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Summary

Piezocomposites are attracting widespread interest since they can offer greater flexibility
and better performances in specific applications with respect to traditional piezoelectric
wafers. Design of piezocomposites requires accurate homogenisation models for the predic-
tion of the equivalent electro-mechanical properties. In macro-scale models of structures
with piezocomposite transducers, these properties are adopted in order to avoid the com-
plexity of the piezocomposite microstructure. In the case of smart structures the accurate
modelling of the actuation and the response of the structure is of primary importance.
If classical structural finite elements are not sufficiently accurate, higher order or solid
elements should be adopted. Thanks to adaptation or mixed-dimensional methods, it is
possible to adopt computationally expensive higher order or solid elements only in some
sub-domains of the structure.

In this work, the modelling of smart structures equipped with thin piezoelectric trans-
ducers is considered in a multi-scale framework. Micromechanical homogenisation models
are developed and employed for the prediction of the equivalent properties of piezocompos-
ites. A micromechanical model based on the concept of inclusion is proposed to investigate
the influence of the shape of the inclusions, of the constituent materials and of the polarisa-
tion on the equivalent properties. It has been found that fibre-shaped inclusions should be
considered in order to obtain piezocomposites with strong piezoelectric effect and to have
at the same time high direction-dependence. The equivalent properties of Macro Fiber
Composites are determined via the Asymptotic Homogenisation Method (AHM) with an
analytical solution and with a numerical solution via FEM which takes into account the
effect of the electrodes.

AHM analytical solution is adopted to investigate the effect of the material properties
of the matrix on the overall piezocomposite. Results indicate that low values of the Young’s
modulus and of the Poisson’s ratio yield high directional dependence in the piezoelectric
properties. A laminated design with anisotropic layers and a piezocomposite layer is in-
vestigated via UFM. A configuration with maximum directional dependence in terms of
equivalent piezoelectric strain constants is proposed, whereas maximum directional depen-
dence in terms of piezoelectric stress constants is proved to be not achievable with such a
design.

Hierarchical finite elements for structural analyses based on a Unified Formulation
(UF) by Carrera are developed and coupled via the Arlequin method proposed by Ben
Dhia. Solid, plate and beam finite elements for mechanical and for piezoelectric prob-
lems are presented. Via UF, higher order and piezoelectric elements can be formulated
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straightforwardly. These elements are combined in variable kinematic solutions in the
Arlequin framework. Higher-order elements are adopted locally where the stress field is
three-dimensional, whereas the remaining parts of the structure are modelled with com-
putationally cheap lower-order elements. Two electro-mechanical coupling operator for
the Arlequin method in the context of piezoelectric analyses are proposed. Results are
validated towards monomodel solutions and three-dimensional analytical and numerical
reference solutions. Accurate solutions are obtained reducing the computational costs.
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Sommario

I compositi piezoelettrici attraggono grande interesse poiché offrono maggiore flessibilità
e prestazioni migliori rispetto ai wafer piezoelettrici tradizionali in alcune applicazioni.
Il design di un composito piezoelettrico richiede modelli di omogenizzazione accurati per
predire le proprietà elettro-meccaniche equivalenti. In modelli macro-scala di strutture
con trasduttori compositi piezoelettrici, queste proprietà sono adottate in modo da evitare
la complessità della microstruttura del composito piezoelettrico. Nel caso di strutture
intelligenti, la modellizzazione accurata dell’attuazione e della risposta della struttura è di
primaria importanza. Se gli elementi finiti strutturali classici non sono sufficientemente
accurati, elementi di alto ordine o solidi possono essere adottati. Grazie a metodi di
adattamento o mixed-dimensional è possibile adottare elementi di alto ordine o solidi, che
sono costosi dal punto di vista computazionale, solo in alcuni sotto-domini della struttura.

In questo lavoro, la modellazione di strutture intelligenti munite di trasduttori pie-
zoelettrici sottili è considerata in un ambito multi-scala. Modelli micromeccanici di omo-
genizzazione sono sviluppati e impiegati per la predizione delle proprietà equivalenti di
compositi piezoelettrici. Un modello micromeccanico basato sul concetto d’inclusione è
proposto per investigare l’influenza della forma dell’inclusione, dei materiali impiegati e
della polarizzazione sulle proprietà equivalenti. I risultati indicano che inclusioni a forma
di fibra dovrebbero essere considerate per ottenere compositi piezoelettrici con forte effet-
to piezoelettrico e per avere allo stesso tempo alta dipendenza direzionale. Le proprietà
equivalenti di Macro Fiber Composites sono determinate con l’Asymptotic Homogenisation
Method (AHM) attraverso una soluzione analitica e una numerica via FEM che prende in
considerazione l’effetto degli elettrodi.

La soluzione AHM analitica è adottata per investigare l’effetto delle proprietà del mate-
riale della matrice sull’intero composito piezoelettrico. I risultati indicano che bassi valori
del modulo di Young e del coefficiente di Poisson portano ad un alta dipendenza direzio-
nale delle proprietà piezoelettriche. Un design di un laminato con strati anisotropi e uno
strato composito piezoelettrico è investigato attraverso lo Uniform Field Method. Una
configurazione con massima dipendenza direzionale in termini di costanti piezoelettriche
di deformazione è proposta, mentre si dimostra che massima dipendenza direzionale in
termini di costanti piezoelettriche di tensione non è realizzabile con questo design.

Elementi finiti gerarchici per analisi strutturali basati su un Unified Formulation (UF)
ideata da Carrera sono sviluppati ed accoppiati con il metodo Arlequin proposto da Ben
Dhia. Elementi solidi, piastra e trave per problemi meccanici e piezoelettrici sono presen-
tati. Attraverso l’UF, elementi finiti di alto ordine possono essere formulati facilmente.
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Questi elementi sono accoppiati in soluzioni a cinematica variabile nell’ambito del metodo
Arlequin. Elementi di alto ordine sono adottati localmente dove il campo di tensioni è
tridimensionale, mentre le alte parti della struttura sono modellate con elementi di basso
ordine che sono economici dal punto di vista computazionale. Due operatori di accoppia-
mento per il metodo Arlquin nel contesto di analisi piezoelettriche sono proposti. I risultati
sono validati rispetto a soluzioni mono-modello e soluzioni tridimensionali di riferimento
analitiche o numeriche. Risultati accurati sono ottenuti riducendo il costo computazionale.
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Résumé

Les capteurs/actionneurs composite à fibres piézoélectriques avec des polymères ont des
avantages en termes de flexibilité et de performance par rapport au capteur piézoélectrique
monolithique. La conception de piezocomposites nécessite des modèles d’homogénéisation
précise pour la prédiction de ses propriétés équivalentes électromécaniques. Ces proprié-
tés sont adoptées en modèles macro-échelle des structures avec des capteurs/actionneurs
piezocomposites afin d’éviter la complexité de la microstructure. Dans le cas des structu-
res intelligentes la modélisation précise de l’actionnement et de la réponse de la structure
active est d’une importance primordiale. Dans le cas où les éléments finis classiques struc-
turelles ne sont pas suffisamment précis, des éléments d’ordre supérieur ou solides doivent
être adoptés. Grace à des méthodes d’adaptation ou à dimensions mixte il est possible
désigner des éléments d’ordre supérieur ou des éléments solides qu’ils ont coût numérique
élevé, que dans certains sous-domaines de la structure.

Dans le cadre de ce travail, la modélisation de structures intelligentes équipées de
capteurs/actionneurs piézoélectriques minces est considérée dans un cadre multi-échelle.
Différents modèles d’homogénéisation micromécanique sont développés et utilisés pour la
prédiction des propriétés équivalentes du piezocomposites. Le premier modèle microméca-
nique basé sur le concept d’inclusion est proposé pour étudier l’influence de la forme des
inclusions, des matériaux constitutifs et de la polarisation sur les propriétés équivalentes.
On a constaté que les inclusions en forme de fibre doivent être considérées afin d’obtenir
piezocomposites avec effet piézoélectrique importent et d’avoir en même temps maximum
dépendance à la direction de la déformation. Les propriétés équivalentes de Macro Fiber
Composites sont déterminées par la Méthode d’Homogénéisation Asymptotique (MHA)
avec une solution analytique et une solution numérique Eléments Finis EF qui prend en
compte l’effet des électrodes.

La solution analytique AHM est adoptée pour étudier l’effet des propriétés du matériau
de la matrice sur le piezocomposite globale. Les résultats indiquent que de faibles valeurs
de module d’Young et du coefficient de Poisson donnent haut dépendance directionnelle
pour les propriétés piézoélectriques. Un design stratifié avec des couches anisotropes et
une couche piezocomposite est étudié en utilisant la méthode des champs uniformes. Une
configuration avec dépendance directionnelle maximale de la réponse du capteur en termes
des constantes piézoélectriques des déformations équivalent est faisable, tandis que la dé-
pendance directionnelle maximale en termes de constantes piézoélectrique des contraints
est démontré de ne pas être réalisable avec une telle conception.

Éléments finis hiérarchiques pour l’analyse structurale basée sur une Formulation Uni-
fiée (FU) de Carrera sont développés et couplés via la méthode Arlequin proposée par
Ben Dhia. Éléments finis solide, plaque et poutre pour des problèmes mécanique et piézo-
électriques sont présentés. Avec le FU, éléments d’ordre supérieur et piézo-électriques
peuvent être formulé d’une façon directe. Ces éléments sont combinés dans solutions à
cinématiques variable dans le cadre d’Arlequin. Éléments d’ordre supérieur sont adoptées
localement là où le champ de contrainte est trois dimensionnelle, tandis que les autres
parties de la structure sont modélisés par éléments d’ordre inférieur avec un cout de calcul
réduit. Deux opérateurs de couplage électromécaniques pour la méthode Arlequin dans le
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contexte des analyses piézoélectriques sont proposés. Les résultats sont validés en utilisant
des solutions mono-model et des solutions analytiques et numériques de référence en trois
dimensions.
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Chapter 1

Introduction

Much research in the last decades has focused on smart structures with piezoelectric layers
or patches. Piezocomposite transducers have found application as commercial products in
different engineering fields, such as automotive, aerospace, biomedical and civil engineer-
ing. In smart structures, piezocomposite have been adopted as sensors and actuators for
structural health monitoring and vibration control applications. Their appealing factor is
represented by the possibility to obtain tailored electro-mechanical properties for specific
applications and to overcome classical limitations of monolithic transducers in terms of
flexibility, durability and reliability. The adoption of light and flexible non-piezoelectric
polymers in combination with piezoelectric ceramics in a multiphase construction leads to
a more robust device, capable of conforming to complex surface shapes.

In general, piezoelectric effect is transverse isotropic with respect to the poling di-
rection of the material: a classical monolithic piezoelectric transducer has isotropic in-
plane behaviour, i.e. its response as a strain sensor is independent of its orientation. In
piezocomposites this is no longer valid, since the electro-mechanical interaction among the
phases changes the global piezoelectric response of the transducer. Piezocomposite trans-
ducers such as Macro Fiber Composite (MFC) and Active Fiber Composite (AFC), have
anisotropic electromechanical behaviours since the active fibres are aligned in one direction
and embedded into a soft epoxy matrix. As a consequence, piezoelectric response can be
highly directional dependent and varies with the angle between the in-plane strain compo-
nent and the fibres direction. The directionality of the piezoelectric effect can be employed
to realise transducers that can detect the direction of propagation of elastic waves, such
as ultrasounds or Lamb-waves, or can measure the components of the stress and strain
tensors with different sensibility.

The investigation of piezocomposite transducers requires accurate models for the predic-
tion of the behaviour of the transducer on the basis of its microstructure. Non-conventional
electrode patterns and complex microstructures require more detailed homogenisation mod-
els, for which analytical solutions are not generally available. Most of the time these tech-
niques are developed as extensions of the ones already established for pure elastic materials.
Design of piezoelectric transducers requires a clear understanding of the electromechanical
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1 – Introduction

behaviour of smart structures, comprehensive analytical models and multi-domain meth-
ods. The research work of this thesis associates modelling based design of piezoelectric
transducers and hierarchical finite element modelling of smart structures. The first objec-
tive is dedicated to the modelling and the design of unidirectional piezoelectric transducers.
Such transducers have the advantage of measuring in one direction in contrast of the exist-
ing piezoelectric transducers. This result allows developing a multi-axial sensor/actuator
for vibration and noise control systems.

Piezocomposites are usually employed as surface-bonded patches on smart structures.
Once accurate equivalent properties are retrieved for piezoelectric transducers, numerically
or experimentally, the response of the structure can be predicted via finite element analyses.
Finite elements of different type, for instance beam, plate and solid elements, can be
adopted to model the structure. Solid elements, being not based on a particular cinematic
model, are the most general elements and can be always used. The drawback is that
they are computationally expensive when adopted to model thin or slender structures.
Beam and plate elements should be preferred in these cases. In the most accurate and
computationally efficient approach, the structure should be decomposed in sub-domains
and modelled with different kind of finite elements depending on the characteristics of
the sub-domains. Computational techniques known as adaptation or mixed-dimensional
methods have been developed to address this possibility. In this way, memory requirements
and time consumptions of the analysis can be reduced drastically.

Nevertheless, classical beam and plate finite elements may be inaccurate under some
conditions: when material properties are highly anisotropic and vary in space, as in
multilayered plates; when thickness ratio are small, as in thick plates; when the beam
cross section is thin-walled or is subject to warping or torsion; when a three-dimensional
strain/stress state is locally present due to localised loading conditions, as with actuated
piezoelectric patches. Classical structural elements are usually not suited in the case of
smart plates or beams with piezoelectric layers or patches. In order to increase the accuracy,
higher order elements can be developed in a hierarchical framework. In this framework,
developed by Carrera and known as Unified Formulation (UF), it is also possible to develop
multifield elements, such as piezoelectric elements that model the electric potential as a
primary unknown together with displacement components. Solid elements and higher or-
der elements can be adopted locally where the stress field is three-dimensional, whereas the
remaining parts of the structure can be modelled with computationally cheap lower-order
beam and plate finite elements. The second objective is dedicated to develop a consistent
framework for the multi-domain analysis of smart structures.

The organisation of the thesis is detailed in the following. The constitutive equations
and governing equations of linear piezo-elasticity are introduced in chapter 2. A global
overview on piezoelectric transducers is also presented. Many piezocomposite transduc-
ers are described and commented on the basis of characteristics and performances. The
problem of the homogenisation of the electro-mechanical properties of a piezocomposite is
tackled in chapter 3. A micromechanical model to predict the equivalent properties based
on the concept of inclusion is developed. The influence of the constituent material, of the
shape of the inclusions and of the direction of polarisation on the equivalent piezoelec-
tric properties is investigated in terms of magnitude and directionality. The equivalent
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properties of Macro Fiber Composites (MFC) are computed on the basis of the Asymp-
totic Homogenisation Method (AHM) and results are validated towards the Uniform Field
Method (UFM), the Periodic Homogenisation Method and manufacturer’s datasheet. The
influence of the electrodes is discussed. The effect of the properties of the matrix on the
equivalent properties of MFC is investigated in chapter 4 via the AHM. Directionality of
the piezoelectric effect is considered varying the volume fraction, the Young’s modulus
and the Poisson’s ratio of the matrix. A similar study is presented in chapter 5, where
additional anisotropic mechanical layers are considered via UFM. On the basis of the ori-
entation and of the thickness of these layers, tailored equivalent piezoelectric properties
can be achieved. Directionality of the piezoelectric effect is examined both for the single
transducer and for a transducer mounted as a patch on a structure.

A particular set of hierarchical finite elements for the analysis of structures is the
subject of chapter 6. Solid, plate and beam finite elements for mechanical problem as well
as for piezoelectric ones are developed thanks to UF. Higher order and multifield elements
are obtained straightforwardly from fundamental nucleus that depends only on the chosen
variational principle. These finite elements are coupled in linear static analyses in chapter 7
via the Arlequin method. Coupling among finite elements of different order and based on
different variational principles is addressed. Two electro-mechanical coupling operators
for the Arlequin method are proposed in chapter 8. Variable-kinematic results in the UF
framework for piezoelectric plates are presented. A user defined element to implement the
Arlequin method for piezoelectric problems in the commercial software ABAQUS is also
addressed.

3
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Chapter 2

Piezoceramics and piezocomposite

materials

Piezoelectricity is the ability of some materials to convert an electric stimulus into mechan-
ical energy, and vice versa. Piezoelectric materials are currently being used in a number
of applications such as submarine hydrophones, accelerometers, microphones, ultrasonic
devices, electronic resonators, etc. In this thesis, particular attention is devoted to devices
that can be adopted as sensors and actuators in structures. Different types of piezoelectric
devices are used as components of passive or active system in smart structures, including
Active Fiber Composite (AFC), Macro Fiber Composite (MFC), THUNDER transduc-
ers, etc. Typical applications are control of vibrations, noise reduction, morphing and
structural health monitoring.

Piezoceramic materials such as lead zirconate titanium (PZT) and barium titanate
(PbTiO3) are used extensively. They possess strong piezoelectric effect but they are ex-
posed to crack damage due to their brittle nature and are non-conformable to curved
surfaces. Piezoelectric polymers such as polyvinylidene fluoride (PVDF) are characterised
by low density and good flexibility, but the electromechanical coupling is weaker with
respect to piezoceramic materials.

This chapter introduces the general constitutive equations of piezoelectric materials.
Piezoelectric and dielectric properties are detailed both in matrix and tensor form. The
governing equations of piezoelasticity are also presented. A global overview on piezoelectric
transducers follows. Several monolithic as well as piezocomposite transducers are discussed.

2.1 Constitutive and governing equations

During the machining process, after sintering, polycrystalline piezoceramics have isotropic
properties at the macro-scale. After the poling process, the behaviour of the piezoelectric
material becomes transverse isotropic with respect to the poling direction, usually referred
to as direction 3. The linear constitutive equations of piezoelectric materials involve linear
coupling between stress, strain, electric field and electric displacement (or between force,
displacement, electric charge and electric potential). Linear piezoelectricity discards effects
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2 – Piezoceramics and piezocomposite materials

like time-dependent responses, hysteresis and electrostriction. In this paragraph Voigt’s
notation is adopted: in a Cartesian coordinate system, the subscripts 1, 2, 3, 4, 5 and 6
represent the subscripts x, y, z, yz, xz and xy, respectively. The constitutive equations for
orthotropic piezoelectric materials using the notations of the IEEE standard on piezoelec-
tricity [1] are as follows:
Sensing: the direct piezoelectric effect refers to the conversion of mechanical energy into
electric energy:

{D} = [e] {S} +
[
εS
]
{E} (2.1)

Actuation: the converse piezoelectric effect refers to the conversion of electric energy into
mechanical energy:

{T} =
[
C

E
]
{S} −

[
e

T
]
{E} (2.2)

where {E}, {D} are the electric field vector and the electric displacement vector, and {T},
{S} are the stress and strain vectors.

[
CE
]
, [e] and

[
εS
]

are respectively the stiffness
matrix at constant electric field, the stress piezoelectric coefficients and the permittivity
at constant strain. The piezoelectric material is assumed to be polarised along direction 3.

The constitutive Eqs. 2.1 and 2.2 can be expressed as:







T1

T2

T3

T4

T5

T6

D1

D2

D3







︸ ︷︷ ︸

Tg

=

















CE
11 CE

12 CE
13 0 0 0 0 0 −e31

CE
12 CE

22 CE
23 0 0 0 0 0 −e32

CE
13 CE

23 CE
33 0 0 0 0 0 −e31

0 0 0 CE
44 0 0 0 −e24 0

0 0 0 0 CE
55 0 −e15 0 0

0 0 0 0 0 CE
66 0 0 0

0 0 0 0 e15 0 ǫs
11 0 0

0 0 0 e24 0 0 0 ǫs
22 0

e31 e32 e33 0 0 0 0 0 ǫs
33

















︸ ︷︷ ︸

generalised constitutive matrix Cg







S1

S2

S3

S4

S5

S6

E1

E2

E3







︸ ︷︷ ︸

Sg

(2.3)

The left hand vector {Tg}, called vector of generalised stresses, contains the stress and the
electric displacement components. The right hand vector {Sg} is the vector of generalised
strains and it contains the strain and the electric field components. The matrix [Cg] is
called generalised constitutive matrix. It is built on the basis of the elastic, the piezoelectric
and the dielectric properties.

Eqs. 2.1 and 2.2 are written as stresses and electric displacements in terms of strains
and electric field. Alternatively, the constitutive equations can be written in another form
as strains and electric displacements in terms of stresses and electric field:

{
{D} = [d] {T} +

[
εT
]
{E}

{S} =
[
S

E
]
{T} +

[
d

T
]
{E}

(2.4)

where
[
S

E
]
, {T} and

[
εT
]

are respectively the compliance matrix at constant electric field,
the strain piezoelectric properties and the permittivity at constant stress. The relationships

6



2.1 – Constitutive and governing equations

between the two considered forms of constitutive equations are:
[
S

E
]

=
[
C

E
]−1

[d] = [e]
[
S

E
]

[
εT
]

=
[
εS
]
+ [e]

[
S

E
]
[e]T

(2.5)

[e] and [d] are related to the free stress and free strain conditions, respectively. [e] rep-
resents the stresses induced by a unitary electric field at constant strain, whereas [d]
represents the strains induced by a unitary electric field at constant stress. In real ap-
plication, for thin layer piezoelectric transducers mounted on a surface, the electric field
is in the poling direction (E1 = E2 = 0). The same applies to the electric displacement
(D1 = D2 = 0). This is known as unidirectional electric field (UDEF) assumption. Once
the piezoelectric transducer is manufactured with the electrode layers, the polarisation
process can be carried out applying an electric potential jump at the electrodes. The
polarisation direction coincide with that of the applied electric field.

Alternatively, the tensor notation can be adopted. In this case the constitutive Eqs. 2.1
and 2.2 can be written in tensorial form:

{
σij = CE

ijklεkl − ekijEk

Di = eiklεkl + ǫε

ikEk
(2.6)

Here σij and εkl are the components of the stress and the strain tensors, Ei and Di

are the components of the electric field and the electric displacement vectors, CE
ijmn are

the components of the elastic modulus tensor measured at a constant electric field, ǫε

ik

are the components of the dielectric tensor at fixed strain and ekmn are the components
of the piezoelectric constants tensor. In the preceding equations and in what follows the
summation convention applies to repeated Latin subscripts. The lowercase Latin subscripts
range from 1 to 3.

Extending the shorthand notation introduced in many works such as [2, 3], the electro-
elastic constants can be expressed on equal footing in the following as

LiJMn =







CE
ijmn, J,M = 1,2,3

enij , J = 1,2,3;M = 4
eimn, M = 1,2,3;J = 4
−ǫε

in, J = M = 4

(2.7)

Uppercase subscripts range from 1 to 4. With this shorthand notation, the linear consti-
tutive Eqs. 2.6 can be unified as:

ΣiJ = LiJKlZKl (2.8)

where:

ΣiJ =

{
σij, J = 1,2,3
Di, J = 4

and ZKl =

{
εkl, K = 1,2,3
−El, K = 4

(2.9)

In Eq. 2.9 the elastic strain and the electric field are derivable from:

UM =

{
um, M = 1,2,3,
φ, M = 4

(2.10)
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2 – Piezoceramics and piezocomposite materials

where um is the elastic displacement and φ the electric potential, through the equations:
{

εij = 1
2 (ui,j + uj,i)

Ei = −φ,i
(2.11)

Comma denotes partial differentiation with respect to a coordinate. Recall that the quan-
tities in the above shorthand notations are not tensors. Each individual tensor must be
transformed by the well known laws of tensor transformations. Then, the resulting tensors
can be reunified.

The following governing equations are considered in piezoelasticity:
{

σij,j = ρüi

Di,i = 0
(2.12)

in the volume V. ρ is the mass density. The boundary conditions are defined on the
boundary ∂V = Γ, where Γ = Γt ∪Γu = Γq ∪Γφ, and Γt ∩Γu = Γq ∩Γφ = ∅. Traction and
displacement boundary conditions are defined as:

{
σijnj = t̄i on Γt

ui = ūi on Γu
(2.13)

where nj are the components of a vector normal to the surface. t̄ and ū are prescribed
stresses and displacements. Charge and electric potential boundary conditions are defined
as: {

Dini = −q̄ on Γq

φ = φ̄ on Γφ
(2.14)

where q̄ and φ̄ are prescribed charges and electric potentials.

2.2 Piezoelectric transducers

2.2.1 Monolithic piezoelectric wafers

Historically, improvements in piezoelectric materials have been focused on the development
of single phase materials. Monolithic piezoceramic wafer are widely adopted. In several
studies they are employed as thin layer mounted patches on smart structures. In health
monitoring applications they generate and receives acoustic, ultrasound or Lamb waves.
In vibration control they are used in passive and active vibration control systems. They
are relatively cheap and their fabrication is relatively simple: after sintering of piezoce-
ramic materials, wafers can be cut with machining tools. They possess strong piezoelectric
properties and exhibit an isotropic behaviour in the plane of the wafer. Drawbacks of
piezoelectric wafers are brittleness and non-conformability to curved surfaces. An inter-
esting example of advanced monolithic piezoceramic wafer is presented in [4]. A typical
ceramic wafer is transverse isotopic: if material is removed along multiple parallel lines, as
shown in Fig. 2.1, the ceramic remains continuous and exhibits an anisotropic behaviour.
The effective stiffness in the direction transverse to the cuts is reduced. This device could
be considered as a composite of ceramic strips with air in-between.
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2.2 – Piezoelectric transducers

Figure 2.1. Ceramic wafer with cuts [4].

2.2.2 Unimorph transducers

An interesting design of ceramic wafer on a substrate is THUNDER R© [5](thin-layer com-
posite unimorph ferroelectric driver and sensor), developed at NASA Langley Research
Center and investigated by Mossi et al. [6]. It consist of piezoelectric ceramic wafer pre-
stressed against a foundation material, which is usually in stainless steel, see Fig. 2.2. The

Figure 2.2. THUNDER R©schematics [5].

ceramic is pre-compressed whereas the substrate is pre-tensed. The bond is assured by a
high temperature thermoplastic polyimide. Tanks to the pre-stress, THUNDER R©can be
deflected more than standard piezoceramics, leading to larger displacements along a axis.
The piezoceramic wafer is protected by the metallic top and bottom layers, that are suited
to be used as electrodes.

Haertling [7] proposed the RAINBOW transducer, which is similar to THUNDER R©in
concept and operation, but differ in manufacturing: oxygen is removed at high tem-
perature on a side of a monolithic ceramic. At room temperature, the difference in
thermal-expansion coefficients between the ceramic and reduced layers produce high resid-
ual stresses. Wise [8] found that RAINBOW devices have output axial displacements
greater by about 10 to 25% with respect to those of THUNDER R©because of higher inter-
nal stresses.
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2 – Piezoceramics and piezocomposite materials

2.2.3 1-3 composites

Single phase piezoelectric materials can only partially meet the desired requirements such
as high strength and low dielectric constants for many new transducers and sensors. It has
been shown that some composite materials can provide superior properties compared to
their mother monolithic constituent materials in terms of flexibility, durability and relia-
bility. It has been proved in [9, 10] that piezocomposites can provide a higher piezoelectric
strain modulus d31 than the constituents in hydrophone applications and medical ultra-
sonic transducers. The replacement of a portion of a piezoceramic with a non-piezoelectric
polymer, which is light and flexible, yields to a multiphase construction of a more robust
actuator that is capable of conforming to complex surface shapes. Such composites inherit
the characteristics of functional materials, such as the piezoelectric properties, which can
be tailored to meet specific applications.

Designs of piezoelectric ceramic-polymer composites are classified according to the con-
cept of connectivity, which is related to the continuity of each phase in spatial dimensions.
Different arrangements of the material phases are considered by Safari [11], see Fig. 2.3.
For example, in a 1-3 composite the reinforcement phase is continuous in one dimension,

Figure 2.3. Spatial connectivity for a diphase composite [11].

whereas the matrix phase is three-dimensional continuous. An overview of composite trans-
ducers with piezoceramic fibres is presented by Williams et al. [12]. This class of composites
is of great interest since the flexible nature of the polymer matrix protects the fibres and
allows the device to conform to curved surfaces.

The standard method of 1-3 composite fabrication is the dice and fill method. A more
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2.2 – Piezoelectric transducers

refined method, known as arrange and fill, was developed at the Fraunhofer Institute for
Ceramic Technologies and Systems IKTS [13]. This method consists in epoxy infiltration
of arranged piezoelectric fibre bundles. Commercially available products, manufactured
by Smart Material Corp., are presented in Figs. 2.4. Fibres are aligned in the through-

(a) rectangular fibres (b) circular fibres

Figure 2.4. 1-3 composites manufactured by Smart Material Corp. [12].

the-thickness direction of the device. They are currently employed as high performance
ultrasound transducer since they guarantee higher bandwith with respect to monolithic
piezoceramics.

2.2.4 Piezoelectric fibre composites

Piezoelectric fibre composites called Active Fibre Composite (AFC) were introduced by
Hagood and Bent [14] as an alternative to monolithic piezoceramic wafers for structural
actuation applications. They have uniaxially aligned piezoceramic fibres surrounded by
a polymer matrix. Due to the arrangement of fibres along a specific in-plane direction,
the piezoelectric response in the plane of the device is direction-dependent. AFCs were
first developed using surface electrodes. When equipped with interdigitated electrodes
(IDEs) [15, 16, 17, 18], AFCs are more responsive than with conventional surface elec-
trodes since piezoelectric properties in the direction of the fibres are higher. In fact, fibres
are polarised approximately along their length instead of transversely. AFC with IDEs
is depicted in Fig. 2.5. Developed by the NASA Langley Research Center, the Macro
Fiber Composite (MFC) actuator and sensor presents superior qualities among AFCs in
performance, behaviour and repeatability as well as in manufacturability [20], and thus
attracted great interest for new industrial applications and in the academic community as
well. MFC has uniaxially aligned fibres with rectangular cross-section surrounded by a
polymeric matrix. The cross section and the schematic of MFC are presented in Figs. 2.6.
They are 2-2 composites in terms of connectivity. Rectangular fibres allow a better contact
between fibres and electrodes with respect to AFC. In AFC, the circular fibres are in close
contact with electrode only in a small portion. Therefore electric field acting on the fibre
is somewhat diminished. Rectangular fibres are also easier and cheaper to produce: they
are diced form a piezoelectric wafer, whereas the circular fibres of AFC are extruded in
a complex and expensive process. Optimisation of IDEs for piezoelectric fibre composites
has been investigated by Bowen et al. [21] in terms of geometry. Electrode width and
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2 – Piezoceramics and piezocomposite materials

Figure 2.5. Active Fiber Composite with interdigitated electrodes [19].

(a) cross-section (b) schematic

Figure 2.6. Macro Fiber Composites, manufactured by Smart Material Corp. [12].

spacing as well as device thickness have been taken into account in the optimisation. Both
d31- and d33-type MFCs have been commercialised. The former adopts conventional elec-
trodes, whereas the latter uses interdigitated electrodes, see Fig. 2.7. MFCs are the most

Figure 2.7. Electric field distribution for (a) conventional and (b) interdigitated electrodes [22].

promising piezoelectric devices with anisotropic behaviour that are commercially available.
Their properties are thoroughly investigated in Ch. 3.

There are other interesting concept designs of piezoelectric composites. The hollow
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2.2 – Piezoelectric transducers

fibre topology has been explored by Cannon and Brei [23]. Electrodes are on both the
inner and outer surfaces of the fibre, giving a radial poling direction as shown in Fig. 2.8.
Lower operating voltage is required with respect to AFC and MFC and an electrically

Figure 2.8. Hollow fibres design [23].

conductive matrix can be employed. Fibres have been manufactured through an extrusion
process and a lamina prototype built of epoxy matrix with embedded fibres has been tested.
The fabrication process is quite complex: after the extrusion, the fugitive material has to
be burn out. Electrodes are realised individually for each fibre using silver paint.

Lin and Sodano [24] presented the concept of a piezoelectric structural fibre built of a
carbon fibre core coated with a piezoelectric layer. The carbon fibre enhance the mechan-
ical properties, assuming a load-carrying structural function, and act as inner electrode.
Schematic of fibre cross-section is shown in Fig. 2.9. Theoretical and finite element models

Figure 2.9. Cross-section of the active structural fibre [24].

have been developed to predict the electromechanical properties of composite with the
proposed fibre in an epoxy matrix. Results show that such a composite material could
achieve piezoelectric coupling coefficients as high as 70% of the active constituent.
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Chapter 3

Micromechanics and homogenisation

of piezoelectric composites

In an effort to obtain piezoelectric materials with the competing properties, many conven-
tional piezoelectric materials are engineered to incorporate inclusions, such as particles,
short fibres, long fibres and in some cases even voids, to achieve the desired electro-elastic
properties. Combining two or more distinct constituents, piezoelectric composite materials
can take the advantages of each constituent since an important application of composite
structures is the use of the product property, which is found in the composite structures
but is absent in the individual phases [25]. However, the introduction of inclusions or voids
into base media will generally lead to the material being anisotropic, complicated and, in
some situations, even detrimental to the performance of the composite. Therefore, in or-
der for the composite to offer a favourable behaviour, it is necessary to clearly examine
the electro-elastic responses from a micromechanics point of view so that the influence of
each material parameter can be understood thoroughly [26]. Inspired by the above inter-
esting and exciting modelling tools as well as by the excellent designability of composites
including piezoelectric composites, scientists and engineers pursue the optimal design for
the desired applications. With the rapid advancement in technological research, it is ex-
pected that composites and completely novel materials could be conveniently designed and
manufactured by direct engineering of their constituents [27, 28].

In the last decade, an increasing number of investigations focused on the homogeni-
sation of composite materials have been accomplished to predict mechanical and electro-
mechanical properties of piezoceramic composites. Most of the time these techniques are
obtained as extension of the ones developed for pure elastic materials. Significant works
in this area are those in Refs. [29, 30, 31, 32, 3]. Different techniques have been devel-
oped based on analytical mixing rules [18, 33, 34] and on the finite element modelling
techniques [35, 36, 37, 38]. Hagood and Bent [15] used a mixing rule technique to pre-
dict the effective properties of AFCs. The results of this investigation were in reasonable
agreement with experimental data. Moreover, Bent and Hagood [18] adopted the Uniform
Field Method (UFM) to derive a constitutive model for a new AFC design. The model was
implemented into a finite element code and numerical simulations have been performed.
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3 – Micromechanics and homogenisation of piezoelectric composites

In [33, 34], Tan and Tong proposed three-dimensional micro-electromechanical models for
piezoelectric fibre reinforced composite materials. Analytical formulas of overall electro-
mechanical properties have been derived using the UFM under single and multiple loads
conditions. The developed model showed good agreement with experimental data. Using
similar approach, Deraemaeker et al. [22, 39] proposed a simplified form of the analytical
mixing rules based on the work of Tan and Tong [33]. The results of the investigated
simplified analytical solution have shown a good agreement with the numerical solution
computed using the periodic homogenisation method [35, 40] under plane stress assumption
and with the experimental results available in literature. Aboudi extended the generalised
method of cells to piezoelectric materials in [41] by imposing mechanical equilibrium and
Maxwell’s charge equation in the constituent regions in conjunction with the continuity
of mechanical displacements, tensions, electric potential and electric displacements. Tang
and Yu [36], starting from the total electric enthalpy of the heterogeneous continuum,
formulated a micromechanics model as a constrained minimisation problem using the vari-
ational asymptotic method and implemented it using the finite element method. In [29, 30],
homogenisation techniques based on Eshelby tensor [42] have been developed to predict
the mechanical and coupled piezoelectric properties of composites. In the same context,
Li [43] considered the Mori-Tanaka [44] and the self consistent [45] approaches to predict
the effective thermoelastic moduli of composites. Two different models that belong to the
same family can be found in [28, 46]. Both are based on the self-consistent model: Tong
et al. [28] consider a three-phase cylindrical model for analysing fibre composite, whereas
Levin et al. [46] are concerned with composite materials that consist of a homogeneous
matrix phase with a set of inclusions uniformly distributed in the matrix. The method
of Asymptotic Expansion Homogenization (AEH) is a powerful method that allows com-
puting the effective properties of composite materials and heterogeneous media using a
periodic Representative Volume Element (RVE). It is often used in many global/local and
periodical problems. For instance, AEH method is able also to characterise the micro field
of stress, strain, electric displacement and electric fields [47, 48]. The AEH method for pe-
riodic media has been formulated, in a weak form derivation, by Guedes and Kikuchi [49].
Recently, a strong form derivation of the AEH for linear elasticity problems has been pre-
sented in [37, 48] and applied to several composite geometries, where detailed mathematical
formulation and numerical implementation for elastic properties can be found. The influ-
ence of the reinforcement volume fraction on the overall material properties for different
composite geometries has also been analysed in these works. In [50], Bravo-Castillero et al.
applied AEH method to obtain the overall effective properties of periodic multi-laminated
magneto-electro-elastic composites.

In this chapter, the problem of piezoelectric inclusions in a host material is considered
and conclusions are drawn on the basis of the characteristics of the inclusion such as shape
and polarisation. The equivalent properties of a well known piezoelectric composite (MFC)
are also addressed.
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3.1 – Piezoelectric inhomogeneities

3.1 Piezoelectric inhomogeneities

The multi-coating micromechanical model introduced in [51, 52] for elastic and viscoelastic
composite materials is adopted and extended to the effective electro-elastic properties of
piezoelectric composite materials containing multi-coated inhomogeneities. It is based on
the generalised self consistent incremental scheme in which the composite inclusion has an
ellipsoidal shape and the number of coatings is a free parameter. The incremental approach
assures a better prediction of the effective properties in case of great difference among the
properties of the constituent material, in particular for high volume fractions. The multi-
coating formulation has the potential to study the effect of non-trivial inclusions, such as
the ones made of functionally graded materials. A finite element analysis is also performed
for two-phase piezoelectric composite materials using ABAQUS finite element software.
The inhomogeneities’s shape effect as well as the poling direction and the coating effects
is investigated.

3.1.1 Micromechanical model

Constitutive equations, notations and topology

Tensorial notation is adopted. Constitutive equations are reported in Sec. 2.1. The topol-
ogy of the present multi-coated inhomogeneity problem (see Fig. 3.1) consists of an inhomo-

Figure 3.1. Topology of the multi-coated inhomogeneity problem. Σ∞

iJ and Z∞

Ij represent
the macroscopically applied fields.

geneity phase occupying a volume, V1, whose behaviour is described by the electro-elastic
moduli pseudo-tensor L

1. Surrounding this inhomogeneity phase are (n−1) layers of coat-
ings of other materials whose behaviours are described by their respective electro-elastic
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3 – Micromechanics and homogenisation of piezoelectric composites

moduli pseudo-tensor L
i and that occupies a volume, Vi, i ∈ {2,3,...,n}. Note that the

coating n is a shell of the matrix material. This multi-coated inhomogeneity is then em-
bedded in the effective material described by the unknown effective electro-elastic moduli
pseudo-tensor L

eff. The following derivation is limited to the case of small perturbation
theory and the interfaces matrix-coating, coating-coating and coating-inhomogeneity are
assumed to be perfect, thus ensuring continuity of tension and displacements across these
boundaries. Note that this kind of topology has been used for elastic composites [51] and
viscoelastic composites [52].

Integral equation and localisations

Micromechanical schemes are based on two distinct steps: (i) localisation, which deter-
mines the relationship between the microscopic (local) fields and the macroscopic (global)
loading, and (ii) homogenisation, which employs averaging techniques to approximate the
macroscopic behaviour. The beginning point of the present homogenisation scheme is
based on the integral equation of Zeller and Dederichs [53] who have proposed to model
the composite material shown in Fig. 3.1 as a homogeneous material whose electro-elastic
behaviour varies spatially, that is:

L(r) = L
eff + δL(r) (3.1)

where r ∈ V , V is the volume of the homogeneous medium, δL(r) and δβ(r) are the
spatially dependent electro-elastic moduli variations, L

eff and βeff represent the unknown
electro-elastic moduli of the effective material which are constant for all r. To complete the
formulation of the stationary linear response of a electro-elastic material, Eqs. 2.9 and 2.11
must be supplemented with the equations of the elastic equilibrium and the Gauss’s law
of electrostatics, see Eqs. 2.12, which in the absence of body forces and free charge sources
are: {

σij,i = 0
Di,i = 0

(3.2)

Based on the shorthand notations, Eq. 3.2 gives:

ΣiJ,i = 0. (3.3)

Using the symmetries of C, e, ǫ, σ and ε, Eq. 3.3 yields:

Leff

iJKlUK,li = [−δLiJKlZKl],i . (3.4)

Employing Green’s formalism, it is possible to get the simplified equation for the strain
and the electrical fields, ZIj(r), at any point in the medium as [54, 53]:

ZIj(r) = Z∞
Ij −

∫

V
Γeff

IjkL(r− r
′)
[
δLkLMm(r′)ZMn(r′)

]
dr′, (3.5)

where Γ
eff(r − r

′) is the modified Green’s electro-elastic pseudo-tensor, Z
∞ is the macro-

scopic elastic strain and electric fields that have no spatial dependence. Here the superscript
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3.1 – Piezoelectric inhomogeneities

“eff” denotes that the Green’s pseudo-tensor is computed using the electro-elastic proper-
ties, L

eff, of the effective medium. The fluctuation parts of the electro-elastic constants
with respect to the effective medium are given by the following relations:

δL(r) =

n∑

k=1

∆L
(k/eff)θk(r), with ∆L

(k/eff) =
(

L
k − L

eff

)

(3.6)

where the characteristic function θk(r) of the phase k, occupying the volume Vk, is defined
as:

θk(r) =

{
1 ∀r ∈ Vk

0 ∀r /∈ Vk
, with k ∈ {0,1,2,...,n} . (3.7)

For the following, certain notation conventions need to be mentioned. The volume VI of
the composite inhomogeneity, I, consists of the inhomogeneity and (n − 1) coatings and
the volume fraction, ϕk, of the phase k are defined as:

VI =
n∑

k=1

Vk and ϕk =
Vk

VI

, k ∈ {1,2,...,n} . (3.8)

The average strain and electrical fields, Z
I
, in the composite inhomogeneity, I, is defined

by:

Z
I
=

1

VI

∫

VI

Z(r)dr = Z
∞ − T

I(Leff) : τ I, (3.9)

where: 





T
I(Leff) = 1

VI

∫

VI

∫

VI
Γ

eff(r− r
′)drdr′,

τ I =
∑n

k=1 ϕk

(

∆L
(k/eff) : Z

k
)

,

Z
k

= 1
Vk

∫

Vk
Z(r)dr.

(3.10)

It is apparent from Eq. 3.9 that if one can find the local concentration pseudo-tensors a
k

such that
Z

k
= a

k : Z
I

(3.11)

then, the localisation pseudo-tensors A
I in the composite inhomogeneity I which are defined

by the relation
Z

I
= A

I : Z
∞

(3.12)

can be determined as

A
I =

[

I
4 + T

I(Leff) :

(
n∑

k=1

ϕk∆L
(k/eff) : ak

)
]−1

(3.13)

In Eq. 3.13, I
4 is the shorthand notation for the fourth order and the second order identity

tensors:

I4
IjMn =







(δimδjn + δinδjm) , I,M = 1,2,3
0, I = 1,2,3;M = 4
0, M = 1,2,3; I = 4
δjn, I = M = 4

(3.14)
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3 – Micromechanics and homogenisation of piezoelectric composites

where δij is the Kronecker delta. To complete the localisation step, the local localisation
pseudo-tensors a

k must be found. If one introduces the localisation pseudo-tensors A
k in

each phase, k, such as:

Z
k

= A
k : Z∞ + B

k∆T, (3.15)

then, Eqs. 3.11 and 3.12 give:
A

k = a
k : AI (3.16)

Using the fact that

Z
I
=
〈

Z
k
〉

=
n∑

k=1

ϕkZ
k
, (3.17)

one gets the following equations to solve for a
k:

〈

a
k
〉

=

n∑

k=1

ϕka
k = I

4 (3.18)

Here, the notation, 〈ζ〉, denotes the average value of the quantity, ζ, over the whole
volume of the composite inhomogeneity, I. Eqs. 3.18 constitute the solution of the posed
problem given as function of the unknown n local localisation pseudo-tensors a

k which
can be determined if one takes into account the boundary conditions through the different
interfaces in the composite inhomogeneity. Interfacial operators [55] are a very convenient
mathematical tool that efficiently calculates the stress or strain jump across a material
interface (an interface separating two dissimilar materials). These operators are derived
by writing the equations for the continuity of displacement and tension across the material
interface (hypothesis of perfect interface). The derivation begins with the general case of
two solid phases k and (k + 1), with the electro-elastic constants L

k and L
k+1 separated

by a surface with unit normal, N, directed from phase k to phase (k + 1). Using the
electro-elastic constants of these two phases, the jump of Z(r) across the material interface
is given as [55]:

Zk+1
Ij (r) − Zk

Ij(r) = P k+1
IjmN

[(

Lk
mNPq − Lk+1

mNPq

)

Zk
Pq(r)

]

. (3.19)

The interfacial operator, P k+1
IjmN , depends only on the constituent materials’s properties

and the unit normal vector of the interface. In the following, some notation conventions
need to be defined

Ωj =

j
⋃

k=1

Vk and ∆L
(p/q) = L

p − L
q. (3.20)

Substituting Z
k(r) by the average value, Z

Ωk , of Z(r) over the volume Ωk and taking the

average, Z
k+1

, of Z(r) over the volume Vk+1, Eq. 3.19 yields:

Z
k+1

= Z
Ωk + T

k+1
(

L
k+1
)

:
[

∆L
(Ωk/k+1) : Z

Ωk

]

, (3.21)
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3.1 – Piezoelectric inhomogeneities

where L
Ωk are the electro-elastic moduli of the composite formed by the volume Ωk:

T
k+1

(

L
k+1
)

=
1

Vk+1

∫

Vk+1

P
k+1dr, (3.22)

and:

Z
Ωk =

k∑

i=1

Vi

Ωk
Z

i
=

∑k
i=1 ϕiZ

i

∑k
i=1 ϕi

. (3.23)

Following [56], it can be shown that:

T
k+1

(

L
k+1
)

= T
Ωk

(

L
k+1
)

−

∑k
i=1 ϕi

ϕk+1

[

T
Ωk+1

(

L
k+1
)

− T
Ωk

(

L
k+1
)]

, (3.24)

with:

T
Ωp (Lq) =

1

Ωp

∫

Ωp

∫

Ωp

Γ (Lq) (r − r
′)drdr′. (3.25)

Since T
Ωp (Lq) are not size-dependent but shape dependent, it is apparent that in the

specific case of homothetic inhomogeneities, one has:

T
k+1

(

L
k+1
)

= T
Ωk

(

L
k+1
)

= T
Ωk+1

(

L
k+1
)

. (3.26)

Using some algebraic manipulations, one gets:

∆L
(Ωk/k+1) : Z

Ωk =

∑k
j=1 ϕj

(

∆L
(j/k+1) : Z

j
)

∑k
j=1 ϕj

. (3.27)

If one introduces the pseudo-tensors Π
k defined by:

a
k = Π

k : a1 (3.28)

then, by using Eqs. 3.21, 3.23 and 3.27, the pseudo-tensors Π
k are obtained as follows:

Π
k =

∑k−1
j=1

(
ϕjϑ

(j/k) : Πj
)

∑k−1
j=1 ϕj

(3.29)

In Eq. 3.29, the expressions of the pseudo-tensors ϑ(j/k) are given as:

ϑ(j/k) = I
4 + T

k
(

L
k
)

: ∆L
(j/k) (3.30)

One can verify that:
Π

1 = I
4 (3.31)

Furthermore, Eqs. 3.18 and 3.28 give finally:

a
1 =

(
n∑

k=1

ϕkΠ
k

)−1

(3.32)

The localisation step of the present micromechanical model is definitively complete once
the pseudo-tensor a

1 is known.
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3 – Micromechanics and homogenisation of piezoelectric composites

Summary of the localisation step

To sum up, the main objective of the section 3.1.1 is to compute the localisation pseudo-
tensors A

k and B
k defined by the Eq. 3.15. The steps to get A

k and B
k are as follows:

• from the properties L
k of each phase, compute T

k(Lk) using Eq. 3.24;

• compute ϑ(j/k) and χ(j/k) from Eq. 3.30 using the properties βk ;

• compute Π
k and ∆

k from Eqs. 3.29 and 3.31;

• compute a
1 and b

1 from Eq. 3.32 and get a
k and b

k from Eq. 3.28;

• compute A
I and B

I from Eq. 3.13 and finally get A
k and B

k from Eq. 3.16.

Homogenisation schemes and effective properties

In what follows, two approaches are presented to compute the effective properties of a
piezoelectric material containing ellipsoidal shaped multi-coated inhomogeneities. Both
approaches are based on the classical self-consistent scheme. The first scheme is the basis
of the second one that uses it in an incremental way. The second approach has been shown
very useful in the case of high volume fractions of inhomogeneities with high contrast
between the properties of the host material and the inhomogeneities.

Non-incremental homogenisation scheme The effective electro-elastic properties L
eff

are related to the macroscopic fields Σ
∞ and Z

∞ as:

Σ
∞ = L

eff : Z∞ (3.33)

Using the following relations:






Σ
∞ =

∑n
k=0 ϕkΣ

k

Z∞ =
∑n

k=0 ϕkZ
k

Σ
k

= L
k : Z

k

(3.34)

in Eq. 3.33, one gets:

L
eff =

n∑

k=0

ϕkL
k : Ak (3.35)

Eq. 3.35 is a set of nonlinear equations (since the localisation pseudo-tensors A
k are func-

tions of L
eff) to solve for the effective properties L

eff. The localisation pseudo-tensors
A

k are all determined in the localisation step (Section 3.1.1). This non-incremental ho-
mogenisation scheme is called herein the generalised self-consistent method (GSCM). The
implementation of this micromechanical modelling technique requires the numerical ap-
proximation of the integral of the modified Green’s electro-elastic pseudo-tensor Γ

(
L

X
)

needed to compute T
I
(
L

eff
)

(see Eq. 3.13) and T
Ωp (Lq) (see Eq. 3.24). The implemen-

tation details of theses pseudo-tensors can be found in the appendix B of [3]. Note that,
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3.1 – Piezoelectric inhomogeneities

T
Ωp (Lq) can be also obtained from the Eshelby’s electro-elastic pseudo-tensor, S

Ωp (Lq),
as

T
Ωp (Lq) = S

Ωp (Lq) : (Lq)−1. (3.36)

Expressions for the components of S
Ωp (Lq) can be found in [57, 58].

Incremental homogenisation scheme It has been noticed that the classical self-
consistent method (CSCM) poorly estimates the effective properties of composites at high
concentrations of reinforcements and is limited to very low concentrations for composite
materials containing voids [31] or composites with high contrast between the properties of
the matrix and the inhomogeneities. In order to avoid this drawback, an improvement of
the CSCM has been proposed in [59] for the elastic case, which gives a progressive construc-
tion of the composite material in an incremental way in the same manner as the differential
scheme (DS). In this paper, this incremental method is extended to the electro-elastic be-
haviour of piezoelectric composite materials. In the incremental scheme, the construction
of the material is made by placing a finite increments of the volume fractions of the inho-
mogeneities in a certain effective medium, and for each increment the GSCM is applied to
calculate the effective electro-elastic properties of the piezoelectric composite material. If
S is the number of steps to use, the expression of the volume fraction increment, ∆ϕi

k, of
the kth inhomogeneity phase at the ith step is given as [59]

∆ϕi
k =

∆ϕk

1 − (i − 1)
∑n−1

j=1 ∆ϕj

, k ∈ {1,2,...,n − 1} , (3.37)

where
∆ϕk =

ϕk

S
. (3.38)

At the ith step, the matrix phase becomes the effective material obtained at the (i − 1)th

step using the GSCM with the volume fractions ∆ϕi−1
k . This incremental scheme is referred

as IGSCM hereafter. Recall that this incremental scheme does not affect the expression of
the concentration pseudo-tensors A

k on which the method is based. So, the formulation
used in this case is the same as in the GSCM. The two methods differ only in the manner
the reinforcements volume fractions are introduced.

3.1.2 Numerical periodic homogenisation

A finite element analysis (FEA) of the representative volume element (RVE) is performed
to verify the results obtained from the micromechanical models presented in Section 3.1.1.
It consists of a cube containing an ellipsoidal inhomogeneity (see Fig. 3.2). The number
of elements in the RVE varies from 1000 to 1500, depending on the volume fraction of the
inhomogeneities. A convergence study is always carried out to determine the appropriate
number of elements to be used for each case. For geometrical reasons the volume fraction
of the inhomogeneity can’t rise up to the unity. In the case of spherical inclusion, the
theoretical limit is 0.523, whereas in this analysis it is limited to 0.45 to avoid meshing
problems. The computation of the effective properties is based on the numerical Periodic
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3 – Micromechanics and homogenisation of piezoelectric composites

Figure 3.2. Finite element modelling of the RVE, cut with a skew plane. In colours,
stress distribution σ11 corresponding to a particular load case for the evaluation of the
components of the elastic moduli tensor.

Homogenisation Method (PHM) [35]. Rigorously, the boundary conditions should be ap-
plied on the surface of the RVE point wise in order to guarantee the periodicity condition.
However, for this kind of problem, it is sufficient to apply uniform boundary condition on
the faces of the cubic RVE. In order to compute the values in the constitutive matrix of the
homogeneous model a proper approach is to apply the periodic boundary condition in such
a way that only one generalised average strain is different from zero. The corresponding
column in the generalised stiffness matrix in Eq. 2.3 can be computed with the averaged
values of the generalised stress components. If (x1,x2,x3) denotes an orthogonal reference
system whose axes are perpendicular to the faces of the cubic RVE, the appropriate bound-
ary conditions can be expressed more easily naming A− and A+ the faces perpendicular
to direction x1, B− and B+ the faces perpendicular to direction x2, C− and C+ the faces
perpendicular to direction x3. Six different load cases with the corresponding computed
properties, in the case of transversal isotropic materials, are shown in Table 3.1, where
q is an arbitrary quantity, u are the displacements and φ is the electric potential. The
finite elements used to evaluate the electro-mechanical properties are standard ABAQUS’s
8-node linear piezoelectric brick elements (C3D8E). Differently from the work in [35], all
the mechanical boundary conditions are expressed in terms of the displacements, not in
terms of both displacements and loads.

3.1.3 Numerical results and discussions

The effective properties of a polymeric matrix containing piezoelectric material inhomo-
geneities are evaluated with the proposed micromechanical models and with the finite
element analysis. The electro-elastic properties of the constituent materials are shown in
Table 3.2. In what follows, the inhomogeneity semi-axis along the x1, x2 and x3 directions
will be denoted a, b and c respectively. The special case of a = b will be considered. The
matrix is made of Epoxy material while the inhomogeneity is made of one of the piezo-
electric materials (BaTiO3, PZT-4, PZT-4 or PZT-7A) in Table 3.2. The polarisation
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3.1 – Piezoelectric inhomogeneities

Case Mechanical and electrical BC Properties
A faces B faces C faces

1 u1A+ = q; u1A− = 0 u2B+ = 0; u2B− = 0 u3C+ = 0; u3C− = 0 CE
11 ,CE

21

φA+ = 0; φA− = 0 φB+ = 0; φB− = 0 φC+ = 0; φC− = 0

2 u1A+ = 0; u1A− = 0 u2B+ = 0; u2B− = 0 u3C+ = q; u3C− = 0 CE
13 ,CE

33

φA+ = 0; φA− = 0 φB+ = 0; φB− = 0 φC+ = 0; φC− = 0

3 u1A+ = 0; u1A− = 0 u3B+ = q; u3B− = 0 u2C+ = q; u2C− = 0 CE
44 ,e24

φA+ = 0; φA− = 0 φB+ = 0; φB− = 0 φC+ = 0; φC− = 0

4 u2A+ = q; u2A− = 0 u1B+ = q; u1B− = 0 u3C+ = 0; u3C− = 0 CE
66

φA+ = 0; φA− = 0 φB+ = 0; φB− = 0 φC+ = 0; φC− = 0

5 u1A+ = 0; u1A− = 0 u2B+ = 0; u2B− = 0 u3C+ = 0; u3C− = 0 ǫε
33 ,e31 ,e33

φA+ = 0; φA− = 0 φB+ = 0; φB− = 0 φC+ = q; φC− = 0

6 u1A+ = 0; u1A− = 0 u2B+ = 0; u2B− = 0 u3C+ = 0; u3C− = 0 ǫε
11

φA+ = q; φA− = 0 φB+ = 0; φB− = 0 φC+ = 0; φC− = 0

Table 3.1. Periodic boundary conditions for different load cases.

C11 C12 C13 C33 C44 e31 e33 e15 ǫ11/ǫ0 ǫ33/ǫ0

Epoxy 8 4.4 4.4 8 1.8 0 0 0 4.2 4.2
BaTiO3 150 66 66 146 4.4 -4.3 17.5 11.4 1115 1260
PZT-4 139 77.8 74.3 115 25.6 -5.2 15.1 12.7 730 645
PZT-5 121 75.4 75.2 111 21.1 -5.4 15.8 12.3 916 830
PZT-7A 148 76.2 74.2 131 25.4 -2.1 12.3 9.2 460 235

Table 3.2. Electro-elastic material properties. Cij in GPa, eij in C m−2, ǫ0 =
8.854 × 10−12 C N−1 m−2.

direction is assumed to be x3 direction if not otherwise specified. The feasibility of such a
polarisation on a large number of inclusions inside a matrix is not addressed.

Results obtained with the micromechanical models in the case of fibre shape inhomo-
geneity (aspect ratio c/a = Ψ = 1000) are shown in Fig. 3.3. The results for PZT-7A
are in good agreement with the experimental data found in [60]. For this particular ge-
ometry there is no significant difference between the results obtained with the incremental
(solid lines) and the non-incremental (dashed lined) schemes. This is not the case if the
inhomogeneity has a spherical shape (Ψ = 1), see Fig. 3.4. The results obtained with
the micromechanical models are plotted together with the results from the finite element
homogenisation up to the volume fraction of 0.5. The effective properties obtained from
the incremental scheme are higher than the ones given by the non-incremental scheme
for all the considered properties. This difference increases with the volume fraction of
the inhomogeneities and it is more pronounced above the volume fraction of 0.2. Ta-
ble 3.3 reports a comparison between the results shown in Fig. 3.4 for different volume
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Figure 3.3. Effective d33 calculated with inclusion of different materials. Incre-
mental scheme in solid lines (-), non-incremental scheme in dashed lines (- -),
experimental results from [60] in dots (•).
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Figure 3.4. Comparison between incremental scheme (solid lines -), non-incremental
scheme (dashed lines - -) and FEA results (asterisks ∗).

fractions. The results obtained from the FEM homogenisation are in better agreement
with the incremental scheme rather than with the non-incremental scheme. Moreover the
non-piezoelectric properties predicted by the micromechanical model are closer than the
piezoelectric properties to the FEM homogenisation results. It is important to notice that,
the effective piezoelectric coefficients are very small with respect to the ones of the piezo-
electric constituent material. The reason of this behaviour is the great mismatch between
the dielectric coefficients, ǫε

ij, of the matrix and the inclusion materials. For a matrix
material having dielectric coefficients similar to that of the inhomogeneity, the predicted
piezoelectric coefficients are much larger.

The influence of the aspect ratio on the effective properties computed with the mi-
cromechanical models is shown in Fig. 3.5. The volume fraction is fixed at 0.4. With
Ψ < 10−1 and with Ψ > 102 the effective properties do not have significant variations
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3.1 – Piezoelectric inhomogeneities

Volume fraction Property FEM NI I err(NI) err(I)
0.1 C11 0.942 0.933 0.939 -0.94 -0.33

e31 -0.465 -0.363 -0.381 -22.0 -18.1
e33 0.166 0.145 0.177 -12.7 6.21

0.2 C11 1.14 1.10 1.12 -3.54 -1.27
e31 -1.44 -0.909 -1.03 -36.7 -28.0
e33 0.475 0.364 0.562 -23.5 18.3

0.3 C11 1.41 1.30 1.37 -7.87 -2.98
e31 -3.44 -1.75 -2.24 -48.9 -34.6
e33 1.09 0.703 1.42 -35.5 30.6

0.4 C11 1.83 1.56 1.71 -14.7 -6.51
e31 -7.97 -3.13 -4.74 -60.7 -40.4
e33 2.57 1.25 3.44 -51.3 33.7

Table 3.3. Comparison between results obtained with the FEM homogenisation, the
non-incremental scheme (NI) and the incremental scheme (I). The differences between the
results of the micromechanical models and that of the FEM homogenisation are reported
in percentage. C11 in (× 1010)Pa, e31 in (× 10−3)C m−2, e33 in (× 10−2)Cm−2. Matrix:
Epoxy. Inclusion: BaTiO3. Ψ = 1.
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Figure 3.5. Effect of the aspect ratio of the inclusion on the effective properties. The
volume fraction of inclusion is 0.4.

and have an asymptotic behaviour. This means that, for this model, Ψ = 10−1 is a good
approximation of a penny-shaped inclusion while Ψ = 102 is a good approximation of a
fibre-like inclusion. Fibre-shaped inclusions give the largeset equivalent piezoelectric prop-
erties. They also give the largest ratio e33/e31, which is an index of directionality of the
piezoelectric effect.

The effect of the rotation of the polarisation direction with respect to the x3 axis for
an inclusion with Ψ = 10 and a volume fraction of 0.4 is shown in Fig. 3.6. When the
polarisation direction is perpendicular to the x3 direction, the piezoelectric properties e31
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3 – Micromechanics and homogenisation of piezoelectric composites

and e33 are correctly null. Polarisation along the largest axis of the inclusion gives the

Figure 3.6. Effect of the rotation of the polarisation of the inclusion with respect to the
x3 axis on the effective properties. The volume fraction of inclusion is 0.4.

largest values for the piezoelectric coefficients. The effect of a spherical coating in PZT-4
on a spherical inclusion in BaTiO3 is shown in Fig. 3.7, where γ = a1/a2 = b1/b2 = c1/c2,
as it is defined in [43] (the subscript 1 stands for the inclusion and 2 stands for the coating).
The volume fraction of the matrix is fixed at 0.6.
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Figure 3.7. Effect of the variation of the coating thickness with volume fraction
of matrix fixed at 0.6.

The presented results, see in particular Fig. 3.5, suggest that higher directionality of
the piezoelectric effect can be achieved adopting piezoelectric fibres. Different shapes of the
inclusions give less direction-dependent properties. MFCs are the most promising commer-
cially available fibre-based devices with anisotropic response and are therefore investigated
in the next section.

28



3.2 – Macro Fiber Composite

3.2 Macro Fiber Composite

While the MFC’s attributes render it an exceptionally useful device, limited modelling
and experimental characterisation research on the MFC has took place. Among these
studies, Williams et al. [61] have analysed experimentally the nonlinear tensile and shear
stress-strain behaviour and Poisson effects of the MFC. Williams et al. [62] have later
developed a nonlinear model for a piezoelectric continuum taking into account nonlinear
mechanical behaviour and actuation characteristic of MFC. This section aims to model
and compute the effective electromechanical properties of MFC transducers with conven-
tional electrodes (d31-type). MFC schematic and its representative volume element (RVE)
are shown in Fig. 3.8. Since the semi-analytical method developed in Sec. 3.1 cannot

Î´ 1

Epoxy

PZT

x1

x2

x3

y1

y2

y3

A
+

B
+

C
+

a

b

Copper/EpoxyKapton

Figure 3.8. MFC schematic. According to Smart Materials datasheets, Kapton R©layers
thickness is 0.04 mm, copper/epoxy layers thickness is 0.0018 mm and active layer thickness
is 0.18 mm. The RVE of the active layer is depicted.

be adopted (MFC fibres are not ellipsoidal), the Asymptotic Expansion Homogenization
method is considered. Results are validated toward the Uniform Field Method, the Periodic
Homogenisation Method and manufacturer’s datasheet.

3.2.1 Asymptotic expansion homogenisation method

The method of Asymptotic Expansion Homogenization (AEH) [37, 47, 48, 49] is a pow-
erful method that allows computing the homogeneous model of composite materials and
heterogeneous media through an analysis of a periodic Representative Volume Element
(RVE). It is often used in many global/local and periodical problems. Loading of such
materials gives periodic oscillations in the fields at microstructural level as a consequence
of periodicity. Two different scales can be identified. There is a “fast” variable y over the
RVE and a “slow” variable x over the structure, related through

y = x/ǫ (3.39)
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3 – Micromechanics and homogenisation of piezoelectric composites

where ǫ << 1 is a scale parameter.
The periodicity of the RVE in the structure is assumed. The components of the gener-

alised elasticity tensor (tensor form of the generalised constitutive matrix Cg) is described
as:

Dijkl = Dijkl(y) (3.40)

The expression of the Y-periodic generalised elasticity tensor in the macroscale x is:

Dijkl(x/ǫ) = Dǫ
ijkl(x) (3.41)

A generic quantity Q(x), function of x and Y-periodic over the scale ǫ, is given as Qǫ(x).
In the following, the generalised elasticity tensor is assumed as

Dijkl = CE
ijkl,D4jkl = ejkl,Dij4l = elij,D4j4l = −ǫjl (3.42)

with indexes varying from 1 to 3. CE
ij are the components of the elastic modulus tensor

at constant electric field; ǫij are the components of the dielectric tensor at fixed strain (it
should not be confounded with the scale parameter ǫ, which is without indexes); eij are the
components of the piezoelectric constants tensor at fixed strain or electric field. In order
to derive the relation of the AEH, the dimension of the RVE is assumed to be infinitesimal
with respect to the structure (ǫ → 0). This allows to consider x and y as separate variables.
The generalised displacement field (physical displacement and potential) is approximated
using an asymptotic expansion in ǫ as:

uε

i (x) = u
(0)
i (x,y) + ǫu

(1)
i (x,y) + ǫ2u

(2)
i (x,y) + ... (3.43)

where u
(j)
i (x,y), with i = 1,...,4 and j ∈ N0, are the correctors of the generalised displace-

ment field. Since x and y are independent variables, one can write:

∂

∂xǫ
i

=
∂

∂xi
+

1

ǫ

∂

∂yi
(3.44)

Applying Eq. 3.44 to the asymptotically expanded generalised displacement field of equa-
tion 3.43, the expressions of the generalised strains and stresses is obtained as function
of ǫ. Substituting these expressions into the generic Boundary Value Differential (BVD)
problem and grouping the terms according to the power of ǫ, the original BVD problem
can be split in a series of simpler BVD problems. The solution of this set of simpler BVD
problems corresponds to the solution of the original one asymptotically (with j → ∞ in
Eq. 3.43) if the hypothesis of this approach are verified, i.e. if the material is periodic and
the dimension of the RVE tends to zero. It comes out from the third lowest order BVD
that

Dh
ijmn =

1

|Y |

∫

Y

Dijkl(y)

[

Imn
kl −

∂χmn
k (y)

∂yl

]

dy (3.45)

where Dh
ijmn is the equivalent generalised elasticity tensors, Y is the domain of the RVE,

|Y | is the RVE volume, Imn
kl is the identity tensor and χmn

k is called the characteristics
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displacement tensor that can be computed thanks to a relation derived from the two lowest
order BVDs:

∂

∂yj

[

Dijkl(y)

(

Imn
kl −

∂χmn
k (y)

∂yl

)]

= 0 (3.46)

In order to solve this equation it is necessary to consider the boundary conditions, which
involves also the quantity

σ
(1)
ij =

[

Dijkl(y)

(

Imn
kl −

∂χmn
k (y)

∂yl

)]
∂u

(0)
m

∂xn
(x) (3.47)

derived from the two lowest order BVD. σ
(1)
ij is the term multiplying ǫ0 in the asymptotic

expansion of the generalised stresses.

AEH analytical solution

Due to the simple geometry of the MFC, the material properties are given as:

Dijkl(y2) =

{

Dfibre

ijkl for 0 < y2 <= ρ |Y |

Dmatrix

ijkl for ρ |Y | < y2 < |Y |
(3.48)

Electrodes are neglected. The Eqs. 3.45, 3.46 and 3.47 could be written respectively as

Dh
ijmn =

1

|Y |

∫

Y

Dijk2(y2)

[

Imn
k2 −

∂χmn
k (y2)

∂y2

]

dy2 (3.49)

∂

∂y2

[

Di2k2(y2)

(

Imn
k2 −

∂χmn
k (y2)

∂y2

)]

= 0 (3.50)

σ
(1)
i2 =

[

Di2k2(y2)

(

Imn
k2 −

∂χmn
k (y2)

∂y2

)]
∂u

(0)
m

∂xn
(x) (3.51)

where y2 is the direction along which the material properties varies in the RVE (see Fig. 3.8)
and |Y | is the length of the RVE along y2. The Eq. 3.50 is a system of differential equations
that can be solved as:







∂χmn
k1

∂y2
= (Dk2o2)

−1Do2mn − (Dk2o2)
−1Komn1 for 0 < y <= ρ |Y |

∂χmn
k2

∂y2
= (Dk2o2)

−1Do2mn − (Dk2o2)
−1Komn2 for ρ |Y | < y < |Y |

(3.52)

Komn1 and Komn2 are constant terms. The subscript 1 stands for the fibre phase and the
subscript 2 stands for the matrix phase. Hereafter, expressions such as (Dk2o2)

−1 stand
for the inverse of a bidimensional matrix. The values of Komn can be obtained from the
boundary conditions. Since the BCs are applied on χmn

k and on
∂χmn

k

∂y2
, the Eq. 3.52 can be

solved: {

χmn
k1

(y2) = (Dk2o2)
−1Do2mny2 − (Dk2o2)

−1Komn1y2 + Gkmn1

χmn
k2

(y2) = (Dk2o2)
−1Do2mny2 − (Dk2o2)

−1Komn2y2 + Gkmn2

(3.53)

with Gomn1 and Gomn2 as constant terms. The BCs are considered to find the values of
the constant terms Komn1 , Komn2 , Gkmn1 and Gkmn2 in Eq. 3.53:
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• perfect bonding between the phases

χmn
k1

(ρY ) = χmn
k2

(ρY ) (3.54)

• continuity of the stress between the phases

σ
(1)
i21

(ρY ) = σ
(1)
i22

(ρY ) (3.55)

• Y -periodicity
χmn

k1
(0) = χmn

k2
(Y ) (3.56)

σ
(1)
i21

(0) = σ
(1)
i22

(Y ) (3.57)

• unicity condition, i.e. zero average on Y

χmn
k =

1

|Y |

∫

Y

χmn
k (y2)dy2 = 0 (3.58)

As a matter of fact, only Komn1 = Komn2 = Komn is needed to compute the equivalent
properties

Komn =
(

(Do2p2)−1
)−1

(Dp2q2)−1Dq2mn (3.59)

where the operator • performs an average over the RVE:

X =
1

|Y |

∫

Y

X(y2)dy2 (3.60)

Substituting Eq. 3.59 in Eq. 3.52:

∂χmn
k

∂y2
= (Dk2o2)

−1Do2mn − (Dk2o2)
−1
(

(Do2p2)−1
)−1

(Dp2q2)−1Dq2mn (3.61)

The equivalent properties for the AEH can be computed with the substitution of Eq. 3.61
in Eq. 3.49:

Dh
ijmn = Dijmn − Dijk2(Dk2o2)−1Do2mn

+
(

Dijk2(Dk2o2)−1(Do2p2)−1
)−1

(Dp2q2)−1Dq2mn (3.62)

AEH numerical solution

The analytical solution for the AEH could be obtained since the material properties vary
only in one direction, leading to a 1D homogenisation problem. However, this is not suffi-
cient to take into account the electrodes. To overcome this limitation a 3D homogenisation
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model has been developed. The equations to be considered are Eqs. 3.45 and 3.46, here
rewritten for convenience:

Dh
ijmn =

1

|Y |

∫

Y

Dijkl(y)

[

Imn
kl −

∂χmn
k (y)

∂yl

]

dy (3.63)

∂

∂yj

[

Dijkl(y)

(

Imn
kl −

∂χmn
k (y)

∂yl

)]

= 0 (3.64)

In order to calculate the effective properties with Eq. 3.63, Eq. 3.64 have to be solved.
This is equivalent to solving the following auxiliary variational problem

∫

Y
Dijkl

∂χmn
k

∂yl

∂vi

∂yj
dY =

∫

Y
Dijmn

∂vi

∂yj
dY, vi ∈ VY (3.65)

χmn
k ∈ VY , where VY is the set of Y-periodic continuous and sufficiently regular functions

with zero average value in Y [48]. This problem is similar to a electro-mechanical one in
which χmn

k is the generalised displacement field. It is solved using FEM. Details about how
to enforce the periodicity of χmn

k can be found in [37]. It can be derived that the right-
hand side of Eq. 3.65 corresponds to generalised surface loads acting at interfaces between
different materials, with direction and module dependent on the material properties jump
across the interface. It can be stated that these loads ensures the fulfilment of the boundary
conditions in Eq. 3.55. In fact the continuity of χmn

k across the material interfaces is
guaranteed by the finite element model but the continuity of the physical stress of the
Eq. 3.47 is enforced through a discontinuity in the “mathematical“ stress of the mechanical-
like problem of Eq. 3.65.

In the piezoelectric case, given a 9x9 generalised constitutive matrix Cg (matrix form
of the tensor Dijmn), each column corresponds to a particular load case. If the interface
among the different materials has a normal vector

−→
n = (n1,n2,n3) (3.66)

and the orthonormal system of vectors is
−→
i1 ,

−→
i2 ,

−→
i3 then:

−→
F = ∆Cg1λn1

−→
i1 + ∆Cg2λn2

−→
i2 + ∆Cg3λn3

−→
i3 +

∆Cg4λn2
−→
i3 + ∆Cg4λn3

−→
i2 + ∆Cg5λn1

−→
i3 +

∆Cg5λn3
−→
i1 + ∆Cg6λn1

−→
i2 + ∆Cg6λn2

−→
i1

Q = ∆Cg7λn1 + ∆Cg8λn2 + ∆Cg9λn3

(3.67)

−→
F is a surface mechanical load and Q is a surface electrical charge. λ is an index that
corresponds to a couple m,n, i.e to a column of matrix Cg. In the case of MFC the interface
between the two phases is perpendicular to y2. Therefore n1 = n3 = 0 and n2 = 1 and
Eqs. 3.67 become:

−→
F = ∆Cg2λn2

−→
i2 + ∆Cg4λn2

−→
i3 + ∆Cg6λn2

−→
i1 (3.68)

Q = ∆Cg8λn2 (3.69)
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In the RVE model there are two interfaces that have opposite signs for a given applied
surface mechanical load or surface charge. Because of the orthotropy of the materials
of the MFC, only seven load cases could be considered instead of nine. Load cases are
presented in Table 3.4. Four of these, namely λ = 1,2,3,9, differ only in the magnitude

Case
Surface force

Surface charge
y1 component y2 component y3 component

λ = 1 F1 = 0 F2 = ∆Cg21 F3 = 0 Q = 0
λ = 2 F1 = 0 F2 = ∆Cg22 F3 = 0 Q = 0
λ = 3 F1 = 0 F2 = ∆Cg23 F3 = 0 Q = 0
λ = 4 F1 = 0 F2 = 0 F3 = ∆Cg44 Q = ∆Cg84

λ = 6 F1 = ∆Cg66 F2 = 0 F3 = 0 Q = 0
λ = 8 F1 = 0 F2 = 0 F3 = ∆Cg48 Q = ∆Cg88

λ = 9 F1 = 0 F2 = ∆Cg29 F3 = 0 Q = 0

Table 3.4. Applied surface loads and surface charges to the RVE in numerical AEH.

of the applied loads. Thanks to the linearity of the problem only four load cases out of
seven need to be solved and the other three load cases are computed with a simple ratio. A
graphical representation of the load cases is given in Fig. 3.9. The RVE is meshed with 1300
8-node brick piezoelectric elements using commercial FEM software ABAQUS. A mesh
convergence analysis has been performed. The adopted mesh guarantees the convergence of
at least three significant digits of the computed equivalent material properties. In ABAQUS
Theory Manual [63] it is shown that the part of the generalised load vector corresponding to
applied charges has a negative sign. Although this is correct for the physical piezoelectric
problem, it is not valid for the variational problem of AEH. Therefore, surface charges
in Eqs. 3.67 and 3.69 must be changed of sign. Moreover, during the postprocessing
phase, in which the effective properties are computed via Eq. 3.63, the signs of the electric
field components given by the FEM solver must be changed due to the definition of the
electric field as the gradient of the electric potential changed of sign. The problem can be
numerically ill conditioned for the load cases that correspond to λ = 8 and λ = 9 because of
the small entity of the applied generalised loads. A simple solution is to magnify the loads
by a factor that will be used in the postprocessing phase to scale the FEM results. Without
electrodes the results correspond to the analytical solution found in Sec. 3.2.1. This does
not apply when electrodes are considered. This is performed imposing a constant zero
electrical potential on the electrodes surface via boundary conditions. Fig. 3.10 shows the
deformed RVE for the four load cases together with the colourmap of the electric potential
distribution.

3.2.2 Uniform field method

The Uniform Field Method (UFM) [18, 33, 22] is adopted to obtain analytical formulae
for the equivalent properties of the MFC. UFM is based on the hypothesis that fields such
as stress fields and strain fields are uniform in each phase of the RVE. At this stage the
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Case λ = 1 Case λ = 6

Case λ = 4 Case λ = 8

Figure 3.9. Representation of the four load cases. Arrows stand for applied surface forces
and squares stand for applied surface charges. Cases λ = 4 and λ = 8 differ in the magnitude
of applied loads and charges (see table 3.4).

relations among fields, which are necessary to derive the effective properties, are presented.

Relationships among fields

The effective properties derived with the UFM depend on the relationships among fields
in the RVE as a whole and in the phases. These relationships depend on the geometry of
the RVE and derive directly from the uniform field hypothesis. In the case of a two phase
piezoelectric composite, relationships among the fields can be of either of the following
form:

• in the case of independent variable, the fields are equal in each constituent:

Xi = Xp
i = Xm

i (3.70)

• in the case of dependent variable, the fields are related through a linear mixture
relation:

Xi = ρXp
i + (1 − ρ)Xm

i (3.71)
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Case λ = 1
Case λ = 6

Case λ = 4 Case λ = 8

Figure 3.10. Deformed RVE. Colourmap represents the electric potential distribution. In
the cases λ = 1 and λ = 6 the electric potential is uniform.

where ρ is the volume fraction of the piezoelectric phase. Xi is a generic generalised stress
or strain for the whole RVE (mean value); Xp

i is its value in the piezoelectric phase and
Xm

i is its value in the matrix phase. Corresponding generalised stress and strain have
different kinds of relationships, i.e. if T1 = T p

1 = Tm
1 then S1 = ρSp

1 + (1 − ρ)Sm
1 .

Each generalised stress or strain has its own relationship among fields. In the case of
MFC, provided that y2 is the direction along which the materials properties change (see
Fig. 3.8), S1, S3, S5, E1 and E3 are independent, whereas S2, S4, S6 and E2 are dependent.
Stress and electric displacement components are dependent or independent accordingly.

Matrix-based procedure

A matrix-based procedure has been implemented in a symbolic manipulation software to
obtain the formulae for the equivalent properties and in a numerical software to obtain
the values of the equivalent properties. Due to this approach lengthy and error prone
manual computations are avoided. The procedure is based on the partition of the vector of
generalised stresses Tg, the generalised constitutive matrix Cg and the vector of generalised
strains Sg according to the dependency or independency property of each generalised stress
and strain. The procedure is divided into a series of steps:
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1. Rearrangement of Eq. 2.3 separating dependent and independent generalised stresses
and strains {

{TI}
{TD}

}

=

[
[CII] [CID]
[CDI] [CDD]

]

×

{
{SI}
{SD}

}

(3.72)

where [CII], [CDI], [CID], [CDD] can be derived from C with row and column
permutations, according to the rearrangement of T and S.

2. Extraction of the dependent variables in terms of the independent ones:
{

{TD}
{SD}

}

=

[
[A1] [A2]
[A3] [A4]

]

×

{
{TI}
{SI}

}

(3.73)

The vector on the left hand side is called {X}D and the vector on the right hand
side is called {X}I . It can be shown that

[A1] = [CDD] [CID]−1 (3.74)

[A2] = [CDI] − [CDD] [CID]−1 [CII] (3.75)

[A3] = [CID]−1 (3.76)

[A4] = − [CID]−1 [CII] (3.77)

and the matrix containing A1, A2, A3 and A4 is called A.

3. According to the boundary conditions in Eq. 3.71
{
X
}

D
= ρ {X}f

D + (1 − ρ) {X}m
D (3.78)

where the superscript f stands for the piezoelectric phase and the superscript m for
the matrix phase. According to Eq. 3.73, Eq. 3.78 can be written as

[

A
h
] {

X
}

I
= ρ

[

A
f
]

{X}f
I + (1 − ρ) [Am] {X}m

I (3.79)

where the superscript h stands for homogeneous. Because of the boundary conditions
in Eq. 3.70, Eq. 3.79 can be simplified as:

[

A
h
]

= ρ
[

A
f
]

+ (1 − ρ) [Am] (3.80)

4. Equivalent properties can be obtained from Ae. Inverting equations 3.74, 3.75, 3.76
and 3.77 one can get:

[

C
h
ID

]

=
[

A
h
3

]−1
(3.81)

[

C
h
DD

]

=
[

A
h
1

] [

C
h
ID

]

(3.82)
[

C
h
II

]

= −
[

C
h
ID

] [

A
h
4

]

(3.83)
[

C
h
DI

]

=
[

A
h
2

]

+
[

C
h
DD

] [

A
h
3

] [

C
h
II

]

(3.84)

37



3 – Micromechanics and homogenisation of piezoelectric composites

The output of this calculation is the matrix Cg
h, which contains in each element the

formula to evaluate the corresponding equivalent property or its value. For example in the
first row, first column, if a symbolic manipulation software is used there is the formula
to evaluate the equivalent C11. If a numerical software is used there is the value of the
equivalent C11. Formulae to evaluate equivalent properties of anisotropic materials can
become very lengthy. Error prone manual computations are avoided with the presented
procedure.

In order to implement this procedure CID and A
h
3 must be invertible. In the case of

MFC, provided that materials properties change along direction 2 (see Fig. 3.8), S1, T2,
S3, T4, S5, T6, E1, D2 and E3 are independent, whereas T1, S2, T3, S4, T5, S6, D1, E2 and
D3 are dependent. Following the procedure presented:

CID =







CE
22 0 0 0
0 CE

44 0 e24

0 0 CE
66 0

0 e24 0 ǫT
22







(3.85)

This matrix is invertible if its determinant:

CE
22C

E
66(C

E
44ǫ

T
22 − e2

24) 6= 0 (3.86)

The determinant is null only if CE
44ǫ

T
22 = e2

24, being CE
22 and CE

66 not null.

Equivalence between UFM and AEH for MFCs

Expressions for the Equivalent properties in Eq. 3.62 obtained using AEH method cor-
respond exactly to the formulae derived according to the UFM in the case of the MFC.
Eq. 3.61 is considered in order to understand this equivalence. It should be stated that:

•
∂χmn

k

∂y2
is piecewise constant, depending only on the material properties that are piece-

wise constant.

• Integrating
∂χmn

k

∂y2
in y2, χmn

k can be computed. It is piecewise linear in y2 and is
independent of y1,y3.

The displacement, strain and stress fields obtained with the AEH method are considered.
In the AEH method, the first order approximation of the generalised displacement field
(see Eq. 3.43) is expressed as:

uǫ
i(x) = u

(0)
i (x) + ǫu

(1)
i (x,y) (3.87)

u
(0)
i is dependent only on x considering the lowest order BVD problem among the BVD

problems in which the original BVD problem is split due to the AEH. This means that
u

(0)
i corresponds to the macroscopic displacement field of the homogenised material. From

the second lowest order BVD problem it is possible to derive

u
(1)
i (x,y) = −χkl

i (y)
∂u

(0)
k

∂xl
(x) + ū1

i (3.88)
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where ū1
i can be considered null [48]. Eq. 3.87 becomes:

uǫ
i(x) = u

(0)
i (x) − ǫχkl

i (y)
∂u

(0)
k

∂xl
(x) (3.89)

Eq. 3.89 must be differentiated according to Eq. 3.44 in order to find the expression of the
strain fields:

∂uǫ
i(x)

∂xǫ
j

=
∂u

(0)
i (x)

∂xj
−

∂χkl
i (y)

∂yj

∂u
(0)
k

∂xl
(x) − ǫχkl

i (y)
∂2u

(0)
k

∂xl∂xj
(x) (3.90)

The last term can be neglected because it is a second order derivative of the macroscopic
displacement and the current analysis is restricted to linear strain. Therefore Eq. 3.90 can
be rewritten as:

∂uǫ
i(x)

∂xǫ
j

=
∂u

(0)
k (x)

∂xl

(

Iij
kl −

∂χkl
i (y)

∂yj

)

(3.91)

Considering the properties of χmn
k stated above it is now clear that the strain field is

different in the two phases only when j = 2. Therefore:

• S1, S3, S5, E1 and E3 have the same values in both the phases.

• S2, S4, S6 and E2 are different between the two phases, but uniform inside each
phase.

Stress fields and electric displacement fields, similarly, are uniform inside each phase. This
means that for AEH in the case of the MFC has the same hypothesis of uniformity of
the strain and stress fields inside each phase that is typical of the UFM. Moreover, the so
called dependent and independent generalised strains in the UFM (see section 3.2.2) are
such also for the AEH. These are the reasons why the formulae for the equivalent properties
are the same for AEH and UFM in the case of MFCs. Eq. 3.91 provides an effective way
to calculate the strain fields in the phases given the macroscopic strain fields.

3.2.3 Numerical periodic homogenisation for MFC

The numerical Periodic Homogenisation Method (PHM) [35, 22, 40], first introduced in
Sec. 3.1.2, is here adopted in the case of MFC. Using finite element analysis, it is possible
to take into account the effect of electrodes and therefore results can be compared to
the ones of the AEH numerical solution. At the macroscale, MFCs can be defined as
periodic repetition of RVEs (see Fig. 3.8). In order to take into account this repetition,
periodic boundary conditions must be applied between opposite faces of the RVE. These
boundary conditions are required to ensure the continuity of the generalised displacement
(mechanical displacement and electric potential) through consecutive RVE models. The
RVE has a parallelepiped geometry, see Fig. 3.8. Boundary conditions can be expressed
more conveniently with reference to opposite faces of the RVE (A− and A+ are the opposite
faces perpendicular to direction 1, B− and B+ to direction 2, C− and C+ to direction 3).
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ABAQUS Implementation

The RVE is analysed using ABAQUS commercial finite element software. The RVE is dis-
cretised using 1300 8-node brick piezoelectric elements. The adopted mesh guarantees the
convergence of at least three significant digits of the computed equivalent material prop-
erties. Mesh is uniform in order to have corresponding nodes on opposite faces. Boundary
condition are applied node to node thanks to the Equation Constraint feature available in
ABAQUS. Table 3.5 presents a detailed description of the boundary conditions for each
load case and the corresponding computed material coefficients. The magnitude of the

Case
Mechanical and electrical BC

Computed coefficients
A+ and A− B+ and B− C+ and C−

1
ui

1A+ − ui
1A−

= q ui
2B+ − ui

2B−
= 0 ui

3C+ − ui
3C−

= 0
CE

11,C
E
21,C

E
31,e31

ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= 0

2
ui

1A+ − ui
1A−

= 0 ui
2B+ − ui

2B−
= q ui

3C+ − ui
3C−

= 0
CE

12,C
E
22,C

E
32,e32

ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= 0

3
ui

1A+ − ui
1A−

= 0 ui
2B+ − ui

2B−
= 0 ui

3C+ − ui
3C−

= q
CE

13,C
E
23,C

E
33,e33

ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= 0

4
ui

1A+ − ui
1A−

= 0 ui
3B+ − ui

3B−
= q ui

2C+ − ui
2C−

= q
CE

44,e24
ϕi

A+ − ϕi
A−

= 0 ϕi
B+ − ϕi

B−
= 0 ϕi

C+ − ϕi
C−

= 0

5
ui

3A+ − ui
3A− = q ui

2B+ − ui
2B− = 0 ui

1C+ − ui
1C− = q

CE
55,e15

ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= 0

6
ui

2A+ − ui
2A−

= q ui
1B+ − ui

1B−
= q ui

3C+ − ui
3C−

= 0
CE

66ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= 0

7
ui

1A+ − ui
1A−

= 0 ui
2B+ − ui

2B−
= 0 ui

3C+ − ui
3C−

= 0
ǫS
33,e31,e32,e33

ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= q

8
ui

1A+ − ui
1A−

= 0 ui
2B+ − ui

2B−
= 0 ui

3C+ − ui
3C−

= 0
ǫS
22,e24

ϕi
A+ − ϕi

A−
= 0 ϕi

B+ − ϕi
B−

= q ϕi
C+ − ϕi

C−
= 0

9
ui

1A+ − ui
1A−

= 0 ui
2B+ − ui

2B−
= 0 ui

3C+ − ui
3C−

= 0
ǫS
11,e15

ϕi
A+ − ϕi

A−
= q ϕi

B+ − ϕi
B−

= 0 ϕi
C+ − ϕi

C−
= 0

Table 3.5. Periodic boundary conditions for PHM: ui
jK is the displacement in direction

j in the i-th node of the face K, ϕi
K is the electric potential in the i-th node of the face

K, q is an arbitrary non-null value.

jump between degrees of freedom of opposite nodes is null or have an arbitrary non-null
value q depending on the load case. The equipotential conditions on the faces C− and C+

is enforced in order to consider the presence of the electrode. The equivalent coefficients
are computed via simple ratios between average values, according to the load cases.

3.2.4 Results

The materials composing the MFC are epoxy matrix and piezoceramic SANOX P502
rectangular fibres. Epoxy is an isotropic material. Its properties are defined by the Young’s
modulus E = 2.9 GPa, the Poisson’s ratio ν = 0.31 , and the relative permittivity ǫ = 4.25.
The piezoceramic SONOX P502 is orthotropic with symmetry around the poling direction,
which is direction 3. Its properties are defined in Table 3.6. d31-type MFC has fibre volume
fraction equal to 0.865.
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Properties Symbol Value
Young’s modulus in GPa E1 = E2 54.05

E3 48.30
Shear modulus in GPa G23 = G13 19.48

G12 19.14
Poisson’s ratios ν23 = ν13 0.44

ν12 0.41
Piezoelectric charge constants in pC/N d31 = d32 -185

d33 440
d42 = d51 560

Dielectric relative constants ǫT
11/ǫ0,ǫT

22/ǫ0 1950
ǫT
33/ǫ0 1850

Table 3.6. Piezoceramic SONOX P502 properties from CeramTec. ǫ0 is the
vacuum permittivity.

Numerical validation using the PHM

The numerical results obtained using the AEH are compared with the analytical results
obtained with formulae derived with the AEH and with the numerical PHM results. The
effective values for the mechanical properties, the piezoelectric constants and the dielec-
tric coefficients of the homogeneous MFC model are illustrated in Figs. 3.11, 3.12, 3.13
and 3.14. Analytical mixing rules, numerical AEH and PHM results match for almost
every property. The only relevant difference is observed for GTz in the case of high volume
fraction of the piezoelectric phase. The analytical solution is higher than the numerical
solutions. This difference is due to the presence of the electrode. Indeed, the imposition
of a uniform potential on the electrode surfaces causes the non-uniformity of some fields
in the phases, invalidating the hypothesis of the UFM. In particular the electrodes cause
a gradient of the electric potential along direction 3, E3, and, because of the piezoelectric
effect, local fields of S1, S2, S3, T1, T2, T3 arise at the interfaces between the two phases.
Numerical AEH results take into account the effect of the electrodes and match results
obtained with PHM. Predicted effective values obtained for MFC (fibre volume fraction
equal to 0.865) with analytical solution, numerical AEH and PHM for mechanical prop-
erties, piezoelectric constants and dielectric coefficient are shown in Tables 3.7 and 3.8.

Experimental validations via manufacturer datasheets

The homogenised properties given by the AEH for the active layer, built of epoxy and PZT
fibres, cannot be directly compared to the experimental values given by Smart Materials
datasheets. In fact MFC is a laminate [61] where the active layer is intercalated between
the electrodes (made of copper and epoxy) and Kapton R©layers, as shown in Fig. 3.8. For
the Kapton R©layers, the following properties are used: E = 2.8 GPa, ν = 0.3. For the
electrode layers, the following properties are used: E = 30.3 GPa, ν = 0.31. In-plane
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Figure 3.11. Computed mechanical properties of d31 MFC as a function of fibre volume
fraction ρ. Elastic moduli are in Pa.

equivalent properties of the laminated sequence are computed on the basis of AEH results
for the active layer with the Voigt mixing rule. The volume fractions are computed on the
basis of layers thickness reported in the caption of Fig. 3.8. The free strain in longitudinal
direction is computed as:

SL = d31
V

h
(3.92)
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Figure 3.12. Computed mechanical properties of d31 MFC as a function of fibre
volume fraction ρ. Results are in Pa.

Mechanical Mixing rules Numerical PHM
properties UFM/AEH AEH
E1(GPa) 47.14 46.89 47.15
E2(GPa) 19.06 19.06 19.08
E3(GPa) 42.16 41.95 42.17
ν12 0.3878 0.3880 0.3878
ν13 0.4388 0.4387 0.4388
ν23 0.1699 0.1704 0.1700
G12(GPa) 6.011 6.015 6.015
G13(GPa) 16.99 16.90 17.00
G23(GPa) 6.664 6.216 6.216

Table 3.7. Computed mechanical properties for MFC with ρ = 0.865.

where V is the applied voltage and h is the thickness of the active layer. Table 3.9 presents
a comparison between Smart Materials datasheets values and the computed results. Values
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Figure 3.13. Computed strain piezoelectric constants d and stress piezoelectric constants
e of d31 MFC as a function of fibre volume fraction ρ. d components are given in C/N, e
components are given in C/m2.

are in close agreement.
The presented results show that the proposed analytical mixing rules, obtained via the

analytical AEH solution, estimate quite accurately the equivalent properties of MFC and,
by extension, of devices with a geometry similar to MFCs.
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Figure 3.14. Computed dielectric constants of d31 MFCs as a function of fibre volume
fraction ρ at zero strain (left) and at free strain (right).

Electromechanical Mixing rules Numerical PHM
properties UFM/AEH AEH
d31(pC/N) -182.9 -182.5 -182.9
d32(pC/N) -173.4 -173.0 -173.4
d33(pC/N) 435.8 435.6 435.8
ǫS
33(nF/m) 6.068 6.039 6.069

Table 3.8. Computed electric and piezoelectric constants for MFC with ρ = 0.865.

Properties Numerical Smart Materials
AEH datasheets

E1(GPa) 32.95 30.34
E2(GPa) 16.03 15.86
ν12 0.35 0.31
SL(10−6/V) 1.01 1.1

Table 3.9. Numerical results and experimental values of MFC properties. MFC is consid-
ered globally, not only as its active layer.
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Chapter 4

Effect of matrix properties on the

overall piezocomposite

Significant ratios between piezoelectric constants in the two in-plane directions have been
achieved in piezoelectric composites. The directional dependency of piezocomposite sensors
is dependent on the wavelength and the length of the senor itself. Barbezat et al. [64] used
AFC as acoustic emission sensors on composites and polymer plates and compared perfor-
mances with that of commercial acoustic emission sensors. Experimental results showed
that AFCs have higher sensitivity along the direction of the piezoelectric fibres. Later, Bar-
bezat et al. [65] investigated sensor properties of AFC in acoustic and acousto-ultrasonic.
AFC used as acoustic emission sensors showed an intrinsic anisotropy in sensitivity, de-
pending on the frequency range. Matt and Lanza di Scalea [66] presented a piezoelectric
transducer rosettes comprised of MFC for passive damage or impact location in anisotropic
structures. The MFC response to flexural ultrasonic guided waves was found to be highly
directive. Eaton et al. [67] considered MFC transducers as sensors of acoustic emission.
MFCs were observed to be less directionally sensitive than expected in terms of signal fea-
ture data. The high level of directional variance observed in the signal cross correlations
may be problematic in acoustic emission techniques such as source location.

The optimisation of piezocomposite transducers design has received notable attention
in the last two decades. A review on the optimisation of smart structures and actuators
was presented by Frecker [68]. Different optimisation strategies are considered, such as the
location of the actuators, their controller parameters and the coupling between structure
and actuator. Silva et al. [69] presented a procedure of topology optimisation based on an
homogenisation method where the primary fields are expanded asymptotically. The dis-
tributions of material and void in the periodic microstructure that maximise some perfor-
mance characteristics of the piezocomposites have been found. Sigmund et al. [70] adopted
topology optimisation to design the optimal matrix microstructure of 1-3 piezocomposites.
The piezoelectric phase consists of rods and it is not subjected to optimisation. Kang and
Tong [71] optimised the spatial distribution of actuation voltage in static structural shape
control of plates with piezoelectric layers. The Mindlin plate theory is adopted in the finite
element modelling. Kang and Wang [72] optimised the topology of bending actuators with
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multilayer piezoelectric material. The distribution of actuation voltage and the structural
layout of the actuator are considered in the optimisation. The topology optimisation of
piezoelectric flextensional actuators, a flexible mechanical structure connected to a piezo-
ceramic, has been considered by Chen et al. [73]. The output displacement in a specified
point of the domain and direction has been maximised. The design of piezoelectric plate
and shell actuators using topology optimisation was considered by Kogl and Silva [74].
Two design variables are discretised according to a finite element mesh: the piezoelectric
material pseudo-density and its polarisation. The objective function of the optimisation
problem is formulated as in [73]. A similar problem was solved by Carbonari et al. [75],
optimising simultaneously the distribution of non-piezoelectric and piezoelectric material
in the actuator.

The directional-dependence of the piezoelectric response in statics is examined in this
chapter. It is presented in the case of planar piezoelasticity in order to highlight the
significant parameters and ratios in the practical case of thin transducers. The influence of
the matrix properties on the overall piezoelectric constants of piezocomposite transducers
similar to MFC is investigated via the mixing rules presented and validated in Sec. 3.2.

4.1 Directional dependence in planar piezoelasticity

Classical plane stress (PS) and unidirectional electric field (UDEF) electromechanical as-
sumptions are adopted. In the hypothesis of PS in the plane 1-2 the following relations
holds:

Q̂E
αβ = CE

αβ −
CE

α3CE
3β

CE
33

êkα = ekα −
ek3CE

α3

CE
33

ǫ̂kk = ǫε
kk +

e2
k3

CE
33

(4.1)

with α,β = 1,2, where Q̂E
αβ are plane stress stiffness properties at constant electric field,

êkα are the plane stress piezoelectric constants (induced stresses per unit of electric field)
and ǫ̂kk is the plane stress electric permittivity at constant stress. These relations derive
from the three-dimensional constitutive Eqs. 2.3 in matrix form. Hat symbol denotes
PS quantities. According to UDEF, only one component of the electric field and electric
displacement vector is assumed to be non-constant, i.e. the component k. The reduced
constitutive equations in tensor form related to the three-dimensional Eqs. 2.6 are written
as: {

σ

Dk

}

=

[
Q̂E −êT

ê ε̂kk

]{
ε

Ek

}

(4.2)

Q̂E is a two-dimensional fourth-order tensor. σ, ε are two-dimensional second-order ten-
sors, whereas ê is a vector. Using Voigt notation ǫ and σ can be expressed as vectors:

σ =







σ1

σ2

σ6






,ε =







ε1

ε2

ε6






(4.3)
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The constitutive equations for linear piezoelectricity in the d-form are the following:
{

ε

Dk

}

=

[
SE dT

d ǫσ
kk

]{
σ

Ek

}

(4.4)

SE, d and ǫσ
kk are the compliance matrix at constant electric field, the vector of strain

piezoelectric constants (induced strains per unit of electric field) and the dielectric coef-
ficient at constant stress respectively. In the case of d-form, coefficients do not change
because of PS assumption.

The constitutive equations for linear piezoelectricity in the h-form are the following:
{

σ

Ek

}

=

[
Q̂D −ĥT

−ĥ β̂ε
kk

]{
ε

Dk

}

(4.5)

Q̂D, ĥ and β̂ε
kk are the stiffness matrix at constant electric displacement field, the vector

of stress piezoelectric constants (induced stresses per unit of electric displacement) and the
dielectric resistivity coefficient at constant strain respectively.

The constitutive equations for linear piezoelectricity in the g-form are the following:
{

ε

Ek

}

=

[
SD gT

−g βσ
kk

]{
σ

Dk

}

(4.6)

SD, g and βσ
kk are the compliance matrix at constant electric displacement field, the vector

of strain piezoelectric coefficients (induced strains per unit of electric displacement) and
the dielectric resistivity coefficient at constant stress respectively.

4.1.1 Directional dependence in terms of ê or d

Piezoelectric transducers are usually activated via the application of an electric field (open-
circuit condition) as actuators, whereas as sensors they measure charge (short-circuit con-
dition). A transducer built of a material having the following piezoelectric stress constants:

ê = {e1 0 0} (4.7)

with e1 6= 0, is according to Eq. 4.2 an actuator of stress with maximum directional
dependence if strains are null, whereas it is a sensor of strain with maximum directional
dependence if the electric field is null. Maximum directional dependence means that specific
quantities related to a direction perpendicular to that of maximum actuation or sensing
are not actuated or sensed: the contribution of the actuation to the stress component σ2

is null in the actuator case; the strain component ǫ2 does not contribute to the measured
charge in the sensor case.

A transducer built of a material having the following piezoelectric strain constants:

d = {d1 0 0} (4.8)

with d1 6= 0, is according to Eq. 4.4 an actuator of strain with maximum directional
dependence if stresses are null whereas it is a sensor of stress with maximum directional
dependence if the electric field is null.
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d and ê are linked through the following relations:

d = êSE

ê = dQ̂E (4.9)

If Eq. 4.7 hold then according to Eq. 4.9

ê = {d1 0 0}





Q̂11 Q̂12 Q̂16

Q̂21 Q̂22 Q̂26

Q̂61 Q̂62 Q̂66



 =
{

Q̂11d1 Q̂12d1 Q̂16d1

}

(4.10)

and similarly, if Eq. 4.8 hold then according to Eq. 4.9:

d = {e1 0 0}





S11 S12 S16

S21 S22 S26

S61 S62 S66



 = {S11e1 S12e1 S16e1} (4.11)

Therefore maximum directionality in terms of piezoelectric strain constants is mutually
exclusive with the one in terms of piezoelectric stress constants.

4.1.2 Directional dependence in terms of ĥ or g

Actuator that are activated via the application of a charge (short-circuit condition) and
sensors that measure voltage (open-circuit condition) are considered. The following rela-
tions between piezoelectric coefficients hold:

ĥ = β̂
ǫ
kkê

g = βσ
kkd

(4.12)

Being dielectric matrixes diagonal, maximum directionality in terms of d guarantees the
one in terms g, whereas the one in terms of ê guarantees the one in terms ĥ. A transducer
with maximum directionality in terms of ĥ according to Eq. 4.5 is an actuator of stress with
maximum directional dependence if strains are null, whereas it is a sensor of strain with
maximum directional dependence if the electric displacement field is null. A transducer
with maximum directionality in terms of g according to Eq. 4.6 is an actuator of strain
with maximum directional dependence if stresses are null, whereas it is a sensor of stress
with maximum directional dependence if the electric displacement field is null. g and ĥ

are linked through the following relations:

g = ĥSD

ĥ = gQ̂D (4.13)

4.2 Effect of matrix properties

The aim of this section is to study the effect of matrix properties (Em,νm) and fibre
volume fraction ρ on the effective piezoelectric properties. This is done on the basis of
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the mixing rules obtained in Sec. 3.2 using the AEH analytical solution. The efficiency of
piezocomposite transducers is largely influenced by the d3j coefficients in free deformation
mode, by the e3j coefficients in a fully constrained mode and by a mixture of both for
intermediate configurations. j = 1,2 since a configuration similar to that of d31-type MFC
is analysed. PZT fibre properties are reported in Tables 4.1 and 4.2.

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

[GPa] [GPa] [GPa] [GPa] [GPa]
Epoxy 2.9 2.9 2.9 0.3 0.3 0.3 1.11 1.11 1.11
SONOX P502 54.05 54.05 48.30 0.41 0.44 0.44 19.14 19.48 19.48

Table 4.1. Elastic properties.

d31 d32 d33 εσ
33

[pC/N] [pC/N] [pC/N]
Epoxy - - - 4.25
SONOX P502 −185 −185 440 1850

Table 4.2. Electro-elastic properties.

d31 and d32 correspond to the components d1 and d2, respectively, in planar piezoe-
lasticity, see Sec. 4.1. Similarly, e31 and e32 correspond to e1 and e2, respectively. The
in-plane piezoelectric capability of the sensor/actuator device is a direct consequence of the
anisotropy of the effective piezoelectric constants tensor: the degree of “directionality” is
related to the ratio between longitudinal (31) and transverse (32) piezoelectric properties.

Firstly the influence of the Young’s modulus of the matrix, assumed to be isotropic,
is assessed. Figs. 4.1(a), 4.1(b) illustrates respectively the evolution of the effective lon-
gitudinal (d31) and transverse (d32) piezoelectric constants with the volume fraction and
with the Young’s modulus of the matrix. Poisson ratio is equal to 0.3 and the Young’s
modulus span from 1 GPa to the elastic stiffness of the fibre. Both constants increase
with decreasing matrix volume fraction and elastic stiffness. The physical interpretation
is straightforward:

1. Increasing the volume fraction of the fibres enhances the piezoelectric properties of
the composite, which become closer to those of the fibre,

2. Choosing a matrix with a low Young’s modulus ensures that the fibres face low me-
chanical resistance. This guarantees limited degradation of the overall piezoelectric
effect of the composite.

According to the mixing rules established in Sec. 3.2, the evolution of the effective prop-
erties with the fibre volume fraction becomes linear when the stiffness of the matrix is
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Figure 4.1. Variation of the piezoelectric constants (d31,d32) as a function of vol-
ume fraction ρ and for different values of Young’s modulus Em of the matrix. The
Poisson’s ratio νm is equal to 0.3.

close to that of the fibre. The evolution of the ratio d31/d32 with volume fraction of the
fibre is shown in Fig. 4.2(a) for different values of the Young’s modulus. The ratio has
higher magnitudes for lower Young’s moduli and higher matrix content. A similar analysis
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Figure 4.2. Ratio between the piezoelectric constants in the longitudinal and
transverse directions (d31/d32).

is carried out considering the evolution of the equivalent properties and their ratio with
respect to the Poisson’s ratio of the matrix (Fig. 4.3). The Young’s modulus is equal to
3 GPa. It is found that the longitudinal constant d31 is practically insensitive to the vari-
ation of the Poisson’s ratio because all the PZT fibres are aligned in the same direction,
Fig. 4.3(a). d32, however, is significantly influenced by the variation of the Poisson’s ratio
of the matrix as can be seen from Fig. 4.3(b). The dependence of the ratio d31/d32 on
the Poisson’s ratio is shown in Fig. 4.2(b). Observing Figs. 4.2(a) and 4.2(b) it can be
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Figure 4.3. Variation of the piezoelectric constants (d31,d32) as a function of volume
fraction ρ and for different values of Poisson’s ratio νm of the matrix. The Young’s
modulus Em is equal to 3 GPa.

seen that the highest magnitude for the ratio d31/d32 is obtained when both the Young’s
modulus and the Poisson’s ratio of the matrix are low.

A similar analysis is made considering fully-constrained piezoelectric transducers to
determine the e3j constants. The influence of the Young’s modulus of the matrix is firstly
assessed. Figs. 4.4(a) and 4.4(b) present the evolution of the effective longitudinal (e31)
and transverse (e32) piezoelectric constants with the volume fraction and with the Young’s
modulus of the matrix, respectively. The evolution of the equivalent properties with respect
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Figure 4.4. Variation of the piezoelectric constants (e31,e32) as a function of vol-
ume fraction ρ and for different values of Young’s modulus Em of the matrix. The
Poisson’s ratio νm is equal to 0.3.

to the Poisson’s ratio of the matrix is addressed in Figs. 4.5. Fig. 4.6 illustrates the
evolution of the ratio e31/e32 in terms of fibre volume fraction and for different Young’s
moduli of the matrix, Fig. 4.6(a) and for different Poisson’s ratios, Fig. 4.6(b). Both e31
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Figure 4.5. Variation of the piezoelectric constants (d31,d32) as a function of volume
fraction ρ and for different values of Poisson’s ratio νm of the matrix. The Young’s
modulus Em is equal to 3 GPa.

and e32 increase with decreasing matrix volume fraction and Poisson’s ratio. From Figs. 4.2
and 4.6 it can be seen that the ratio of the effective piezoelectric constants (d31/d32) is
more sensitive to the variation of the Poisson’s ratio. Conversely, the ratio (e31/e32) is more
sensitive to the variation of the Young’s modulus. In general the presented results show
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Figure 4.6. Evolution of the ratio e31/e32.

that low Young’s modulus and Poisson’s ratio maximise the ratio between piezoelectric
properties in longitudinal and transverse direction, i.e. the directional dependency of
sensing and actuation.

4.2.1 Piezoelectric properties with existing polymer materials

Ratios d31/d32 and e31/e32 as a function of the volume fraction of the fibre in epoxy matrix
(LOCTITE R©Hysol R©E-120HP: Em = 2.9 GPa, νm = 0.31) for commercially available
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4.2 – Effect of matrix properties

MFC d31− type are presented in Fig. 4.7(a). The choice of a different matrix material may
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Figure 4.7. Evolution of the ratios d31/d32 and e31/e32.

lead to higher directionality of the piezoelectric response. In the following, some existing
polymer materials are considered instead of MFC epoxy. They are chosen in order to
have lower Young’s modulus and Poisson’s ratio with respect to MFC epoxy, according
to the conclusions drawn from the presented results. DSM Somos R©14120 (Em = 2.46
GPa, νm = 0.23) is a low viscosity photopolymer used to produce prototypes and concept
models. It is adopted in automotive, medical and consumer electronics products. Ratios
are presented in Fig. 4.7(b). Dow BETABRACETM85001 (Em = 1.47 GPa, νm = 0.11) is
composed of a curing tacky polymer, woven glass fabric and release paper. Fig. 4.8(a) shows
the ratios d31/d32 and e31/e32. BASF ElastollanTM1100 (Em = 0.025 GPa, νm = 0.25) is
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Figure 4.8. Evolution of the ratios d31/d32 and e31/e32.

a polyether-based thermoplastic polyurethane. It may be processed by extrusion, injection
and blow molding. These results show that it is possible to increase the ratio between
piezoelectric properties in longitudinal and transverse direction of MFC with a different
choice of the matrix material. Other design issues, like manufacturing, durability and
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4 – Effect of matrix properties on the overall piezocomposite

strength, have not been considered in this analysis.
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Chapter 5

Piezoelectric laminates with

direction-dependent properties

Laminates are built of several layers that can have different orientation. Thickness of the
layers and their material in most of the application are identical, but they can in the most
general case vary layer wise. Such variety of design parameters allows obtaining tailored
properties for specific applications. In this chapter the possibility to adopt a laminated
configuration in a piezoelectric composite device is addressed in terms of directionality of
the response. A review on the optimisation techniques adopted to design the stacking
sequence of composite materials was presented by Ghiasi et al. [76, 77]. Typical studies
deal with the stiffness, the strength, the natural frequencies and the stability of laminates.
Such optimisations are not limited to the pure mechanical domain. An example of multi
physics design is the work proposed by Spallino and Thierauf [78], where the thermal buck-
ling of laminated composite plates subject to a temperature rise is considered. Classical
lamination plate theory (CLPT) has been adopted by Vannucci and Pouget [79] to ho-
mogenise the electro-elastic behaviour of a composite laminated plate with piezoelectric
layers at the top and at the bottom. Laminates having null expansion coefficients in ex-
tension in a particular direction or having the same expansion coefficient in each direction
have been found via a polar representation of the mechanical properties (see Vannucci and
Verchery [80]). Later, Vannucci [81] presented a similar optimisation problem in which
the stacking sequence of laminates having null bending in one direction is computed via a
particle swarm algorithm.

A design for a multi-layered piezoelectric patch is proposed and the influence of design
parameters on the response is investigated. Direction-dependency of the behaviour of
a piezoelectric patch bonded to a structure is also addressed. Planar piezoelasticity as
described in Sec. 4.1 is adopted.

5.1 Uniform field method for layered composites

A n-layer piezoelectric laminate is considered, with a piezoelectric layer and n−1 mechan-
ical layers. Direction 1 and 2 are two orthogonal in-plane directions, whereas direction 3

57



5 – Piezoelectric laminates with direction-dependent properties

is the out of plane direction. Classical plane stress (PS) and unidirectional electric field
(UDEF) electromechanical assumptions are adopted. A generic matrix-based procedure
to implement the UFM is presented in Sec. 3.2.2. In the UFM variables are splitted in
dependent and independent ones:

• in the case of independent variable, fields are equals in each constituent:

Xi = Xj
i with j = 1, 2, . . . , n (5.1)

• in the case of dependent variable, fields are related through a linear mixture relation:

Xi =

n∑

j=1

ρjX
j
i (5.2)

where ρj is the volume fraction of the j-th constituent, Xi is a generic generalised stress or
strain for the whole RVE (mean value) and Xj

i is its value in the j-th layer. According to
the geometry of the RVE, depicted in Fig. 5.1, the independent variables are ε1, ε2, ε6 and
D, whereas the dependent variables are σ1, σ2 and σ6 and E. The electrodes are at the top

Figure 5.1. RVE of a laminated piezoelectric transducer.

and bottom of the piezoelectric layer, not of the whole laminate. The electrode physical
layers, usually made of copper and epoxy, are not considered in the following. The electric
field is null in the mechanical layers:

Ek = ρpE
p
k (5.3)

where subscript p denotes the piezoelectric layer. For a generic layer j-th layer:
{

σj

Dk
j

}

=

[
QjE −êjT

êj ǫ̂j
kk

]{
εj

Ek
j

}

(5.4)

According to the linear mixture in Eq. 5.2 the mean stress field is:

σ =
n∑

j=1

ρjσj (5.5)

58



5.1 – Uniform field method for layered composites

According Eq. 5.1 the mean strain field is:

ε = εj (5.6)

Considering the linear mixture in Eq. 5.3, the constitutive equations 5.4 and Eq.5.6, it is
possible to rewrite Eq. 5.5 as:

σ =
n∑

j=1

ρjQ̂
jEε − ρpê

pT Ep
k =

n∑

j=1

ρjQ̂
jDε − êpTEk (5.7)

According to Eq. 5.1 the mean electric displacement field is:

Dk = D
p
k (5.8)

Considering the linear mixture in Eq. 5.3, the constitutive equations 5.4 and Eq. 5.8, the
electric displacement field in the piezoelectric layers is:

Dk = Dp
k = êpε + ǫ̂εp

kkE
p
k = êpε +

ǫ̂εp
kk

ρp
Ek (5.9)

Grouping Eq. 5.7 and 5.9 and rearranging, the constitutive equations for the whole laminate
are retrieved:

{
ε

Dk

}

=

[
SE dT

d ǫT
kk

]{
σ

Ek

}

=








[
n∑

j=1
ρjQ̂

jE
j

]−1 [
n∑

j=1
ρjQ̂

jE
j

]−1

êpT

êp

[
n∑

j=1
ρjQ̂

jE
j

]−1
ǫ̂εp
kk

ρp
+ êp

[
n∑

j=1
ρjQ̂

jE
j

]−1

êpT









{
σ

Ek

} (5.10)

These equations show that maximum directionality in terms of ê is not achievable with a
layered configuration according to the UFM. Values of ê homogenised via UFM are the
same as for the piezoelectric layer. This is a consequence of the multilayered structure,
which is conceptually similar to a parallel configuration of the different layers in the electric
circuit analogy. Actually, the influence of the lamination on the values of ê exist but it
is low, as reported in Sec. 5.3. On the contrary, a series configuration like that of MFC
phases (epoxy and PZT) has a decisive influence on the values of ê, see Sec. 4.2.

When the transducer is modelled as its equivalent material in a FE analysis, the elec-
trodes are on the top and the bottom of the whole laminate. In actuator mode, the applied
potential corresponds to an electric field in the homogenised material which is lower than
in the case of the actual laminated composite where the electrodes are at the top and at
the bottom of the piezoelectric layer (see Eq. 5.3). This is the reason why effective values
of the piezoelectric properties may be higher than those of the piezoelectric phase.

In this analysis the piezoelectric layer can be monolithic or composite in the sense of
MFC. UFM has already been applied to MFC under PS in [22], where the reader can
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5 – Piezoelectric laminates with direction-dependent properties

find the derivation of the analytical formulae for the effective properties. The complete
formulae are the following:

SE
11 =

(

ρf
1

SE
11f

+ (1 − ρf ) 1
SE

11e

)−1

SE
21 = SE

11 +

(

ρf
SE

21f

SE
11f

+ (1 − ρf )
SE

21e

SE
11e

)

SE
22 =

SE2
21

SE
11

+

(

ρf

(

SE
22f −

SE2
21f

SE
11f

)

+ (1 − ρf )
(

SE
22e −

SE2
21e

SE
11e

))

SE
66 =

(

ρfSE
66f + (1 − ρf )SE

66e

)

d1 = SE
11 +

(

ρf
d1f

SE
11f

+ (1 − ρf ) d1e

SE
11e

)

d2 =
d1SE

21

SE
11

+

(

ρf

(

d2f −
d1f SE

21f

SE
11f

)

+ (1 − ρf )
(

d2e −
d1eSE

21e

SE
11e

))

(5.11)

Subscripts f and e stands for the two phases. Both the phases may exhibit piezoelectric
effect. In the case of MFC d31-type the poling direction k, which corresponds to the
direction of the electric field, is the out-of-plane direction 3 and d1 = d31, d2 = d32. With
MFC d33-type the poling direction is the in-plane direction 1 and d1 = d33 and d2 = d32.

As highlighted in [33], in the case of a composite in which material properties varies
in two direction UFM is applied in two subsequent steps, one for each direction. In this
analysis direction 3 is the out-of-plane direction whereas 2 is the direction of variation of
material properties if the piezoelectric layer is a composite. There are two possible choices
(see Fig. 5.2):

Epoxy

Piezoelectric-fibre

Mechanical layer

x2

x3

3

32

2

Figure 5.2. UFM is composed of two subsequent steps. Two choices are possible
regarding the order of the steps.

• UFM23: apply UFM in the direction 2, between epoxy and piezoelectric-fibre , and
then in direction 3, between the piezoelectric layer and the mechanical layers.

• UFM32: apply UFM in the direction 3, between epoxy and mechanical layers one
one hand and piezoelectric-fibre and mechanical layers on the other hand, and then
in direction 2.

Results in general do not coincide, as reported in [33].
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5.2 – Transducers with maximum directional dependence

5.2 Transducers with maximum directional dependence

UFM is adopted to compute the equivalent properties of layered transducers. As actuators
they are activated via the application of an electric field, whereas as sensors they measure
a charge. A balanced lamination is considered. The mechanical layers are of the same
materials and are orthotropic. The piezoelectric layer is considered to be orthotropic
with principal directions aligned in directions 1 and 2. This, together with the balanced
lamination of the mechanical layers, guarantees that mechanical equivalent properties are
orthotropic. Moreover the in-plane shear piezoelectric coefficient is null. Three different
kind of piezoelectric layer are considered in the following. Fibre volume fraction in the
case of composite piezoelectric layers is that of MFC, i.e. 0.865. A detailed sensitivity
analysis concerning fibre volume fraction and properties of the matrix in MFC has been
carried out in Sec. 4.2. The mechanical layers are made of T300/5208 (unidirectional
carbon fibres in epoxy matrix), see Tab. 5.1, because of its high degree of orthotropy. As

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

[GPa] [GPa] [GPa] [GPa] [GPa]
T300/5208 181.0 10.3 10.3 0.28 0.28 0.49 7.17 7.17 5.00
Epoxy 2.9 2.9 2.9 0.3 0.3 0.3 1.11 1.11 1.11
SONOX P502 54.05 54.05 48.30 0.41 0.44 0.44 19.14 19.48 19.48

Table 5.1. Elastic properties of the considered materials.

d31 d32 d33 εσ
33

[pC/N] [pC/N] [pC/N]
Epoxy - - - 4.25
SONOX P502 −185 −185 440 1850

Table 5.2. Electro-elastic properties of the considered materials.

shown in Sec. 5.1, a layered configuration has little influence on directional dependence in
terms of equivalent piezoelectric stress constants, therefore only maximum directionality
in terms of equivalent piezoelectric strain constants is investigated. A large number of
mechanical layers have been considered initially, but results showed that solutions with
highest directional dependence are characterised only by an angle. Therefore only the
stacking sequence [δ/ − δ/ 0], where the the piezoelectric layer is oriented along direction 1
(that is 0◦), is considered. The problem is function of two variables: the volume fraction of
the piezoelectric layer ρp ∈ {0,1} and the orientation of the mechanical layers δ ∈ {0,π/2}.

In order to maximise the directional dependence of a sensor the following problem can
be stated:

max |fs (ρp,δ) | = |d1 (ρp,δ) |
with g (ρp,δ) = d2 (ρp,δ) = 0

(5.12)
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5 – Piezoelectric laminates with direction-dependent properties

In the case of actuator with maximum directional dependence the following function may
be maximised instead of fs:

|fa (ρp,δ) | = |ρpd1 (ρp,δ) | (5.13)

This function takes into account directly the volume fraction of the piezoelectric layer.
A sensitivity analysis is carried out via graphical representation of functions in Eqs. 5.12
and 5.13.

5.2.1 Monolithic piezoelectric layer

A piezoelectric layer with the properties of SONOX P502 is considered, see Tabs. 5.1
and 5.2. The poling direction k, which corresponds to the direction of the electric field,
is the out-of-plane direction 3, i.e. electrodes are conventional. Function g is plotted as a
colour map in Fig. 5.3. Maximum directional dependence is fulfilled only for low values of
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Figure 5.3. Variation of function g with monolithic piezoelectric layer.

the volume fraction of the piezoelectric layer, confirming results reported in [79].

5.2.2 Composite piezoelectric layer

Two electrode configurations are considered: conventional electrodes and interdigitated
electrodes. Conventional electrodes are continuous and cover the top and bottom surfaces
of the piezocomposite, see Fig. 5.4. They were the first to be developed and the in-plane
piezoelectric coefficients are d31 and d32. Interdigitated electrodes have been introduced
to take advantage of d33 constant, which is usually higher than d31 and d32, as in-plane
property. Positive and negative electrodes are interdigitated as fingers on both top and
bottom surfaces of the piezocomposite, see Fig. 5.4.

Composite piezoelectric layer of d33-type A composite piezoelectric layer with in-
terdigitated electrodes and with the same volume fraction of piezoelectric material of MFC
is considered. Epoxy properties are listed in Tabs. 5.1 and 5.2. The poling direction k
is the in-plane direction 1. Functions g according to UFM23 and UFM32 are plotted in
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5.2 – Transducers with maximum directional dependence

Figure 5.4. Electrodes configurations, [39].
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Figure 5.5. Variation of function g with d33-type piezoelectric layer.

Figs. 5.5. In this case g is never null. Therefore it is not possible to obtain properties
with maximum directional dependence. Maximum directionality in terms of equivalent
piezoelectric strain constants is achieved with the monolithic piezoelectric layer because
its piezoelectric constant d2 is contrasted by the Poisson’s effect of the whole laminate due
to d1. In the present case, the piezoelectric constant d2 is of opposite sign with respect to
d1, i.e. a negative Poisson’s coefficient for the whole laminate would be required to have
maximum directional dependence.

Composite piezoelectric layer of d31-type A composite piezoelectric layer with con-
ventional electrodes is considered. The poling direction k is the out-of-plane direction 3.
Functions g according to UFM23 and UFM32 are plotted in Figs. 5.6. Like in the case of
monolithic piezoelectric layer, d1 and d2 have the same sign and therefore it is possible to
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Figure 5.6. Variation of function g with d31-type piezoelectric layer.

obtain maximum directionality in terms of equivalent piezoelectric strain constants. So-
lutions having maximum directional dependence with UFM23 can be found with higher
values of ρp than for UFM32. Functions fa in the case of actuator to plotted in Figs. 5.7,
whereas in the case of sensor fs are plotted in Figs. 5.8. With UFM23, fa and fs are
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Figure 5.7. Variation of function fa with d31-type piezoelectric layer.

positive in a region corresponding to low values of ρp and δ.
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Figure 5.8. Variation of fs with d31-type piezoelectric layer.

5.3 Numerical investigation via numerical periodic homogeni-

sation

The numerical Periodic Homogenisation Method (PHM) presented in Sec. 3.1.2 is based
on FEM analysis of the RVE. It is used as validation of the results presented in Sec. 5.2.2.
The electrodes are at the top and at the bottom of the piezoelectric layer. The RVE is a
parallelepiped. Figs. 5.9 presents results obtained via PHM for g, where ρp ∈ {0.15,0.75}
and δ ∈ {3π/18,7π/18}. UFM results are also reported. The curve denoting the couples of
values (ρp, δ) for which maximum directional dependence is achieved is in between the ones
for UFM32 and UFM23. Functions fa and fs are plotted in Figs. 5.10. They are negative
for the considered values of ρp and δ. A comparison between results obtained with UFM
and PHM for ρp = 0.35 and δ = 6π/18 is presented in Tab. 5.3. The considered design is

UFM23 UFM32 PHM
d1 [C/N] −3.51E − 010 −3.83E − 10 −3.71E − 10
d2 [C/N] 5.46E − 011 −3.31E − 11 −1.44E − 12
ê1 [C/m2] −10.2 −14.4 −12.7
ê2 [C/m2] −4.05 −14.0 −10.0
E1 [Pa] 25.6E9 25.8E9 25.8E9
E2 [Pa] 60.4E9 66.4E9 64.1E9
G12 [Pa] 25.9E9 29.5E9 28.6E9
ν12 0.304 0.320 0.315

Table 5.3. Comparison between UFM and PHM results with d31-type piezoelec-
tric layer, ρp = 0.35 and δ = 6π/18.

depicted in Fig. 5.11. For all the considered properties PHM results lie in-between UFM23

and UFM32 ones. In a certain sense, the two UFM approaches bound the PHM solution.
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Figure 5.9. PHM results for the function g with d31-type piezoelectric layer,
compared to UFM results.
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Figure 5.10. PHM results for the functions fa and fs with d31-type piezoelectric layer.

Such a laminated transducer is a sensor of stress with maximum directional dependence.
According to the constitutive equation in absence of electric field:

D3 = dσ (5.14)
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5.3 – Numerical investigation via numerical periodic homogenisation

Figure 5.11. Design of a layered piezocomposite transducer with maximum directionality
in terms of equivalent piezoelectric strain constants.

with an uniaxial stress state and on the basis of the stress tensor rotation law, the response
of the device in terms of transverse electric displacement is shown in Fig. 5.12. The angle
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Figure 5.12. Response of the sensor with an uniaxial stress state in the different
directions. Transverse electric displacement is put in non-dimensional form with
respect to its value at 0◦.

accounts for the direction of the uniaxial stress state, being the direction 1 of the patch at
0◦. With an uniaxial stress state along direction 2 (90◦):

σ = {0, σ2, 0}T (5.15)

the sensor output is null.
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5 – Piezoelectric laminates with direction-dependent properties

5.4 Piezoelectric patch on a structure

Up to this point, only the mechanics of the stand-alone piezoelectric device has been
considered. The behaviour of a patch bonded to a structure, as piezoelectric transducers
are commonly employed, is addressed in this section. Piezoelectric layers embedded in a
structure are not considered.

In the following, quantities with subscript P refer to the piezoelectric patch and quan-
tities with subscript S refer to the structure. The patch is assumed to have negligible
dimensions with respect to the structure. Plane stress (PS) assumption is adopted. It is
assumed a perfect bonding between the patch and the structure, i.e. in-plane strains are
coincident:

εS = εP (5.16)

In general σS 6= σP . If the structure is not in a piezoelectric material then:

εS = Q−1
S σS (5.17)

where Q−1
S is the compliance matrix of the structure.

First an actuator activated via the application of an electric field (open-circuit condi-
tion) and a sensor that measures charge is considered (short-circuit condition). According
to Eq. 4.4, a sensor of stress is such that:

Dk = dσP = dQ̂E
P εP (5.18)

Considering Eqs. 5.16 and 5.17, Eq. 5.18 reads:

Dk = dQ̂E
P εS = dQ̂E

P Q−1
S σS (5.19)

If ZE = Q̂E
P Q−1

S is such that ZE
12 = ZE

13 = 0 and d is as in Eq. 4.8, then the patch is a
sensor of the stress in the structure with maximum directional dependence. If the patch
and the structure have the same mechanical properties this condition is fulfilled. ZE can
be interpreted as a filter: in a certain sense, the action of the stress tensor of the structure
in the patch is filtered by ZE . According to Eqs. 4.2 and 5.16, a sensor of strain is such
that:

Dk = êεP = êεS (5.20)

If ê is as in Eq. 4.7, then the patch is a sensor of the strain in the structure with maximum
directional dependence. For a sensor, maximum directionality in terms of ê is independent
of the structure, contrary to what happens for maximum directionality in terms of d. The
properties of actuators are instead always dependent on the strains and stress state of the
structure, see Eqs. 4.2 and 4.4, respectively. Maximum directionality in terms of d or ê

does not guarantee actuation with maximum directional dependence. Usually, piezoelectric
patch is such that constant strain condition in nearly satisfied, i.e. the structure is much
more rigid than the patch. Therefore, according to Eq. 4.2 and Eq. 4.4, if ê is as in
Eq. 4.7 the patch applies stress with maximum directional dependence, whereas maximum
directionality in terms of d does not correspond to strain applied in only one direction.
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5.4 – Piezoelectric patch on a structure

The case of actuator activated via the application of a charge (short-circuit condition)
and sensor that measures a voltage (open-circuit condition) is now considered. According
to Eq. 4.6, a sensor of stress is such that:

Ek = gσP = gQ̂D
P εP = gQ̂D

P εS = gQ̂D
P Q−1

S σS (5.21)

similarly to Eq. 5.19. This time, if ZD = Q̂D
P Q−1

S is such that ZD
12 = ZD

13 = 0 and g has
a form similar to Eq. 4.7 then the patch is a sensor of the stress in the structure with
maximum directional dependence. According to Eq. 4.5 and 5.16, a sensor of strain is such
that:

Ek = ĥεP = ĥεS (5.22)

similarly to Eq. 5.20. As for actuator and sensor with maximum directionality in terms
of ê or d, maximum directionality in terms of ĥ is independent of the structure, contrary
to what happens for the one in terms of g. The properties of the actuator are instead
always dependent on the strains and stress state of the structure, see Eqs. 4.5 and 4.6,
respectively.

If a material is orthotropic then:

S =





1
E1

−ν12
E1

0
−ν12
E1

1
E2

0

0 0 1
G12



 (5.23)

Q̂ =





E1
1−ν12ν21

ν12E2
1−ν12ν21

0
ν12E2

1−ν12ν21

E2
1−ν12ν21

0

0 0 G12



 (5.24)

If both the structure and the piezoelectric patch are orthotropic and aligned, then:

Z12 = E1P

1−ν12P ν21P

−ν12S

E1S
+ ν12P E2P

1−ν12P ν21P

1
E2S

Z13 = 0
(5.25)

The condition Z12 = 0 equals to:

ν12P
E2P

E1P
= ν12S

E2S

E1S
(5.26)

This condition in conjunction with maximum directionality in terms of d guarantees sensing
of the stress of the structure in terms of charge with maximum directional dependence.
Being ν12

E1
= ν21

E2
then Eq. 5.26 reads:

ν21P = ν21S (5.27)

Another possibility to have maximum directional dependence in sensing of stress is to have
(see Eq. 5.19):

dQ̂E
P Q−1

S = z = {z1 0 0} (5.28)
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5 – Piezoelectric laminates with direction-dependent properties

The condition z3 = 0 is automatically satisfied. The condition z2 = 0 can be expressed in
terms of d2:

d2 = d1
E1P

E2P

ν21S − ν21P

1 − ν12P
E2S

E1S

(5.29)

or in terms of e2 :
e2 = e1ν21S (5.30)

This expression does not depend on the mechanical properties of the patch. The direction-
ality can be quantified by the ratio:

z1

z2
=

E2S

E1S

e1 − e2ν12S

e2 − e1ν21S
(5.31)

that does not depend on the the mechanical properties of the patch. If the material of the
structure is isotropic it reduces to:

z1

z2
=

e1 − e2νS

e2 − e1νS
(5.32)

5.4.1 Results for a sensor patch

The behaviour of a patch bonded to a structure is investigated in terms of directional-
ity. The case of sensor that measures charge is considered (short-circuit condition). The
laminated transducer whose properties are presented in Tab. 5.3 is considered. It has
maximum directionality in terms of equivalent piezoelectric strain constants. As pointed
out in Sec. 5.4, this does not guarantee maximum directionality in sensing of stress in the
structure.

Analytical results obtained via Eq. 5.19, considering an uniaxial stress state and the
stress tensor rotation law, are compared to results obtained via FEM analyses with the
commercial software ABAQUS. The model is shown in Fig. 5.13: the diameter of the
patch is one tenth the major dimension of the structure; its thickness is one hundredth its
diameter. These ratios have been chosen in order to respect the hypotheses in Sec. 5.4. The

Z

Y

X

X

Y

Z

Figure 5.13. Finite element model adopted to investigate the behaviour of a surface bonded
patch. Arrows represent the loading conditions.
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5.4 – Piezoelectric patch on a structure

patch is circular and its material properties are rotated around the z-axis. This circular
shape is chosen in order to reduce the influence of the in-plane patch shape on the results.
A uniform traction is applied on the structure along the x-axis. 8000 elements (C3D20RE,
20-node quadratic piezoelectric brick with reduced integration [63]) have been employed.
The structure is in isotropic material (ES = 73 GPa, νS = 0.3). The properties of the
patch are the homogeneous material properties obtained with PHM. Fig. 5.14 presents the
response of the sensor patch in terms of mean transverse electric displacement. Results
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Figure 5.14. Response of the sensor in the different directions. Transverse electric dis-
placement is put in non-dimensional form with respect to its value at 0◦

are put in non-dimensional form with respect to the value at 0◦. The angle accounts for
the rotation of patch properties. Analytical results are in good agreement with numerical
results. The direction dependency of sensing is ensured.
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Chapter 6

Hierarchical finite elements for

structural analysis

Structural components, depending on their characteristics (in particular their shape), may
be modelled with finite elements of different type, for instance with beam, plate and solid
elements. Solid elements have no underlying cinematic model and are the most general and
flexible elements. On the other hand, when adopted to model thin or slender structures,
they are computationally expensive since the aspect ratio of the single element should not
exceed an upper limit (usually in the range 5÷50). Beam and plate elements are formulated
according to a kinematic model and should be preferred for computational reasons when
a structural component is slender or thin, respectively. Classical beam and plate finite
elements, available in any commercial FEM software, may be inaccurate depending on the
geometry and the material of the structural component. In order to increase the accuracy,
higher order elements can be developed in a hierarchical framework. This framework,
developed by Carrera [82] and known as Unified Formulation (UF), is also well suited to
develop multifield elements, such as piezoelectric elements that account for electric degrees
of freedom. In this chapter, hierarchical solid elements are initially considered to introduce
the UF. Beam and plate elements, whose formulation is less evident, are later presented.
Piezoelectric solid and plate elements are also developed.

6.1 Preliminaries

A Cartesian reference system x, y and z is adopted. The displacement field is:

u
T (x,y,z) =

{
ux (x,y,z) , uy (x,y,z) , uz (x,y,z)

}
(6.1)

in which ux, uy and uz are the displacement components along x-, y- and z-axes. Su-
perscript ‘T ’ represents the transposition operator. Stress, σ, and strain, ε, vectors are
defined as:

σT =
{

σxx, σyy, σzz, σyz, σxz, σxy

}

εT =
{

εxx, εyy, εzz, γyz, γxz, γxy

} (6.2)
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6 – Hierarchical finite elements for structural analysis

In the case of small displacements with respect to a characteristic dimension, linear rela-
tions between strain and displacement components hold. γij with i 6= j in Eq. 6.2 is the
double of εij in Eq. 2.11. A compact vectorial notation can be adopted:

ε = Du (6.3)

D is the following differential matrix operator:

D =
























∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0
























(6.4)

Under the hypothesis of linear elastic materials, generalised Hooke’s law holds. It reads:

σ = Cε (6.5)

where C is the material stiffness matrix. In the most general case of anisotropic material,
it is a full matrix.

6.2 Solid elements

A unified formulation is adopted for deriving solid finite elements. The number of nodes
is formally considered as a free parameter of the formulation. The displacement vector u

is expressed in terms of shape functions Ni:

u (x,y,z) = Ni(x,y,z)qi i = 1,2, . . . ,Nn (6.6)

where qi contains the nodal displacements:

qT
i =

{
quxi

quyi
quzi

}
(6.7)

Nn denotes the number of nodes of the considered element. The summation convention
of Einstein’s notation is adopted. The geometrical relations in Eqs. 6.3 due to the FE
discretisation read:

ε = D(NiI)qi (6.8)
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6.2 – Solid elements

where I is the identity matrix. The Principle of Virtual Displacements (PVD) is adopted:
∫

V

δεT σdV = δLext (6.9)

The integration domain V indicates the volume. δ represents a virtual variation. Lext is
the expression of the external work that accounts for external loads. After the substitution
of Eqs. 6.8 and 6.6 in Eq. 6.9, the internal energy reads:

δLint =

∫

V

δεT σdV =

∫

V

δqT
i (NiI)T DT CD(NjI)qjdV (6.10)

Eq. 6.10 can be rewritten in a compact form as:

δLint = δqT
i Kijqj (6.11)

Kij ∈ R
3×3 is the nucleo of the element stiffness matrix. Its components are:

Kij
ro = ⊳DT

rlNiClmDmoNj⊲V = ⊳DlrNiClmDmoNj ⊲V r,o = 1,2,3 (6.12)

Symbol ⊳ . . . ⊲V denotes integration over V . The components of the nucleo are here written
in extended form:

Kij
11 = ⊳C11

∂Ni

∂x

∂Nj

∂x
+ C15

(
∂Ni

∂x

∂Nj

∂z
+

∂Ni

∂z

∂Nj

∂x

)

+C16

(
∂Ni

∂x

∂Nj

∂y
+

∂Ni

∂y

∂Nj

∂x

)

+ C55
∂Ni

∂z

∂Nj

∂z

+C56

(
∂Ni

∂z

∂Nj

∂y
+

∂Ni

∂y

∂Nj

∂z

)

+ C66
∂Ni

∂y

∂Nj

∂y
⊲V

(6.13)

Kij
12 = ⊳C12

∂Ni

∂x

∂Nj

∂y
+ C14

∂Ni

∂x

∂Nj

∂z
+ C16

∂Ni

∂x

∂Nj

∂x

+C25
∂Ni

∂z

∂Nj

∂y
+ C45

∂Ni

∂z

∂Nj

∂z
+ C56

∂Ni

∂z

∂Nj

∂x

+C26
∂Ni

∂y

∂Nj

∂y
+ C46

∂Ni
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∂Nj

∂z
+ C66
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∂y
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(6.14)

Kij
13 = ⊳C13
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∂x

∂Nj

∂z
+ C14

∂Ni

∂x

∂Nj
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+ C46
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(6.15)

Kij
21 = ⊳C12

∂Ni

∂y

∂Nj

∂x
+ C25

∂Ni

∂y

∂Nj

∂z
+ C26
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+C14
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+ C66
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(6.16)
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Kij
22 = ⊳C22
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Kij
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Kij
33 = ⊳C33
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(6.21)

As far as the whole structure is concerned, the FEM problem in the framework of the
proposed UF is governed by the following equation:

δqi : K
ij

qj = P i (6.22)

where K
ij

and qj are the global FE stiffness matrix and nodal unknowns vector. P i is a
loading vector that is variationally coherent to the mechanical model through the external
work.

Lagrange polynomials are considered as shape functions:

lnk (ξ) =

n∏

i=0,i6=k

ξ − ξi

ξk − ξi
(6.23)
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where n is the order of the polynomial and ξ is a normalised coordinate. Prisms of the
Lagrange family are adopted. Shape functions are defined as:

Ni = lnp (ξ)lnq (η)lnr (ζ) (6.24)

where η and ζ are also normalised coordinates. Only quadratic (Nn = 27) elements are
considered. They are addressed as S27. Shear locking can arise in linear prism elements in
bending applications. Reduced integration should be adopted to contrast this phenomenon.
It should be noted that the expression of the nucleo of the stiffness matrix does not depend
formally on the number of nodes of the element.

6.2.1 Extension to piezoelasticity

The vector of primary variables is:

a
T (x,y,z) =

{
u

T (x,y,z) φ (x,y,z)
}

(6.25)

in which φ denotes the electric potential field. Superscript ‘T ’ represents the transposition
operator. Generalised stress, σG, and generalised strain, εG, vectors are defined as:

σT
G =

{
σT DT

}

εT
G =

{
εT ET

} (6.26)

where D and E are the electric displacement vector and the electric field vector, respec-
tively:

DT =
{

Dx Dy Dz

}

ET =
{

Ex Ey Ez

} (6.27)

σG and εG correspond to TG and SG in Eq. 2.3, respectively. Linear relations between
generalised strain and primary variables hold. On the basis of Eq. 2.11, a compact vectorial
notation can be adopted:

εG = DGa (6.28)

(6.29)
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DG is the following differential matrix operator:

DG =




































∂

∂x
0 0 0

0
∂

∂y
0 0

0 0
∂

∂z
0

0
∂

∂z

∂

∂y
0

∂

∂z
0

∂

∂x
0

∂

∂y

∂

∂x
0 0

0 0 0
∂

∂x

0 0 0
∂

∂y

0 0 0
∂

∂z




































(6.30)

Under the hypothesis of linear piezoelasticity, the constitutive equations read:

σG = CGεG (6.31)

where CG can have the same form as in Eq. 2.3 or, more in general, the following form:

CG =

[
C −eT

e ǫ

]

(6.32)

e is the matrix of the piezoelectric coefficients and ǫ is the matrix of the dielectric co-
efficients. They are, in the most general case, full matrixes. The Principle of Virtual
Displacements (PVD) reads:

∫

V

{
δεT σ − δET D

}
dV = δLext (6.33)

The primary variable vector a is expressed in terms of nodal unknowns and shape functions
Ni:

a (x,y,z) = Ni(x,y,z)qi i = 1,2, . . . ,Nn (6.34)

where
qi =

{
quxi,quyi,quzi,qφi

}
(6.35)

The internal energy can be rewritten in the same form as Eq. 6.11 where Kij is a 4 x 4
array. Its components are:

Kij
ro = ⊳DGlrNiCGlmDGmoNj ⊲V r,o = 1,2,3,4 (6.36)
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For example, the component (4,4) of the nucleo is here written in its extended form:

Kij
44 = ⊳

∂Ni

∂x
ǫ11

∂Nj

∂x
+

∂Ni

∂x
ǫ12

∂Nj

∂y
+

∂Ni

∂x
ǫ13

∂Nj

∂z

+
∂Ni

∂y
ǫ21

∂Nj

∂x
+

∂Ni

∂y
ǫ22

∂Nj

∂y
+

∂Ni

∂y
ǫ23

∂Nj

∂z

+
∂Ni

∂z
ǫ31

∂Nj

∂x
+

∂Ni

∂z
ǫ32

∂Nj

∂y
+

∂Ni

∂z
ǫ33

∂Nj

∂z
⊲V

(6.37)

6.3 Beam elements

Beam structures are widely used in many industrial fields. Helicopter rotor blades in
aerospace engineering and concrete made beams in civil engineering represent just two
examples. In order to achieve an effective design, the mechanics of beam structures should
be modelled as accurate as possible, especially in the case of non-trivial cross sections or
composite materials. A brief discussion on refined beam formulation follows. In the case of
bending mechanics, classical one-dimensional models are represented by Euler-Bernoulli’s
(EB) and Timoshenko’s (TB) theories (see Timoshenko [83, 84]). The cross-section is con-
sidered to be rigid on its plane. EB discards the shear deformation while TB accounts for a
constant value. In the case of torsion, Saint-Venant’s [85] and Prandtl’s [86] models are the
classical solutions. Classical theories do not yield accurate results in the case of unconven-
tional cross-section geometries, short beams, anisotropic materials and non-homogeneous
sections. In these contexts, refined theories are necessary. Improvements in classical mod-
els have been proposed to account for non-classical effects and non-conventional materials.
A general review on beam modelling was proposed by Kapania and Raciti [87, 88] ac-
counting for static, buckling, free-vibration and wave propagation analysis. Other reviews
are the ones by Hodges [89] and Jung et al. [90]. A UF of axiomatically refined beam
models was proposed by Carrera et Giunta [91]. Displacement-based theories accounting
for non-classical effects (such as transverse shear and cross-section in- and out-of-plane
warping) were derived. EB and TB models were retrieved as particular cases. Through
a concise notation for the displacement field, problem governing equations were reduced
to a ‘fundamental nucleo’ that does not depend upon the approximation order, which is
a free parameter of the formulation. The corresponding hierarchical finite elements were
addressed by Carrera et al. [92].

6.3.1 Geometry and constitutive equations

A beam is a structure whose axial extension (l) is predominant with respect to any other
dimension orthogonal to it. The cross-section (Ω) is defined by intersecting the beam with
planes orthogonal to its axis. The x coordinate is coincident to the axis of the beam and
it is bounded such that 0 ≤ x ≤ l, y- and z-axis are two orthogonal directions laying on Ω.
The cross-section is considered to be constant along x. Stress (σ) and strain (ε) vectors
are grouped into vectors σn, εn acting on the cross-section:

σT
n =

{
σxx σxy σxz

}
εT

n =
{

εxx γxy γxz

}

(6.38)
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and σp, εp acting on planes orthogonal to Ω:

σT
p =

{
σyy σzz σyz

}
εT

p =
{

εyy εzz γyz

}

(6.39)

Strain vectors can be expresses in a compact vectorial notation as:

εn = Dnpu + Dnxu εp = Dppu (6.40)

Dnp, Dnx, and Dpp are the following differential matrix operators:

Dnp =









0 0 0

∂

∂y
0 0

∂

∂z
0 0









Dnx = I
∂

∂x
Dpp =











0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y











(6.41)

I is the unit matrix. According to Eqs. 6.38 and 6.39, the generalised Hooke law reads:

σp = C̃ppεp + C̃pnεn

σn = C̃npεp + C̃nnεn
(6.42)

In the case of fibres laying on planes parallel to the x-y one, matrices C̃pp, C̃pn, C̃np and
C̃nn are:

C̃pp =





C̃22 C̃23 0

C̃23 C̃33 0

0 0 C̃44



 C̃pn = C̃
T
np =





C̃12 C̃26 0

C̃13 C̃36 0

0 0 C̃45





C̃nn =





C̃11 C̃16 0

C̃16 C̃66 0

0 0 C̃55





(6.43)

For sake of brevity, coefficients C̃ij in Eqs. 6.43 are not reported here. They can be found as
function of the engineering material constants and fibre rotation angle measured versus x-
axis in Reddy [93]. In the case of classical models, the material stiffness coefficients should
be corrected in order to contrast a phenomenon known in literature as Poisson’s locking
(see Carrera and Brischetto [94, 95]). Poisson’s ratio couples the normal deformations
along the spatial directions. Because of this, a constant approximation of the displacement
components uy and uz does not yield accurate results, even in the case of slender beams.
A modified version of material’s constitutive equations, in which the stiffness coefficients
are opportunely modified, is obtained imposing σyy and σzz equal to zero in Hooke’s law.
An algebraic linear system in εyy and εzz is obtained. By substituting its solution into
Hooke’s equations regarding σxx and σxy the reduced stiffness coefficients Q̃11, Q̃16 and
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Q̃66 are obtained:

Q̃11 = C̃11 + C̃12
C̃12C̃33 − C̃13C̃23

C̃2
23 − C̃22C̃33

+ C̃13
C̃22C̃13 − C̃12C̃23

C̃2
23 − C̃22C̃33

Q̃16 = C̃16 + C̃26
C̃12C̃33 − C̃13C̃23

C̃2
23 − C̃22C̃33

+ C̃36
C̃22C̃13 − C̃12C̃23

C̃2
23 − C̃22C̃33

Q̃66 = C̃66 + C̃26
C̃26C̃33 − C̃36C̃23

C̃2
23 − C̃22C̃33

+ C̃36
C̃22C̃36 − C̃26C̃23

C̃2
23 − C̃22C̃33

(6.44)

The new constitutive relations in the case of TB read:

σxx = Q̃11εxx + Q̃16γxy

σxy = Q̃16εxx + Q̃66γxy

σxz = C̃55γxz σyz = C̃45γxz

(6.45)

whereas for EB, they reduce to the following equation:

σxx = Q̃11εxx (6.46)

6.3.2 Hierarchical beam theories

Hierarchical displacement-based theories can be formulated on the basis of the following
generic kinematic field:

u (x,y,z) = Fτ (y,z)uτ (x) with τ = 1, 2, . . . , Nu (6.47)

where Nu stands for the number of unknowns and depends on the approximation order
N . This latter is a free parameter of the formulation. On the basis of Einstein’s notation,
subscript τ is a dummy index that indicates summation over the range [1,Nu]. Thanks
to this notation, problem’s governing differential equations and boundary conditions are
derived in terms of a single ‘fundamental nucleo’. The theoretical formulation is valid
for a generic approximation order and approximating functions Fτ (y,z). The functions
Fτ are assumed to be Mac Laurin’s polynomials. Nu and Fτ as functions of N can be
obtained via Pascal’s triangle (see Table 6.1). The actual governing differential equations
and boundary conditions due to a fixed approximation order are obtained straightforwardly
via summation of the nucleo corresponding to each term of the expansion. According to
the previous choice of polynomial function, the generic N -order displacement field is:

ux = ux1 + ux2y + ux3z + · · · + u
x

(N2+N+2)
2

yN + · · · + u
x (N+1)(N+2)

2

zN

uy = uy1 + uy2y + uy3z + · · · + u
y
(N2+N+2)

2

yN + · · · + u
y (N+1)(N+2)

2

zN

uz = uz1 + uz2y + uz3z + · · · + u
z
(N2+N+2)

2

yN + · · · + u
z (N+1)(N+2)

2

zN

(6.48)

As far as the first-order approximation order is concerned, the kinematic field is:

ux = ux1 + ux2y + ux3z
uy = uy1 + uy2y + uy3z
uz = uz1 + uz2y + uz3z

(6.49)
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N Nu Fτ

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

3 10 F7 = y3 F8 = y2z F9 = yz2 F10 = z3

. . . . . . . . .

N (N+1)(N+2)
2 F (N2+N+2)

2

= yN . . . F (N+1)(N+2)
2

= zN

Table 6.1. Mac Laurin’s polynomials via Pascal’s triangle.

Classical models, such as TB:

ux = ux1 + ux2y + ux3z
uy = uy1

uz = uz1

(6.50)

and EB:
ux = ux1 − uy1,xy − uz1,xz
uy = uy1

uz = uz1

(6.51)

are straightforwardly derived from the first-order approximation model. Higher order mod-
els yield a more detailed description of the shear mechanics (no shear correction coefficient
is required), of the in- and out-of-section deformations, of the coupling between the spatial
directions due to Poisson’s effect and of the torsional mechanics than classical models do.
EB theory neglects them all, since it was formulated to describe the bending mechanics.
TB model accounts for constant shear stress and strain components.

6.3.3 Finite element formulation

In the framework of the finite element modelling, the displacement vector is approximated
as:

u (x,y,z) = Ni(y,z)Fτ (x)qτi i = 1,2, . . . ,Nn (6.52)

where qτi is the nodal displacement vector:

qT
τi =

{
quxτi

quyτi
quzτi

}
(6.53)

and Ni are the shape functions as in Bathe [96]. Dummy index i ranger over the element
nodes. Elements with two, three and four nodes are considered. Through the paper they
are addressed as B2, B3 and B4, respectively. Elements’ stiffness matrix and external
loadings vector are obtained through the Principle of Virtual Displacements (PVD):

δLint = δLext (6.54)
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δ stands for a virtual variation. Lext stands for the work due to external loadings. Lint

represents the strain energy. According to the grouping of the stress and strain components
in Eqs. 6.38 and 6.39, it can be written as the sum of two contributes:

δLint =

∫

l

∫

Ω

(
δǫT

n σn + δǫT
p σp

)
dΩ dx (6.55)

Via substitution of Eqs. 6.40, 6.42 and 6.52, Eq. 6.55 reads:

δLint =
∫

l

∫

Ω

δqT
τi

[

Nj

(
DT

nxNi

)
C̃npFτ (DppFs) + FτFs

(
DT

nxNi

)
C̃nn (DnxNj)

+Nj

(
DT

nxNi

)
C̃nnFτ (DnpFs) + NjNi

(
DT

npFτ

)
C̃np (DppFs)

+Fs

(
DT

npFτ

)
C̃nnNi (DnxNj) + NjNi

(
DT

npFτ

)
C̃nn (DnpFs)

+NjNi

(
DT

ppFτ

)
C̃pp (DppFs) + Fs

(
DT

ppFτ

)
C̃pnNi (DnxNj)

+NjNi

(
DT

ppFτ

)
C̃pn (DnpFs)

]

qsj dΩ dx

(6.56)

Indexes i and j range over the number of nodes of the element, whereas τ , s are related
to the expansion functions. Eq. 6.56 can be rewritten in a compact form as:

δLint = δqT
τiK

τsijqsj (6.57)

where Kτsij is the fundamental nucleo of the stiffness matrix. Its components are:

Kτsij
xx = Ii,xj,xJ11

τs + Ii,xjJ
16
τs,y

+ Iij,xJ
16
τ,ys + Iij

(

J66
τ,ys,y

+ J66
τ,zs,z

)

Kτsij
xy = Ii,xj,xJ16

τs + Ii,xjJ
12
τs,y

+ Iij,xJ
66
τ,ys + Iij

(

J26
τ,ys,y

+ J45
τ,zs,z

)

Kτsij
xz = Ii,xjJ

13
τs,z

+ Iij,xJ
55
τ,zs + Iij

(

J36
τ,zs,y

+ J45
τ,ys,z

)

Kτsij
xy = Ii,xj,xJ16

τs + Ii,xjJ
66
τs,y

+ Iij,xJ
12
τ,ys + Iij

(

J26
τ,ys,y

+ J45
τ,zs,z

)

Kτsij
yy = Ii,xj,xJ66

τs + Ii,xjJ
26
τs,y

+ Iij,xJ
26
τ,ys + Iij

(

J22
τ,ys,y

+ J44
τ,zs,z

)

Kτsij
yz = Ii,xjJ

36
τs,z

+ Iij,xJ
45
τ,zs + Iij

(

J23
τ,zs,y

+ J44
τ,ys,z

)

Kτsij
zx = Ii,xjJ

55
τs,z

+ Iij,xJ
13
τ,zs + Iij

(

J45
τ,zs,y

+ J36
τ,ys,z

)

Kτsij
zy = Ii,xjJ

45
τs,z

+ Iij,xJ
36
τ,zs + Iij

(

J44
τ,zs,y

+ J23
τ,ys,z

)

Kτsij
zz = Ii,xj,xJ55

τs + Ii,xjJ
45
τs,y

+ Iij,xJ
45
τ,ys + Iij

(

J44
τ,ys,y

+ J33
τ,zs,z

)

(6.58)

where:

Ii(,x)j(,x)
=

∫

l

Ni(,x)
Nj(,x)

dx (6.59)

and:

Jmn
τ(,y)(,z)s(,y)(,z)

=

∫

Ω

C̃mnFτ(,y)(,z)
Fs(,y)(,z)

dΩ (6.60)

Subscripts ‘x’, ‘y’ and ‘z’, when preceded by comma, represent derivation versus the cor-
responding spatial coordinate. As far as the whole structure is concerned, the constant
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kinematic FEM problem in the framework of the proposed unified formulation is governed
by the following equation:

K
τsij

qsj = Pτi (6.61)

where K
τsij

and qsj are the global stiffness matrix and nodal displacement vector. Pτi is a
loading vector that is variationally coherent to the mechanical model through the external
work.

6.4 Plate elements

Multi-layered structures are increasingly used in aerospace, automotive and ship vehicles.
Nowadays, there are examples of fighter and commercial aircraft, helicopter and gliders
whose structure is entirely made of composite materials. The analysis and design of com-
posite and sandwich structures is a cumbersome subject. In order to achieve an effective
design, the mechanics of multi-layered structures should be modelled as accurately as possi-
ble. In the case of bending mechanics, classical two-dimensional models are represented by
Classical Lamination Theory (CLT), see Kirchhoff [97], and First-order Shear Deformation
Theory (FSDT), see Reissner [98] and Mindlin [99]. Classical theories yield accurate results
only in the case of thin plates and low degree of anisotropy. Many refinements of classical
models have been proposed to overcome the limitations of classical theories and to include
partially or completely the so called C0

z -requirements (see Carrera [100]). Both displace-
ment and transverse stresses are C0-class functions along the thickness direction: they
have, in the most general case, discontinuous first derivatives at each interface where the
mechanical properties change. The fulfilment of the C0

z -requirements is a crucial point of
multi-layered structures two-dimensional modelling. A complete and exhaustive discussion
of several contributions appeared in literature has been covered by many state-of-the-art
articles. Among these, the reviews proposed by Kapania and Raciti [87, 88], Noor and
Burton [101], Reddy and Robbins [102], Carrera [103] and Hu et al. [104] should be men-
tioned. A UF of axiomatically refined plate models was proposed by Carrera [82]. Models
formulated on the basis of the Principle of Virtual Displacements (PVD) and Reissner’s
Mixed Variational Theorem [105] (RMVT) were both considered. Both Equivalent Single
Layer and Layer-Wise approaches were adopted. CLT and FSDT models were retrieved
as particular cases. Through a concise notation for the unknowns field, problem governing
equations were reduced to a ‘fundamental nucleo’ that does not depend upon the approx-
imation order that is a free parameter of the formulation. A comprehensive assessment of
the corresponding finite elements was addressed in Carrera [103].

6.4.1 Geometry and constitutive equations

A plate is a three-dimensional structure in which one dimension (its thickness) is negligible
if compared to the in-plane dimensions. The plate has uniform thickness h and its middle
plane (midway between its faces) lie in the xy plane. The z coordinate is coincident to
plate’s out-of-plane axis, whereas x- and y-axis coincide with two orthogonal edges of the
plate. Plate’s reference plane corresponds to its middle plane: it is a two-dimensional
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domain defined as Ω = {(x,y,z) : z = 0}. Plates can be monolithic or made up of several
layers. The notation adopted in this work considers the case of multi-layered plate. Mono-
lithic plates can be taken into account as single layer plates. The displacement field in a
kth layer is:

u
kT (x,y,z) =

{
uk

x (x,y,z) uk
y (x,y,z) uk

z (x,y,z)
}

(6.62)

in which ux, uy and uz are the displacement components along x-, y- and z-axes. Super-
script ‘T ’ represents the transposition operator. Bold letters denote arrays.

Stress, σk, and strain, εk, vectors in a kth layer are split into vectors σk
p , εk

p acting on
planes parallel to Ω:

σkT
p =

{
σk

xx σk
yy σk

xy

}
εkT

p =
{

εk
xx εk

yy γk
xy

}

(6.63)

and σk
n, εk

n acting on planes perpendicular to Ω:

σkT
n =

{
σk

xz σk
yz σk

zz

}
εkT

n =
{

γk
xz γk

yz εk
zz

}

(6.64)

A compact vectorial notation can be adopted to express the strain vectors:

εk
p = Dpu

k

εk
nG = (DnΩ + Dnz)u

k (6.65)

Subscript ‘G’ denotes strains computed through geometrical relations. DnΩ, Dnz and Dp

are the following differential matrix operators:

DnΩ =









0 0
∂

∂x

0 0
∂

∂y

0 0 0









Dnz = I
∂

∂z
Dp =











∂

∂x
0 0

0
∂

∂y
0

∂

∂y

∂

∂x
0











(6.66)

I is the unit matrix.
According to Eqs. (6.63) and (6.64), and for a reference system not coincident with the

orthotropy axes, generalised Hooke’s law reads:

σk
p = Ck

ppε
k
p + Ck

pnεk
n

σk
n = Ck

npε
k
p + Ck

nnεk
n

(6.67)

Ck
pp, Ck

pn, Ck
np and Ck

nn are the following material stiffness matrices:

Ck
pp =





Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66



 Ck
pn = CkT

np =





0 0 Ck
13

0 0 Ck
23

0 0 Ck
36



 Ck
nn =





Ck
55 Ck

45 0
Ck

45 Ck
44 0

0 0 Ck
33





(6.68)
For the sake of brevity, stiffness terms Ck

ij as function of the engineering constants are not
reported here. For more details, see Reddy [93]. In the case of a first-order expansion or
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classical models, material stiffness coefficients should be reduced according to the plane
stress condition as follows:

Qk
11 = Ck

11 −
Ck2

13

Ck
33

Qk
22 = Ck

22 −
Ck2

23

Ck
33

Qk
12 = Ck

12 −
Ck

13C
k
23

Ck
33

(6.69)

in order to avoid the thickness locking, see Carrera and Brischetto [94]. For mixed mod-
els, in which both displacements u and transverse shear/normal stresses σn are a priori
variables according to RMVT, Hooke’s equations should be rewritten as follows:

σk
p = Ĉk

ppε
k
p + Ĉk

pnσk
n

εk
nC = Ĉk

npε
k
p + Ĉk

nnσk
n

(6.70)

where the new stiffness matrices are:

Ĉk
pp = Ck

pp − Ck
pnCk−1

nn Ck
np Ĉk

pn = ĈkT
np = Ck

pnCk−1

nn Ĉk
nn = Ck−1

nn (6.71)

and subscript ‘C’ denotes out-of-plane strains computed through the constitutive relations.

6.4.2 Unified formulation for plate models

Two-dimensional modelling of plate structures consists in the separation of a generic un-
known a = a(x,y,z) into a set of thickness functions Fτ depending only upon the through-
the-thickness coordinate z and the correspondent variables aτ depending upon the in-plane
coordinates (x and y). The Unified Formulation (UF) by Carrera [82] allows obtaining sev-
eral two-dimensional models thanks to the following compact form:

a(x,y,z) = Fτ (z)aτ (x,y) (6.72)

where, according to Einstein’s notation, τ is a dummy index standing for summation of
N + 1 terms in which N is the through-the-thickness expansion order. In this work, N is
assumed to be as high as four. Thanks to the compact notation in Eq. 6.72, the governing
equations can be written in terms of a fundamental nucleo that does not depend formally
upon N and the unknowns description. This latter can be Equivalent Single Layer (ESL)
or Layer Wise (LW). The primary unknowns can be displacements (PVD-based models)
or both displacements and transverse stresses (mixed models based on RMVT).

Equivalent Single Layer Theories

Via a ESL description, problem’s unknowns are assumed globally for the whole structure.
The unknown field is approximated as follows:

a = F0a0 + F1a1 + . . . + FNaN = Fτaτ τ = 0,1, . . . ,N (6.73)

Within UF, MacLaurin’s polynomials are adopted as thickness functions Fτ :

Fτ = zτ (6.74)
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6.4 – Plate elements

The choice of MacLaurin’s polynomials allows obtaining classical theories such as CLT and
FSDT as particular cases of a linear theory by simply imposing a constant value of the
transverse displacement through the thickness direction. CLT results are retrived assigning
artificially high values to the shear moduli G13 and G23 in order to hinder transverse shear
deformation. For more details, see Carrera and Giunta [106]. Reduced material stiffness
coefficients according to a plane stress condition, as shown in Eqs. 6.69, should be adopted
in the case of classical theories and ESL first order theory.

In addition to MacLaurin’s polynomials, the Murakami’s zig-zag function [107] can be
introduced to account for the zig-zag variation of the displacements:

FZ = (−1)k ζk (6.75)

where ζk = 2zk

hk
is a non-dimensioned layer coordinate. zk is the physical coordinate of the

kth layer, whose thickness is hk. The exponent k changes the sign of the zig-zag term in
each layer, reproducing the discontinuity of the first derivative of the displacement variables
in the z-directions that is physically due to the intrinsic transverse anisotropy of multilayer
structures.

Layer Wise Theories

According to Reddy [93], in LW theories unknowns are considered independently in a
generic kth layer:

ak = Fta
k
t + Fba

k
b + Fla

k
l = Fτa

k
τ

τ = t,b,l
l = 2, . . . ,N

(6.76)

Subscripts t and b stands for kth layer top and bottom values, l denotes higher-order terms
of the through-the-thickness expansion. The thickness functions are a linear combination
of Legendre’s polynomials (see Carrera [103]) and they vary versus a local through-the-
thickness dimensionless coordinate ζk:

ζk =
2zk

hk
(6.77)

being zk a kth layer local coordinate and hk its thickness. These thickness functions have
the following properties:

ζk = 1 : Ft = 1, Fb = 0, Fl = 0
ζk = −1 : Ft = 0, Fb = 1, Fl = 0

(6.78)

In LW mixed models these properties ensure compatibility and equilibrium at layers’ inter-
faces. C0

z -requirements are fulfilled: displacement and transverse stresses are continuous
at layers’ interfaces and their first derivatives may be discontinuous.
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Variational Statements

The governing equations can be derived according to displacement-based or mixed vari-
ational statements. The PVD is used for the case of displacement-based models. For a
laminate made of Nl layers, the PVD reads:

Nl∑

k=1

∫

Ωk

∫

hk

(

δεkT
pGσk

pC + δεkT
nGσk

nC

)

dΩkdz =

Nl∑

k=1

δLk
ext (6.79)

The integration domain Ωk indicates the reference plane of each lamina. δ represents a
virtual variation. Lk

ext is the expression of the external work that accounts for a external
load acting on a generic k layer.

RMVT is adopted when both displacements and transverse shear and normal stresses
are a priori variables, see Reissner [105, 108]. RMVT is obtained via the addition of a
Lagrange’s multiplier that allows modelling the transverse stress vector σn:

Nl∑

k=1

∫

Ωk

∫

hk

[

δεkT
pGσk

pC + δεkT
nGσk

nM + δσkT
nM

(

εk
nG − εk

nC

)]

dΩkdz =

Nl∑

k=1

δLk
ext (6.80)

‘M’ indicates that σn is a-priori assumed and, therefore, modelled.

Acronyms System

The following acronyms system is adopted for addressing the two-dimensional models that
can be obtained via UF. The first letter indicates the approximation approach and it can
be either ‘E’ for an ESL approach or ‘L’ for a LW one. The second letter refers to the
main unknowns: ‘D’ stands for displacements-based models and ‘M’ for mixed theories. A
number indicates the order of expansion. For instance, ‘ED1’-‘ED4’ are linear to fourth-
order, ESL displacement-based models, whereas ‘LD1’-‘LD4’ and ‘LM1’-‘LM4’ are linear to
fourth-order displacement based and mixed LW models, respectively. ESL mixed models
are not considered in the present work. ESL models with Murakami zig-zag function are
addressed as EDNZ.

6.4.3 Finite element formulation

The generic unknown ak
τ is expressed in terms of the nodal unknowns qkT

τi and the shape
functions Ni (see Bathe [96]):

ak
τ (x,y) = Ni(x,y)qk

τi i = 1,2, . . . ,Nn (6.81)

Via substitution of Eq. 6.81 into Eq. 6.73 (ESL models) or Eqs. 6.76 (LW models), the
following expression is obtained:

ak(x,y,z) = Fτ (z)Ni(x,y)qk
τi (6.82)
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6.4 – Plate elements

The formulation of RMVT-based elements is addressed in details. Both displacements and
transverse shear and normal stresses are modelled as primary unknowns:

qkT
τi =

{

qkT
uτi,q

kT
στi

}

=
{{

qk
uxτi,q

k
uyτi,q

k
uzτi

}

,
{

qk
σzzτi,q

k
σxzτi,q

k
σyzτi

}}

(6.83)

where qkT
uτi is the nodal displacements vector and qkT

στi is the nodal transverse stresses
vector. Due to the finite element (FE) discretisation, the geometrical relations in Eqs. 6.65
read:

εk
pG = FτDp(NiI)qk

uτi

εk
nG = FτDnΩ(NiI)qk

uτi + Fτ,zNiq
k
uτi

(6.84)

Subscripts preceded by comma represent differentiation. Upon substitution of Eqs. 6.84, 6.82
and 6.70 into Eq. 6.80, the internal virtual work for a kth layer can be rewritten in the
following compact form:

δLk
i = δqkT

τi Kkτsijqk
sj (6.85)

where Kkτsij ∈ R
6×6 is the fundamental nucleo of the FE stiffness matrix. According to

the nodal vector unknowns separation in Eq. 6.83, Eq. 6.85 reads:

δLk
i = δqkT

uτi

(

K
kτsij
uu qk

usj + K
kτsij
uσ qk

σsj

)

+ δqkT
στi

(

K
kτsij
σu qk

usj + K
kτsij
σσ qk

σsj

)

(6.86)

where the following arrays in R
3×3:

K
kτsij
uu = ⊳DT

p (NiI) Zkτs
pp Dp (NjI) ⊲Ωk

K
kτsij
uσ = ⊳DT

p (NiI) Zkτs
pn (NiI) Nj + DT

nΩ (NiI) EτsNj + Eτ,zsNiNjI⊲Ωk

K
kτsij
σu = ⊳NiE

τsDnΩ (NjI) + Eτs,zNiNjI − NiZ
kτs
np Dp (NjI) ⊲Ωk

K
kτsij
σσ = ⊳ − NiZ

kτs
nn Nj⊲Ωk

(6.87)

represent the sub-block components of Kkτsij. Symbol ⊳ . . . ⊲Ωk
denotes the integral on

Ωk. Subscripts τ and s count the expansion terms along the thickness direction, whereas

subscripts i and j range over the element nodes number. The generic term Z
kτ(,z)s(,z)

ηζ is a
through-the-thickness layer integral accounting for material and geometric stiffness:

Z
kτ(,z)s(,z)

ηζ = Ĉk
ηζE

τ(,z)s(,z) η,ζ = p,n

Eτ(,z)s(,z) =

∫

hk

Fτ(,z)
Fs(,z)

dz
(6.88)

As far as the whole structure is concerned, the FEM problem in the framework of the
proposed UF is governed by the following equation:

δqk
τi : K

kτsij
qk

sj = P
k
τi (6.89)

where K
kτsij

and qk
sj are the global FE stiffness matrix and nodal unknowns vector. P

k
τi

is a loading vector that is variationally coherent to the mechanical model through the
external work. In the case of RMVT-based elements, Eq.6.89 reads

δqkT
uτi : K

kτsij
uu qk

usj + K
kτsij
uσ qk

σsj = P
k
uτi

δqkT
στi : K

kτsij
σu qk

usj + K
kτsij
σσ qk

σsj = 0
(6.90)
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6 – Hierarchical finite elements for structural analysis

where the stiffness matrix and the load vector are partitioned according to the separation
of primary unknowns in displacements and stresses.

PVD-based elements can be obtained in a similar manner as the RMVT-based ones
where qkT

τi = qkT
uτi and Kkτsij ∈ R

3×3:

Kkτsij = ⊳DT
p (NiI)

[

Zkτs
pp Dp (NjI) + Zkτs

pn DnΩ (NjI) + Z
kτs,z
pn Nj

]

+

+DT
nΩ (NiI)

[

Zkτs
np Dp (NjI) + Zkτs

nn DnΩ (NjI) + Z
kτs,z
nn Nj

]

+

+Ni

[

Z
kτ,zs
np Dp (NjI) + Z

kτ,zs
nn DnΩ (NjI) + Z

kτ,zs,z
nn Nj

]

⊲Ωk

(6.91)

Z
kτ(,z)s(,z)

ηζ is computed using the generalised Hooke’s law as in Eqs. 6.67, that is Ck
ηζ instead

of Ĉk
ηζ . The FEM problem of the whole structure reads:

δqk
uτi : K

kτsij
qk

usj = P
k
uτi (6.92)

Demasi and Carrera [109] presented hybrid RMVT-based elements in which the a-
priori assumed stresses are eliminated at element level via a static condensation. Being the
primary unknowns only displacements, the element stiffness matrix has the same dimension
as the one of a corresponding PVD-based element. In the present work, the full mixed
implementation is retained. Linear (with four nodes) and quadratic (with nine nodes)
quadrilateral elements are considered in this work. In linear elements one Gauss point,
instead of 2 × 2 Gauss points, is considered in the numerical integration of the shape
functions Ni and their derivatives in order to contrast shear locking. There are other
numerical integration schemes and techniques to contrast shear locking. Carrera et al. [110]
considered some of these in the case of multilayered plates.

6.4.4 Extension to piezoelasticity

Smart structures represent the next generation design in the aerospace industry. Piezo-
electric materials are extensively used in this context as sensors and actuators thanks to
the so-called direct and inverse effect, respectively. Layers of piezoelectric ceramics can
be integrated directly in multilayered plates or can be surface bonded. The analysis and
design of such structures is a cumbersome subject. Accurate results requires refined models
which are computationally expensive. In the review article by Saravons and Heyliger [111]
several laminate theories, analytical solutions and numerical solutions have been taken into
account for laminates with piezoelectric actuators or sensors. Benjeddou [112] presented
a survey on finite elements for adaptive structural elements. Common assumptions in the
formulation of piezoelectric elements, such as through-the-thickness linear variation of the
electric potential, have been analysed and their limitations pointed out. Several plate finite
elements have been considered, both with and without electric degrees of freedom. In most
cases the latter adopt an equivalent single layer model. The piezoelectric effect is included
via its equivalent electric load or the converse constitutive equations. Wang and Yang [113]
review considers higher order theories in a systematic way, according to the through-the-
thickness interpolation of displacement components and electric potential in the plate.
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6.4 – Plate elements

Auricchio, Bisegna and Lovadina [114] developed a finite element for piezoelectric plates
based on a Reissner-Mindlin-type modelling. Sheikh, Topdar and Halder [115] proposed a
finite element model based on First-order Shear Deformation Theory (FSDT) description
for the mechanical part with layer-wise electric potential. Sze, Yang and Fan [116] took
into account piecewise constant and piecewise linear assumptions on the spatial distribu-
tions of the electric variables. Thornburgh and Chattopadhyay [117] adopted a third order
theory to develop a general framework for coupled piezoelectric-mechanical plate prob-
lems. Robbins and Chopra [118] examined the effect of the mesh density, the transverse
kinematic assumption, the adhesive bond layer thickness and the span-to-thickness ratio
on the global response of a plate actuated via piezoelectric patches. Mechanical variable
kinematic finite element are adopted, since an induced strain approach is used. A similar
analysis in terms of strain energy distribution is carried out by Robbins and Chopra [119].
UF was adopted by Carrera and Nali [120] to derive finite elements with variable kinematic
for multifield problems. D’Ottavio and Kroplin [121] presented an extension of Reissner
Mixed Variational Theorem (RMVT) to multifield problems, in particular for multilayered
structures embedding piezoelectric layers. Carrera and Nali [122] proposed a finite element
formulation based on RMVT modified to account for interlaminar continuous transverse
electric displacement, named RMVT-Dz. A reliable prediction of the transverse electric
displacement is necessary for the calculation of the electric charge, which is important for
the development of robust control algorithms. A particular form of RMVT (RMVT-Dz-
σn) was considered by Carrera, Buttner and Nali [123] to a priori fulfil the interlaminar
continuity of transverse electromechanical variables.

Constitutive equations

Physical constitutive equations depend on the choice of the variational statement. Three
variational statements are considered to obtain the governing equations. In the case of Prin-
ciple of Virtual Displacement (PVD) the constitutive equations are reported in Eqs. 2.6.
They can be rewritten splitting in-plane and out-of-plane components in matrix form:

σp = Cppεp + Cpnεn − eT
ppEp − eT

npEn

σn = CT
pnεp + Cnnεn − eT

pnEp − eT
nnEn

Dp = eppεp + epnεn + ǫppEp + ǫpnEn

Dn = enpεp + ennεn + ǫT
pnEp + ǫnnEn

(6.93)

where subscript p stands for in-plane component, n for out-of-plane component. Index k
accounting for the layer is dropped for clearness. The following linear relations hold:

εp = Dpu

εn = (DnΩ + Dnz)u
Ep = DpEφ

En =
∂φ

∂z

(6.94)
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u is the vector containing the three components of displacement and φ is the electric
potential. DpE is the following differential matrix operator:

DpE =







∂

∂x
∂

∂y







(6.95)

The PVD in the case of electromechanical coupling is:

∫

V

{
δεT

pGσpH + δεT
nGσnH − δET

pGDpH − δEnGDnH

}
dV = δLext (6.96)

Primary set of variables contains the three components of displacement and the electric
potential. Subscript G stands for a quantity obtained by geometrical relations, H by
constitutive relations. δLext is the expression of the virtual external work that accounts
for external loads.

In the case of RMVT-Dz the transverse electric displacement Dz = Dn is assumed in
addition to displacements and electric potential. A modified set of constitutive equations
must be adopted:

σp =
(
Cpp + eT

npǫ
−1
nnenp

)
εp +

(
Cpn + eT

npǫ
−1
nnenn

)
εn

+
(
−eT

pp + eT
npǫ

−1
nnǫT

pn

)
Ep +

(
−eT

npǫ
−1
nn

)
Dn

σn =
(
CT

pn + eT
nnǫ−1

nnenp

)
εp +

(
Cnn + eT

nnǫ−1
nnenn

)
εn

+
(
−eT

pn + eT
nnǫ−1

nnǫT
pn

)
Ep +

(
−eT

nnǫ−1
nn

)
Dn

Dp =
(
epp + ǫpnǫ−1

nnenp

)
εp +

(
epn + ǫpnǫ−1

nnenn

)
εn

+
(
ǫpp − ǫpnǫ−1

nnǫT
pn

)
Ep +

(
ǫpnǫ−1

nn

)
Dn

En = −ǫ−1
nnenpεp − ǫ−1

nnennεn − ǫ−1
nnǫT

pnEp + ǫ−1
nnDn

(6.97)

The variational principle reads:

∫

V

{
δεT

pGσpH + δεT
nGσnH − δET

pGDpH − δEnGDnM − δDnM (EnG − EnH)
}

dV = δLext

(6.98)
Subscript M stands for a quantity modelled as primary variable.

In the case of RMVT-Dz-σn, primary set of variables contains transverse stresses
σn = {σxz,σyz,σzz} in addition to RMVT-Dz primary variables. The corresponding set
of modified constitutive equations is not reported here and can be found in [123]. The
variational principle reads:

∫

V

{

δεT
pGσpH + δεT

nGσnM − δET
pGDpH − δEnGDnM

−δDnM (EnG − EnH) + δσT
nM (εnG − εnH)

}
dV = δLext

(6.99)
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Theories

Only LW theories are considered because of the need to impose at layers’ interfaces the
values of the electric potential in the analyses. A similar imposition with ESL theories
would have been possible, but not as direct to implement as with LW theories. In the
hierarchical piezoelectric plate thoeries, primary unknowns vector ak

s is expressed as:

ak
s (x,y) = Nj(x,y)qk

sj j = 1,2, . . . ,Nn (6.100)

Superscript k stands for the k-th layer, Nj are the shape functions and Nn is the number
of nodes for the considered element. qk

sj is the vector of nodal values of primary unknowns.
In case of RMVT-Dz-σn:

qkT
sj =

{

qkT
usj,q

kT
φsj,q

kT
Dzsj,q

kT
σnsj

}

=
{{

qk
uxsj,q

k
uysj,q

k
uzsj

}

,qk
φsj,q

kT
Dzsj ,

{

qk
σzzsj,q

k
σxzsj,q

k
σyzsj

}}

(6.101)
where subscripts u, φ, Dz and σn stand for the respective primary variables. In case of

RMVT-Dz qkT
sj =

{

qkT
usj,q

k
φsj,q

kT
Dzsj

}

, whereas for PVD-based elements qkT
sj =

{

qkT
usj,q

k
φsj

}

.

The virtual variation is:

δak
τ (x,y) = Ni(x,y)δqk

τi i = 1,2, . . . ,Nn (6.102)

Variational statement in Eq. (6.96), in Eq. (6.98) or in Eq. (6.99) leads to a set of equilib-
rium equations that can be put in the form:

δqk
τi : Kkτsijqk

sj = P k
τi (6.103)

with the related boundary conditions B
k
. P k

τi is the vector of external loads variationally
coherent to the the model through the external work. Matrix Kkτsij is the fundamental
nucleus of the stiffness matrix. In case of PVD it is a 4 x 4 array, in case of RMVT-Dz it is
a 5 x 5 array, whereas in case of RMVT-Dz-σn it is a 8 x 8 array. The complete derivation
of the nuclei can be found in [122, 120, 123]. As far as the whole structure is concerned, the
FEM problem in the framework of the proposed UF is governed by the following equations:

K
kτsij

qk
sj = P

k
τi (6.104)
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Chapter 7

Coupling of mechanical finite

elements via the Arlequin method

The mechanics of a structure should be modelled as accurately as possible to achieve an
effective design. The drawback of refined beam and plate theories or three-dimensional
(3D) analyses is represented by the high number of degress of freedom and, therefore,
of the computational cost. The structure to be analysed can be decomposed in several
sub-domains that are coupled via computational techniques known as adaptation method
or mixed-dimensional methods. Higher order elements or solid elements can be adopted
in specific sub-domains of the structure where the stress field is quasi-3D. The remaining
sub-domains can be modelled with computationally cheap lower-order beam and plate fi-
nite elements. Several numerical methods have been formulated in the last years to couple
“refined” and “coarse” sub-domains. In such a manner accurate results can be obtained
with a reduced computational cost. In the sequential adaptation methods, structure’s
sub-domains differ in mesh size (h-adaptation, Bank [124]) or degrees of freedom of the
shape functions (p-adaptation, see Szabo and Babuska [125]) or both (hp-adaptation, see
Bathe [96]). Mesh size and shape functions are modified according to a sequential approach
based on the iteration of analysis and error estimation. In the multi-grid method (see Fish
et al. [126]), coarse and fine meshes share information inside an iterative algorithm. In
the extended finite element method by Möes [127], the basis of the shape functions is en-
riched to account for the discontinuity of the displacement field. The previous methods can
be addressed as mono-model methods. In the case of multi-models methods, structure’s
sub-domains differ in the kinematic assumptions, that is, the very numerical models are
adapted. In the s-version method (see Fish [128] and Fish and Markolefas [129]), incom-
patible meshes (different element size and polynomial order) with a local-global border are
coupled. Park and Filippa [130] presented a continuum-based variational principle for the
formulation of discrete governing equations of partitioned structural systems, including
coupled substructures as well as sub-domains obtained by mesh decomposition. In the
three field formulation by Brezzi and Marini [131], an additional grid at the interface is
introduced. The unknowns are represented independently in each sub-domain and on the
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7 – Coupling of mechanical finite elements via the Arlequin method

interface, the matching been provided by suitable Lagrange multipliers. A variational ap-
proach to couple kinematically incompatible structural models was presented by Blanco et
al. [132]. Ben Dhia et al. [133, 134, 135, 136] proposed the Arlequin method. The coupling
among different numerical models is obtained through Lagrange multipliers. The coupling
among finite elements of different type is presented in this chapter both for mechanical
analyses and for piezoelectric analyses. The Arlequin method is adopted and the coupling
matrices are written in the framework of the UF.

7.1 The Arlequin method

The volume of the structure (V ) is divided into two sub-domains A1 and A2 that are par-
tially overlapped. S represents the overlapping volume. For each sub-domain, a different
model is assumed. The global mechanical problem is solved by merging together the two
sub-domains via the Arlequin method. The internal and external virtual works are com-
puted for each sub-domain. The structural integrity in the overlapping volume is ensured
via a Lagrangian multiplier field (λ) and a coupling operator (Cξ) that links the degrees of
freedom of each sub-domain within the overlapping volume. The PVD in Eq. 6.9 becomes
in each sub-domain:

δLξ
int (uξ) + δLξ

c (uξ) = δLξ
ext (7.1)

ξ is a dummy index that counts the sub-domains. The virtual variation of the strain energy
in each sub-domain is:

δLξ
int =

∫

Aξ

αξ

(
δǫT σ

)
dV with

{
αξ = 1 in Aξ \ S
α1 + α2 = 1 in S

(7.2)

αξ are weighting functions for scaling the energy in each sub-domain in order to not consider
the energy in the overlapping volume twice. According to Ben Dhia [134], they should be
such that the sub-domain with a more accurate description has a higher weight in the
global equilibrium. Unless differently stated, a constant value equal to 0.98 is assumed
for the sub-domain in which the refined model is adopted. The virtual external work is
treated in a similar manner. δLξ

c is the virtual coupling work:

δLξ
c = (−1)ξ Cξ (δλ,uξ) (7.3)

Two coupling operators are considered (see Ben Dhia and Rateau [135] and Guidault and
Belytschko [137]):

• L2 coupling:

δCξ =

∫

Sξ

δλT uξ dV (7.4)

• H1 coupling:

δCξ =

∫

Sξ

{

δλT uξ + l̃2δεT (λ) ε (uξ)
}

dV (7.5)
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l̃ is a real parameter representative of a characteristic length. ε (λ) is defined in the same
manner as the mechanical strain ε (uξ) where the Lagrangian multiplier field is used instead
of the displacement one. Ben Dhia [136] proved that L2 coupling operator is meaningless
for the continuous Arlequin problem. In the discrete problem, it can be considered as an
approximation of a dual Lagrange field linked to a dual continuous Arlequin coupling.

7.2 Beam elements with different order

Arlequin method was adopted by Hu et al. [104, 138] for the linear and non-linear analysis
of sandwich beams modelled via one- and two-dimensional finite elements. In this sec-
tion, beam elements of different order formulated in Sec. 6.3 are coupled via the Arelquin
method. The beam volume is axially divided into two sub-domains and that are partially
overlapped, see Fig. 7.1. For each sub-domain, a different expansion order is assumed:

Figure 7.1. Beam structure divided into two overlapping sub-domains.

uξ = NiFτξ
qτξi with τξ = 1,2, . . . ,N

Aξ
u , ξ = 1,2 (7.6)

The coupling operators are rewritten as:

• L2 coupling:

δCξ =

∫

Sξ

δλT uξ dV (7.7)

• H1 coupling:

δCξ =

∫

Sξ

{

δλT uξ + l̃2
[
δεT

n (λ) εn (uξ) + δεT
p (λ) εp (uξ)

]}

dV (7.8)

The Lagrangian multiplier is discretised according to the UF:

λ = NiFτλ
Λτλi (7.9)
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7 – Coupling of mechanical finite elements via the Arlequin method

where Λτλi is the nodal unknown vector. The fundamental nucleo of the coupling matrix

C
ijτξsλ

ξ is derived coherently to Eq. 6.57 via substitution of Eq. 7.9 into Eq. 7.7 or 7.8:

δCξ = δΛT
τλiC

τλsξij
ξ qsξj (7.10)

In the case of L2 coupling, the fundamental nucleo is diagonal and its components are:

C
τλsξij
ξmn = δnmIijJτλsξ

with m,n = x,y,z (7.11)

where δnm is Kronecker’s delta. Terms Iij have been defined in Eq. 6.59 and:

Jτξsλ
=

∫

Ω

Fτξ
Fsλ

dΩ (7.12)

For the coupling operator H1, coupling matrix fundamental nucleo can be obtained straight-
forwardly noticing that H1 coupling operator is the sum of the L2 one and a term similar
to the virtual internal work in Eq. 6.55. The components of this latter term are those of
the stiffness matrix that correspond to the diagonal terms of the constitutive matrices C̃pp

and C̃nn:

C
τλsξij
ξxx = C

τλsξij
ξyy = C

τλsξij
ξzz = IijJτλsξ

+ l̃2
[
Ii,xj,xJτλsξ

+ Iij

(
Jτλ,ysξ,y

+ Jτλ,zsξ,z

)]

C
τλsξij
ξxy = l̃2Iij,xJτλ,ysξ

C
τλsξij
ξyx = l̃2Ii,xjJτλsξ,y

C
τλsξij
ξxz = l̃2Iij,xJτλ,zsξ

C
τλsξij
ξzx = l̃2Ii,xjJτλsξ,z

C
τλsξij
ξyz = l̃2IijJτλ,zsξ,y

C
τλsξij
ξzy = l̃2IijJτλ,ysξ,z

(7.13)
where:

Jτλ(,y)(,z)sξ(,y)(,z)
=

∫

Ω

Fτλ(,y)(,z)
Fsξ(,y)(,z)

dΩ (7.14)

According to Ben Dhia [134] and Guidault and Belytschko [137], the same approximation
order should be assumed for the low-order model and the Lagrangian multiplier. This
choice avoids a locking phenomenon that arises when the approximation of the more refined
model is adopted for the discretisation of the Lagrangian multiplier field. Considering the
whole structure and assuming that the refined model is adopted in the sub-domain A2 (see
Fig. 7.1) the governing equations of the variable kinematic problem in the framework of
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the proposed unified formulation coupled via the Arlequin method are:
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
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(7.15)

7.2.1 Results and discussion

Analyses are carried out considering a square and a thin-walled I-shaped cross-section. In
the latter, the wall thickness is equal to 10% of a main cross-section dimension a equal to
0.2 m. Slender (l/a = 100), moderately deep (l/a = 30) and deep (l/a = 10) beams are
accounted for. Beams are simply supported at both ends. They undergo a localised uniform
pressure (P ) equal to 1 Pa acting on 10% of the length and centred at mid-span. The
loading is applied to the top of the cross-section, see Figs. 7.18. Out-of-plane displacement
ux and shear stress component σxy are evaluated at x = 0, whereas in-plane displacement
components (uy and uz) and normal stresses (σxx, σyy and σzz) are computed at beam mid-
span. For each cross-section, the proposed finite elements are first validated towards the
corresponding closed form, Navier-type solution (see Carrera and Giunta [91]). For these
latter, the localised loading is approximated via a Fourier series expansion. The number
of the approximation terms is such that displacement and stress components converge
up to three significant digits. Results are also validated towards three-dimensional FEM
solutions obtained via the commercial code ABAQUS. For all the analyses, the quadratic
C3DR20 element is used (see [63]). As far as a I-shaped cross-section is concerned, FEM
models using plate elements are commonly considered as reference solutions in literature.
A three-dimensional FEM model has been here considered since plate elements available
on commercial FEM codes are generally based on classical Kirchhoff’s or Reissner’s models
and they do not yield the complete three-dimensional stress field. Meshes are such that the
maximum displacement components converge up to four significant digits. After validation,
elements based on a first- or second-order theory (low-order model) are coupled to those
based on a fourth- or a 15th-order one (refined model) via the Arlequin method. Non-
conforming meshes are not considered. Two configurations are considered. In the first
one, addressed as “Arlequina”, the refined sub-domain is near the loading application area.
For the second configuration (Arlequinb), the refined sub-domain is near the constraint,
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7 – Coupling of mechanical finite elements via the Arlequin method

see Figs. 7.2. These configurations have been addressed since load application regions and

(a) (b)

Figure 7.2. Simply supported beams under a localised uniform pressure P . Arlequin model
with refined elements near (a) the loading application zone or (b) the constraint.

constrained regions are likely to present a three-dimensional stress field. In the general
case in which the location of a three-dimensional stress field cannot be determined a priori,
refined sub-domains should be chosen on the basis of experience and preliminary analyses
via low-order models. Analyses have been carried out considering both L2 and H1 coupling.
For this latter, different values of l̃ in Eq. 7.5 have been accounted for. In general, no
relevant differences have been found. Unless differently stated, L2 coupling is, therefore,
used. Due to the symmetry of the problem, only half of the structure is investigated and
only a superimposition volume is needed, see Figs. 7.18.

Square Cross-Section Beam

Cross-section geometry and loading are shown in Fig. 7.3. The figure presents also the

Figure 7.3. Square cross-section geometry, loading and verification points.

points on the cross-section where displacements and stresses are evaluated. Beams are
made of an isotropic material whose properties are: Young’s modulus (E) equal to 75 GPa
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7.2 – Beam elements with different order

and Poisson’s ratio (ν) equal to 0.3. Displacements and stresses are put in a dimensionless
form as follows:

(ux,uy,uz) =
4Ea

l2P
(ux,uy,uz) (7.16)

(σxx,σyy,σxy) =
1

P
(σxx,σyy,σxy) (7.17)

Table 7.1 presents the displacement components for a slender beam. Results are computed

ux 10−2 × uy 102 × uz

FEM 3D 3.737 2.488 2.125
UF B2 B3/4 AS∗ B2 B3/4 AS B2 B3/4 AS
N=3 3.735 3.737 3.737 2.485 2.488 2.488 2.137 2.137 2.137
N=2 3.735 3.737 3.737 2.485 2.488 2.488 2.137 2.137 2.137
N=1 3.736 3.737 3.737 2.485 2.488 2.488 0.000 0.000 0.000
TB 3.735 3.737 3.737 2.485 2.488 2.488 0.000 0.000 0.000
EB 3.735 3.737 3.737 2.484 2.487 2.487 0.000 0.000 0.000

(∗): Analytical UF solution.

Table 7.1. Dimensionless displacements for square cross-section beam, l/a = 100.

considering 20 elements of the same length. Bending mechanics is predominant. Classical
models, therefore, yield accurate results for ux and uy. In order to predict correctly uz, a
second-order theory is required. Finite element results converge to the analytical solution.
Displacement components for the case of a deep beam are presented in Table 7.2. EB

101 × ux uy 102 × uz

FEM 3D 3.742 2.544 2.125
UF B2 B3/4 AS∗ B2 B3/4 AS B2 B3/4 AS
N=3 3.740 3.741 3.741 2.541 2.544 2.544 2.111 2.113 2.113
N=2 3.734 3.736 3.736 2.531 2.533 2.533 2.099 2.100 2.106
N=1 3.747 3.749 3.749 2.549 2.522 2.522 −0.055 −0.053 −0.053
TB 3.735 3.737 3.737 2.546 2.549 2.549 0.000 0.000 0.000
EB 3.736 3.737 3.737 2.484 2.487 2.487 0.000 0.000 0.000

(∗): Analytical UF solution.

Table 7.2. Dimensionless displacements for square cross-section beam, l/a = 10.

model underestimates uy by about 1.2% since it does not account for shear effects. An
accurate prediction of uz calls for a second-order theory. Dimensionless stresses for slender
and deep beams are reported in Table 7.3 and 7.4, respectively. Stress component σxx

converges to the analytical solution regardless the number of nodes per element. In the
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−10−3 × σxx σxy 101 × σyy

FEM 3D 1.425 8.583 5.000

Analytical UF
N=4 1.425 8.461 5.000
N=3 1.425 8.461 4.997
N=1 1.425 5.000 5.242
TB 1.425 5.000 −
EB 1.425 − −

FEM UF
B2 B3 B4 B2 B3 B4 B2 B3 B4

N=4 1.412 1.429 1.425 −27.59 20.48 8.461 0.806 4.141 5.578
N=3 1.412 1.429 1.425 −27.59 20.48 8.461 0.722 4.088 5.552
N=1 1.415 1.428 1.425 −31.05 17.01 5.000 2.367 4.349 5.074
TB 1.415 1.428 1.425 −31.05 17.01 5.000 − − −
EB 1.415 1.428 1.425 − − − − − −

Table 7.3. Dimensionless stresses in the case of beam with square cross-section, l/a = 100.

−10−1 × σxx 101 × σxy 101 × σyy

FEM 3D 1.428 8.595 5.278

Analytical UF
N=4 1.425 8.462 5.208
N=3 1.432 8.462 5.245
N=1 1.446 5.000 4.871
TB 1.425 5.000 −
EB 1.425 − −

FEM UF
B2 B3 B4 B2 B3 B4 B2 B3 B4

N=4 1.410 1.427 1.425 8.100 8.581 8.461 6.015 5.192 5.214
N=3 1.423 1.436 1.432 8.100 8.581 8.461 5.998 5.235 5.250
N=1 1.437 1.450 1.446 4.639 5.120 5.000 5.020 4.865 4.870
TB 1.415 1.428 1.425 4.639 5.120 5.000 − − −
EB 1.415 1.428 1.425 − − − − − −

Table 7.4. Dimensionless stresses in the case of beam with square cross-section, l/a = 10.

case of σxy and σyy, B2 and B3 elements call for a finer mesh. Convergence analysis is
presented in Figs. 7.4 and 7.5 for slender and deep beams, respectively. A third-order
model is considered. Ten elements are sufficient in the case of B4 elements. Convergence
for slender beams is slower than for deep ones. Classical theories correctly predicts only
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Figure 7.4. Dimensionless stress σxy at x = 0 versus the number of elements for square
cross-section beam, l/a = 100, third-order model.
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Figure 7.5. Dimensionless stress σxy at x = 0 versus the number of elements for square
cross-section beam, l/a = 10, third-order model.

σxx. An accurate evaluation of σxy and σyy calls for at least a third-order theory. As
far as a variable kinematic solution is concerned, the coarse sub-domain A1 is meshed via
16 first-order, B4 elements whereas five fourth-order, B4 elements are considered for sub-
domain A2. A superimposed element, whose length is lel, is considered in the overlapping
volume. Displacements and stresses for a deep beam are reported in Table 7.5. The total
degrees of freedom (DOF) of each solution are also reported there. Results are aligned with
those obtained through mono-theories models having the same expansion order, proving
the effectiveness of the Arlequin method in coupling domains having finite elements based
on theories with different expansion order. The case in which more than one superimposed
element is present have been also investigated, but no significant difference has been found.
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7 – Coupling of mechanical finite elements via the Arlequin method

101 × ux uy 102 × uz −10−1 × σxx 101 × σxy 101 × σyy DOF∗

N=4 3.741 2.544 2.118 1.425 8.461 5.214 2745
N=1 3.749 2.522 −0.053 1.446 5.000 4.870 549
Arlequina 3.729 2.537 2.116 1.424 5.000 5.217 1197

Arlequinb 3.716 2.547 −0.056 1.444 8.352 4.807 1197
a Refined elements near the loading application zone.
b Refined elements near the simply support.
∗ DOF: degrees of freedom.

Table 7.5. Mono-theories and variable kinematic models, square cross-section beam, l/a = 10.

In order to reduce the number of degrees of freedom, the best choice consists in only a
superimposed element. A comparison between the considered variable kinematic models
and the fourth-order mono-model shows that the total number of degrees of freedom is
reduced by more than a half. Figs. 7.6 to 7.8 show the variation along the beam axis of uy,
uz and σyy, respectively. Arlequina solution is compared to a model with 20 fourth-order
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Figure 7.6. Dimensionless displacement uy along the beam axis for
square cross-section, l/a = 10.

elements (named as “Reference”). In the overlapping volume S, two solutions exist. Their
values do not necessarily match. Global bending response uy is accurately described by
both first- and fourth-order models. In the case of uz, first-order theory does not account
for the warping of the section, whereas fourth-order elements match the reference solution.
In the case of σyy, both L2 and H1 coupling operators have been accounted for. In the case
of H1 coupling, the parameter l̃ is equal to lel. Results differ slightly in the superimposed
volume only. They do not change increasing l̃. H1 solution converges to the L2 one
decreasing l̃. As far as the sensitivity of the Arlequin method upon the weighting functions
αξ in Eq. 7.2 is concerned, Fig. 7.9 presents the influence of α2 on σyy. α2 influences the
solution in the coupling domain. Increasing α2, σyy becomes smoother and smoother since
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Figure 7.7. Dimensionless displacement uz along the beam axis for
square cross-section, l/a = 10.

the refined model assumes more and more relevance. Outside the coupling domain, α2

does not affect the solution. A qualitatively comparison of the stress component σxy via
three-dimensional FEM solution, fourth-order model and Arlequinb solution is presented in
Fig. 7.10 in the form of colour maps above the cross-section. Results are in good agreement.

I-Shaped Cross-Section Beam

Fig. 7.11 presents the geometry of the considered I-shaped cross-section, loading and veri-
fication points. Beam is made of an isotropic material whose Young’s modulus is equal to
75 GPa and whose Poisson’s ratio is equal to 0.3. A moderately deep beam l/a = 30 is
considered. Displacements are put in a dimensionless form according to Eqs. 7.16. Stress
components σxx, σyy, σzz and σxy are normalised towards the loading amplitude P . An
expansion order as high as 15 is accounted for. Table 7.6 shows the displacement com-
ponents. Results are computed considering 20 elements. They converge to the analytical
solution. Displacement ux is accurately modelled by classical theories. uy predicted via
a fourth-order model differs from the reference solution by about 0.3%. Component uz

is due to the localised loading and an accurate prediction calls for high-order theories.
Fourth-order model underestimates it by about 20%, whereas the difference is about 4% in
the case of a 15th-order theory. Dimensionless stresses are reported in Tables 7.7 and 7.8.

Classical models yield the same value for σI
xx and σII

xx, being the error about 1.4 and
6%, respectively. σI

xx is accurately predicted for N as low as three. σII
xx evaluated via

a 15th-order model differs from the reference solution by about 2%. Stress components
σxy, σzz and σyy call for higher-order models, being the error in the case of a 15th-order
theory about 2.2, 6.2 and 10%, respectively. A more accurate description of normal stress
components can be obtained via a localised modelling approach, that is, displacements are
approximated in each cross-section subdomain by polynomial functions, such as Lagrange’s
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Figure 7.8. Dimensionless stress σyy along the beam axis for square cross-section, l/a = 10,

via (a) L2 coupling and (b) H1 coupling with l̃ = lel.

or Legendre’s, that ensure the congruency of the displacement fields within subdomains’
shared borders. This will be matter of future investigations. Results computed via the Ar-
lequin method are reported in Table 7.9. Unless differently stated, the coarse sub-domain
A1 is meshed via 16 second-order, B4 elements whereas five 15th-order, B4 elements are
considered for sub-domain A2. The Arlequin method proves to be effective in merging
sub-domains having different finite elements. The total number of degrees of freedom in
the analysis is reduced to less than a third. The variation of uz along the beam axis is
presented in Fig. 7.12. The coupling operators are compared in Fig. 7.13. Results differ
significantly in the superimposed volume and in its neighbourhood increasing l̃, Solutions
become coincident moving away from the the coupling domain. Fig 7.14 shows the de-
formed section at mid-span. The deformed section computed via mono-model 15th-order
theory and the variable kinematic model differ mainly by a rigid translation. Arlequin
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Figure 7.9. Dimensionless stress σyy along the beam axis varying α2,
square cross-section, l/a = 10.

−ux 10−1 × uy −102 × uz

FEM 3D 2.082 4.233 5.216
UF B2 B3/B4 AS∗ B2 B3/B4 AS B2 B3 B4 AS

N=15 2.072 2.073 2.078 4.226 4.231 4.231 5.062 4.987 4.992 4.993
N=11 2.072 2.073 2.078 4.224 4.228 4.228 4.916 4.855 4.859 4.860
N=7 2.072 2.073 2.078 4.219 4.223 4.224 4.532 4.505 4.509 4.509
N=4 2.072 2.073 2.078 4.206 4.211 4.211 4.175 4.177 4.176 4.176
N=3 2.072 2.073 2.078 4.206 4.211 4.211 4.047 4.050 4.050 4.050
N=2 2.072 2.073 2.078 4.169 4.174 4.174 4.002 4.004 4.003 4.003
N=1 2.072 2.072 2.078 4.169 4.174 4.174 0.026 0.024 0.024 0.024
TB 2.073 2.074 2.079 4.169 4.174 4.174 0.000 0.000 0.000 0.000
EB 2.073 2.074 2.079 4.147 4.152 4.152 0.000 0.000 0.000 0.000

(∗): Analytical UF solution.

Table 7.6. Dimensionless displacements for I-shaped cross-section beam, l/a = 30.

method captures local phenomena such as the absolute value of uz and the variation of uy

along z axis, responsible for the shape of the deformed section. If a quantity in the high-
order part of the model strongly depends upon its value in the low-order part where it is not
correctly modelled, the inaccuracy propagates from the low- to the high-order part. This
is the case of the absolute value of uy that is responsible for the position of the deformed
section. A qualitatively comparison of the stress component σyy among three-dimensional
reference solution, fourth-order model with 20 B4 elements and Arlequin-based solution
linking first- and fourth-order models is presented in Fig. 7.10. Beam finite element models
are not able to predict stress concentration. Results are in good agreement except near
internal corners. Fig. 7.16 shows the variation of σxy along the beam axis. The oscillations
in the coupling zone yield small oscillations in its neighbourhood. They depend upon the
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Figure 7.10. Dimensionless stress σxy above the cross-section at x = 0 via (a) FEM 3D
solution, (b) fourth-order model and (c) Arlequin-based solution, l/a = 10.

coupling operator as shown in Fig. 7.17. H1 coupling operator yields a smoother solution.
Nevertheless, high values of l̃ cause a loss of accuracy.
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Figure 7.11. I-shaped cross-section geometry, loading and verification points.
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Figure 7.12. Dimensionless displacement uz along the axis of the beam, I-shaped cross–
section beam, l/a = 30, via L2 coupling.

109



7 – Coupling of mechanical finite elements via the Arlequin method

−10−2 × σI
xx 10−2 × σII

xx 10−1 × σxy

FEM 3D 2.412 2.244 1.769

Analytical UF
N=15 2.411 2.298 1.727
N=11 2.412 2.322 1.817
N=7 2.415 2.351 1.651
N=4 2.397 2.368 1.974
N=3 2.419 2.389 1.974
N=2 2.378 2.378 0.555
N=1 2.386 2.370 0.535
TB 2.378 2.378 0.535
EB 2.378 2.378 −

FEM UF
B2 B3 B4 B2 B3 B4 B2 B3 B4

N=15 2.390 2.419 2.411 2.274 2.301 2.294 1.546 1.787 1.727
N=11 2.391 2.420 2.412 2.298 2.325 2.318 1.636 1.877 1.817
N=7 2.394 2.422 2.414 2.331 2.355 2.349 1.470 1.711 1.651
N=4 2.375 2.405 2.397 2.348 2.373 2.367 1.793 2.034 1.974
N=3 2.396 2.427 2.419 2.367 2.394 2.389 1.793 2.034 1.974
N=2 2.357 2.384 2.378 2.354 2.385 2.378 0.374 0.615 0.555
N=1 2.371 2.391 2.386 2.354 2.375 2.370 0.355 0.595 0.535
TB 2.362 2.383 2.378 2.362 2.383 2.378 0.355 0.595 0.535
EB 2.362 2.383 2.378 2.362 2.383 2.378 − − −

Table 7.7. Dimensionless stresses σxx and σxy in the case of beam with
I-shaped cross-section, l/a = 30.
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Figure 7.13. Coupling operators comparison for dimensionless displacement uz along the
axis of the beam, I-shaped cross-section beam, l/a = 30.
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10−1 × σzz σyy

FEM 3D 1.868 5.090

Analytical UF
N=15 1.950 4.565
N=11 2.076 4.073
N=7 1.100 4.156
N=4 0.474 5.771
N=3 0.099 5.738
N=2 0.002 1.788
N=1 0.044 1.865

FEM UF
B2 B3 B4 B2 B3 B4

N=15 2.227 1.938 1.985 4.801 4.569 4.557
N=11 2.384 2.061 2.110 4.146 4.067 4.062
N=7 1.257 1.096 1.128 4.471 4.128 4.150
N=4 0.564 0.467 0.485 5.111 5.953 5.806
N=3 0.203 0.084 0.103 5.704 5.785 5.762
N=2 0.115 −0.022 0.003 1.565 1.779 1.785
N=1 0.046 0.044 0.044 1.802 1.858 1.865

Table 7.8. Dimensionless stresses σyy and σzz in the case of beam with
I-shaped cross-section, l/a = 30.

−ux 10−1 × uy −102 × uz 10−2 × σII
xx 10−1 × σxy σyy 10−1 × σzz DOF∗

N=15 2.073 4.231 4.992 2.294 1.727 4.557 1.985 24888
N=2 2.073 4.174 4.003 2.378 0.555 1.785 0.003 1098
Arlequina 2.079 4.192 4.990 2.297 0.555 4.563 1.949 7482

Arlequinb 2.079 4.188 4.004 2.378 1.725 1.725 0.003 7482
a Refined elements near the loading application zone.
b Refined elements near the simply support.
∗ DOF: degrees of freedom.

Table 7.9. Results with the Arlequin method compared to mono-theories models.
I-shaped cross-section beam, l/a = 30.
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Figure 7.15. Dimensionless stress σyy above the mid-span cross section via (a)
FEM 3D solution, (b) fourth-order model and (c) Arlequin-based solution linking
first- and fourth-order models, l/a = 30.
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7.3 – Plate elements with different kinematic and variational principle

7.3 Plate elements with different kinematic and variational

principle

Reddy and Robbins [102] and Reddy [93] presented a multi-model method based on a
variable kinematic theory and on mesh superposition in the sense of Fish [126] and Fish
and Markolefas [129]. Coupling is obtained by linking the FSDT variables, which are
present in all the considered models, without using Lagrangian multipliers. In contrast
with the Arlequin method, total superposition is required in the case of non-conforming
meshes. In this section, the plate elements based on different kinematics and variational
principles presented in Sec. 6.4 are coupled via the Arelquin method. Plate’s volume is
divided into two sub-domains that are partially overlapped as shown in Fig. 7.18. For each

Figure 7.18. Plate mesh, loading and sub-domains considering several superimposition
zones: (a) minimum Sa, (b) reduced Sb and (c) extended Sc.

sub-domain, a different model is assumed:

ak
ξ = NiFτξ

qk
τξi with τξ = 1,2, . . . ,N

Aξ
u , ξ = 1,2 (7.18)

The two coupling operators are rewritten as:
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7 – Coupling of mechanical finite elements via the Arlequin method

• L2 coupling:

δCk
ξ =

∫

Sk
ξ

δλkT uk
ξ dVk (7.19)

• H1 coupling:

δCk
ξ =

∫

Sk
ξ

{

δλkT uk
ξ + l̃2

[

εkT
pG

(

δλk
)

εk
pG

(

uk
ξ

)

+ εkT
nG

(

δλk
)

εk
nG

(

uk
ξ

)]}

dVk

(7.20)

The Lagrangian multiplier field is discretised according to the UF:

λk = NiFτλ
Λ

k
τλi (7.21)

where Λ
k
τλi is the nodal unknown vector. The virtual work for a kth layer is derived

coherently to Eq. 6.85 via substitution of Eq. 7.21 into Eq. 7.19 or 7.20:

δCk
ξ = δΛkT

τλiC
kτλsξij
ξ qk

usξj (7.22)

C
kτλsξij
ξ is the fundamental nucleo of the coupling matrix. In the case of L2 coupling, this

is diagonal and its components are:

C
kτλsξij
ξmn = δmnEk

τλsξ
⊳ NiNj ⊲Ω with m,n = 1,2,3 (7.23)

where δmn is Kronecker’s delta. Terms Ek
τλsξ

are defined as:

Ek
τλsξ

=

∫

hk

Fτλ
Fsξ

dz (7.24)

For the coupling operator H1, coupling matrix fundamental nucleo is:

C
kτλsξij
11 = C

kτλsξij
22 = C

kτλsξij
33 = Ek

τλsξ
⊳ NiNj ⊲Ω +

+l̃2
[

Ek
τλsξ

(⊳Ni,xNj,x ⊲Ω + ⊳ Ni,yNj,y⊲Ω) + Ek
τλ,zsξ,z

⊳ NiNj⊲Ω

]

C
kτλsξij
12 = l̃2Ek

τλsξ
⊳ Ni,yNj,x ⊲Ω C

kτλsξij
13 = l̃2Ek

τλ,zsξ
⊳ NiNj,x⊲Ω

C
kτλsξij
21 = l̃2Ek

τλsξ
⊳ Ni,xNj,y ⊲Ω C

kτλsξij
23 = l̃2Ek

τλ,zsξ
⊳ NiNj,y⊲Ω

C
kτλsξij
31 = l̃2Ek

τλsξ,z
⊳ Ni,xNj ⊲Ω C

kτλsξij
32 = l̃2Ek

τλsξ,z
⊳ Ni,yNj⊲Ω

(7.25)

where:

Ek
τλ(,y)(,z)sξ(,y)(,z)

=

∫

hk

Fτλ(,y)(,z)
Fsξ(,y)(,z)

dz (7.26)

Coupling matrices are not affected by shear locking: full integration is adopted for the La-
grange multiplier shape functions Ni and their derivatives. The same approximation order
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7.3 – Plate elements with different kinematic and variational principle

should be assumed for the low-order model and the Lagrangian multiplier. Considering
the whole structure and assuming that the refined model is adopted in the sub-domain A2,
the governing equations of the variable kinematic problem are:
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(7.27)

where overlined terms refer to the whole structure. Assuming that a refined RMVT-based
model is adopted in the sub-domain A2, whereas sub-domain A1 is modelled via PVD-based
elements, Eq. 7.27 is rewritten as:
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7.3.1 Results and discussion

Square plates having sides length a equal to 0.1 m are considered. The side-to-thickness
ratio a/h is equal to ten. Relatively thick plates are, therefore, investigated. A localised
transverse pressure (P ) equal to 1 MPa is applied on a square region of side length equal
to a/5 centred at point (a/2,a/2,h/2) as shown in Fig. 7.18. This configuration has been
considered since the region close to the loading application is likely to present a three-
dimensional stress field and a refined model is there required. In the general case in which
the location of a three-dimensional stress field cannot be determined a priori, refined sub-
domains should be chosen on the basis of experience and preliminary analyses via low-order
models. A symmetric [0/90/0] and an anti-symmetric [90/0]2 stacking sequences are con-
sidered. The stacking sequence starts from the plate top. Ply angles are measured versus
the x-axis. The layers are all made of the same orthotropic material, whose mechani-
cal properties are: EL = 1.325 · 105 MPa, ET = 1.08 · 104 MPa, GLT = 5.7 · 103 MPa,
GTT = 3.4 · 103 MPa, νLT = 0.24 and νTT = 0.49. Four-node quadrilateral elements are
employed. Due to the problem symmetry, only a quarter of the plate is modelled. Results
are presented in terms of the transverse displacement uz, in-plane normal stresses σxx,
σyy and the out-of-plane shear stress σxz Unless differently stated, uz, σxx and σyy are
evaluated at (a/2,a/2, − h/2) and σxz is computed at (5a/12,a/2,0).

Mono-model solutions are first presented. The accuracy of the proposed theories is
discussed showing the fulfilment of the C0

z requirements and the through-the-thickness
equilibrium. The convergence of the solution versus the number of elements in the mesh
is also investigated through comparison with the corresponding closed-form analytical so-
lution and a three-dimensional (3D) exact solution based upon Pagano’s solution [139].
The variable kinematic models are then addressed. Their accuracy is assessed towards the
corresponding mono-model results and 3D exact solutions. Non-conforming meshes are not
considered. The effect of the coupling operator, the extension of the superposition zone
and the weight parameters is investigated.

Preliminary Mono-model Results

Pagano’s 3D solution is here extended in order to assess the accuracy of the UF models.
The localised loading is approximated by a Fourier expansion being nF the number of
harmonic terms along x and y directions. The convergence of the transverse displacement
uz, in-plane normal stresses σxx, σyy and the out-of-plane shear stress σxz versus nF is
presented in Fig. 7.19. The symmetric [0/90/0] plate is considered. Results are normalised
with respect to the values for nF = 101. This latter value of nF has been chosen in order
to ensure a convergence of the shear stress with four significant digits. The convergence of
the transverse displacement uz and the in-plane normal stresses σxx versus the number of
elements is presented in Figs. 7.20 and 7.21, respectively. FE results are compared to the
analytical ones obtained by a Navier-type solution with nF = 101 in the Fourier expansion
of the loading. The mesh convergence rate is similar for all the considered theories. The
transverse displacement uz and the normal stresses σxx with a mesh of 15 × 15 elements
differ from those with a mesh of 20 × 20 elements by less than 0.5%. A regular mesh of
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Figure 7.19. Convergence of Pagano’s solution for a [0/90/0] plate. Starred results
have been obtained with nF = 101.

15× 15 elements is, therefore, adopted in the following analyses. Elements’ sides length lel
is equal to a/30. Transverse displacement and stresses for the symmetric [0/90/0] plate are
reported in Table 7.10. Results are computed via 3D exact theory and both UF analytical

−105 × uz σxx σyy −10 × σxz DOF
[m] [MPa] [MPa] [MPa]

3D 1.674 11.94 2.019 6.524
FE ASa FE AS FE AS FE AS

LM4 1.681 1.675 11.89 11.94 1.993 2.020 6.523 6.540 19968
LD4 1.672 1.675 11.83 11.94 1.983 2.020 6.464 6.523 9984
LD1 1.634 1.637 11.22 11.35 2.102 2.142 6.422 6.519 3072
ED4 1.657 1.660 11.85 11.95 1.985 2.005 5.830 5.865 3840
ED1 1.587 1.609 10.38 10.44 1.604 1.852 3.872 3.813 1536
FSDT 1.605 1.609 10.33 10.44 1.826 1.852 3.872 3.813 1280
CLT 1.255 1.260 10.88 11.00 1.617 1.642 − − 768
a UF analytical solution.

Table 7.10. Transverse displacement and stresses for the [0/90/0] plate.

(AS) and FE mono-model solutions. Higher-order LW analytical results match the 3D
reference solution. ESL, displacement based models do not predict σxz accurately. As far
as the FE solution is concerned, LM4 model yields results that differ from the reference
solution by about 1%, at worst. In the case of transverse displacement predicted by ED1
theory, the error is about 6%. For the assumed mesh, the difference in the transverse
displacement between the FE solution and the corresponding analytical one is about 1.4%,
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Figure 7.20. Convergence of the transverse displacement uz versus the number of ele-
ments in the case of (a) PVD- and (b) RMVT-based theories. [0/90/0] stacking sequence.
Horizontal lines without dots report the corresponding analytical solutions.

at worst. The last column in the Table represents the number of DOF of the FE solution.

The case of an anti-symmetric [90/0]2 plate is presented in Table 7.11. As far as accu-
racy and convergence of the solutions are concerned, the same conclusions as for Table 7.10
are valid. The out-of-plane shear stress σxz is computed at both the bottom of the second
layer and the top of the third one, in order to show that layer-wise mixed models satisfy
the through-the-thickness equilibrium. The through-the-thickness variation of ux and σxz

is presented in Figs. 7.22. The displacement component ux is computed at x/a = 5/12,
y/b = 1/2. C0

z -requirements for displacements are satisfied by LW theories. The transverse
shear stress continuity at layers’ interface is fulfilled by the RMVT-based theories.
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Figure 7.21. Convergence of the normal stress σxx versus the number of elements in the
case of (a) PVD- and (b) RMVT-based theories. [0/90/0] stacking sequence. Horizontal
lines without dots report the corresponding analytical solutions.

Variable Kinematic Results

Finite elements that differ by the variables description (ESL or LW) and the through-the-
thickness expansion order are coupled. The coupling between PVD- and RMVT-based
elements is also addressed. Fig. 7.18 presents the plate division into sub-domains and the
mesh. Refined models are assumed for sub-domain A2 that has been discretised via 49
elements. As shown in Fig. 7.18, three different overlapping zone S are considered. They
differ by the extensions along x and y axes. A sensitivity analysis is carried out in terms
of: 1. length parameter l̃, 2. extension of the superposition zone and 3. weighting function
αξ.
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−105 × uz σxx σyy −10 × σa
xz −10 × σb

xz DOF
[m] [MPa] [MPa] [MPa] [MPa]

3D 1.719 11.28 1.823 6.104 6.104
FE ASc FE AS FE AS FE AS FE AS

LM4 1.725 1.719 11.23 11.28 1.807 1.824 6.141 6.121 6.141 6.121 26112
LD4 1.717 1.719 11.17 11.28 1.802 1.824 6.118 6.145 6.069 6.104 13056
LD1 1.692 1.694 10.78 10.91 1.909 1.931 5.263 5.297 6.308 6.376 3840
ED4 1.698 1.700 11.19 11.28 1.778 1.789 8.214 8.267 4.899 4.931 3840
ED2 1.600 1.644 9.429 9.741 1.476 1.544 5.484 5.465 3.271 3.260 2304
ED1 1.596 1.634 9.937 10.16 1.202 1.446 5.806 5.562 3.463 3.318 1536
FSDT 1.614 1.634 9.938 10.16 1.420 1.446 5.671 5.562 3.382 3.318 1280
CLT 1.323 1.344 9.812 10.03 1.406 1.431 − − − − 768
a Value at the bottom of the second layer.
b Value at the top of the third layer.
c UF analytical solution.

Table 7.11. Transverse displacement and stresses for the [90/0]
2

plate.

Length parameter Three values of l̃ are considered: zero, le and lc. The latter is
the length of the superposition zone along the x- or y-axis. It should be noticed that
L2 coupling operator can be considered as a particular case of H1 one with l̃ equal to
zero. The superposition zone as in Fig. 7.18(c) and addressed as Sc is used. Such a large
superposition zone, which includes most of the refined sub-domain, is not well suited for
practical application of the Arlequin method. It is here considered in order to highlight
the spatial variation of quantities inside the overlapping volume. The coupling of two
identical kinematic models ED1 is considered in the first place. According to Ben Dhia
and Rateau [135], weighting functions equal to 0.5 are assumed. Fig. 7.23 presents the
Lagrangian multiplier λz along x axis at y/b = 1/2 and z = 0 for a [0/90/0] plate. Results
are normalised versus their absolute maximum values |λz|MAX . Two meshes are considered:
the mesh shown in Fig. 7.18(c) and a refined mesh with halved elements side length. As
noticed in Ben Dhia and Rateau [135] and confirmed in Guidault and Belytschko [137], the
coupling operator L2 yields a multiplier field that tends to be singular on the interfaces
of the superposition zone: the multiplier field is almost null everywhere except near the
boundaries of the overlapping volume where it oscillates. If the elements size is reduced,
the oscillation regions become smaller. As explained by Ben Dhia [136], the multiplier field
seems to converge up to a homogenisation factor to a surface-Lagrange multiplier. The
transverse displacement, the normal in-plane stresses and the shear stresses match the case
of mono-model solution regardless the choice of the length parameter. For sake of brevity,
they are not explicitly reported. In the second case, a LD2 model (sub-domain A1) is
coupled with a LD4 model (sub-domain A2). According to Ben Dhia and Rateau [135]
and unless differently stated, α2 equal to 0.98 is used. Fig. 7.24 presents the Lagrangian
multiplier λz along x axis at y/b = 1/2 at mid-plane. For L2, λz tends to be singular at
the interface with the unrefined model. The distribution of σxx along x axis for y/a = 1/2
at plate bottom is shown in Figs. 7.25. The case l̃ = lel yields the least perturbed solution,
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Figure 7.22. Through-the-thickness variation of (a) ux and (b) σxz computed at
x/a = 5/12, y/a = 1/2, [90/0]

2
plate.

whereas for l̃ = lc the oscillation in the coupling zone yields an underestimated value
of σxx in the refined zone. Figs. 7.26 present the variation of σxz along x axis. The
shear stress is computed at y/b = 1/2 and z = 0. The variation of the length parameter
affects the solution mainly in the coupling zone. It has been observed that the transverse
displacement via LD2-LD4 coupled solution matches the corresponding mono-model one.
It is not reported here for the sake of brevity.

An ED1-ED4 coupled solution is also considered in order to investigated the coupling
between lower and higher ESL theories. The transverse displacement along x axis for
y/a = 1/2 at mid-plane is presented in Fig. 7.27. Results for l̃ = lel and l̃ = 0 are very
similar and only the latter is, therefore, presented in the figure. The variable kinematic
results are not very accurate because of the ED1 model in the coupled solution. The
distribution of σxx is shown in Figs. 7.28. L2 coupling operator yields better results that
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Figure 7.23. Variation of the Lagrangian multiplier λz along x axis at y/b = 1/2 and z = 0
for a [0/90/0] plate in the case of the coupling of two ED1 models with (a) mesh represented
in Fig. 7.18 and (b) refined mesh with halved elements’ side length.

the H1 does. Similar considerations hold for the variation of σxz. For both normal and
shear stresses, results obtained with l̃ = lel are better than those obtained with l̃ = lc.
The presented results confirm what reported by Ben Dhia and Rateau [135] and Guidault
and Belytschko [137]: L2 coupling operator presents a multiplier field that tends to be
singular near the interfaces of the superposition zone. This is not the case of H1, which
yields a smoother multiplier field. When coupling identical kinematic models or models
with similarly accurate kinematics, results obtained via H1 are similar to those by L2.
Nevertheless, in the considered cases, H1 may yield inaccurate results if the unrefined
theories are not appropriate to model the mechanics of the structure (especially when the
transverse shear is important). This behaviour is emphasised by high values of l̃. The
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Figure 7.24. Variation of the Lagrangian multiplier λz along x axis at y/b = 1/2 and z = 0
for a [0/90/0] plate in the case of LD2-LD4 coupled solution.

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45  50

σ x
x
 [

M
P

a]

x [mm]

S
c

3D

LD4

LD2-LD4, l
~
=0 (L

2
)

(a)

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45  50

σ x
x
 [

M
P

a]

x [mm]

S
c

3D

LD4

LD2-LD4, l
~
=lel (H

1
)

(b)

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45  50

σ x
x
 [

M
P

a]

x [mm]

S
c

3D

LD4

LD2-LD4, l
~
=lc (H

1
)

(c)

Figure 7.25. σxx along x axis for y/b = 1/2 at plate bottom for a [0/90/0] plate. LD2-LD4

coupled solution with (a) l̃ = 0, (b) l̃ = lel, (c) l̃ = lc.

relation enforced by H1 (see Guidault and Belytschko [137]) in the superposition zone is:

(u1 − u2) − l̃2 [∆ (u1) − ∆ (u2)] = 0 (7.29)
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Figure 7.26. σxz along x axis for y/b = 1/2 at mid-plane for a [0/90/0] plate. LD2-LD4

coupled solution with (a) l̃ = 0, (b) l̃ = lel, (c) l̃ = lc.
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Figure 7.27. uz along x axis for y/b = 1/2 at mid-plane for a [0/90/0] plate.
ED1-ED4 coupled solution.

where ∆ is the Laplacian. The higher the parameter l̃, the higher the contribution of the
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Figure 7.28. σxx along x axis for y/b = 1/2 at plate bottom for a [0/90/0] plate. ED1-ED4

coupled solution with (a) l̃ = 0, (b) l̃ = lel, (c) l̃ = lc.

derivatives of the displacements in Eq. 7.29. As shown in Table 7.10, the ED1 model,
especially for the prediction of the transverse shear stresses, is not accurate. The contri-
bution due to the derivatives of strain components may introduce a disturbance in the
superposition zone. L2 couples only the displacements that are, in general, more accurate
than the transverse strains in lower-order plate models.

Extension of the superposition zone The influence of the extension of the super-
position zone on the coupling is investigated. Several superposition zones, as shown in
Fig. 7.18, are considered. Both L2 and H1 coupling operators are considered. For the lat-
ter case, a length parameter l̃ equal to lel is considered. In order to avoid the perturbation
in the coupling due to the plate theories, two refined models are coupled (ED3 model in
sub-domain A1 and LD4 model in A2). Figs. 7.29 present σxx and σxz in the case of L2.
The extension of the superposition zone does not affect the results in a significant manner.
This conclusion is supported by the fact, as shown in Fig. 7.24, that the Lagrangian mul-
tipliers contribution is concentrated at the interface with the low-order model. The case
of H1 coupling is shown in Figs. 7.30. For the considered cases, the effect of the size of
the superposition zone is very small, being the curves in the figures barely distinguishable:
the superposition zone does not affect significantly the accuracy of the solution. On the
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Figure 7.29. ED3-LD4 coupled solution with l̃ = 0 for a [0/90/0] plate for different
superposition volumes. (a) σxx at plate bottom and (b) σxz at mid-plane along x
axis for y/b = 1/2.

other side, the bigger the extension of the superposition zone, the higher the number of
DOF and, therefore, small superposition volumes should be used.

Weight parameters Three different values of α2, the weight parameter of the refined
model, are used: 0.02, 0.5 and 0.98. Superposition zone Sa is considered. A length
parameter l̃ equal to zero and lel is considered. A ED3 model is coupled to a LD4 model.
The variation of σxx and σxz along x axis at y/a = 1/2 is presented in Figs. 7.31 and
Figs. 7.32, respectively. For the considered cases, H1 coupling operator is more sensitive
than the L2 one to the weight parameters. The results confirm, as reported in Ben Dhia
and Rateau [135], that the sub-domain with the most refined description should have a
higher weight in the global equilibrium.
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Figure 7.30. ED3-LD4 coupled solution with l̃ = lel for a [0/90/0] plate for dif-
ferent superposition volumes. (a) σxx at plate bottom and (b) σxz at mid-plane
along x axis for y/b = 1/2.

Different kinematics and variational principles UF models that differ in the type
of the main unknowns, expansion order and approximation level (ESL or LW) are coupled.
The coupling parameters are fixed coherently to what previously obtained: 1. the smallest
superposition zone Sa is used, 2. higher weight in the global equilibrium is given to the
most refined model (α2 = 0.98) and 3. both L2 and H1 (with l̃ = lel) operators are
adopted. Table 7.12 presents the transverse displacement and the normal and shear stress
components for a symmetric [0/90/0] plate. The number of DOF of variable kinematic FE
solutions is also addressed. Multi-model solutions match the corresponding mono-model
results, proving the effectiveness of the Arlequin method in merging domains discretised
via finite elements derived from different theories. Results are similar for the two coupling
operators. Accurate results are obtained coupling PVD- and RMVT-based models, i.e.
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Figure 7.31. σxx along x axis for y/b = 1/2 at plate bottom for a [0/90/0] plate. ED3-LD4

coupled solution for different αξ with (a) l̃ = 0 and (b) l̃ = lel.

LD1-LM4. The number of degrees of freedom is significantly reduced. When ED1 or FSDT
is adopted as unrefined theory, results may exhibit inconsistent behaviour with respect to
the corresponding mono-model results and, being the two models similar, do not differ up
to four significant digits. For instance, in the case of ED1-ED4 coupled solution σxx is
higher than the corresponding mono-model results, see Table 7.10. It should be noticed
that, anyway, the difference from ED4 model is less than 1%. This may be due to the first-
order model inability to capture the mechanics of the structure. Results in the case of an
anti-symmetric [90/0]2 plate are presented in Table 7.13. For the transverse displacement,
a coupling between FSDT or ED1 model and a higher-order one yields overestimated
results by about 3% with respect to the correspondent mono-model solution. At least a
second-order model should be assumed for the unrefined sub-domain. The difference in
the transverse displacement from the mono-model solution when H1 coupling operator is
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Figure 7.32. σxz along x axis for y/b = 1/2 at mid-plane for a [0/90/0] plate. ED3-LD4

coupled solution for different αξ with (a) l̃ = 0 and (b) l̃ = lel.

used may be due to the shift introduced by this operator in bending problems as reported
in Guidault and Belytschko [137]. The choice of the unrefined model in the considered
cases is of primary importance: if the unrefined model does not model correctly the global
response of the plate, results in the refined sub-domain are less accurate.
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−105 × uz σxx σyy −10 × σxz DOF
[m] [MPa] [MPa] [MPa]

L2 coupling operator
LD1-LM4 1.658, − 1.36a 11.82, − 0.58 1.975, − 0.90 6.478, − 0.69 7968
ED4-LD4 1.665, − 0.41 11.83, + 0.00 1.976, − 0.35 6.465, + 0.01 6216
LD1-LD4 1.660, − 0.71 11.84, + 0.08 1.977, − 0.30 6.497, + 0.51 5472
ED1-LD4 1.617, − 3.28 11.91, + 0.67 1.953, − 1.51 6.481, + 0.26 3984
FSDT-LD4 1.617, − 3.28 11.91, + 0.67 1.953, − 1.51 6.481, + 0.26 3736
ED3-ED4 1.657, + 0.00 11.84, − 0.08 1.985, + 0.00 5.831, + 0.01 3936
ED1-ED4 1.609, − 2.89 11.92, + 0.59 1.962, − 1.15 5.848, + 0.30 2448
FSDT-ED4 1.609, − 2.89 11.92, + 0.59 1.962, − 1.15 5.848, + 0.30 2200

H1 coupling operator
LD1-LM4 1.661, − 1.19 11.81, − 0.67 1.974, − 0.95 6.490, − 0.50 7968
ED4-LD4 1.666, − 0.35 11.85, + 0.16 1.978, − 0.25 6.467, + 0.04 6216
LD1-LD4 1.663, − 0.58 11.85, + 0.16 1.974, − 0.45 6.485, + 0.32 5472
ED1-LD4 1.620, − 3.11 11.92, + 0.76 1.953, − 1.51 6.458, − 0.09 3984
FSDT-LD4 1.620, − 3.11 11.92, + 0.76 1.953, − 1.51 6.458, − 0.09 3736
ED3-ED4 1.657, + 0.00 11.84, − 0.08 1.985, + 0.00 5.832, + 0.03 3936
ED1-ED4 1.611, − 2.77 11.92, + 0.59 1.963, − 1.10 5.838, + 0.13 2448
FSDT-ED4 1.611, − 2.77 11.92, + 0.59 1.963, − 1.10 5.838, + 0.13 2200
a Percentage difference with respect to the corresponding mono-model FE results.

Table 7.12. Transverse displacement and stresses for the [0/90/0] plate, variable kinematic.
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−105 × uz σxx σyy −10 × σa
xz −10 × σb

xz DOF
[m] [MPa] [MPa] [MPa] [MPa]

L2 coupling operator
LD1-LM4 1.714, − 0.63c 11.13, − 0.89 1.794, − 0.71 6.051, − 1.46 6.051, − 1.46 10248
LD1-LD4 1.717, + 0.00 11.15, − 0.17 1.796, − 0.33 6.090, − 0.45 6.099, + 0.49 6984
ED2-LD4 1.688, − 1.68 11.17, + 0.00 1.796, − 0.33 6.123, + 0.08 6.139, + 1.15 5496
ED1-LD4 1.769, + 3.02 10.91, − 2.32 1.768, − 1.88 6.265, + 2.40 6.187, + 1.94 4752
FSDT-LD4 1.763, + 2.67 10.93, − 2.14 1.772, − 1.60 6.265, + 2.40 6.169, + 1.64 4504
ED2-ED4 1.668, − 1.76 11.20, + 0.08 1.778, + 0.00 8.259, + 0.54 4.926, + 0.55 3192
ED1-ED4 1.746, + 2.82 10.95, − 2.14 1.750, − 1.57 8.262, + 0.58 4.928, + 0.59 2448
FSDT-ED4 1.739, + 2.41 10.97, − 1.96 1.753, − 1.40 8.262, + 0.58 4.928, + 0.59 2200

H1 coupling operator
LD1-LM4 1.761, + 2.08 10.97, − 2.31 1.775, − 1.77 6.131, − 0.16 6.131, − 0.16 10248
LD1-LD4 1.746, + 1.68 11.09, − 0.71 1.780, − 1.22 6.128, + 0.16 6.047, − 0.36 6984
ED2-LD4 1.707, − 0.58 11.17, + 0.00 1.796, − 0.33 6.123, + 0.08 6.139, + 1.15 5496
ED1-LD4 1.783, + 3.84 10.81, − 3.22 1.763, − 2.16 6.189, + 1.16 6.179, + 1.81 4752
FSDT-LD4 1.769, + 3.02 10.85, − 2.86 1.772, − 1.66 6.135, + 0.27 6.190, + 1.99 4504
ED2-ED4 1.685, − 0.76 11.16, − 0.26 1.773, − 0.28 8.237, + 0.28 4.913, + 0.28 3192
ED1-ED4 1.761, + 3.71 10.90, − 2.59 1.745, − 1.85 8.220, + 0.07 4.903, + 0.08 2448
FSDT-ED4 1.747, + 2.88 10.97, − 1.96 1.753, − 1.40 8.249, + 0.42 4.920, + 0.42 2200
a Value at the bottom of the second layer.
b Value at the top of the third layer.
c Percentage difference with respect to the corresponding mono-model FE results.

Table 7.13. Transverse displacement and stresses for the [90/0]
2

plate, variable kinematic.
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7.4 Solid and higher-order plate elements

Surana [140] presented an isoparametric transition finite element to link solid elements and
shell elements. This work was later extended in [141] to a non-linear transition finite ele-
ment based on a total lagrangian approach. The formulation employs non-linear functions
of nodal rotations in the description of the element displacement field and it is capable of
handling large rotations. Garusi and Tralli [142] presented a transition element based upon
the hybrid stress method for modelling solid-to-beam and plate-to-beam connections. Spu-
rious kinematic modes that arise from hypostatic formulation are eliminated via a penalty
method. McCune et al. [143] proposed a displacement coupling between regions of different
dimension for both 2D-1D and 3D-2D models. The components of force and moment are
transmitted across adjacent models and the variation of stress is continuous at the inter-
faces. In a follow up study by Shim et al. [144], the coupling of shells to solids is based on
a refined theory of shells. The in-plane stress and the out-of plane shear stress are assumed
to vary linearly and parabolically respectively through the shell thickness. Multipoint con-
straint equations provide the relationship among nodal degrees of freedom of elements of
differnet types. Osawa et al. [145] presented a technique for shell-solid coupling based on a
fictitious shell plane perpendicular to the original shell plane. The method was developed
in the context of fatigue assessment of ship structures.

Mixed-dimensional analysis with higher-order elements is a topic not yet addressed in
literature. Solid and higher-order ESL plate elements are here coupled via the Arlequin
method. The volume of the structure is divided into two sub-domains. Q represents the
overlapping volume. In the following, AS is the sub-domain with solid elements, whereas
AP is the one with plate elements. The kinematic field is chosen accordingly:

u = uS (x,y,z) = Ni(x,y,z)qi with i = 1,2, . . . ,Nn ∀ (x,y,z) ∈ AS (7.30)

u = uP (x,y,z) = Mi(x,y)Fτ (z)qτi with τ = 1,2, . . . ,Nu, i = 1,2, . . . ,Mn ∀ (x,y,z) ∈ AP

(7.31)
The virtual coupling work in the two sub-domains is:

δLcS = −δCS (δλ,uS)
δLcP = δCP (δλ,uP )

(7.32)

The H1 coupling operator is adopted. the Lagrangian multiplier field is discretised as the
displacements field in the plate elements:

λ = NiFτλ
Λτλi with τλ = 1,2, . . . ,Nu, i = 1,2, . . . ,NnP (7.33)

where Λτλi is the nodal unknown vector. The virtual work of a kth layer in sub-domain
AP is derived via substitution of Eqs. 7.33 and 7.31 into Eq. 7.5:

δCP = δΛT
τλiC

τλsij
P qsj (7.34)
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C
τλsij
P ∈ R

3×3 is the fundamental nucleo of the coupling matrix for the sub-domain AP :

Cτλsij
P11

= Cτλsij
P22

= Cτλsij
P33

= Eτλs ⊳ NiNj ⊲Ω +

+l̃2
[

Eτλs (⊳Ni,xNj,x ⊲Ω + ⊳ Ni,yNj,y⊲Ω) + Eτλ,zs,z ⊳ NiNj⊲Ω

]

Cτλsij
P12

= l̃2Eτλs ⊳ Ni,yNj,x ⊲Ω , Cτλsij
P13

= l̃2Eτλ,zs ⊳ NiNj,x⊲Ω

Cτλsij
P21

= l̃2Eτλs ⊳ Ni,xNj,y ⊲Ω , Cτλsij
P23

= l̃2Eτλ,zs ⊳ NiNj,y⊲Ω

Cτλsij
P31

= l̃2Eτλs,z ⊳ Ni,xNj ⊲Ω , Cτλsij
P32

= l̃2Eτλs,z ⊳ Ni,yNj⊲Ω

(7.35)

where:

Eτλ(,y)(,z)s(,y)(,z)
=

∫

h

Fτλ(,y)(,z)
Fs(,y)(,z)

dz (7.36)

The virtual work in sub-domain AS is derived via substitution of Eqs. 7.33 and 7.30 into
Eq. 7.5:

δCS = δΛT
τλiC

τλij
S qj (7.37)

C
τλij
S ∈ R

3×3 is the fundamental nucleo of the coupling matrix for the sub-domain AS :

Cτλij
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= Cτλij
S22

= Cτλij
S33

= ⊳Fτλ
MiNj⊲V

+l̃2
[

⊳Fτλ
Mi,xNj,x ⊲V + ⊳ Fτλ

Mi,yNj,y ⊲V + ⊳ Fτλ,z
MiNj,z⊲V

]

Cτλij
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Mi,yNj,x ⊲V , Cτλij
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Cτλij
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= l̃2 ⊳ Fτλ
Mi,xNj,y ⊲V , Cτλij

S23
= l̃2 ⊳ Fτλ,z

MiNj,y⊲V

Cτλij
S31

= l̃2 ⊳ Fτλ
Mi,xNj,z ⊲V , Cτλij

S32
= l̃2 ⊳ Fτλ

Mi,yNj,z⊲V

(7.38)

Considering the whole structure the governing equations of the problem are:
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(7.39)
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7 – Coupling of mechanical finite elements via the Arlequin method

7.4.1 Results and discussion

The case of a shell fixed to a wall is presented. In the mixed-dimensional solution, the wall
is modelled via solid elements and the shelf via higher-order plate elements. Results are
compared to a mono-model solution with solid elements and to ABAQUS solution with
C3D20 elements, see [63]. The superposition region is as small as possible, according to
Guidault and Belytschko [137].

A wall (dimensions 0.06× 0.1× 0.26 m) with a fixed shelf (a = 0.2 m and b = 0.1 m) is
considered. The shelf has a sandwich structure whose total thickness is 0.02 m. Each face
accounts for 10% of the total thickness. A localised transverse pressure (P ) equal to 1000
Pa is applied on the shelf in the rectangular region with sides a

10 × b near its free edge, see
Fig. 7.33. The wall is fixed at its base. The wall and the two faces of the shelf share the

Superposition
region Q

y

x

z

Figure 7.33. Shelf fixed to a wall. The wall is modelled with solid elements, whereas
the shelf adopts plate elements.

same isotropic material whose properties are: EF = 73000 MPa, νF = 0.34. Two different
Young’s moduli are considered for the core: EC = EF

12 and EC = EF

120 . Poisson’s ratio of
the core is νC = νF . The solutions obtained with solid elements adopt a regular mesh of
3×5×7 elements for the wall and 10×5×3 elements for the shelf. In the case of the coupled
solution, the first sub-domain is modelled with 3×5×7 plus 1×5×3 (superpositon region)
solid elements, whereas the second sub-domain is modelled with 10 × 5 plate elements, as
shown in Fig. 7.33. In the superposition region, 1 × 5 × 3 solid elements are coupled to
1 × 5 plate elements.

Results are presented in Tab. 7.14. Transverse displacement uz is computed at the top
of the shelf in the middle of its free edge. Displacement ux is computed at the top of the
wall (x = 0.06 m, y = 0.05). In-plane normal stresses σxx is computed at the top of the
shelf at its centre and out-of-plane shear stress σxz is evaluated at the top of the core at
the shelf centre. In the mixed-dimensional solution, the mechanics of the wall and the
shelf are correctly modelled and coupled. In the shelf region, zig-zag function in the plate
elements is not necessary to obtain accurate results for the transverse displacement in the
case of EC = EF

12 . On the contrary, third-order plate model without zig-zag function does
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7.4 – Solid and higher-order plate elements

−106 × uz [m] 108 × ux [m] 10−4 × σxx [Pa] −10−3 × σxz [Pa]
EF

EC = 12

ABAQUS C3D20 1.474 8.215 3.426 1.100
S27 1.485 8.242 3.430 1.108
S27-ED3 1.458 8.242 3.430 0.409
S27-ED2Z 1.483 8.242 3.427 1.108

EF

EC = 120

ABAQUS C3D20 2.129 8.227 3.519 1.193
S27 2.146 8.253 3.520 1.193
S27-ED3 1.521 8.242 3.509 0.078
S27-ED2Z 2.078 8.242 3.543 1.190

Table 7.14. Shelf fixed to a wall.

not predict accurately the transverse displacement in the case of EC = EF

120 . Shear stress

is correctly evaluated only with the zig-zag function for both the ratios EF

EC .
Fig. 7.34 presents the through-the-thickness variation of the in-plane displacement ux

at the centre of the shelf. It is is accurately predicted by the model which includes the

-10
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 10

-0.06-0.04-0.02  0  0.02  0.04  0.06  0.08  0.1  0.12

z 
[m

m
]
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3
 x ux [mm]

S27
S27-ED2Z

S27-ED3

Figure 7.34. ux through-the-thickness at the centre of the shelf, EC = EF

120
.

zig-zag function. The higher-order model without the zig-zag function provides accurate
results but approximate its through-the-thickness variation as almost linear instead of zig-
zag. The variation of σxz along the x axis for y/b = 1/2 at the top of the core of the shelf
is presented in Fig. 7.35. The coupled solution with plate elements which includes the
zig-zag function match the three-dimensional solution for both EC = EF

12 and EC = EF

120 .
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Figure 7.35. σxz along x axis for y/b = 1/2 at the top of the core of the shelf.
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Chapter 8

Extension of the Arlequin method to

piezoelectric analyses

Domain decomposition methods for multi-field problems, such as piezoelectric analyses,
are not as well developed as for mechanical problems. In this section, the Arlequin method
is extended to take into account electric quantities, such as the electric potential and the
electric field, in the coupling operators. The global electro-mechanical problem is solved
merging together the sub-domains. Similarly to Eq. 7.1, the generic variational principle
becomes:

δLξ
int (aξ) + δLξ

c (aξ) = δLξ
ext (8.1)

In the case of PVD-based models, the virtual variation of the strain energy is:

δLξ
int =

∫

Aξ

αξ

(

δεT
pGσpH + δεT

nGσnH − δET
pGDpH − δEnGDnH

)

dV

with

{
αξ = 1 in Aξ \ S
α1 + α2 = 1 in S

(8.2)

αξ are weighting functions to scale energy in each sub-domain. In the case of RMVT-
Dz or RMVT-Dz-σn models, Eq. (8.2) changes according to Eq. (6.98) and Eq. (6.99),
respectively. Two coupling operators are proposed as extension of classical mechanical
ones presented in Eqs. 7.4 and 7.5:

• L2 electro-mechanical coupling:

δCξ =

∫

Sξ

δλT aξ dV =

∫

Sξ

δλT
uuξ + δλT

φ φξ dV (8.3)
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8 – Extension of the Arlequin method to piezoelectric analyses

• H1 electro-mechanical coupling:

δCξ =
∫

Sξ

{

δλT
uuξ + δλT

φ φξ

}

dV +

∫

Sξ

{

l̃2εT (δλu) ε (uξ)
}

dV +

∫

Sξ

{

l̃2E (δλφ)E (φξ)
}

dV

(8.4)

Here λ is divided into components related to displacements (subscript u) and the compo-
nent related to the electric potential (subscript φ). ε (λu) is defined in the same manner
as the mechanical strain ε (uξ) where the Lagrangian multiplier field is used instead of the
displacement one. The same applies to E (λφ). Applying the Green formula to Eq. (8.1)
it is possible to derive the local Euler equations enforced by the coupling operator in the
superposition zone. In the case of L2 they are:

(u1 − u2) = 0
(φ1 − φ2) = 0

(8.5)

whereas for H1 they are:

(u1 − u2) − l̃2 [∆ (u1) − ∆ (u2)] = 0

(φ1 − φ2) − l̃2 [∆ (φ1) − ∆ (φ2)] = 0
(8.6)

where ∆ is the Laplacian. Eqs. (8.5) enforce a point-by-point coincidence of the displace-
ment fields and electric potential field in the two sub-domains, whereas Eqs. (8.6) consider
also the spatial derivatives of the fields. A weighted sum between the fields and their
derivatives is enforced to be equal in the two sub-domains. The parameter l̃ multiplies the
contribution of the derivatives of displacement and electric potential, determining their
weight in the equations.

8.1 Piezoelectric plate elements

In this section, the mechanical and piezoelectric plate elements based on different kinemat-
ics and variational principles presented in Sec. 6.4 are coupled via the Arelquin method.
Plate’s volume is divided into two sub-domains A1 and A2 that are partially overlapped.
S represents the overlapping volume. For each sub-domain, a different model is assumed:

ak
ξ = NiFτξ

qk
τξi with τξ = 1,2, . . . ,N

Aξ
u , ξ = 1,2 (8.7)

The Lagrangian multiplier field is discretised according to UF:

λk = NiFτλ
Λ

k
τλi (8.8)

Λ is the vector of Lagrangian multipliers nodal unknowns.The virtual work for a k-layer
is derived via substitution of Eq. (8.8) into Eq. (8.3) or (8.4):

δCk
ξ = δΛkT

τλiC
kτλsξij
ξ qk

sξj (8.9)
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8.1 – Piezoelectric plate elements

C
kτλsξij
ξ is the fundamental nucleo of the coupling matrix. In the case of L2 coupling, the

fundamental nucleo is diagonal and its components are:

C
kτλsξij
ξmn = δmnEτλsξ

⊳ NiNj ⊲Ω with m,n = 1,2,3,4 (8.10)

where δmn is Dirac’s delta. Terms Eτλsξ
are defined as:

Eτλsξ
=

∫

hk

Fτλ
Fsξ

dz (8.11)

In the case of H1 coupling the components of the fundamental nucleo are:

C
kτλsξij
11 = C

kτλsξij
22 = C

kτλsξij
33 = C

kτλsξij
44 = Eτλsξ

⊳ NiNj ⊲Ω +

+l̃2
[

Eτλsξ
(⊳Ni,xNj,x ⊲Ω + ⊳ Ni,yNj,y⊲Ω) + Eτλ,zsξ,z

⊳ NiNj⊲Ω

]

C
kτλsξij
12 = l̃2Eτλsξ

⊳ Ni,yNj,x ⊲Ω C
kτλsξij
13 = l̃2Eτλ,zsξ

⊳ NiNj,x⊲Ω

C
kτλsξij
21 = l̃2Eτλsξ

⊳ Ni,xNj,y ⊲Ω C
kτλsξij
23 = l̃2Eτλ,zsξ

⊳ NiNj,y⊲Ω

C
kτλsξij
31 = l̃2Eτλsξ,z

⊳ Ni,xNj ⊲Ω C
kτλsξij
32 = l̃2Eτλsξ,z

⊳ Ni,yNj⊲Ω

C
kτλsξij
41 = C

kτλsξij
42 = C

kτλsξij
43 = C

kτλsξij
14 = C

kτλsξij
24 = C

kτλsξij
34 = 0

(8.12)

Considering the whole structure and assuming that the refined model is adopted in the
sub-domain A2, the governing equations of the variable kinematic problem are:
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(8.13)

Coupling is performed considering only the displacement fields and the electric potential
distribution. The fundamental nucleo of the coupling matrix is, therefore, a 4 × 4 array
in the case of PVD-based models as detailed in Eqs. (8.10) or (8.12). It is extended with
zeros to a 4 × 5 array in case of RMVT-Dz and to a 4 × 8 array in case of RMVT-Dz-σn.
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8 – Extension of the Arlequin method to piezoelectric analyses

8.1.1 Results and discussion

Solutions adopting the classical mechanical coupling operators are first addressed. A nar-
row plate actuated via a piezoelectric finite patch is presented. The proposed electro-
mechanical coupling operators are then addressed. The Heyliger plate, both in sensor and
actuator configuration, is considered. The accuracy of the variable kinematics solutions
is assessed towards the corresponding mono-model results and towards 3D FE or exact
solutions. The effect of the choice of the coupling operator is investigated.

Narrow plate actuated via piezoelectric finite patch

A narrow plate in aluminium (E = 73 GPa, ν = 0.34), clamped on one side, is considered.
Plate’s in-plane dimensions along the x- and y-axes are a = 0.1 m and b = 0.01 m,
respectively. Its thickness is 0.002 m. A piezoelectric finite patch (see Table 8.1 for the
material properties) is bonded at the top surface of the plate near its clamped side, as
shown in Figure 8.1. Patch’s in-plane dimensions are 0.01 × 0.01 m and its thickness

Properties Fibre-reinforced PZT-4
composite

E1 [Gpa] 132.38 81.3
E2 [Gpa] 10.756 81.3
E3 [Gpa] 10.756 64.5
G12 [Gpa] 5.654 30.6
G13 [Gpa] 5.654 25.6
G23 [Gpa] 3.606 25.6
ν12 0.24 0.329
ν13 0.24 0.432
ν23 0.49 0.432
e31 = e32 [C/m2] − −5.2
e33 [C/m2] − 15.8
e24 = e15 [C/m2] − 12.72
ε11/ε0 3.5 1475
ε22/ε0 3.0 1475
ε33/ε0 3.0 1300

Table 8.1. Material properties. ε0 = 8.85 × 10−12 F/m is the vacuum permittivity.

is 0.001 m. An electric potential equal to 1 V is prescribed at the top surface of the
piezoelectric patch. Null electric potential is assigned at its bottom surface.

Mono-model solutions are obtained with a regular mesh of 60× 1 LW piezoelectric ele-
ments, assuming two computational layers for the plate. In the variable kinematic solutions
an ESL mechanical model is adopted in the sub-domain A2, see Figure 8.1. The refined
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8.1 – Piezoelectric plate elements

Figure 8.1. Clamped narrow plate actuated by a piezoelectric patch.

sub-domain A1 consists of 12 × 1 LW piezoelectric elements. Only one element is super-
posed. Coupling is achieved via the classical coupling operators since in the superposition
volume the electric field is not present. Reference results are obtained via the commercial
FE software ABAQUS. Piezoelectric 3D FE C3D20RE, see ABAQUS (2005), have been
adopted and convergence of transverse displacements within 1% has been obtained with a
progressive refinement of the mesh.

Results are presented in Tab. 8.2. Transverse displacement uz is computed at the
centre of the plate and at x = a,y = b/2 on the mid-plane. Higher order LW models un-
derestimate the reference solution by about 6%. The two coupling operators yield similar
results. Variable kinematic solutions match the corresponding mono-model solutions: the
mechanics of the plate far from the actuator is correctly modelled by an ESL mechanical
theory, whereas the actuation of the patch requires a LW piezoelectric theory to be accu-
rately described. The variation of uz along the x-axis for y = a/2 at the top of the plate
is presented in Fig. 8.2. The coupling operator H1 is adopted. The bending induced by
the piezoelectric patch can be noticed in the sub-domain A1.

Heyliger Plate

A simply supported cross-ply [0/90] laminate composed of elastic fibre-reinforced material
with piezoelectric layer bonded at the top and at the bottom surfaces is considered. Ma-
terials properties are presented in Table 8.1. The plate is square with side length a equal
to 4 m. Total thickness is 1 m: each piezoelectric layer accounts for 10% and each elastic
layer accounts for 40% of total thickness. Two set of boundary conditions and loadings are
considered: the sensor case and the actuator case, see Fig. 8.3. Results are compared with
the exact three-dimensional solutions provided by Heyliger [146]. Only a quarter of the
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8 – Extension of the Arlequin method to piezoelectric analyses

108 × u∗
z [m] 108 × u−

z [m]
3D 2.471 5.169

Mono-model solutions
LD3 2.309 4.871
LD2 2.307 4.866
LD1 2.208 4.657

Variable kinematic solutions L2

LD3-ED1 2.309 4.870
LD2-ED1 2.307 4.866
LD1-ED1 2.207 4.657

Variable kinematic solutions H1

LD3-ED1 2.309 4.869
LD2-ED1 2.307 4.865
LD1-ED1 2.207 4.657
∗ Value at x = a/2,y = b/2 on mid-plane.
− Value at x = a,y = b/2 on mid-plane.

Table 8.2. Transverse displacements for the actuated narrow plate.
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Figure 8.2. Transverse displacement along the x axis for y = a/2 at mid-plane of
the actuated narrow plate.

plate is taken into account in the models. Mesh convergence for the transverse displace-
ment uz at x = y = a/2 at plate midplane is shown in Figs. 8.4 both for the sensor and
the actuator case. In the following, mono-model results are evaluated with a mesh of 10 x
10 quadrilateral elements. Arlequin results adopt a square refined region of 5 x 5 elements
at the centre of the plate, as shown in Fig. 8.5.
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Figure 8.3. Heyliger plate in (a) sensor configuration and in (b) actuator configuration.
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8 – Extension of the Arlequin method to piezoelectric analyses

Figure 8.5. Coupling between the two sub-domains with (a) minimum superposition vol-
ume and (b) extended superposition volume.

Comparison Between The Electro-Mechanical Coupling Operators In the sensor
case, a double sinusoidal pressure is applied on the top surface of the plate, see Fig. 8.3(a).
Its amplitude is 1 Pa. Top and bottom surfaces are fixed at zero potential. Two superpo-
sition zone, denominated minimum and extended, are considered, as shown in Fig. 8.5. In
the superposition volume two solutions that do not necessarily match exist. The electro-
mechanical coupling operators in Eqs. (8.3) and (8.4) are adopted. l̃ = lel is considered
in the case of minimum superposition and l̃ = 3lel in the case of extended superposition.
Coupling between LD2- and LD4-based finite elements is adopted and results are compared
with LD4 mono-model solutions. Results for primary variables are very similar for both
the coupling operator and for both the superposition volume. They match the mono-model
solutions. Transverse displacement uz variation along the x axis for y = a/2 at the top
of the plate is presented in Fig. 8.6 in the case of minimum superposition volume and H1

coupling operator. Fig. 8.7 show the variation of the electric potential φ at plate mid-plane
with extended superposition and L2 coupling operator. Variable kinematic results match
the mono-model results: the proposed electro-mechanical operators couple effectively the
two sub-domains. The influence of the choice of the coupling operator and the superposi-
tion extension is presented in Figs. 8.8 for the stress component σxx. It is computed along
the x axis for y = a/2 at the top of the plate. It is computed along the x axis for y = a/2
at the top of the plate. Difference between the results is greater in the superposition zone.
In the following the reduced superpostion volume is adopted in order to reduce the total
number of degrees of freedom.

Comparison With Exact Results In Sensor Case Loads and boundary conditions
are as, once again, as in Fig. 8.3(a). Tables 8.3, 8.4 and 8.5 present the electric poten-
tial, the transverse normal stress and the transverse electric displacement, respectively.

Results are computed at the centre of the plate across it thickness. Mono-model so-
lutions are based on PVD (LD1), on RMVT-Dz (LM3b) and on RMVT-Dz-σn (LM3a).
Variable kinematic solutions couple PVD- and RMVT-Dz-based sub-domains (LD1-LM3b)
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Figure 8.7. Electric potential along the x axis for y = a/2 at the Heyliger plate
mid-plane, L2 coupling operator.

and PVD- and RMVT-Dz-σn-based sub-domains (LD1-LM3a). The number of degrees
of freedom is reduced by more than 35%. In Table 8.3, higher order models match the
exact solution. Electric potential is accurately predicted by variable kinematic models
whereas LD1 mono-model provides inaccurate results in the piezoelectric layers. Table
8.4 shows that an accurate prediction of transverse normal stress requires a RMVT-Dz-σn

based model. LD1-LM3a results matches the RMVT-Dz-σn-based mono-model solution.
RMVT-based models are mandatory for the computation of the transverse electric dis-
placement, as shown in Table 8.5. Both the transverse quantities σzz and Dz are not
accurately computed in the case of variable kinematic solution LD1-LM3b with H1 cou-
pling, see Table 8.4 and 8.5. The inaccuracy is due to the derivative of displacement and
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Figure 8.8. In-plane normal stress along the x axis for y = a/2 at the top of the Heyliger
plate via mono-model LD4 and variable kinematic LD2-LD4 with (a) extended and (b)
minimum superposition volume.

electric potential in the coupling operator, see Eq. (8.6). LD1 sub-model is not refined
enough to compute accurately these values. If a second order model is adopted as less re-
fined sub-model results are accurate with the H1 coupling, as shown in Table 8.6. Midplane
transverse displacement at the centre of the plate is presented in Table 8.7. LM3a results
match the reference solution. All the considered solutions are accurate. Fig. 8.9 presents
the variation of Dz at the centre of the plate across its thickness. LM4b mono-model result
matches the exact reference solution, whereas LD2 mono-model superestimates it by about
20%. Arlequin results are obtained with LM4b as refined model (sub-domain A2) and LD2
in sub-domain A1 using the coupling operator L2. Arlequin results matches LM4b mono-
model results and the exact solution. With respect to LM4b mono-model the total number
of degrees of freedom is reduced by about 36%.
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−102 × φ [V]

Mono-model solutions Variable kinematic solutions
L2 coupling H1 coupling

Height 3D LM3a LM3b LD1 LD1-LM3a LD1-LM3b LD1-LM3a LD1-LM3b

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.975 0.189 0.179 0.178 0.137 0.178 0.178 0.175 0.176
0.950 0.358 0.333 0.330 0.275 0.332 0.331 0.325 0.325
0.925 0.488 0.461 0.458 0.413 0.459 0.458 0.450 0.448
0.900 0.598 0.564 0.560 0.551 0.562 0.561 0.550 0.544
0.800 0.589 0.556 0.553 0.555 0.556 0.554 0.537 0.536
0.700 0.589 0.556 0.553 0.559 0.557 0.556 0.534 0.533
0.600 0.596 0.564 0.560 0.563 0.566 0.564 0.540 0.539
0.500 0.611 0.579 0.576 0.567 0.581 0.580 0.554 0.555
0.400 0.634 0.601 0.598 0.602 0.604 0.603 0.578 0.577
0.300 0.665 0.632 0.629 0.638 0.634 0.633 0.610 0.610
0.200 0.706 0.671 0.668 0.674 0.673 0.671 0.653 0.652
0.100 0.756 0.720 0.717 0.709 0.720 0.720 0.707 0.701
0.750 0.602 0.575 0.572 0.532 0.576 0.575 0.565 0.563
0.500 0.425 0.407 0.405 0.354 0.407 0.407 0.400 0.400
0.250 0.224 0.215 0.214 0.177 0.215 0.215 0.212 0.212
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

DOF∗ 12584 7865 2420 6244 4840 6244 4840
a RMVT-Dz-σn.
b RMVT-Dz.
∗ Number of degrees of freedom of the model.

Table 8.3. Heyliger plate, sensor case. Electrical potential at the centre of the
plate across its thickness.
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Figure 8.9. Transverse electric displacement at the centre of the Heyliger plate
with H1 coupling operator.
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−101 × σzz [Pa]

Mono-model solutions Variable kinematic solutions
L2 coupling H1 coupling

Height 3D LM3a LM3b LD1 LD1-LM3a LD1-LM3b LD1-LM3a LD1-LM3b

1.000 10.00 10.07 9.859 22.95 10.06 9.685 10.10 10.45
0.975 9.965 10.05 9.836 16.31 10.06 9.851 10.13 9.956
0.950 9.868 9.955 9.776 9.684 9.974 9.820 9.994 10.25
0.925 9.715 9.806 9.662 3.050 9.830 9.666 9.761 10.05
0.900 9.515 9.624 9.479 −3.583 9.671 9.465 9.525 8.045
0.900 9.515 9.624 9.749 9.225 9.671 9.761 9.525 9.809
0.800 8.519 8.627 8.555 8.257 8.608 8.487 8.279 8.412
0.700 7.374 7.463 7.456 7.290 7.388 7.384 7.061 7.244
0.600 6.168 6.226 6.285 6.322 6.140 6.231 5.948 6.128
0.500 4.983 5.012 4.871 5.355 4.990 4.806 5.021 4.888
0.500 4.983 5.012 5.156 4.568 4.990 5.184 5.021 5.159
0.400 3.804 3.827 3.772 3.653 3.899 3.807 4.126 3.921
0.300 2.613 2.601 2.612 2.737 2.664 2.670 3.014 2.803
0.200 1.482 1.447 1.523 1.822 1.456 1.583 1.808 1.645
0.100 0.486 0.473 0.351 0.906 0.446 0.353 0.632 0.286
0.100 0.486 0.473 0.623 12.74 0.446 0.630 0.632 2.110
0.750 0.284 0.270 0.438 6.580 0.231 0.446 0.314 0.027
0.500 0.131 0.126 0.322 0.411 0.106 0.281 0.091 −0.166
0.250 0.034 0.035 0.260 −5.757 0.035 0.240 −0.039 0.147
0.000 0.000 −0.007 0.235 −11.92 −0.014 0.429 −0.080 −0.415

a RMVT-Dz-σn.
b RMVT-Dz .

Table 8.4. Heyliger plate, sensor case. Transverse normal stress at the centre of
the plate across its thickness.

Comparison With Exact Results In Actuator Case In the actuator case, a double
sinusoidal electric potential is applied on the top surface of the plate, see Fig. 8.3(b). Its
amplitude is 1 V and the bottom surface is fixed at zero potential. Midplane transverse
displacement at the centre of the plate is presented in Table 8.7. LD1 superestimate the
reference solution by about 6%. Variable kinematic results follow closely the corresponding
mono-model solutions in the case of L2 coupling. Values with H1 are higher than with
the correspondent monomodels: as already observed in Guidault and Belytschko (2007),
the relation in Eq. (8.6) enforced by H1 may induce a displacement shift between the
sub-domains which can be problematic when bending mechanics is predominant. This is
especially true if the less refined sub-model does not accurately model the mechanics of the
structure, as it is the case of LD1. When LD2 sub-model is adopted, results with the two
coupling operators are similar. Table 8.8 presents σxx computed at the centre of the plate
across it thickness. LD1 results are inaccurate, in particular in the top piezoelectric layer.
Higher order mono-models follow closely the reference solution and variable kinematic
solutions match the corresponding mono-models results.
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−1013 × Dz [C/m2]

Mono-model solutions Variable kinematic solutions
L2 coupling H1 coupling

Height 3D LM3a LM3b LD1 LD1-LM3a LD1-LM3b LD1-LM3a LD1-LM3b

1.000 160.5 155.6 155.7 −837.1 152.0 147.7 156.7 −25.18
0.975 149.3 143.9 144.8 −372.9 143.5 137.9 160.3 333.7
0.950 117.2 113.0 113.6 91.13 117.3 133.0 131.6 166.8
0.925 66.56 64.34 64.53 555.2 70.36 98.40 76.24 −89.94
0.900 −0.338 −0.302 −0.301 1019. −0.255 −0.277 −0.468 −0.396
0.900 −0.338 −0.302 −0.301 0.106 −0.255 −0.277 −0.468 −0.396
0.800 −0.127 −0.103 −0.101 0.106 −0.062 −0.065 −0.204 −0.161
0.700 0.081 0.095 0.096 0.106 0.128 0.131 0.036 0.049
0.600 0.291 0.295 0.295 0.106 0.317 0.319 0.268 0.262
0.500 0.505 0.498 0.498 0.106 0.506 0.508 0.502 0.501
0.500 0.505 0.498 0.498 0.944 0.506 0.508 0.502 0.501
0.400 0.725 0.708 0.708 0.944 0.704 0.701 0.742 0.749
0.300 0.956 0.928 0.927 0.944 0.914 0.912 0.992 0.979
0.200 1.199 1.160 1.159 0.944 1.139 1.146 1.269 1.223
0.100 1.458 1.408 1.406 0.944 1.385 1.409 1.588 1.509
0.100 1.458 1.408 1.406 −944.6 1.385 1.409 1.588 1.509
0.750 −58.35 −55.87 −56.06 −513.0 −62.87 −93.92 −69.13 101.9
0.500 −103.6 −99.10 −99.73 −81.47 −104.3 −122.2 −119.0 −155.8
0.250 −132.4 −126.7 −127.4 350.1 −127.0 −122.0 −144.3 −320.9
0.000 −142.4 −137.0 −137.2 781.6 −135.0 −132.1 −140.9 57.89

a RMVT-Dz-σn.
b RMVT-Dz.

Table 8.5. Heyliger plate, sensor case. Transverse electric displacement at the centre
of the plate across its thickness.
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−10 × σzz [Pa] −1013 × Dz [C/m2]
Height LD2 LD2-LM3b LD2 LD2-LM3b

1.000 10.08 10.04 183.2 153.3
0.975 9.810 9.908 155.7 153.6
0.950 9.659 9.816 119.4 91.24
0.925 9.632 9.667 74.55 21.54
0.900 9.730 9.358 20.91 −0.245
0.900 9.961 9.856 −0.295 −0.245
0.800 8.521 8.599 −0.097 −0.068
0.700 7.277 7.485 0.100 0.112
0.600 6.229 6.310 0.297 0.301
0.500 5.376 4.871 0.495 0.503
0.500 4.789 5.147 0.483 0.503
0.400 3.809 3.747 0.708 0.704
0.300 2.727 2.586 0.933 0.917
0.200 1.541 1.487 1.158 1.137
0.100 0.251 0.268 1.383 1.363
0.100 0.384 0.731 −19.24 1.363
0.750 0.466 0.446 −67.51 −26.64
0.500 0.433 0.281 −107.6 −81.00
0.250 0.284 0.187 −139.7 −129.6
0.000 0.020 0.114 −163.7 −140.4

b RMVT-Dz .

Table 8.6. Heyliger plate, sensor case. Transverse normal stress and transverse electric
displacement and at the centre of the plate across its thickness, H1 coupling operator.
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1011 × uz [m]
Sensor case Actuator case

3D 30.02 1.471
Mono-model solutions

LM3a −29.71 1.397
LM3b −29.65 1.403
LD2 −29.57 1.396
LD1 −29.44 1.519
Variable kinematic solutions L2

LD2-LM3a −29.76 1.369
LD2-LM3b −29.61 1.398
LD1-LM3a −29.80 1.336
LD1-LM3b −29.61 1.390

Variable kinematic solutions H1

LD2-LM3a −29.90 1.388
LD2-LM3b −29.72 1.410
LD1-LM3a −30.01 1.532
LD1-LM3b −29.91 1.420
a RMVT-Dz-σn.
b RMVT-Dz .

Table 8.7. Midplane transverse displacement at the centre of the Heyliger plate.
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102 × σxx [Pa]

Mono-model solutions Variable kinematic solutions
L2 coupling H1 coupling

Height 3D LM3a LM3b LD1 LD1-LM3a LD1-LM3b LD1-LM3a LD1-LM3b

1.000 111.8 116.1 117.3 341.5 116.5 128.6 119.5 111.9
0.975 63.73 68.61 69.34 182.5 70.65 68.75 67.18 65.96
0.950 15.83 21.41 21.72 23.47 24.44 25.66 18.19 20.04
0.925 −32.00 −25.75 −25.81 −135.5 −22.06 −18.59 −29.45 −25.42
0.900 −79.86 −73.19 −73.59 −294.6 −68.93 −82.03 −77.80 −70.09
0.900 −51.68 −67.27 −67.79 −64.21 −63.11 −69.92 −73.91 −72.94
0.800 −33.13 −39.68 −39.95 −45.68 −40.60 −40.99 −38.29 −40.26
0.700 −19.84 −21.41 −21.47 −27.14 −22.75 −22.58 −21.45 −20.73
0.600 −9.773 −8.605 −8.611 −8.615 −7.992 −9.172 −12.05 −8.122
0.500 −1.390 2.620 2.399 9.917 5.220 4.769 1.305 3.817
0.500 −1.308 −1.305 −1.238 −1.175 −0.156 −1.005 −3.371 −1.234
0.400 −0.578 −0.275 −0.253 −0.114 0.916 −0.022 −2.185 −0.137
0.300 0.134 0.598 0.586 0.946 1.641 0.781 −0.924 0.796
0.200 0.846 1.439 1.427 2.007 2.253 1.572 0.343 1.712
0.100 1.572 2.370 2.416 3.068 2.984 2.517 1.550 2.751
0.100 14.52 14.30 14.34 14.34 0.15. 14.64 13.17 16.41
0.750 17.80 17.37 17.46 19.05 18.15 17.68 17.08 19.75
0.500 21.09 20.48 20.59 23.76 20.88 20.73 20.62 23.08
0.250 24.42 23.62 23.76 28.47 23.70 23.78 24.02 26.44
0.000 27.79 26.82 26.96 33.17 26.53 26.84 27.53 29.87

a RMVT-Dz-σn.
b RMVT-Dz.

Table 8.8. Heyliger plate, actuator case. In-plane normal stress at the centre of
the plate across its thickness.
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8.2 ABAQUS implementation for piezoelectric plane stress

elements

Recently, Qiao et al. [147] implemented the Arlequin method for mechanical problems in
the commercial FEM software ABAQUS. Following the same approach, in this section the
Arlequin method with the H1 electro-mechanical coupling operator proposed in Eq. 8.4 is
implemented in ABAQUS for piezoelectric plane stress elements. Contrary to the previ-
ously presented results, in this section the sub-domains share the same model, i.e. the same
type of finite element. It is the mesh refinement that is not the same in the sub-domains.

8.2.1 Calculation of coupling matrices

Linear quadrilateral piezoelectric plane stress finite elements, known in ABAQUS [63] as
CPS4E, are considered. The Lagrangian multiplier field is discretised as the less refined
sub-domain to avoid a locking phenomenon. The concept of virtual element (subscript
V), whose nodes coincide with the ones of the coarse element (subscript C) and is used
to discretise the multiplier field, is introduced in Fig. 8.10. The virtual element is not

Figure 8.10. Coarse, fine and virtual element in the case of coupling between linear
quadrilateral elements.

directly implemented in ABAQUS, but its nodes and its nodal quantities are employed by
the Arlequin user elements defined in Sec. 8.2.2.

The displacement and electric potential fields are expressed in terms of their nodal
values q:







ux

uy

φ






= Nq =





N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4



 q

(8.14)
where Ni are the shape functions of the element. The strain and electric fields are given
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as:
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(8.15)
Comma denotes differentation. Similar relations hold for the Lagrangian multiplier field.

The calculation of the coupling matrix associated to the coarse element is straight-
forward, since the Lagrangian multiplier field and the coarse displacement field share the
same discretisation. The coupling matrix related to the coarse element is:

CC =

∫

ΩC

(

NT
V NC + l̃2BT

V BC

)

dΩC =

∫

ΩC

(

NT
C NC + l̃2BT

CBC

)

dΩC (8.16)

where ΩC is the domain of the coarse element. Gaussian quadrature is used to perform
numerical integration.

The major complexity is in the calculation of the coupling matrix associated to the fine
element (subscript F), since Gauss points of the fine element do not coincide with those of
the virtual element (see Fig. 8.10):

CF =

∫

ΩF

(

NT
V NF + l̃2BT

V BF

)

dΩF (8.17)

where ΩF is the domain of the fine element. In this case, the generic Gauss point G used
in the numerical integration is the one of the fine element. In order to evaluate NV and
BV in G, it is necessary to compute the natural coordinates of G in the reference system
of the virtual element, i.e.

(
ξG
V ,ηG

V

)
. The first step is to compute the real coordinates of

G. Since we are considering an isoparametric element:

xG =
∑4

i=1 NF i

(
ξG
F ,ηG

F

)
xF i

yG =
∑4

i=1 NF i

(
ξG
F ,ηG

F

)
yF i

(8.18)

where (xF i,yF i) are the real coordinates of the nodes of the fine element and NF i are the
shape functions of the fine element. The natural coordinates of G in the fine element
(
ξG
F ,ηG

F

)
depend on the Gaussian integration scheme. In the case of linear quadrilateral

finite elements such as CPS4E, four integration points are required. The second and final
step consists in computing ξG

V and ηG
V on the basis of xG and yG solving the inverse problem:

xG =
∑4

i=1 NV i

(
ξG
V ,ηG

V

)
xV i

yG =
∑4

i=1 NV i

(
ξG
V ,ηG

V

)
yV i

(8.19)
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where NV i are the shape functions of the virtual element and (xV i,yV i) are the real co-
ordinates of the nodes of the virtual element. In the case of CPS4E elements, this is a
non-linear problem. It has been solved with a standard Newton-Raphson algorithm.

8.2.2 Arlequin user elements

The implementation of the Arlequin method in ABAQUS requires the use of user defined
elements [147]. They are coded in a Fortran subroutine known as UEL that is linked to
ABAQUS at the beginning of an analysis. According to the ABAQUS documentation [63],
the stiffness matrix AMATRIX and the nodal load vector RHS have to be defined. The
linear system to be solved in a static analysis for the whole structure is:
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(8.20)

where the coarse mesh is employed in the sub-domain A1 and the fine mesh in A2. V is
the overlapping volume.

Two Arlequin user elements have to be defined, one related to the coarse mesh (UELC)
and one to the fine mesh (UELF ). In the case of CPS4E elements, both the Arlequin user
elements have eight nodes:

• UELC : four nodes in common with the corresponding CPS4E coarse element plus
the four nodes of the virtual element

• UELF : four nodes in common with the corresponding CPS4E fine element plus the
four nodes of the virtual element

Their stiffness matrices are:

AMATRIXC =

[
−αKC CT

C

CC 0

]

AMATRIXF =

[
− (1 − α)KF CT

F

CF 0

] (8.21)
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KC and KF are equal to the stiffness matrices of the corresponding CPS4E coarse and
fine elements, respectively. The corresponding RHS are computed in the subroutine as:

RHSC = −AMATRIXC

[
qC

qV

]

RHSF = −AMATRIXF

[
qF

qV

] (8.22)

since distributed loads are not accounted for in the overlapping zone S. ABAQUS in the
assembly process considers the library elements CPS4E and the Arlequin user elements
UELC and UELF defined in the subroutine UEL. The global linear system in Eqs. 8.20 is
automatically recovered.

8.2.3 Results and discussion

A piezoelectric wafer in SONOX P502 (see Table 3.6) with interdigitated electrodes is
considered, as shown in Fig. 8.11. The y-axis run through the thickness of the wafer and

Figure 8.11. Piezoelectric wafer with interdigitated electrodes.

the material is polarised along the x-axis. Therefore indexes 1 and 3 in Table 3.6 are
inverted. Thanks to the symmetries, only the top left quarter of the wafer is analysed. In
the Arlequin solution the left part of the model (near the electrode E−) is modelled with
a fine mesh, whereas the right part adopts a coarse mesh. Reference solution adopt the
fine mesh everywhere in the model.

Two cases are considered. In the first one, a displacement ux = 0.1 m is imposed
on the right edge, whereas ux is fixed on the left edge. uy = 0 on all the edges. Null
electric potential is prescribed on the electrode E−. The distribution of the magnitude of
displacement is shown in Figs. 8.12 for the reference solution and for the Arlequin solution.
The electric potential distribution is presented in Figs. 8.13. The electrode affects the
electric potential variation in the model.

In the second case displacements are fixed on all the edges. An electric potential equal
to 0.5 V is imposed on the electrode E−. Null electric potential is prescribed on the right
edge. The electric field distribution is presented in Figs. 8.14. Elements are not depicted
for sake of clearness. Higher values of the electric field magnitude can be observed near
the right end of the electrode. The electric field is almost constant far from the electrode
in the right part of the model.
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Figure 8.12. Distribution of the magnitude of displacement in the case of imposed longi-
tudinal displacement with (a) reference and (b) Arlequin solutions.
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Figure 8.13. Distribution of the electric potential in the case of imposed longitudinal
displacement with (a) reference and (b) Arlequin solutions.

Results obtained via the Arlequin electro-mechanical coupling match the reference so-
lutions. Meshes of piezoelectric elements with different refinement are successfully coupled
in electro-mechanical analyses.
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Figure 8.14. Distribution of the electric field in the case of imposed electric potential with
(a) reference and (b) Arlequin solutions.
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Chapter 9

Conclusions

After a brief introduction to the piezoelectric effect and a survey on piezocomposite trans-
ducers, a micromechanical model to predict the effective electro-mechanical properties of a
composite has been presented. This model is based on the Eshelby tensor and its original
contribution is the capability to consider non-homogeneous inclusions. The influence of
the shape of the inclusion, of the polarisation direction and of the constituent materials
have been analysed. The presented results show that higher effectiveness and directional
dependence of the piezoelectric effect is achieved with fibre-shaped inclusions. Macro Fiber
Composites (MFC) are the most promising commercial products with piezoelectric fibres
and their equivalent properties have been computed via the asymptotic expansion method,
since fibres with rectangular cross-section cannot be considered with the proposed Eshelby-
based micromechanical model. An analytical solution, that does not take into account the
electrodes, has been obtained. It corresponds exactly to the mixing rules that can be
obtained adopting the uniform field method. A numerical solution based on FE analyses
that considers the electrodes has been presented and validated towards results obtained via
the numerical periodic homogenisation. Analytical and numerical asymptotic expansion
results match the numerical periodic homogenisation ones for almost every property. The
only relevant difference is observed for the transverse shear modulus in the case of high
volume fraction of the piezoelectric phase. Results have been validated towards manufac-
turer’s datasheet considering not only the active layer but also the electrodes (made of
copper and epoxy) and Kapton R©layers.

The directional dependence in terms of sensing/actuation of piezoelectric transducers
has been investigated according to the classical plane stress assumption. The concept
of maximum directional dependence has been introduced: specific quantities related to
a direction perpendicular to that of maximum actuation or sensing are not actuated or
sensed. Maximum directionality in terms of piezoelectric strain constants is shown to be
mutually exclusive with the one in terms of piezoelectric stress constants. The mixing rules
obtained with the analytical solution of the asymptotic expansion method have been used
to predict the influence of the matrix on the equivalent properties of a piezocomposite
similar to MFC. Results show that low Young’s modulus and Poisson’s ratio maximise
the ratio between piezoelectric properties in longitudinal and transverse direction, i.e. the
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directional dependence of the piezoelectric effect. Equivalent properties adopting some
existing polymers have been presented.

The design of a multi-layered piezocomposite transducer has been considered. A config-
uration with a single piezoelectric layer, that can be monolithic or composite, and several
mechanical layers has been taken into account. Equivalent properties have been computed
via a modified version of the uniform field method, which takes into account that elec-
trodes are at the top and bottom of the piezoelectric layer and not of the whole laminate.
Results have been verified via the numerical periodic homogenisation method. Maximum
directionality in terms of piezoelectric stress constants (induced stresses per unit of electric
field) is shown to be not achievable with a layered configuration. This is a consequence of
the multilayered structure, which is conceptually similar to a parallel configuration of the
different layers in the electric circuit analogy. On the contrary, a fibre/matrix structure
like that of MFC correspond to a series configuration in the electric circuit analogy and
has a large influence on piezoelectric stress constants. An optimisation process is carried
out to find a lamination that guarantees maximum directionality in terms of piezoelectric
strain constants (induced strains per unit of electric field) for different kind of piezoelectric
layers. Maximum directionality is achieved since the piezoelectric constant of the piezoelec-
tric layer in a specific direction is contrasted by the Poisson’s effect of the whole laminate.
Maximum directional dependence is fulfilled only for low values of the volume fraction of
the monolithic piezoelectric layer, whereas with a piezocomposite layer with conventional
electrodes the volume fraction can be higher. If interdigitated electrodes are adopted,
maximum directional dependence is not achievable since the whole laminate would be re-
quired to have a negative Poisson’s coefficient. The behaviour of a thin patch bonded to a
structure, as piezoelectric transducers are commonly employed, is investigated analytically
and numerically. Unfortunately, maximum directionality in terms of equivalent piezoelec-
tric strain constants does not guarantee maximum directionality in sensing of stress of the
structure. On the contrary, maximum directionality in terms of stress constants guarantees
maximum directionality in sensing of strain of the structure.

Hierarchical finite elements for structural analysis have been introduced with the cor-
responding theories according to a Unified Formulation (UF) proposed by Carrera. Solid,
beam and plate finite elements have been addressed: for solid elements, the number of
nodes is a free parameter; both the number of nodes and the order of the theory are free
parameters in beam elements; plate elements can differ in variational principle, order of
the theory, variable description (equivalent single layer or layerwise) and number of nodes.
Higher order and multifield elements are obtained straightforwardly via the UF from a
fundamental nucleus, that only depends on the choice of the variational principle. The
principle of virtual displacements and mixed principles have been adopted. Piezoelectric
solid and plate elements have been also considered modelling electrical quantities, such as
the electric potential, as primary unknowns.

The developed hierarchical finite elements have been coupled in multi-domain structural
analyses via the Arlequin method, proposed by Ben Dhia. The coupling matrices of the
Arlequin method have been derived in the context of the UF. The following multi-domain
analysis have been considered: beam elements of different order; plate elements based on
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different variational principle, order and variable description; solid elements and higher-
order equivalent single layer plate elements. The obtained results are in good agreement
with three-dimensional reference results and with the corresponding mono-model solutions.
The number of degrees of freedom is reduced without affecting the solution in the refined
sub-domains, where a three-dimensional strain/stress state is locally present.

The Arlequin method has been extended to piezoelectric analyses with the introduction
of two electro-mechanical coupling operators, that take into account electrical quantities
such as the electric potential and the electric field. A piezoelectric plate and a mechan-
ical plate with a piezoelectric patch have been considered. Variable kinematic solutions
match the mono-model results. In the case of the mechanical plate it has been found that
the mechanics of the plate far from the actuator is correctly modelled by an equivalent
single layer mechanical theory, whereas the actuation of the patch requires a layer-wise
piezoelectric theory to be accurately described. The proposed electro-mechanical coupling
has been also implemented in the commercial FE software ABAQUS for piezoelectric plane
stress elements. The sub-domains differ in the mesh refinement, whereas the adopted finite
elements are the same. Arlequin user elements have been implemented in the ABAQUS
Fortran subroutine UEL. A piezoelectric wafer with interdigitated electrodes has been con-
sidered, adopting a fine mesh near the electrodes and a coarse mesh elsewhere. Results
match the reference solutions obtained with a fine mesh on the whole model.

Future resarch work may address the extension of the existing non-directional actuation
and control theory for piezoelectric actuators to incorporate the response behaviour of
devices with maximum directionality. Typical applications that may be considered in
this context are acoustic noise control and active vibration control. Highly directional
piezoelectric devices may be adopted in multi-axial sensing systems, in particular in the
area of structural health monitoring since a sensor that can provide directional information
for the incident energy is a more detailed “probe” for detecting changes in a structure.
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