10 DCF of Pegasos models as a function of their training time for
different bunch sizes (% of the training dataset)

Fig. 6.6 shows DCF10 versus training time for both Pegasos and BMRM.
While good models can be obtained with BMRM after few iterations, the algo-
rithm presents a rather unstable behavior, which was not evident with language
recognition models. This is due to oscillations in the loss functions. This behavior is
not surprising because at each iteration BMRM finds a cutting plane which approxi-
mates the objective function at the current solution. However the objective function
does not necessarily decrease at each iteration,. These fluctuations reduce toward
convergence and the algorithm reaches the asymptotic performance of Pegasos.
The third entry in Figure 6.6 shows how the OCAS approach (Section 4.3.2) allows
to greatly improve BMRM convergence, although some fluctuations still remain.

116

6.4 – Pairwise SVM

This is done at the expense of a higher execution time per iteration.

0 5000 10000 15000 20000
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D
CF

10

Pegasos 3.0%
BMRM/OCAS

BMRM

(a)

5000 10000 15000 20000
Time (s)

0.10

0.12

0.14

0.16

0.18

0.20

D
CF

08

Pegasos 3.0%
BMRM/OCAS

BMRM

(b)

Figure 6.6: DCF10 (a) and DCF08 (b) as a function of the training time for models
produced by BMRM, Pegasos, and OCAS

As far as the DCF is concerned, the asymptotic performance of BMRM/OCAS
and Pegasos is similar, as reported in the first two rows of Table 6.14. However,
the comparison of the DCF10 and DCF08 in Figure 6.6 (a) and (b), respectively,
shows that Pegasos reaches slowly its asymptotic performance, confirming the results
obtained in the language recognition experiments. BMRM has large fluctuations,
thus finding an early stopping criterion is difficult. However, BMRM has also the
potential to give much better generalization results on the evaluation data if its
models are trained with a reduced number of iterations. BMRM/OCAS allows to

117

6 – Experimental Results

Table 6.14: SRE 2010 female tel–tel condition performance for BMRM and Pegasos

Algorithm Model EER DCF08 DCF10

BMRM/OCAS asymptotic 2.54% 0.120 0.416

Pegasos asymptotic 2.54% 0.119 0.420

BMRM/OCAS ≈ 7000s 2.32% 0.110 0.401

Pegasos ≈ 7000s 2.62% 0.121 0.434

BMRM/OCAS best 2.19% 0.106 0.369

fit the best performance of BMRM using models obtained by stopping the iterations
when the loss function decrease is less than 3%. This condition, which is usually met
after a few tens of iterations, avoids over-fitting which manifesting in the asymptotic
convergence region. The stopping criterion value was estimated using the NIST-
SRE 2008 evaluation data as held–out development set. In these experiments the
stopping criterion has been reached in 50 iterations corresponding to approximately
7000 seconds of training time. Table 6.14 compares the results of the models trained
by BMRM/OCAS and by Pegasos in this same amount of time, showing that the
performance of Pegasos is worse compared not only to BMRM/OCAS, but also to
its asymptotic results. Last row of the table shows, for reference, the results of the
best model. These results are slightly different with respect to the results presented
in Section 6.4.1 due to the use of the OCAS extension to BMRM and, therefore, of
a different stopping criterion.

6.5 I–vector extraction

The next set of experiments we present is related to the i–vector extraction process.
In particular, we compare the performance of diagonalized i–vector, VB–based i–
vector and CG–based i–vector extractors (Sections 3.5.3) in terms of extraction time
and performance of the generated i–vectors. In order to asses i–vector quality, we
present the results of a WCCN–LDA–cosine distance system and a GPLDA with
WCCN and length normalization system. 400–dimensional i–vectors are extracted
from a 60–MFCC 2048–Gaussians diagonal covariance GI UBM trained over NIST
2004, 2005 and 2006 SRE data [133, 134, 135]. The i–vector subspace matrix was
estimated using the same data as for the UBM. LDA–WCCN system and GPLDA
were trained using the NIST SRE 2004, 2005 and 2006 train and test corpora,
the Switchboard II Phase 2 and 3 corpora and the Switchboard Cellular part 1
and 2 corpora [123]. Accuracy results are given in terms of EER, 2008 NIST SRE
2008 DCF (DCF08) [140] and NIST 2010 SRE DCF (DCF10) [120] for the female
subset of the NIST 2010 SRE tel–tel condition [120]. Timings do not include feature
extraction and statistics estimation.

118

6.5 – I–vector extraction

The first two lines show the performance, average extraction time and required
memory for the classical i–vector extraction approaches. The fast method pre-
computes the TT

c Σ
−1
c Tc matrices, while the slow method corresponds to the naïve

posterior calculations. The third line presents the results of diagonalized i–vectors
where the diagonalizing matrix is estimated as described in Section 3.5.3. We can
observe that this technique has very fast extraction time with very limited memory
requirements, however recognition accuracy is degraded significantly. The next two
lines refer to a VB implementation using a block size of 20, and differ only in the
number of iterations required. In particular, we used a stopping criterion based on
the norm of the difference between two consecutive updates. The number shown
in the system name column represents the stopping threshold. While not as fast
as diagonalized i–vectors, the VB approach allows very good performance in terms
of speed–up with almost no accuracy degradation. Finally, the last two lines refer
to the CG–based i–vector extraction. In this case, the stopping criterion is given
by the norm of the residual term and the number next to the system names shows
the corresponding threshold. As for the VB, also the CG proves to be a fast and
accurate technique for i–vector extraction. While slightly inferior to the VB in terms
of processing time, this technique allows fast estimation of accurate i–vectors with
the same memory requirements as diagonalized i–vectors.

119

6 – Experimental Results

Table 6.15: Results for the NIST SRE2010 tests in terms of % EER, minDCF08
and minDCF10 with different i–vector extractors

1 core 12 cores
System Memory 100 utterances 500 utterances

1127224 frames 6168082 frames
(MB) rel. speedup cpu time rel. speedup cpu time

Fast baseline 2875 1 116.8 s 1 109.2 s
Slow baseline 375 0.27 435.9 s 0.36 306.5 s
Eigen 382 29.30 4.0 s 12.71 8.8 s
VB-20-2 500 4.23 27.5 s 2.98 37.5 s
VB-20-1 500 2.63 44.3 s 1.60 69.5 s
CG-2 375 0.85 136.6 s 1.48 75.4 s
CG-1 375 0.56 207.4 s 1.01 110.4 s

System Cosine Scoring PLDA
EER (%) DCF08 DCF10 EER (%) DCF08 DCF10

Fast baseline 4.97 230 612 3.59 180 567
Slow baseline 4.97 230 612 3.59 180 567
Eigen 5.67 252 697 4.26 202 685
VB-20-2 5.13 232 622 3.51 183 576
VB-20-1 4.93 229 621 3.46 182 569
CG-2 5.16 224 618 3.59 183 567
CG-1 4.96 230 612 3.59 179 564

120

Chapter 7

Conclusions

We presented an overview of several state–of–the–art technologies for speaker and
language recognition, with a particular focus on Support Vector Machine based
discriminative techniques. We analyzed some techniques to extract significant fea-
tures from the acoustic signal and to model the speech content by means of pho-
netic decoding. We also detailed some of the basic models which are the basis of
many different speaker and language systems, Gaussian Mixture Models and Hidden
Markov Models. We then focused our attention on latent variable models, and in
particular on the use of Factor Analysis derived techniques to build information–rich
low–dimensional representations of utterances. We then described state–of–the–art
generative techniques built on top of these low–dimensional representations.

We also presented the author’s contributions to these fields, which cover different
aspects of speaker and language modeling, starting from a technique to speed–up
neural network training for speech decoding by means of a GPGPU computing
framework, technique which allowed us to greatly improve training times.

As far as JFA models are concerned, we detailed a technique for discriminative
language recognition using low–dimensional features extracted from a Factor Anal-
ysis front–end, the language factors. We proved that these low–dimensional features
can be applied to different language recognition schemes and that they allow achiev-
ing good recognition performance while, at the same time, training simplifies thanks
to the reduced size of patterns.

Still working with low–dimensional features, we showed an efficient way to com-
pute i–vectors based on variational approximations of distributions. Experimental
results show that these techniques allow for much faster i–vector extraction with low
memory requirements while preserving recognition accuracy. Variational approxi-
mations, moreover, also provide a framework to extend i–vectors to use different
prior and posterior distributions.

121

7 – Conclusions

Finally, we analyzed discriminative techniques based on Support Vector Ma-
chines (SVM). We presented some of the concepts and issues related to SVM train-
ing, together with some solutions for large–scale linear problems. We then applied
SVMs to both language recognition and speaker recognition problems. In the former
case, we showed how different algorithms behave with different language recognition
techniques. We also showed how multiclass classifiers can be used in a phonotactic
language recognition system based on low–dimensional representations of phonetic
information. We then presented a novel framework for discriminative training of
speaker verification systems, Pairwise SVMs (PSVM). We showed that pairwise
SVMs provide a more natural approach to discriminative speaker verification com-
pared to the classical one–vs–all paradigm. We also showed that this technique has
strong connections with state–of–the–art generative models and, at the same time,
can be interpreted as a simple polynomial kernel classifier. While some issues are
still open, for example extensions of the model to deal with more than two utter-
ances or large–scale training, pairwise SVMs provide models which allow for fast
scoring of test utterances and achieve state–of–the–art performance.

122

Bibliography

[1] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normalization
for text-independent speaker verification systems,” Digital Signal Processing,
vol. 10, no. 1-3, pp. 42–54, 2000.

[2] D. E. Sturim and D. A. Reynolds, “Speaker adaptive cohort selection for tnorm
in text-independent speaker verification,” in in Proceedings of ICASSP 2005,
pp. 741–744, 2005.

[3] N. Dehak, R. Dehak, J. Glass, D. Reynolds, and P. Kenny, “Cosine similarity
scoring without score normalization techniques,” 2010.

[4] Z. N. Karam, W. M. Campbell, and N. Dehak, “Towards reduced false-alarms
using cohorts,” in ICASSP, pp. 4512–4515, IEEE, 2011.

[5] S. Cumani, P. D. Batzu, D. Colibro, C. Vair, and V. Vasilakakis, “Comparison
of speaker recognition approaches for real applications,” in Proc. of Interspeech
2011, pp. 2365–2368, august 2011.

[6] N. Brümmer, Measuring, refining and calibrating speaker and language infor-
mation extracted from speech. PhD thesis, University of Stellenbosch, 2010.

[7] L. Rabiner and B.-H. Juang, Fundamentals of speech recognition. Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc., 1993.

[8] S. Davis and P. Mermelstein, “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,” IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 28, pp. 357–
366, Aug. 1980.

[9] J. Pelecanos and S. Sridharan, “Feature Warping for Robust Speaker Verifi-
cation,” in Proceedings of Odyssey, pp. 213–218, 2001.

[10] P. A. Torres-Carrasquillo, D. A. Reynolds, E. S. M. A. Kohler, R. J. Greene,
and J. J. R. Deller, “Approaches to language identification using Gaussian
Mixture Models and shifted delta cepstral features,” in Proceedings of ICSLP
2002, pp. 89–92, 2002.

[11] W. Campbell, P. A. Torres-Carrasquillo, and D. Reynolds, “Language recog-
nition with support vector machines,” in Proceedings of Odyssey:The Speaker
and Language Recognition Workshop, pp. 41–44, ISCA, 2004.

123

Bibliography

[12] C. M. Bishop, Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer, 1st ed. 2006. corr. 2nd printing ed., Oct. 2007.

[13] D. Reynolds and R. Rose, “Robust text-independent speaker identification
using gaussian mixture speaker models,” Speech and Audio Processing, IEEE
Transactions on, vol. 3, pp. 72–83, jan 1995.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from in-
complete data via the EM algorithm,” Journal of the Royal Statistical Society,
Series B, vol. 39, no. 1, pp. 1–38, 1977.

[15] S. Borman, “The Expectation Maximization algorithm – a short tutorial.” Jul
2004.

[16] F. Dellaert, “The Expectation Maximization algorithm,” tech. rep., 2002.
[17] R. Rabiner, “A tutorial on Hidden Markov Models and selected applications

in speech recognition,” Proceedings of IEEE, vol. 77, no. 2, pp. 257–286, 1989.
[18] M. A. Mohamed and P. Gader, “Generalized Hidden Markov Models – part i:

Theoretical frameworks,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 1,
pp. 67–81, 2000.

[19] H. A. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid
Approach. Norwell, MA, USA: Kluwer Academic Publishers, 1993.

[20] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, USA, 1 ed., Jan. 1996.

[21] R. Lippmann, “An introduction to computing with neural nets,” ASSP Mag-
azine, IEEE, vol. 4, pp. 4–22, Apr 1987.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal rep-
resentations by error propagation, pp. 318–362. Cambridge, MA, USA: MIT
Press, 1986.

[23] L. Fissore, F. Ravera, and P. Laface, “Acoustic-phonetic modeling for flexible
vocabulary speech recognition,” in EUROSPEECH, ISCA, 1995.

[24] J.-L. Gauvain, A. Messaoudi, and H. Schwenk, “Language recognition using
phone lattices,” in INTERSPEECH, ISCA, 2004.

[25] M. A. Zissman, “Comparison of four approaches to automatic language iden-
tification of telephone speech,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 4, no. 1, pp. 31–44, 1996.

[26] F. Castaldo, D. Colibro, S. Cumani, E. Dalmasso, P. Laface, and C. Vair,
“Loquendo-Politecnico di Torino system for the 2009 NIST Language Recog-
nition Evaluation,” in Proceedings of ICASSP 2010, pp. 5002–5005, 2010.

[27] F. Jelinek, “Self–organized language modeling for speech recognition,” in Read-
ings in Speech Recognition (A. Waibel and K. F. Lee, eds.), pp. 450–506, Mor-
gan Kauffman, 1990.

[28] D. Albesano, R. Gemello, and F. Mana, “Hybrid hmm-nn modeling of
stationary-transitional units for continuous speech recognition,” Inf. Sci.,
vol. 123, no. 1-2, pp. 3–11, 2000.

124

Bibliography

[29] “Loquendo ASR.” http://www.loquendo.com/en/products/speech-
recognition/.

[30] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural
Computation, vol. 1. Addison-Wesley, 1991.

[31] D. Anguita, G. Parodi, and R. Zunino, “An efficient implementation of bp on
risc-based workstations.,” Neurocomputing, vol. 6, no. 1, pp. 57–65, 1994.

[32] S. Scanzio, S. Cumani, R. Gemello, F. Mana, and P. Laface, “Parallel imple-
mentation of artificial neural network for speech recognition,” Pattern Recog-
nition Letters, vol. 31, no. 11, pp. 1302–1309, 2010.

[33] S. Scanzio, S. Cumani, R. Gemello, F. Mana, and P. Laface, “Parallel imple-
mentation of artificial neural network training,” in ICASSP, pp. 4902–4905,
IEEE, 2010.

[34] J. Bilmes, K. Asanović, C.-W. Chin, and J. Demmel, “Using PHiPAC to
speed error back-propagation learning,” in Proc. IEEE Intl. Conf. on Acous-
tics, Speech, and Signal Processing, pp. 4153–4156, April 1997.

[35] J. Hoskins, “Speeding up artificial neural networks in the ‘real’ world,” in
Neural Networks, 1989. IJCNN., International Joint Conference on, p. 626
vol.2, jun 1989.

[36] NVIDIA, NVIDIA CUDA Programming Guide 2.0. 2008.
[37] M. Černansky, “Training recurrent neural network using multistream extended

kalman filter on multicore processor and cuda enabled graphic processor unit,”
Artificial Neural Networks - ICANN 2009, vol. 5768, pp. 381–390, 2009.

[38] H. Jang, A. Park, and K. Jung, “Neural network implementation using cuda
and openmp,” in Proceedings of the 2008 Digital Image Computing: Tech-
niques and Applications, (Washington, DC, USA), pp. 155–161, IEEE Com-
puter Society, 2008.

[39] S. Lahabar, P. Agrawal, and P. J. Narayanan, “High performance pattern
recognition on gpu,” in Proceedings of the National Conference on Computer
Vision, Pattern Recognition, Image Processing and Graphics 2008, pp. 154–
159, 2008.

[40] A. E. Rosenberg, J. DeLong, C.-H. Lee, B.-H. Juang, and F. K. Soong, “The
use of cohort normalized scores for speaker verification,” in The Second In-
ternational Conference on Spoken Language Processing, ICSLP 1992, Banff,
Alberta, Canada, October 13-16, 1992, ISCA, 1992.

[41] D. A. Reynolds, “Comparison of Background Normalization Methods for Text-
Independent Speaker Verification,” in Proc. Eurospeech ’97, (Rhodes, Greece),
pp. 963–966, Sept. 1997.

[42] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using
adapted gaussian mixture models,” vol. 10, pp. 19–41, 2000.

[43] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for multi-
variate gaussian mixture observations of markov chains,” Speech and Audio

125

Bibliography

Processing, IEEE Transactions on, vol. 2, pp. 291–298, apr 1994.
[44] P. Kenny, M. Mihoubi, and P. Dumouchel, “New map estimators for speaker

recognition,” Test, pp. 2961–2964, 2003.
[45] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with sparse

training data,” Speech and Audio Processing, IEEE Transactions on, vol. 13,
pp. 345–354, may 2005.

[46] P. Kenny, “Joint factor analysis of speaker and session variability: Theory and
algorithms,” Tech. Rep. CRIM-06/08-13, CRIM, 2005.

[47] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Joint factor analysis
versus eigenchannels in speaker recognition,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 15, pp. 1435–1447, may 2007.

[48] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Speaker and session
variability in gmm-based speaker verification,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 15, pp. 1448–1460, may 2007.

[49] D. Reynolds, “Channel robust speaker verification via feature mapping,” in
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03).
2003 IEEE International Conference on, vol. 2, pp. II – 53–6 vol.2, april 2003.

[50] C. Vair, D. Colibro, F. Castaldo, E. Dalmasso, and P. Laface, “Channel factors
compensation in model and feature domain for speaker recognition,” in Speaker
and Language Recognition Workshop, 2006. IEEE Odyssey 2006: The, pp. 1–6,
june 2006.

[51] N. Brümmer, A. Strasheim, V. Hubeika, P. Matějka, L. Burget, and O. Glem-
bek, “Discriminative acoustic language recognition via channel-compensated
gmm statistics,” in Proc. Interspeech 2009, no. 9, pp. 2187–2190, International
Speech Communication Association, 2009.

[52] O. Glembek, L. Burget, N. Dehak, N. Brummer, and P. Kenny, “Comparison
of scoring methods used in speaker recognition with joint factor analysis,” in
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE Interna-
tional Conference on, pp. 4057–4060, april 2009.

[53] J. G. Dominguez, Session variability compensation in automatic language and
speaker recognition. PhD thesis, Universidad Autonoma de Madrid, 2011.

[54] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget,
V. Hubeika, and F. Castaldo, “Support vector machines and joint factor anal-
ysis for speaker verification,” in ICASSP, pp. 4237–4240, IEEE, 2009.

[55] W. M. Campbell, D. E. Sturim, D. A. Reynolds, and A. Solomonoff, “SVM
based speaker verification using a gmm supervector kernel and nap variability
compensation,” 2006 IEEE International Conference on Acoustics Speed and
Signal Processing Proceedings, pp. 97–100, 2006.

[56] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector machines
using GMM supervectors for speaker verification,” Signal Processing Letters,
IEEE, vol. 13, pp. 308–311, Apr. 2006.

126

Bibliography

[57] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, “Within-class covariance nor-
malization for SVM-based speaker recognition,” in INTERSPEECH, ISCA,
2006.

[58] F. Castaldo, S. Cumani, P. Laface, and D. Colibro, “Language recognition
using language factors,” in INTERSPEECH, pp. 176–179, ISCA, 2009.

[59] N. Dehak, Discriminative and generative approaches for long- and short-term
speaker characteristics modeling: application to speaker verification. PhD the-
sis, 2009. AAINR50490.

[60] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end
factor analysis for speaker verification,” IEEE Transactions on Audio, Speech
& Language Processing, vol. 19, no. 4, pp. 788–798, 2011.

[61] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of
interspeaker variability in speaker verification,” IEEE Transactions on Audio,
Speech & Language Processing, vol. 16, no. 5, pp. 980–988, 2008.

[62] N. Dehak, R. Dehak, P. Kenny, N. Brümmer, P. Ouellet, and P. Dumouchel,
“Support vector machines versus fast scoring in the low-dimensional total vari-
ability space for speaker verification,” in INTERSPEECH, pp. 1559–1562,
ISCA, 2009.

[63] O. Glembek, L. Burget, P. Matejka, M. Karafiát, and P. Kenny, “Simplification
and optimization of i-vector extraction,” in ICASSP, pp. 4516–4519, IEEE,
2011.

[64] N. Kumar, Investigation of silicon auditory models and generalization of lin-
ear discriminant analysis for improved speech recognition. PhD thesis, 1997.
AAI9730738.

[65] M. Gales, “Semi-tied covariance matrices for hidden Markov models,” in IEEE
Transaction on speech and Audio Processing, vol. 7, pp. 272–281, 1999.

[66] G. Meurant, Computer solution of large linear systems. Studies in mathemat-
ics and its applications, North-Holland, 1999.

[67] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving
Linear Systems,” Journal of Research of the National Bureau of Standards,
vol. 49, pp. 409–436, Dec. 1952.

[68] A. Hatch and A. Stolcke, “Generalized linear kernels for one-versus-all classi-
fication: Application to speaker recognition,” in Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Con-
ference on, vol. 5, p. V, may 2006.

[69] S. J. D. Prince and J. H. Elder, “Probabilistic linear discriminant analysis
for inferences about identity,” in 11th International Conference on Computer
Vision, pp. 1–8, 2007.

[70] P. Kenny, “Bayesian speaker verification with heavy–tailed priors,” in keynote
presentation, Odyssey 2010, 2010.

127

Bibliography

[71] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length nor-
malization in speaker recognition systems,” in INTERSPEECH, pp. 249–252,
ISCA, 2011.

[72] N. Brümmer and E. de Villiers, “The speaker partitioning problem,” in Proc.
Odyssey 2010, pp. 194–201, 2010.

[73] S. Cumani, N. Brümmer, L. Burget, and P. Laface, “Fast discriminative
speaker verification in the i–vector space,” in Proceedings of ICASSP 2011,
2011.

[74] L. Burget, O. Plchot, S. Cumani, O. G. P. Matějka, and N. Brümmer, “Dis-
criminatively trained Probabilistic Linear Discriminant Analysis for speaker
verification,” in Proceedings of ICASSP 2011, 2011.

[75] V. N. Vapnik, The nature of statistical learning theory. New York, NY, USA:
Springer-Verlag New York, Inc., 1995.

[76] C. J. C. Burges, “A tutorial on Support Vector Machines for pattern recogni-
tion,” Data Mining and Knowledge Discovery, vol. 2, pp. 121–167, 1998.

[77] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for opti-
mal margin classifiers,” in Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory, pp. 144–152, 1992.

[78] D. Luenberger, Linear and Nonlinear Programming. Addison–Wesley, 1984.
[79] A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical foundations

of the potential function method in pattern recognition learning,” Automation
and Remote Control, vol. 25, pp. 821–837, 1964.

[80] J. Mercer, “Functions of positive and negative type, and their connection with
the theory of integral equations,” Royal Society of London Proceedings Series
A, vol. 83, pp. 69–70, nov 1909.

[81] K. P. Bennett and O. L. Mangasarian, “Robust linear programming discrimi-
nation of two linearly inseparable sets,” Optimization Methods and Software,
vol. 1, no. 1, pp. 23–34, 1992.

[82] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[83] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization path
for the support vector machine,” J. Mach. Learn. Res., vol. 5, pp. 1391–1415,
December 2004.

[84] T. Joachims, “Making large–scale Support Vector Machine learning practical,”
in Advances in Kernel Methods – Support Vector Learning, pp. 169–184, MIT–
Press, 1999.

[85] C. H. Teo, A. Smola, S. V. Vishwanathan, and Q. V. Le, “A scalable modular
convex solver for regularized risk minimization,” in Proceedings of KDD 2007,
pp. 727–736, 2007.

[86] C. H. Teo, A. Smola, S. V. Vishwanathan, and Q. V. Le, “Bundle methods
for regularized risk minimization,” J. Mach. Learn. Res., vol. 11, pp. 311–365,

128

Bibliography

March 2010.
[87] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, Aug. 2000.
[88] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks,” in

NIPS (S. Thrun, L. K. Saul, and B. Schölkopf, eds.), MIT Press, 2003.
[89] M. Soufifar, S. Cumani, L. Burget, and Černocký, “Discriminative classifier

for phonotactic language recognition with ivectors,” in Proc. of ICASSP 2012,
2012.

[90] Available at http://www.itl.nist.gov/iad/mig/tests/lre/2007/LRE07EvalPlan-
v8b.pdf.

[91] Available at http://www.itl.nist.gov/iad/mig/tests/lre/2009/LRE09_Eval
Plan_v6.pdf.

[92] Available at http://nist.gov/itl/iad/mig/upload/LRE11_EvalPlan_releasev1.pdf.
[93] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector machines

using gmm supervectors for speaker verification,” IEEE Signal Processing Let-
ters, vol. 13, pp. 308–311, 2006.

[94] W. M. Campbell, D. E. Sturim, D. A. Reynolds, and A. Solomonoff, “SVM
based speaker verification using a GMM supervector kernel and NAP variabil-
ity compensation,” in Proceedings of ICASSP 2006, pp. 97–100, 2006.

[95] W. M. Campbell, “A covariance kernel for SVM language recognition,” in
Proceedings of ICASSP 2008, pp. 4141–4144, 2008.

[96] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, pp. 49–86, 1951.

[97] M. N. Do, “Fast approximation of Kullback-Leibler distance for dependence
trees and hidden Markov models,” Signal Processing Letters, IEEE, vol. 10,
pp. 115–118, Mar. 2003.

[98] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface, and C. Vair, “Acoustic lan-
guage identification using fast discriminative training,” in Proceedings of In-
terspeech 2007, pp. 346–349, 2007.

[99] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface, and C. Vair, “Compensation
of nuisance factors for speaker and language recognition,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 15, no. 7, pp. 1969–1978,
2007.

[100] F. Castaldo, D. Colibro, E. Dalmasso, P. Laface, and C. Vair, “Compensation
of nuisance factors for speaker and language recognition,” IEEE Transactions
on Audio, Speech & Language Processing, vol. 15, no. 7, pp. 1969–1978, 2007.

[101] W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek,
“High-level speaker verification with Support Vector Machines,” in Proc. Int.
Conf. Acoustics, Speech and Signal Processing, pp. 73–76, 2004.

[102] A. O. Hatch, B. Peskin, and A. Stolcke, “Improved phonetic speaker recogni-
tion using lattice decoding,” in Proc. Int. Conf. Acoustics, Speech and Signal
Processing, pp. 169–172, 2005.

129

Bibliography

[103] W. M. Campbell, F. Richardson, and D. A. Reynolds, “Language recogni-
tion with word lattices and Support Vector Machines,” in Proc. Int. Conf.
Acoustics, Speech and Signal Processing, pp. 989–992, 2007.

[104] F. S. Richardson and W. M. Campbell, “Language recognition with discrim-
inative keyword selection,” in Proc. Int. Conf. Acoustics, Speech and Signal
Processing, pp. 4145–4148, 2008.

[105] M. Soufifar, M. Kockmann, L. Burget, O. Plchot, O. Glembek, and T. Svend-
sen, “ivector approach to phonotactic language recognition,” in Proceedings of
Interspeech 2011, vol. 2011, pp. 2913–2916, International Speech Communica-
tion Association, 2011.

[106] M. Kockmann, L. Burget, O. Glembek, L. Ferrer, and J. Černocký, “Prosodic
speaker verification using subspace multinomial models with intersession com-
pensation,” in Proceedings of the 11th Annual Conference of the Interna-
tional Speech Communication Association (INTERSPEECH 2010), vol. 2010,
pp. 1061–1064, International Speech Communication Association, 2010.

[107] S. Cumani, F. Castaldo, P. Laface, D. Colibro, and C. Vair, “Comparison of
large–scale SVM training algorithms for language recognition,” in Proceedings
of Odyssey 2010, The Speaker and Language Recognition Workshop, pp. 222–
229, 2010.

[108] S. Cumani and P. Laface, “Analysis of large-scale svm training algorithms for
language and speaker recognition,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. PP, no. 99, 2012.

[109] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan, “A
dual coordinate descent method for large–scale linear SVM,” in Proceedings of
ICML 2008, pp. 408–415, 2008.

[110] T. Joachims, “A support vector method for multivariate performance mea-
sures,” in Proceedings of ICML 2005, pp. 377–384, 2005.

[111] T. Joachims, “Training linear SVMs in linear time,” in Proceedings of KDD
2006, pp. 217–226, 2006.

[112] T. Joachims and C.-N. J. Yu, “Sparse kernel SVMs via cutting–plane training,”
Machine Learning, vol. 76, no. 2–3, pp. 179–193, 2009.

[113] S. Shalev-Shwartz, Y. Singer, and N. Srebro, “Primal estimated sub–gradient
solver for SVM,” in Proceedings of ICML 2007, pp. 807–814, 2007.

[114] V. Franc and S. Sonnenburg, “Optimized cutting plane algorithm for support
vector machines,” in Proceedings of the 25th international conference on Ma-
chine learning, ICML ’08, (New York, NY, USA), pp. 320–327, ACM, 2008.

[115] A. Solomonoff, W. M. Campbell, and I. Boardman, “Advances in channel
compensation for SVM speaker recognition,” Proc ICASSP vol I Philadelphia
PA USA Mar, no. 1, pp. 629–632, 2005.

[116] A. Solomonoff, C. Quillen, and W. Campbell, “Channel compensation for SVM
speaker recognition,” in Proc.˜Odyssey-04, (Toledo, Spain), May 2004.

130

Bibliography

[117] W. Campbell, “Weighted nuisance attribute projection,” in Proceedings of
Odyssey 2010, The Speaker and Language Recognition Workshop, 2010.

[118] L. Burget, N. Brümmer, D. Reynolds, P. Kenny, J. Pelecanos, R. Vogt,
F. Castaldo, N. Dehak, R. Dehak, O. Glembek, Z. Karam, J. J. Noecker,
Y. H. Na, C. C. Costin, V. Hubeika, S. Kajarekar, N. Scheffer, and J. Čer-
nocký, “Robust speaker recognition over varying channels,” tech. rep., 2008.

[119] S. Cumani, O. Glembek, N. Brümmer, E. de Villiers, and P. Laface, “Gender
independent discriminative speaker recognition in ivector space,” in Proc. of
ICASSP 2012.

[120] Available at http://www.itl.nist.gov/iad/mig/tests/sre/2010/NIST_SRE10
_evalplan.r6.pdf.

[121] INTEL, “MKL: Math kernel library.” http://software.intel.com/en-
us/articles/intel-mkl/.

[122] D. B. Paul and J. M. Baker, “The design for the wall street journal-based csr
corpus,” in Proceedings of the workshop on Speech and Natural Language, HLT
’91, (Stroudsburg, PA, USA), pp. 357–362, Association for Computational
Linguistics, 1992.

[123] Available at http://www.ldc.upenn.edu/Catalog/.
[124] http://www.itl.nist.gov/iad/mig/tests/lre/2005/LRE05EvalPlan-v5-2.pdf.
[125] N. Brümmer, L. Burget, O. Glembek, V. Hubeika, Z. Jančík, M. Karafiát,

P. Matějka, T. Mikolov, O. Plchot, and A. Strasheim, “But-agnitio system
description for nist language recognition evaluation 2009,” in Proceedings NIST
2009 Language Recognition Evaluation Workshop, pp. 1–7, National Institute
of Standards and Technology, 2009.

[126] G. Saon, M. Padmanabhan, R. Gopinath, and S. Chen, “Maximum likelihood
discriminant feature spaces,” in Proceedings of ICASSP 2000, pp. 1129–1132,
2000.

[127] Available at http://numpy.scipy.org.
[128] Available at http://abel.ee.ucla.edu/cvxopt.
[129] Available at http://www.openmp.org.
[130] http://www.itl.nist.gov/iad/mig/tests/lre/2003/LRE03EvalPlan-v1.pdf.
[131] F. Castaldo, D. Colibro, S. Cumani, E. Dalmasso, P. Laface, and C. Vair,

“Loquendo-politecnico di Torino system for the 2009 NIST Language Recog-
nition Evaluation,” in Proceedings of ICASSP 2010, pp. 5002–5005, 2010.

[132] P. Matějka, L. Burget, O. Glembek, P. Schwarz, V. Hubeika, M. Fapso,
T. Mikolov, O. Plchot, and J. Cernocky, “But language recognition system
for NIST 2007 evaluations,” in Proceedings of Interspeech 2007, pp. 739–742,
2007.

[133] http://www.itl.nist.gov/iad/mig/tests/spk/2004/SRE-04_evalplan-v1a.pdf.
[134] http://www.itl.nist.gov/iad/mig/tests/sre/2005/sre-05_evalplan-v6.pdf.
[135] http://www.itl.nist.gov/iad/mig/tests/sre/2006/sre-06_evalplan-v9.pdf.

131

Bibliography

[136] N. Brummer, L. Burget, P. Kenny, P. Matějka, E. V. de, M. Karafiát, M. Kock-
mann, O. Glembek, O. Plchot, D. Baum, and M. Senoussauoi, “Abc system
description for nist sre 2010,” in Proc. NIST 2010 Speaker Recognition Evalu-
ation, pp. 1–20, National Institute of Standards and Technology, 2010.

[137] N. Brümmer and J. A. du Preez, “Application-independent evaluation of
speaker detection,” Computer Speech & Language, vol. 20, no. 2-3, pp. 230–
275, 2006.

[138] Available at http://www.speechdat.org/.
[139] Available at http://www.appen.com.au.
[140] http://www.itl.nist.gov/iad/mig/tests/sre/2008/sre08_evalplan_release4.pdf.
[141] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions. John

Wiley & Sons, New York, 1996.
[142] L. A. Liporace, “Maximum Likelihood Estimation for multivariate observa-

tions of markov sources,” IEEE Transactions on Information Theory, vol. 28,
no. 5, pp. 729–734, 1982.

[143] B. H. Juang, S. E. Levinson, and M. M. Sondhi, “Maximum Likelihood Esti-
mation for multivariate mixture observations of markov chains,” IEEE Trans-
actions on Information Theory, vol. 32, no. 2, pp. 307–309, 1986.

132

Appendix A

Expectation–Maximization and
HMM algorithms

A.1 The EM algorithm

The EM algorithm [16, 15, 12] is an iterative procedure that to compute Maximum–
Likelihood estimates in presence of missing or hidden data. The procedure is split
in two steps: the Expectation (E) step, where missing data are estimated given the
observed data and the current parameter estimate using conditional expectation,
and the Maximization (M) step, where the likelihood function is maximized using
the estimate of missing data obtained during the E–step.

Let X be a random vector which results from a parametrized family. We want
to maximize the probability P (X|θ), where θ are the model parameters, or, which
is the same, the log–likelihood L(θ) = logP (X|θ). In the following part of this
section we will denote θn the model parameter estimate after n iterations of the EM
algorithm. Since our goal consists in maximizing L(θ), we wish to evaluate a new
estimate of θ such that

L(θ) > L(θn) (A.1)

that is, we want to maximize the difference

L(θ)− L(θn) = logP (X|θ)− logP (X|θn) (A.2)

We now introduce the hidden random vector Z. When the EM algorithm is
used in problems where hidden variables exist, this allows for a natural framework
for their inclusion. If this is not the case, hidden variables can be introduced just
to make ML estimation tractable. Either way, we can now write the probability
P (X|θ) as

P (X|θ) =
∑

Z

P (X|Z, θ)P (Z|θ) (A.3)

133

A – Expectation–Maximization and HMM algorithms

Equation A.2 can now be rewritten as

L(θ)− L(θn) = log

(
∑

Z

P (X|Z, θ)P (Z|θ)
)
− logP (X|θn)

= log

(
∑

Z

P (Z|X, θn)
P (X|Z, θ)P (Z|θ)

P (Z|X, θn)

)
− logP (X|θn)

≥
∑

Z

P (Z|X, θn) log

(
P (X|Z, θ)P (Z|θ)

P (Z|X, θn)

)
− logP (X|θn) (A.4)

=
∑

Z

P (Z|X, θn) log

(
P (X|Z, θ)P (Z|θ)
P (Z|X, θn)P (X|θn)

)

, ∆(θ|θn) (A.5)

where the inequality derives from Jensen’s inequality and the fact that
∑
Z P (Z|X, θn) =

1.
Now we can write that

L(θ) ≥ L(θn) + ∆(θ|θn) , l(θ|θn) (A.6)

The function l(θ|θn) is bounded above by L(θ). Moreover, it is easy to show that
l(θn|θn) = L(θn). Therefore, any θ which increases l(θ|θn) in turn increases L(θ). In
order to achieve the greatest possible increase of L(θ) the EM looks for the values
of θ maximizing l(θ|θn). The next estimate of θ is therefore evaluated as

θn+1 = arg max
θ
l(θ|θn)

= arg max
θ

(
L(θn) +

∑

Z

P (Z|X, θn) log
P (X|Z, θ)P (Z|θ)
P (Z|X, θn)P (X|θn)

)

= arg max
θ

(
∑

Z

P (Z|X, θn) logP (X|Z, θ)P (Z|θ)
)

= arg max
θ

(
∑

Z

P (Z|X, θn) logP (X,Z|θ)
)

= arg max
θ

(
EZ|X,θn

[logP (X,Z|θ)]
)

(A.7)

In (A.7) the E–step and the M–step are evident: the EM algorithm essentially
iterates over

1. E–step: Determine the conditional expectation EZ|X,θn
[logP (X,Z|θ)] (or

EZ,X|θn
[logP (X,Z|θ)], which is the same since maximization in the M–step is

performed with respect to θ)

134

A.2 – The Forward–Backward algorithm

2. M–step: Maximize the expression determined during the E–step with respect
to θ

The convergence of the algorithm is discussed in [141]. When initial parameter
estimates are not available, usually random values are used.

A.2 The Forward–Backward algorithm

The forward–backward algorithm allows to efficiently compute the probability of a
sequence of observed features O = {o1, . . . , oT} which are assumed to be generated
by a Hidden Markov Model M . The algorithm implementation can be done resorting
to the so–called trellis associated with the HMM. The trellis is essentially a developed
representation of the HMM graph containing time information. Each node of the
trellis corresponds to a node of the HMM at a given time. A trellis node ni1(t1)
associated to HMM node si1 is linked to a trellis node ni2(t2) associated with HMM
node si2 if and only if si1 is linked to si2 and t2 = t1 + 1. The probability of the
edge is the same as the one of the edge linking si1 to si2 . Conceptually, the HMM
and its trellis represent the same model.

In the following derivations we assume that the HMM has a single initial state and
a single final state. This is not a restriction, since an initial probability distribution
over states as well as many final states can be simulated by the addition of an initial
and/or a final frame to the trellis and possibly to the observed sequence (Figures
A.1 and A.2)

s 1 , p = 0 . 4

0 . 3

s 2 , p = 0 . 6
0 . 5

s 3 , p = 0 . 0

0 . 2

0 . 4

0 . 4
s 4 , p = 0 . 0

0 . 2

0 . 7

0 . 3

Figure A.1: A HMM with starting probabilities and one final state

The forward step of the forward–backward algorithm evaluates the forward prob-
ability αt(i) of being in state Si at time t having observed the sequence o1, . . . , ot

αt(i) = P (qt = Si, o1, . . . , ot|M) (A.8)

Since the only starting state can be S1 at time t = 1

α1(1) = f1(o1) (A.9)

The probability of being in state Sj at time t + 1 having observed the sequence
o1, . . . , ot+1 can be evaluated as the product of the probability of being in state Sj

135

A – Expectation–Maximization and HMM algorithms

s1 (1) s1 (2)

s2 (2)

s3 (2)

s1 (3)

s2 (3)

s3 (3)

s1 (4)

s2 (4)

s3 (4)

s1 (5)

s2 (5)

s3 (5)

s1 (6)

s2 (6)

s3 (6)

s2 (1)

s4 (2) s4 (3) s4 (4) s4 (5) s4 (6)

s3 (1)

s4 (1)

s1 (1) s1 (2)

s2 (2)

s3 (2)

s4 (2)

s1 (3)

s2 (3)

s3 (3)

s1 (4)

s2 (4)

s3 (4)

s1 (5)

s2 (5)

s3 (5)

s1 (6)

s2 (6)

s3 (6)

s1 (7)

s2 (7)

s3 (7)

s4 (3) s4 (4) s4 (5) s4 (6) s4 (7) s4 (8)

Figure A.2: Six frame long trellis of model shown in Figure A.1 and transformed
trellis having one initial state and one final state

at time t+1 having observed o1, . . . , ot and the probability of observing ot+1 in state
Sj . The first probability is the sum over all states for which a transition to Si exists

136

A.2 – The Forward–Backward algorithm

multiplied by the probability of having that transition, that is

αt+1(j) = P (qt+1 = Sj, o1, . . . , ot+1|M)

= P (qt+1 = Sj, o1, . . . , ot|M)P (ot+1|qt+1 = Sj ,M) (A.10)

=
N∑

i=1

P (qt+1 = Sj , qt = Si, o1, . . . , ot|M)P (ot+1|qt+1 = Sj ,M)

=
N∑

i=1

P (qt = Si, o1, . . . , ot|M)P (qt+1 = Sj |qt = Si, o1, . . . , ot,M)

P (ot+1|qt+1 = Sj,M)

=
N∑

i=1

P (qt = Si, o1, . . . , ot|M)P (qt+1 = Sj |qt = Si,M)

P (ot+1|qt+1 = Sj,M) (A.11)

=
N∑

i=1

αt(i)aijfj(ot+1) (A.12)

where (A.10) is justified by the assumption of statistically independent observed
features and (A.11) and (A.12) come respectively from (2.34) and (2.35).

The backward step of the algorithm evaluates the backward probability βt(i) of
observing, from time t+ 1 to T , the sequence ot+1 . . . oT given that the system is in
state Si at time t

βt(i) = P (ot+1, . . . , oT |qt = Si,M) (A.13)

Having defined βT (f) = 1, where Sf is the final state, βt(i) can be evaluated as
follows:

βt(i) = P (ot+1, . . . , oT |qt = Si,M)

=
N∑

j=1

P (ot+1, . . . , oT |qt = Si, qt+1 = Sj,M)P (qt+1 = Sj|qt = Si,M)

=
N∑

j=1

P (ot+1, . . . , oT |qt+1 = Sj ,M)P (qt+1 = Sj|qt = Si,M)

=
N∑

j=1

P (ot+1|ot+2, . . . , oT , qt+1 = Sj ,M)P (ot+2, . . . , oT |qt+1 = Sj,M)

P (qt+1 = Sj |qt = Si,M)

=
N∑

j=1

P (ot+1|qt+1 = Sj,M)P (ot+2, . . . , oT |qt+1 = Sj,M)

P (qt+1 = Sj |qt = Si,M)

=
N∑

j=1

βt+1(j)aijfj(ot+1) (A.14)

137

A – Expectation–Maximization and HMM algorithms

where the same assumptions for the forward step were made. Finally, P (O|M) can
be evaluated as

P (O|M) = P (o1, . . . , oT |M)

=
N∑

j=1

P (o1, . . . , oT , qt = Sj)

=
N∑

j=1

P (o1, . . . , ot, qt = Sj |M)P (ot+1, . . . , oT |qt = Sj , o1, . . . , ot,M)

=
N∑

j=1

P (o1, . . . , ot, qt = Sj |M)P (ot+1, . . . , oT |qt = Sj ,M)

=
N∑

j=1

αt(j)βt(j) (A.15)

(A.16)

for any value of t.

A.3 The Viterbi algorithm

The Viterbi algorithm provides a way to compute the most likely states sequence
for a HMM S∗ defined as

S∗ = arg max
S

P (Q = S,O|M) = arg max
S

P (Q = S|O,M) (A.17)

The Viterbi algorithm essentially implements of a minimum path search algorithm
on a trellis associated to the HMM using a suitable distance function. In order to
find the most probable path, we look for the path having the minimum value of
− logP (Q,O). Assuming a Markovian first order process, we have

P (O,Q|M) = P (Q|M)P (O|Q,M)

=
T−1∏

t=1

P (qt+1|qt,M)
T−1∏

t=1

P (ot|qt, qt+1) (A.18)

(A.19)

Let the transition from state Si to state Sj at time t be defined as ξt(i, j), so that

P (ξt(i, j)) = aij ∀t, 1 ≤ t ≤ T − 1 (A.20)

By defining a transition length as

λ(ξt(i, j)) = − logP (qt+1 = Sj|qt = Si,M)− logP (ot|ξt(i, j),M)

= − logP (qt+1 = Sj|qt = Si,M)− logP (ot|qt = Si) (A.21)

138

A.3 – The Viterbi algorithm

the total length of a path corresponds to

− logP (O,Q|M) =
T−1∑

t=1

λ(ξt(i, j)) (A.22)

Since it is possible to establish a topological order among the trellis nodes, finding
the shortest path can be done by recursively evaluating the distance dt(i) of any
given state Si from the initial node as

dt(i) = min
j
dt−1(j) + λ(ξt−1(j, i)) 2 ≤ t ≤ T (A.23)

having defined the distance of the first state as d1(1) = − logP (o1|q1 = S1) (when
the start state emits a NULL symbol this is equivalent to setting d1(1) = 0). From
(A.21) and (A.23) this becomes

dt(i) = min
j
dt−1(j)− logP (qt = Si|qt−1 = Sj,M)− logP (ot|qt = Si) (A.24)

Since the logarithm is a monotone increasing function it is possible to directly
evaluate the minimum path as follows. Let δt(i) = e−dt(i) and ψt(i) be the index of
state activated at time t− 1 in the optimal state sequence. The algorithm detailed
previously is equivalent to

1. initialize δ1(1) and ψ1(i) as follows

δ1(1) = f1(o1) (A.25)

ψ1(i) = 0 1 ≤ i ≤ N (A.26)

since the starting state has no parent node

2. iteratively evaluate the δ value of each node as t increases as

δt(i) = max
j

(δt−1(j)aji) fi(ot) (A.27)

and update the corresponding backpointer ψt(i) using

ψt(i) = arg max
j

(δt−1(j)aji) (A.28)

The best sequence Q̂ = {q̂1, q̂2, . . . , q̂T} can be evaluated by setting q̂T = Sf and
following the backpointers up to the first frame

q̂t = Sψt+1(q̂t+1) (A.29)

It can be shown that the probability of the best path is δT (f), where f is the
index of the final state Sf .

139

A – Expectation–Maximization and HMM algorithms

A.4 HMM training through the EM algorithm

We start by observing that the likelihood of a sequence can be decomposed as

P (O|M) =
N∑

j=1

P (O, qt = sj) (A.30)

for a fixed value of t. Recalling the forward–backward algorithm (Section 2.3.3), we
can express the probability P (O, qt = sj) as

P (O, qt = sj) = αt(j)βt(j) (A.31)

The likelihood A.30 can also be written as

P (O|M) =
∑

s

P (O,Q|M) =
∑

si1
,...,siT

P (O, q1 = si1 , . . . , qT = siT) (A.32)

where the summation is taken over all possible state sequences of length T , which,
in turn, can be expressed as

P (O|M) =
∑

s

P (O, s|M) =
∑

s

T∏

t=1

ait−1,it

m∑

k=1

wk,itN (ot|µk,it,Σk,it) (A.33)

where ait−1,it is the probability of transition from state sit−1
to state sit , with ai0,i1

being the starting probability of state si1 , and wk,it, µk,it and Σk,it are the parameters
of the k–th Gaussian of the mixture associated to state sit .

The next step consists in partitioning the likelihood further by choosing a par-
ticular sequence z = z1, . . . , zT of mixture densities (which are the realizations of
random variables Z = Z1, . . . , ZT), which results in

P (O,Q, Z|M) =
T∏

t=1

ait−1,itwzt,itN (ot|µzt,it,Σzt,it) (A.34)

Thus, the complete likelihood can now be expressed as

P (O|M) =
∑

s

∑

z

P (O, S, Z|M) (A.35)

Now we can apply the EM algorithm to A.35 by taking as hidden variables S
and Z. We can iteratively maximize A.35 by evaluating the expectation

EZ,S [P (O,Z, S|Mc) logP (O,Z, S|M)] (A.36)

and maximizing it with respect to M .

140

A.4 – HMM training through the EM algorithm

Expression A.36 can be rewritten as

f(A,B) = EZ,S [P (O,Z, S|Mc) logP (O,Z, S|M)]

=
∑

s

∑

z

P (O, S, Z|Mc)

[
T∑

t=1

log ait−1,it +
T∑

t=1

logwz1,it+

+
T∑

t=1

logC(Σzt,it)
T∑

t=1

1
2

(xt, µzt,it)
TΣzt,it−1(xt, µzt,it)

]
(A.37)

where A is the transition matrix Aij = aij , B is the set of probability functions
associated to each state B = {fi(x)} and C(Σ) = (2π)D/2|Σi|1/2

The weights aij can be re–estimated by taking the maximum of A.37 with respect
to aij under the constraint ∑

j

aij = 1 ∀i (A.38)

Applying the Lagrange multiplier technique we look for a saddle point of the La-
grangian function fL. Taking the derivative of the Lagrangian with respect to aij
gives

∂fL

∂aij
=
∑

s

∑

z

P (O, S, Z|Mc)
∑

t∈Tij(s)

1
aij
− λi (A.39)

where Tij(s) = {t : st−1 = i, st = j} and λi is the i–th Lagrange multiplier. By
interchanging the order of the summations this becomes

∂fL

∂aij
=

1
aij

T∑

t=1

∑

s∈Sij(t)

∑

z

P (O, S, Z|Mc)− λi = 0 (A.40)

where Sij(t) = {s : qt−1 = si, qt = sj} is the set of paths which visit state si at time
t− 1 and state sj at time t. The t–th term of the sum (A.40) can be recognized as
the probability P (O, qt−1 = si, qt = sj |Mc), thus we can write that

aij =
1
λi

T∑

t=1

P (O, qt−1 = si, qt = sj |Mc) (A.41)

If we take the summation of (A.41) over all the values of j we have

N∑

j=1

aij = 1

=
1
λi

N∑

j=1

T∑

t=1

P (O, qt−1 = si, qt = sj |Mc)

=
1
λi

T∑

t=1

P (O, qt−1 = si|Mc) (A.42)

(A.43)

141

A – Expectation–Maximization and HMM algorithms

which yields

λi =
T∑

t=1

P (O, qt−1 = si|Mc) =
T∑

t=1

αct−1(i)βct−1(i) (A.44)

so the value of aij which maximizes the expectation A.37 can be evaluated as

aij =
∑T
t=1 P (O, qt−1 = si, qt = sj|Mc)∑T

t=1 α
c
t−1(i)βct−1(i)

=

∑T
t=1 α

c
t−1(i)acijβ

c
t (j)

∑
k w

c
k,j

[
N (ot|µck,j,Σc

k,j)
]

∑T
t=1 α

c
t−1(i)βct−1(i)

(A.45)

where the superscript c denotes the parameters values of the current iteration of the
EM algorithm.

The same approach can be used to derive an expression to update the weights
wi,j. This time we look for the maximum of A.36 with respect to wi,j under the
constraints

∑m
i=1 wi,j = 1. Using the Lagrangian approach and taking the derivative

with respect to wi,j yields

∂fL

∂wi,j
=
∑

s

∑

z

P (O, S, Z|Mc)
∑

t∈T
′

ij
(s)

1
wi,j
− λj (A.46)

where T
′

ij(s) = {t : zt = i, st = j}. If we interchange the order of the summation we
have

∂fL

∂wi,j
=

1
wi,j

T∑

t=1

∑

s∈Sj(t)

∑

z∈Zi(t)

P (O, S, Z|Mc)− λj (A.47)

(A.48)

where Sj(t) = {s : qt = sj} and Zi(t) = {z : zt = i}, which results in

∂fL

∂wi,j
=

1
wi,j

T∑

t=1

P (O, qt = sj , zt = i|Mc)− λj = 0 (A.49)

and multiplying by wi,j and taking the summation over i we have

λj =
T∑

t=1

P (O, qt = sj|Mc) =
T∑

t=1

αct(j)β
c
t (j) (A.50)

Now we can observe that

P (O, qt = sj, zt = i) = αct(j)β
c
t (j)

wci,jN (ot|µci,j,Σc
i,j)∑m

k=1 w
c
i,kN (ot|µci,k,Σc

i,k)
(A.51)

142

A.4 – HMM training through the EM algorithm

thus we can finally write the expression of the updated weights as

wi,j =
1

∑T
t=1 α

c
t(j)βct (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)

T∑

t=1

αct(j)β
c
t (j) (A.52)

Finally, we have to evaluate the next estimate of the mean vectors and of the
covariance matrices. Letting ∂f

∂µi,j
denote the vector of the derivatives of the expec-

tation (A.36) with respect to the components of the j–th mean vector of the GMM
associated to state si we have

∂f

∂µi,j
=
∑

s

∑

z

P (O, S, Z|Mc)
∑

t∈T ′ ij(s)

Σ−1
i,j (ot − µi,j) = 0 (A.53)

where T
′

ij has the same meaning as above. Interchanging once again the order of
the summation and premultiplying by Σi,j we obtain

T∑

t=1

∑

s∈Sj(t)

∑

z∈Zi(t)

P (O, S, Z|Mc)ot = µi,j
T∑

t=1

∑

s∈Sj(t)

∑

z∈Zi(t)

P (O, S, Z|Mc) (A.54)

which gives

µi,j =

∑T
t=1

∑
s∈Sj(t)

∑
z∈Zi(t) P (O, S, Z|Mc)ot

∑T
t=1

∑
s∈Sj(t)

∑
z∈Zi(t) P (O, S, Z|Mc)

=
∑T
t=1 P (O, qt = j, zt = i)ot∑T
t=1 P (O, qt = j, zt = i)

=

∑T
t=1 α

c
t(j)β

c
t (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)
ot

∑T
t=1 α

c
t(j)βct (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)

(A.55)

As concerns the covariance matrices, let ∂f

∂Σ−1

i,j

denote the D × D matrix whose

(x, y)–th element is ∂f

∂Σ−1

i,j
(x,y)

, that is the derivative of f with respect to the (x, y)–th

element of Σ−1
i,j . By recalling that ∂ log ‖Σ−1‖

∂Σ−1 = Σ, we have

∂f

∂Σ−1
i,j

=
∑

s

∑

z

P (O, S, Z|Mc)
T∑

t∈T
′

ij
(s)

[1
2

Σi,j −
1
2

(xt − µi,j)T (xt − µi,j)
]

=
T∑

t=1

∑

s∈Sj(t)

∑

z∈Zi(t)

P (O, S, Z|Mc)
[1
2

Σi,j −
1
2

(xt − µi,j)T (xt − µi,j)
]

= 0 (A.56)

143

A – Expectation–Maximization and HMM algorithms

which yields

Σij =

∑T
t=1 α

c
t(j)β

c
t (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)
(xt − µi,j)T (xt − µi,j)

∑T
t=1 α

c
t(j)βct (j)

wc
i,j

N (ot|µc
i,j
,Σc

i,j
)∑m

k=1
wc

i,k
N (ot|µc

i,k
,Σc

i,k
)

(A.57)

The parameter expression we have given are those identifying a critical point of
the expectation. It can be proven [142, 143] that the critical point of the expectation
is unique and that it corresponds to a maximum of the likelihood function.

144

	Summary
	Acknowledgements
	Introduction
	Speaker Recognition
	Language Recognition

	Modeling the acoustic signal
	Acoustic Features
	Sampling, quantization and filtering
	Mel–Frequency Cepstral Coefficients
	Shifted Delta Coefficients

	Gaussian Mixture Models
	Gaussian Mixture Model
	Maximum likelihood estimate of a GMM

	Hidden Markov Models
	Topological structure
	Probabilistic structure
	Forward-Backward algorithm
	Viterbi algorithm
	Training

	Artificial Neural Networks
	Structure
	Feed–forward Neural Network and Perceptron
	Training
	ANN–HMM

	Phonotactic features
	Bags of n-grams features for language identification
	Phonetic decoders
	Loquendo ASR
	Speeding up ANN training

	Latent variable models for speaker and language recognition
	Speaker verification problem
	Universal Background Models and GMMs
	Factor analysis models
	Statistics and likelihoods
	MAP adaptation
	Eigenvoice models
	Eigenchannels
	Joint factor analysis of speaker and channel

	Front–end JFA
	I–vectors
	I–vector posterior distribution
	Training the T matrix
	Speeding up the i–vector extraction

	Probabilistic Linear Discriminant Analysis
	Two covariance model
	Speaker verification likelihood
	PLDA
	Training the PLDA hyperparameters

	Discriminative Training and Support Vector Machines
	Support Vector Machines and Logistic Regression
	Support Vector Machines
	Logistic Regression
	Regularized LR and SVM
	Multiclass SVM and LR for language recognition
	Multiclass Score Backprojection

	SVM–based language identification
	GSV–SVM and pushed–GMM
	Language factors
	Acoustic i–vectors
	Phonetic models

	Large–scale SVM algorithms
	Dual solvers
	Primal solvers

	SVM–based Speaker Recognition
	GMM–SVM
	Pairwise SVM
	Two–covariance model and pairwise SVM
	Pairwise SVM feature space
	Pairwise SVM as likelihood approximation
	Polynomial Feature Mapping
	Fast scoring

	Experimental Results
	GPU–based ANN training
	Language Identification
	Language Factors
	Phonotactic i–vectors

	Large–scale linear SVM training
	SVM algorithms implementation
	Algorithms for language recognition
	Algorithms for speaker recognition
	Language Recognition task results

	Pairwise SVM
	Pairwise SVM and PLDA
	Gender Independent PSVM
	Performance on non–NIST datasets
	Training the PSVM system

	I–vector extraction

	Conclusions
	Bibliography
	Expectation–Maximization and HMM algorithms
	The EM algorithm
	The Forward–Backward algorithm
	The Viterbi algorithm
	HMM training through the EM algorithm

