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ABSTRACT 

Robust control design is mainly devoted to guaranteeing the closed-loop stability of a 

model-based control law in the presence of parametric uncertainties. The control law is 

usually a static feedback law which is derived from a (nonlinear) model using different 

methodologies. From this standpoint, stability can only be guaranteed by introducing some 

ignorance coefficients and restricting the feedback control effort with respect to the 

model-based design. Embedded Model Control shows that, the model-based control law must 

and can be kept intact in the case of uncertainty, if, under certain conditions, the controllable 

dynamics is complemented by suitable disturbance dynamics capable of real-time encoding 

the different uncertainties affecting the ‘embedded model’, i.e. the model which is both the 

design source and the core of the control unit. To be real-time updated the disturbance state is 

driven by an unpredictable input vector, the noise, which can only be estimated from the 

model error. The uncertainty-based (or plant-based) design concerns the noise estimator, so as 

to prevent the model error from conveying uncertainty components (parametric, 

cross-coupling, neglected dynamics) which are command-dependent and thus prone to 

destabilizing the controlled plant, into the embedded model. Separation of the components in 

the low and high frequency domain by the noise estimator itself allows stability recovery and 

guarantee, and the rejection of low frequency uncertainty components. Two simple case 

studies endowed with simulated and experimental runs will help to understand the key assets 

of the methodology. 
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Table 1. List of variables  

No. Symbol Explanation  Equation  Comments 
0 d  Input disturbance  (2), (8)  
1 ˆ,u ud d  Collocated disturbance, predicted (9), (30)  

2 
yd  Output disturbance (39)  

3 ∂P  Fractional error dynamics (17) Uncertain 
4 e  Model error (output) (1)  
5 e  ‘Estimated’ model error (output) (25)  
6 ˆce  Prediction error (24)  

7 
ye  ‘True’ tracking error (output) (23) 

y cC=e e  
8 e  ‘True’ tracking error (state) (23)  
9 ê  ‘Estimated’ tracking error (state) (24)  
10 ˆye  ‘Estimated’ tracking error (output) (24)  

11 
ye  Control error (jitter)  (26) ˆy y= −e e e  

12 h  Cross-coupling (parametric 
uncertainty) 

(8) Uncertain 

13 ,i f  Discrete-time instant, frequency  from it iT=  
14 ,λ γ  Discrete-time eigenvalue, 

complementary eigenvalue 
 1γ λ= −  

15 ,m m  Collocated cross-coupling, known (9), (33)  
16 Δm  Cross-coupling error (33) Uncertain 
17 M  Controllable dynamics  (18) Input-output 
18 P  Design model dynamics  (18) Uncertain 
19 q  State vector of a dynamic noise 

estimator  
(12)  

20 ,m mS V  Predictor sensitivity, sensitivity 
complement 

(40)  

21 u  Discrete-time real-valued command (2) Digitized as u  
22 u  Reference command (5) univariate 
23 

max,T f  Model and control time unit, 
Nyquist frequency 

  

24 ˆ,c cx x  Controllable state, predicted state (2), (24)  

25 x  Reference state (5)  
26 ˆ,d dx x  Disturbance state, predicted state (8), (30)  

27 
yx  Output disturbance state  (39)  

28 w  (White) noise vector (8)  
29 ,u uw w  Collocated noise, estimated noise (9), (29)  

30 
yw  Measurement noise (17)  

31 y  Discrete-time real-valued measure (1) Digitized as y  
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32 
my  Model output (1)  

33 y  Reference output (5)  

 

1 INTRODUCTION  

1.1 The goal and rationale of the paper  

Robust control design [1] is devoted to guaranteeing the closed-loop stability of a 

model-based control law in the presence of parametric uncertainties. The law is usually a 

complex feedback algorithm which is derived from a (nonlinear) model using different 

methodologies. Stability is guaranteed by introducing some ignorance coefficients and 

restricting the feedback control effort with respect to the model-based design. Embedded 

Model Control (EMC) [2] shows that a model-based control law must and can be kept intact 

in the case of uncertainty (a form of separation theorem), if the controllable dynamics is 

complemented with suitable disturbance dynamics capable of real-time encoding the different 

uncertainties affecting the ‘embedded model’, i.e. the model which is both the design source 

and the core of the control unit. The disturbance state is updated in real-time by an 

unpredictable input vector, referred to as noise, which can be estimated from the model error 

only, the latter being defined as the difference between plant and model output. The 

uncertainty (or plant)-based design concerns the noise estimator, as the model error may 

convey uncertainty components (parameters, cross-couplings, neglected dynamics) which are 

command-dependent and thus are prone to destabilize the controlled plant, into the embedded 

model. Appropriate separation of the uncertainty components into low and high frequency 

domains by the noise estimator allows stability recovery and guarantee, and the rejection of 

the low frequency uncertainty components. Emphasis will be given to a single control unit. 

Two case studies will help to understand the key assets of the methodology.  

1.2 Paper organization  

A goal of Embedded Model Control is to offer a way of converting model and control 

architecture into real-time code, taking for granted that model and control architecture should 
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not be completely free, but constrained and guided by some basic principles (axioms and 

propositions), such as, for instance, that the sole feedback channel is noise, or the core of a 

control unit is the embedded model. The surprising point is that, when searching for literature 

with keywords like ‘control’ and ‘axioms/propositions’ only software engineering papers can 

be found [3], [4], [5], which have no or little relation to the immense bulk of control literature, 

as if control theory and implementation could run separate, leaving the latter to electrical and 

software engineering tools. In an effort to fill the gap, the paper is organized into a sequence 

of propositions, aiming at fixing the basic and compulsory principles of model and control 

architecture, design and implementation. This is done with the help of the system and control 

theory at the foundations of the EMC, and with reference to control textbooks and papers.  

Propositions, that are provable, are subdivided into two parts: model and control. Model 

propositions start from plant and model distinction, leading to the definition of the model 

error, that is the key measurable variable of control design and performance (Section 2.2). To 

reduce unavoidable drifts of the model error, controllable dynamics must be enriched with 

disturbance dynamics driven by noise (Section 2.3). As a key result, noise (and noise 

estimator) constitutes the sole feedback channel - to be designed - from plant to model 

(Section 2.4). The resulting embedded model is further enriched (design model) by the class 

of the command dependent discrepancies (parametric uncertainties, neglected dynamics) that 

are zeroed in the control unit, but are essential for robust design and assessment (Section 2.5). 

The design model is implemented in the form of a numerical simulator, and as such may 

surrogate the plant during design assessment. A logical consequence of the model 

propositions is that the noise estimator design is a modeling stage, unlike [2], which must 

guarantee that the model error becomes bounded whatever the actuating commands may be. A 

bounded model error implies that model and plant are tracking each other within some 

frequency domain, a prerequisite to the model-based design as confirmed by the control 

propositions in Section 3.1. 

Control propositions start with the definition of the tracking error as a performance variable, 

and show that the standard control error (reference minus measurements) is the sum of 
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tracking and model errors (Section 3.1). Since the former is model-based, the central theorem 

of the paper shows it can be brought to zero in the ‘anti-causal’ limit, and the latter can be 

approached ‘in practice’ by pushing the model-based feedback to be deadbeat (unless actuator 

limits exist), without considering model discrepancies (model-based design, Section 3.2). 

Uncertainties are accommodated by the noise estimator, or, better, by the state predictor, 

which, in the anti-causal limit, becomes entirely responsible for plant stability (Section 3.3). 

The corresponding uncertainty-based design is only outlined, but is somewhat detailed in the 

case study section.  

Part of the principles and results expressed in the paper propositions derive from a 

reorganization of [2], aiming at a logical and complete sequence of design and 

implementation principles. Many details of [2] are omitted. Advances and simplifications are 

as follows. 

1) The uncertainty propositions in Section 2.3 and the relevant state equations (8) include 

the nonlinear term ( )⋅h  accounting for parametric uncertainty. A distinction is made 

between the embedded model, which being free of unmodelled uncertainty is coded in 

the control unit, and the design model including all the uncertainty components.  

2) Performance propositions in Section 3.1 prove and suggest the need for a model and 

uncertainty-based design decomposition.  

3) Theorem 1 in Section 3.2.1 details the necessary and sufficient conditions for the 

model-based tracking errors being bounded in the presence of unknown nonlinear terms 

( )⋅h . The key condition, besides internal stability, is that the estimated noise forcing the 

tracking error is bounded. The unrealizable ‘anti-causal limit’, that has been already 

defined in [2], is repeated and discussed as a model-based concept. Under this limit the 

tracking error equation becomes autonomous. 

4) The uncertainty-based design, briefly dealt with in Section 3.3, demonstrates the 

trade-off between two contrasting objectives: (i) blocking the response of the neglected 

dynamics from entering the estimated noise, (ii) enlarging the bandwidth of the 

parametric uncertainty response entering the estimated noise.  
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Two case studies are presented. The first case, only simulated, considers a single 

degree-of-freedom spacecraft [6], [7], whose attitude is measured by a sensor on a flexible 

appendage. If the position control design assumes a single rigid body from command to 

sensor, it must be guaranteed against the neglected dynamics from body to sensor. The second 

case, both simulated and experimental, considers a ball and beam device [8], where the beam 

is driven by a dc motor through a gear affected by backlash. The ball moves along the beam 

but is not controlled. A control design similar to the former case is applied, except for a 

simpler disturbance model. Again the design assumes a rigid body from motor to beam, thus 

neglecting gear dynamics. 

2 Model propositions  

2.1 Time, signals and the extended plant 

Continuous time is denoted by t . Discrete-time (DT) instants are denoted by it iT= , 

assuming T  is the least and constant time unit. Real-valued DT signals are indicated by 

( )iu . They are different from ‘digital signals’ ( )iu , defined as integer-valued and bounded. 

Computer-based control receives from and dispatch to plant only measures ( )iy  and 

commands ( )iu . ( )iy  is the sampled and digitized signal (ADC) of the sensor analogue 

output. ( )iu  is converted by a DAC into a step-wise analogue voltage driving the plant. To 

avoid dealing with integer values, u  is digitized from a real-valued command ( )iu  (A/D 

conversion), whereas ( )iy  is converted to a real-valued measure ( )iy  (D/A conversion). 

Conversions take place in the control unit and should not be confused with conversions made 

by DAC and ADC. The ‘extended plant’ to be modeled and controlled is defined as the whole 

chain from ( )iu  to ( )iy . Thus a DT equation fits.  

2.2 The fundamental input-output propositions 

2.2.1  Propositions 

Modern control design is a chapter of the dynamical system theory [9], which includes 

concepts and methods like controllability, observability and feedback regulation [10]. 
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‘Propositions’ should first lead to an appropriate model of the extended plant. Distinguishing 

between plant (reality) and (mathematical) model M  leads to two propositions. 

1) Proposition 1. A model can run in parallel and synchronous (in real-time) with the plant 

under the same command u . The statement is seminal to all the subsequent 

formulation, and to control architecture as well, as it suggests that control units should 

be developed around the real-time model, henceforth indicated as the ‘embedded 

model’. When restricted to a computer-based control, a real-time model can only be DT 

and state-variable [10], implying that a time unit T  and a state cx  must be defined.  

2) Proposition 2. This concerns model performance, asserting that plant and model, 

running in parallel, can be compared only through the model error e , which is the 

difference between the plant output y  (measures) and the model output my  as follows 

 ( ) ( ) ( )mi i i= −e y y . (1) 

Performance as a suitable norm e  may be unbounded, because of unmeasurable, 

indescribable and uncertain discrepancies between reality (plant) and mathematics 

(model). Discrepancies may be due to command–independent actions (disturbance), 

parametric uncertainty, neglected interactions and dynamics. The substantive attribute 

‘uncertainty’ will substitute ‘discrepancy’ throughout.  

2.2.2 The controllable dynamics 

Assuming strict causality, linearity, time–invariance and a single time unit, the state equations 

of M  are written as  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

01 ,  0c c c c c c

c c m

i A i B i i

i C i i i i

+ = + + =

= + = +

x x u d x x

y x e y e
, (2) 

where d  is defined in Section 2.3. 

2.2.3  Case study 1 

Consider the attitude of a satellite, whose attitude sensor is mounted on a flexible axial 

appendage. The sensor is affected by bias (0.1 mrad) and random errors (0.5 mrad, 1σ). A 

gyro affected by drift, bias and random error (0.1 mrad/s, 1σ) is mounted on the spacecraft. 
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When restricted to a single degree-of-freedom, the transfer function of the design model (see 

also Section 2.5) from the command torque u  to the measured attitude q  is fourth order as 

follows 

 
( ) ( ) ( ) ( ) 2

0

1 1
1 1 2 1

/ ,  6 rad/s, 0.002,  60 s
f

f f f

qs s
u J J s s

s

τ ν ζ ν

ν ω ω ζ τ

= =
+ ∂ + + +

= ≥ ≥ ≤

P
, (3) 

where 2
0 1200 kgmJ =  is the total inertia ( 0.2J∂ = ± ), fω  and fζ  are the smallest angular 

frequency and damping coefficient, respectively, of the flexible link between the spacecraft 

and the star tracker, τ  is the mechanical time constant, i.e. the ratio between inertia and 

friction coefficient. The gyro measure ( )gy i  is sampled at 1/ 100 HzT = . The attitude 

measurement ( )q ky i  is sampled at 1/ qT , q qT N T= , where 10qN = , and k qi kN= . The 

attitude q  describes the inertial rotation around the spacecraft axis which must track a 

variable reference q . The angular rate, in angular units, measured by the gyro, is denoted by 

ω . The command acceleration (dispatched to the reaction wheels) is 2 /ua T u J=  and is 

bounded by 2 2/ 25 mrad/sua T ≤ , and by 2 30.250 rad/sua T ≤  (slew rate). 

10-2 100

10-5

100

Frequency [Hz]

M
ag

ni
tu

de
 

 

 

P(s) - lower bound
P(s) - upper bound
EM 

 

Figure 1 Case study 1: magnitude of the Bode diagrams of the design and embedded models. 

The embedded model M  only accounts for rigid motion, thus confining flexible dynamics 

into the model error. Disturbance accelerations (drag, gravity gradient, ...) are described in 

Section 2.3.3 by ad . State and multi-rate output equations are written as 
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 ( ) ( ) ( )
( ) ( ) ( )

1 1 1/ 2
,  ,   

0 1 1
d

c c c
d

g d g

q k d k q k

q
A B

y i i e i

y i q i e i

ω

ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
= +

= +

x

, (4) 

where dq  and dω  are ‘dirty’ variables which include systematic errors as in [7]. The dirty 

rate is corrected by a disturbance gd  in order to recover the ‘true’ rate driving dq . Figure 1 

shows the Bode plots of the uncertain design model (3) (upper and lower bounds) and of the 

embedded model (4). Equation (4) is observable and controllable. The reference attitude 

satisfies the same dynamics as in (2) and (4), but being free of the disturbance signals, is 

written as 

 
( ) ( ) ( ) ( )
( ) ( )

01 ,  0

,  
c c

T
c

i A i B u i

i C i q ω

+ = + =

⎡ ⎤= = ⎣ ⎦

x x x x

y x x
, (5) 

where u  is the open-loop (or reference) command. 

2.2.4 Case study 2 

Consider a ball and beam device where a dc motor rotates a beam carrying a sliding ball 

through a gear. The supply voltage is denoted by u , 6 Vu ≤ , and is digitized as a 14-bit 

integer. The angle of the output gear is denoted by q , 1 radq < , and is measured by an 

incremental encoder. The beam tilt θ  is rather proportional to q  since ( )21 / 6q qθ λ≅ −  

and 2 / 6 0.1q < . The ratio 1λ <  is the arm ratio of the gear-to-beam kinematic link. 

Neglecting gear backlash and just considering tooth deformation, the transfer function of the 

design model from voltage to the gear angle is found to be 

 
( ) ( ) ( )

2

3 4 2
1

1/ 2 1

/ ,  800 rad/s, 0.0015,  30 ms

a

f

f f f

b sqs s
u s s

s

τ Ω ν ζ ν

ν ω ω ζ τ

= =
+ + + +

= ≥ ≥ ≤

P
. (6) 

The pair of zeros in the origin appearing in (6) indicate that the gear angle q  (and the beam 

tilt) is proportional to the ball acceleration s  through s aq g qμ λ≅ = , 20.42 m/sa ≅ , where 

5 / 7μ =  is the ball equivalent mass ratio, and g  is the gravity acceleration. The command 

gain ab  from voltage to the gear angular acceleration holds 2190 V/rad/sab ≅ , which value 
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is accurately known. The time constant 2/JRτ φ=  is the dc motor electro-mechanical 

constant, that depends on the assembly inertia J , on the motor resistance R  and on the 

linked flux φ . The value of τ  is accurately known. The fourth power of the angular 

frequency Ω  is the product of a  (gravity acceleration) and of the angular acceleration per 

unit length 210 15 rad/s /mϖ = ÷ ; namely 4 aΩ ϖ= . The parameter ϖ  accounts for the 

beam gravity torque and varies with the beam angle θ . Other discrepancies (friction, …) and 

nonlinearities (friction, backlash, …) are treated both as known and unknown disturbances. 

The backlash half-width d  which is reckoned on the output gear holds 1.5 mradd ≅ , the 

value being equal to the encoder quantization 1.5 mradqρ ≅ . A dc tachometer is available, 

but unlike the case study 1, only the encoder output qy  in (4) is employed. The same EM as 

in (4), except for gy , is employed for control design and implementation. The subscript d  is 

dropped from the state variables in (4), since no systematic errors must be compensated. 

Vector and matrices of the EM state equations (2) are the following: 

 
( ) ( ) ( )

21 1 1/ 2
,  ,  ,  

0 1 1c c c a a a

q q

q
A B b T

y i q i e i

β β
ω
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= +

x
. (7) 

The control time units is 0.5 msT = . The angular rate ω  in (7) is an angular increment in 

radian units. The same reference dynamics as in (5) applies. Figure 2 shows the magnitude of 

the Bode diagrams of equations (6) and (7). The low frequency deviation is due to friction 

and to the ball-dynamics interaction through the gravity torque coefficient ϖ .  
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Figure 2 Case study 2: magnitude of the Bode diagrams of design and embedded models. 

2.3 The uncertainty propositions 

2.3.1  Propositions 

Feedback regulation implicitly decreases the output sensitivity to discrepancies. Sensitivity 

may be further abated by explicitly rejecting disturbances as in [11], [12], [13], which calls 

for an explicit model of the disturbance signals. A pair of provable propositions paves the way 

to disturbance modeling.  

1) Proposition 3. Model error e , as it encodes the current outcome of past discrepancies, 

is the sole available measurement of the uncertain discrepancies (‘uncertainty’). 

2) Proposition 4. Model error can be elaborated and accumulated in a state vector dx  

(disturbance state), ready to correct cx . Formally, observable input-output dynamics D  

as in [11], [12], [13] must be built, from an input w  to an output d , the latter forcing 

M  in parallel to u . As a result, dx  encodes the past accumulated discrepancies, 

whereas w  encodes the past and future independent uncertainty (innovation) capable 

of updating dx . Independence of future derives from causality, whereas independence 

of past answers the principle of not delaying disturbance updating. For such reasons w , 

called ‘noise’, can be modeled as an arbitrary and bounded zero-mean signal, and 

statistically as a bounded-variance DT white noise.  

Disturbance dynamics is widely treated in the literature [11], [12], [13], [14]; the opposite can 

be said of noise design [2], [6]. As a conclusion, the embedded model is forced by two input 

vectors: ( )iu  is known since it is computed at any i  by the control unit, ( )iw  is unknown 

and unpredictable. How to retrieve w  at any i  is the subject of Section 2.4.  

2.3.2  State equations 

Assuming linearity, the disturbance dynamics is written as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

01 ,  0d d d d d d

d d c c

i A i G i

i H i G i

+ = + =

= + +

x x w x x

d x w h x
, (8) 
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where h  is referred to as cross-coupling term, and is discussed in Section 2.5. The state dx  

must be observable from the output y . The free response of (8) is used to model 

‘deterministic’ components as in the Internal Model Control [15], assuming that 0dx  is 

known. Usually ( ),d dA G  is controllable. On the contrary, dx  splits into controllable and 

non controllable entries. Because the latter ones only account for deterministic components, 

they do not need to be observable. When d c dH B M= , c c cG B N=  and cB=h m , d  is called 

collocated since adds to the command, which case calls for a new definition of d  as follows 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ),  

u u w c

u c u d d c

i i i i

i M i i M i

= + = +

= = +

d d w d m x

w w d x m x
, (9) 

where dim dimu =d u .  

Assumption 1. The noise uw  in (9) is assumed to have statistically independent entries, and 

to be independent of dG w  in (8). 

2.3.3  Case study 1 

The disturbance vector d  in (8) splits into two components: the acceleration disturbance 

u ud a w= + , and the velocity disturbance / 2g gd a s= + , where gs  compensates the gyro 

systematic errors of dω . Second-order dynamics describes ud , whereas first-order dynamics 

applies to gd , as follows 

 

1 0 0 1 0 0 0
,  0 1 1 ,  0 0 1 0

0 0 1 0 0 0 1

0 0 0 0 1 1/ 2 0
,  ,  

0 1 0 0 0 1 0

g

d d d

g

u
c d

a

s

s
a A G
s

w
w

G H
w
w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎣ ⎦

x

w

 (10) 

Noise entries are statistically independent. Equations (4) and (10) are observable, d  is not 

collocated owing to gd .  
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2.3.4 Case study 2 

Since the dc motor velocity is not measured, only the acceleration disturbance u ud a w= +  

must be modeled, which is done through a second-order stochastic dynamics as follows 

 

1 1 0 1 0
,  ,  

0 1 0 0 1

0 0 0 1/ 2 0
,  ,  

1 0 0 1 0

d d d

u

a c d

s

a
A G

s

w
w G H
w

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

x

w
. (11) 

As a consequence, ud=d  in (8) is collocated. 

2.4 The central propositions: noise estimation  

2.4.1  Propositions 

Propositions repeat Kalman filter results, but from a generic standpoint.  

1) Proposition 5. Two alternative mechanisms may generate noise: pseudo-random 

extraction, and ‘estimation’ from a correlated realization. The former would respect 

noise statistical properties; the latter, to be adopted, reveals the residual discrepancies 

that are hidden in the model error, to the benefit of the embedded model as it may 

actually be driven by noise in order to approach the plant behaviour. Complexity and 

uncertainty of discrepancies usually cause the statistical framework to be abandoned in 

favor of a complete, but bounded, arbitrariness, which entails command independence. 

The latter assumption, that can be referred to as the ‘Kalman assumption’ in Section 2.5, 

does not hold in general as explained in the same Section, but justifies the noise 

estimation algorithm.  

2) Proposition 6. Under the Kalman assumption, and the equations (2) and (8), the ‘noise 

estimator (see [2] and [6]) is a linear dynamic system as follows 

 
( ) ( ) ( )
( ) ( ) ( ) ( ) 01 ,  0q q c

i L i N i

i A i B C i

= +

+ = + =

w e q

q q e q q
, (12) 
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where the matrices L , N , qA  and qB  must be designed to make the closed-loop 

system (2), (8) and (12) asymptotically stable and possibly minimum variance. The 

closed-loop system becomes a one-step state predictor, as it provides, at any time i , 

predictions ( )1c i +x  and ( )1d i +x . To mark that states and predictions, when updated 

by noise realization, become, in their turn, realizations of the embedded model signals, 

the ‘hat’ notation as in ( )ˆ c ix  is applied to the state variables and to the model output in 

(2), (8) and (12), in analogy with prediction theory [16]. Indeed, ( )ˆ c ix  is a one-step 

prediction based on the past sequence ( ){ }, 0i k k− >y  of the plant output. Noise 

estimation and model error is assigned a ‘bar’ notation as in ( )iw  to mark dependence 

on the current output ( )iy .  

A corollary that the authors never met in the literature, and is a cornerstone of EMC 

architecture and design is the following. 

Corollary 1. The estimated noise w  is the sole and unique feedback channel from plant to 

embedded model, thus becoming responsible for stability and performance. 

Remark 1. Noise estimators in Kalman filtering are static, because noise is implicitly forced to 

affect all the state variables. A different approach is taken here, since noise design is an 

essential modeling stage as in [6]. Hence, when the noise components of the embedded model 

are insufficient to guarantee stability by means of a proportional feedback, a dynamic 

feedback must be employed.  

Remark 2. Noise estimator concept facilitates multi-rate treatment as in Section 2.4.2 (see also 

[7]), since noise must be estimated only when the relevant model error is available. 

2.4.2  Case study 1 

The noise estimator of (4) and (10) must be multi-rate and dynamic (as opposed to static). To 

be simple, a decoupling design is adopted as in [7] exploiting the different noise variance and 

sampling rate of the measurements. Specifically, the noise component gw  driving gs  in (10) 

is estimated by the attitude error q qe y q= − , the remaining noise entries in (10) are 

estimated by g ge y ω= − . Since gw  drives gs  and q , a dynamic feedback as in [2] and [6] 

is necessary for guaranteeing closed-loop stability. The following noise estimator results  
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( ) ( ) ( )
( ) ( ) ( ) ( )

[ ] ( ) ( )

1
g k q q k q k

k q q k q k

T
u a s g

w i l e i m p i

p i N p i e i

w w w i Le i

β

= +

+ = − +

=

. (13) 

It is of interest to compare the upper part of (13) to a static observer feedback , namely to 

 ( ) ( )q
k q q k

g

w
i L e i

w
⎡ ⎤

=⎢ ⎥
⎣ ⎦

. (14) 

The feedback (14) implies that gd  in (10) must be corrected to  

 ( ) ( ) ( ) ( )/ 2g g qd i a i s i w i= + + , (15) 

and that the ‘parasitic’ noise qw  mast be added to dω , which is contrasting the assumed 

smoothness of the systematic errors affecting dω . 

2.4.3 Case study 2 

The noise estimator of (7) and (11) must be single-rate and dynamic. Since uw  in (11) 

drives ω  and q , a dynamic feedback as in [2] and [6] is necessary to guarantee closed-loop 

stability. The noise estimator results into  

 
( ) ( )

( ) ( ) ( ) ( )

0
0

1 1

u u u

a q a

s s

q q

w l m
w e i m p i
w m

p i p i e iβ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ = − +

, (16) 

where a pair of gains have been forced to zero in order to make the size of the gains to match 

that of the closed-loop eigenvalues. As a remark, a static noise feedback instead of (16) 

would compel adding a parasitic noise component to the model velocity ω , which is 

contrasting rigid body assumption.  

2.5 The central issue: the uncertainty model 

Noise arbitrariness, entailing command independence, cannot capture the model error 

complexity. For instance, parametric uncertainty, neglected cross-coupling and dynamics are 

command-driven, and as such they contrast noise assumptions. The solution, well known in 

the literature, is to dispose of an appropriate model of the uncertainty capable of detailing the 
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different components: see for instance the uncertainty models built by means of the Linear 

Fractional Transformation [1]. A similar approach is adopted here, but an intermediate model, 

called ‘design model’, is created, which is the combination of embedded and uncertainty 

models. However, only the embedded model must be implemented in the control unit, setting 

to zero all the uncertainty parts except the disturbance dynamics and noise, and the known 

part of ( )⋅m  in (9) if any. An alternative is pursued by adaptive control and estimation 

schemes [17], [18], where command/state dependence is accounted for multiplying noise 

components by the same command/state signals.  

Proposition 7. Command/state dependent uncertainty is modeled in two ways: (i) the 

cross-coupling ( )cm x  in (9) accounts for parametric uncertainty, including nonlinear 

approximations, (ii) the model error e  accounts for the neglected dynamics (unstructured 

uncertainty) as follows 

 ( ) ( ) ( )m yi i= ∂ +e P y w . (17) 

In (17) the measurement noise yw  and of the (uncertain) fractional error dynamics ∂P , 

mapping the model output my  into e , are assumed to add. Equation (17) can be rewritten by 

expressing ∂P  in terms of the design model P  and of the embedded model M  as follows 

 ( ) ( )( ) ( )1
m m yi i−= − +e P M y y w , (18) 

where the former term in the RHS exists if dim dimm =y u , and the response of P  to a step 

0u  is delayed and smaller than M , i.e.  

 ( ) ( ) ( )0 0 0lim /t oε ε→ > ≤P u M u , (19) 

assumingε  arbitrarily small. In other terms, the short-term transient of the design model P  

(emulating the plant) is of higher order than the embedded model M . If P  and M  are 

rational transfer functions, (19) converts into 

 ( ) ( )1lim 1f f f I−
→∞ − →M P . (20) 

Zero fractional dynamics 0∂ ≡P  and zero cross-coupling 0=m , can be referred to as ‘the 

Kalman assumption’, since they are necessary for Kalman filter to be unbiased and efficient. 
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2.5.1  Case studies  

The embedded model (4), written in Laplace transform as  

 ( ) ( )2
01/s J s=M , (21) 

and the fractional error dynamics  

 ( ) ( )2

2

2

2 1

J
s

ν ζν

ν ζν

∂ − +
∂ ≅

+ +
P  (22) 

satisfy (20). The parametric uncertainty J∂  enters (22) as a low-frequency contribution.  

The expression of ( )s∂P  coming out from (6) and (7) is more complicated. The magnitude 

of the relevant Bode diagram is shown in Figure 3. The frequency domain splits into three 

regions: the low-frequency region (related to parametric errors and uncertainty) where 

( ) 1jf∂ →P , the mid-frequency region where ( ) 1jf∂ <P , and the high-frequency region 

(mainly dictated by neglected dynamics) where ( ) 1jf∂ >P . 
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Figure 3 Case study 2: magnitude of the Bode diagram of ( )s∂P . 

3 Control propositions 

Embedded and design models, as well as noise estimators are ingredients to control 

architecture and design. The latter splits into two stages: (i) the model-based design aims to 
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synthesize a control law which provides the command u  as output, and is fed by real-time 

data coming from embedded model and reference signals, (ii) the uncertainty-based design 

(also plant-based) is in charge of tuning the gains of the estimator noise for guaranteeing 

stability in the presence of uncertainty. Preliminary is the definition of the control 

performance errors. 

3.1 Performance propositions 

Proposition 8. Performance is expressed by the ‘true’ tracking error 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ),  c y m ci i i i i i C i= − = − =e x x e y y e  (23) 

where x  and y  denote the reference state and the output variables that satisfy a reference 

dynamics equal to the controllable dynamics (2), but disturbance-free as in (5). More generic 

reference dynamics can be defined by adding a known input 0d  (not pursued here). The 

tracking error e  is only available either mathematically or through simulation, since only the 

predicted state and output ˆ cx  and ˆ my  are available in the control unit, as the following 

proposition states. 

Proposition 9. The only measurable errors are (i) the ‘estimated’ tracking error 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ,  c c y ci i i i i i C i= − = + =e x x e e e e , (24) 

which is the sum of the true tracking error e  and of the prediction error ˆ ˆc c c= −e x x , and (ii) 

the ‘estimated’ model error  

 ( ) ( ) ( ) ( ) ( )ˆˆ m c ci i i C i i= − = +e y y e e . (25)  

The following corollary links the errors in (24) and (25) to the standard control error defined 

as reference signal minus measurement. 

Corollary 2. The control error (jitter) y = −e y y  is the sum of the measurable tracking and 

model errors as follows 

 ( ) ( ) ( ) ( ) ( )ˆy yi i i i i= − = −e y y e e . (26) 

Model- and uncertainty-based design emerges from (26). (i) Model-based design aims to 

make negligible the ’estimated’ output tracking error ( )ˆy ie , which is feasible since reference 
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and predicted state vectors in (24) are model variables. (ii) Uncertainty-based design aims to 

make ( )ie  bounded in the presence of uncertainty and discrepancies. If both aims are 

achieved, (26) simplifies to ( ) ( )y i i≅ −e e , i.e. the jitter ye  becomes equal to the opposite of 

the model error. The actual performances must be expressed through some error norm.  

The estimated model error written in the form  

 ( ) ( ) ( )ˆ/ /mt t t t t τ= − −e y y , (27) 

is employed by prediction and identification theory [16] under the name of prediction error, a 

name here reserved to (24), which is fully model-based. The model error  

 ( ) ( )me y i y i= − , (28) 

is employed as a tracking (or output) error in the Model Reference Adaptive Control [17], 

where the model act as a reference to be tracked by the output. A similar approach and 

nomenclature (reference error) is adopted by Internal Model Principle [15], and by the Model 

Predictive Control scheme [19], where the model role is played by the reference signal. EMC 

fully distinguishes between model and control errors as clarified by Corollary 2.  

3.1.1  Case study 1 

Target and simulated performance of the case study 1, namely the peak absolute value (max), 

the root mean square (RMS) and the mean value, are reported in Table 1. Simulated results 

refer to Figure 4, Figure 5, Figure 6 and Figure 9. 

 
Table 2. Case study 1 -Target and simulated performance. 

No Tracking error  Target Simulated 
Max RMS  Max RMS Mean 

0 Attitude [mrad] 0.6 0.2 0.5 0.15 0.12 
1 Rate [mrad/s] 0.25 0.18 0.07 0.06 <0.002 

3.1.2 Case study 2 

The objective is to move the gear angle q  (hence the beam tilt θ ) from minimum to 

maximum stroke, max 0.8 radq q≤ < , in less than 0.5 sqτ = , while keeping the ‘control 

error’ less than the encoder quantization. Target and simulated performances as in Table 2 are 
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employed in Table 3. Simulated and experimental results refer to Figure 7, Figure 15, Figure 

16 and Figure 17. 

 
Table 3. Case study 2 -Target and simulated (experimental) performance. 

No Control error  Target Simulated (experimental) 
Max RMS  Max RMS Mean 

0 Gear angle [mrad] 3 1.5 3 (1.5) 1.2 (1.2) 0.0 (0.2) 

3.2 Model-based control theorem 

3.2.1 Fundamental theorem 

When and how the tracking errors ê  and ˆ ˆy cC=e e  can be made negligible is expressed by 

the following theorem. 

Theorem 1. The mean ‘estimated’ tracking error ê  can be brought asymptotically to zero; the 

error norm ê  can only be bounded because of causality. 

The proof follows by considering the error equation 

 
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

ˆ ˆ1

1

c c c u

u w w

q q c

i A B K i B i

i N i L i

i A i B C i

+ = − −

= +

+ = +

e e w

w q e

q q e

. (29) 

The theorem holds if and only if c cA B K−  is asymptotically stable, and uw  is zero-mean 

and bounded. To prove (29), first write the control law in the case of a collocated disturbance, 

namely 

 ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆ,  u u d d ci i K i i M= + − = +u u e d d x m x , (30) 

where m  is the known model of m  in (9), and the estimated noise ( )u iw  cannot enter 

(30) since it occurs simultaneously with ( )iu  (causality constraint). In other terms, all the 

components of (30) must be one-step predictions, but noise prediction is zero. The feedback 

gain matrix K  must be designed to make c cA B K−  asymptotically stable, which is feasible 

since ( ),c cA B  is controllable. Then write the tracking error equation by combining (30) with 

(2) and (5), which yields 

 ( ) ( )ˆˆ1 c c c u u ui A B K B+ = − − − −e e e d d w ,  (31) 
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and the prediction error equation  

 ( ) ( )ˆˆ ˆ1c c c c u u u ui A B+ = + − + −e e d d w w . (32) 

Summing (31) and (32), and remembering (12) provides (29). Finally, the properties of uw  

are guaranteed by the prediction error equation (32) being asymptotically stable, and by e  

and by the cross-coupling error  

 ( ) ( ) ( )ˆc cΔ ⋅ = −m m x m x  (33) 

being bounded. The latter condition is immediately satisfied under the Kalman assumption, 

since y=e w , and 0Δ =m .  

Remark. In general, ( )Δ ⋅m , which depends on ( )ˆc ie  through cx  and ˆ cx , cannot be 

bounded unless (30) is suitably designed versus ( )Δ ⋅m , which calls for robust control design 

[1]. On the other hand, since ( )Δ ⋅m  is unknown except for some bound, it can be treated as 

an unknown component of the total disturbance ud , and as such, it can be estimated by ˆ dx . 

As a consequence, ( )Δ ⋅m  must be bounded by the state predictor design (Section 3.3), 

whose task is that of estimating ˆ dx .  

The following corollary states that (29) cannot be improved.  

Corollary 3. Noise rejection can only enter (30) if delayed, i.e. through ( ) ,  0u i k k− >w , 

which implies that the difference ( ) ( ) 0u ui i k− − ≠w w  may replace ( )u iw  in (29), but the 

difference has a norm larger than ( )u iw  in the case of a statistically independent noise. 

The ideal, unrealizable case  

 ( ) ( ) ( ) ( )0ˆ ˆ ˆ 1 lim 0c c ii A B K i i→+ = − ⇒ =e e e  (34) 

is referred to as the ‘anti-causal’ limit. The asymptote (34) is approached as soon as the 

eigenvalues of c cA B K−  becomes faster (closer to zero). Such a design guideline agrees with 

the model-based control law (30), but departs from standard robust design in [1], [20] and 

[21], where feedback gains are responsible for plant-based stability and performance. In the 

anti-causal limit, prediction and tracking errors may substitute each other asymptotically, 

which is assumed hereafter, since 
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 ( ) ( )( )ˆlim 0i ci i→∞ + =e e . (35) 

.Proposition 10. The gain K  in (30) must be designed to push the eigenvalues of c cA B K−  

toward zero (deadbeat control) so as to minimize the effect of the not rejected noise 

components on the tracking error. The only limit comes from a bounded control authority 

(range and slew rate), as in the linear quadratic optimal control. In this sense, the feedback 

control design only depends on the causal uncertainty expressed by the noise, and not on 

parametric and unstructured uncertainties (model-based design).  

Remark. Severe limitations of the control authority make the ‘anti-causal limit’ assumption 

invalid, and call for a non-standard design which departs from Proposition 10. In that case, the 

design of K  may de driven by uncertainty.  

3.2.2  Case study 1 

The control law following (30) becomes 

 ( ) ( ) ( )ˆˆ ˆ ˆu u q d d ga i a k q q k s aω ω ω= + − + − − − , (36) 

where the rate tracking error ˆdω ω−  has been corrected by subtracting gs  for compensating 

gyro systematic errors.  
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Figure 4 Case  study 1 : true and estimated tracking error, and model error. 

Figure 4 shows the true (solid) and estimated tracking (dashed) errors of the attitude q  in (3)

, that are compared to the estimated model error (dotted). The estimated tracking error is 
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practically zero - marking a standard design in the light of Proposition 10 -, whereas the true 

tracking error is the opposite of the model error (not perceivable from Figure 4), but is free of 

the high frequency sensor noise though is affected by bias.  

Were the noise estimator implemented as a static feedback as in (14), the tracking error would 

become noisier owing to the ‘parasitic’ noise qw  in (15). Figure 5 and Figure 6 allow 

comparison between the dynamic design in (13) and the static one in (14). For instance, 

enlargement of the ‘static’ error in Figure 6 reveals significant oscillations of the flexible link 

passing through qw . A remedy would be either a narrower bandwidth (BW) or a notch filter, 

which latter artifice, suffering of tuning, is not in the need of the dynamic design.  
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Figure 5 Case study 1: dynamic and static noise estimator. 
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Figure 6 Case study 1: enlargement of Figure 5. 
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3.2.3 Case study 2 

The control law has the same form as (36) except for ˆ 0gs =  and for the known disturbance 

term m  (angular acceleration). In terms of the voltage u , the control law is found to be  

 ( ) ( ) ( ) ( )( )ˆˆ ˆ ˆ /q d c au i u k q q k a mω ω ω β= + − + − − − x . (37) 

In (37) u  is the reference command; the other terms, divided by aβ , are angular increments 

(in radian units) according to the DT model in (7). The known term m  accounts for gravity 

torque and known friction components. Comparison between simulated tracking and control 

errors is done in Figure 7. ‘True’ tracking and control errors are affected by the combination 

of gear backlash and static friction (the angular position halts at about 1 mrad± ). The control 

error is further affected by the encoder quantization equal to 1.5 mrad . The ‘estimated’ 

tracking error is negligible, indicating that the noise estimator is effective in avoiding the 

backlash contribution to the model error from spilling through embedded model and control 

law (Section 3.3).  
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Figure 7 Case study 2: simulated tracking (true and estimated) and control error. 
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3.3 Uncertainty-based control design 

3.3.1  Basic concepts 

Abandoning the Kalman assumption opens the ‘robust’ control domain: the goal is still to 

guarantee Theorem 1, but in the presence of neglected dynamics and cross-coupling errors. 

Formally one has to show that uw  in (29) being correlated with tracking errors, modifies the 

closed-loop dynamics in (29) with uncertain components. To simplify derivation yet to 

outline the main results, the anti-causal limit (35) is assumed, which allows to rewrite the 

prediction error equation (32) in terms of the true tracking error as follows  

 

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

( ) ( ) ( )
0

ˆ ˆ1

,  0
c c w c c c c d d w

c w y

y c y

i A B L C i A B K i B M N

B L i

i C i i

+ = − + − − + +

+ − =

= −

e e e x q

e d e e

e e d

. (38) 

In (38), the state equations of ˆ dx  and q  have been omitted, and yd  is the output 

disturbance, i.e. the collocated disturbance d  in (9) when shifted with the help of (33) to the 

output of the controllable dynamics. The state equation of yd  is  

 
( ) ( ) ( ) ( )( )
( ) ( )

1y c y c w

y c y

i A i B i

i C i

Δ+ = + + ⋅

=

x x d m

d x
. (39) 

It is not difficult to recognize the predictor sensitivity mS  (high-pass filter) and the 

complement m mI= −V S  (low-pass filter) in (38). mS  and mV  allow rewriting the forced 

response of the output tracking error ye  in (38) in the operator form:  

 
( )

( ) ( )1
1

y m y m

i i k
m y y m m m yk

I

i C A B k−
=

= − ⋅ + − ⋅

⋅ = − −∑
e S d S e

S d d d
, (40) 

where mC , mA  and mB  are the state predictor matrices from (38). Equation (40) calls for 

the following Lemma. 

Lemma 1. The effect of the neglected dynamics ∂P  encoded in e  on the output tracking 

error ye  is attenuated (and bounded) by the high-pass filter mV , whereas the effect of the 

parametric uncertainty Δm  encoded in yd  is attenuated (and bounded) by the low-pass filter 

mS . These objectives are contrasting and may become unfeasible. For this reason, artifices 
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like notch filters capable of cancelling the effect of the neglected dynamics on the plant 

measurements may be welcome. But they must be formulated as band-pass filters in the 

disturbance dynamics (8). 

Making explicit the tracking error e  in ( )m∂P y  and in Δm  by means of (33), equation 

(40) becomes an implicit equation in e , which when solved, shows the uncertainty effects on 

the whole closed-loop system, and leads to prove ‘robust’ stability conditions as in the 

literature [20], [21]. As a departing point, EMC conditions pivot on the state predictor, hence 

on the embedded model and the noise estimator. The relevant development is not pursued 

here for brevity’s sake: some results can be found in [1] and [6]. Stability conditions are 

shown graphically in the case study below. 

Proposition 11. Under the ‘anti-causal’ limit (34), the main tool for reducing and bounding 

uncertainty effects on the tracking error, so as to guarantee plant closed-loop stability and 

performance (plant-based design), is the noise estimator design. According to Lemma 1 two 

contrasting objectives must be met, which requires a careful design of the disturbance 

dynamics (8), including state variables, noise and the known components of ( )⋅m . The 

feedback gain K  may contribute to stability only when the anti-causal limit should be 

abandoned, what is obliged by a limited control authority. 

3.3.2  Case study 1 

Figure 8 shows the Nyquist plot of the scalar transfer function ( )s∂P  of the neglected 

dynamics (worst-case) in (22), before and after being passed through ( )m sV . A sufficient 

stability condition under the anti-causal limit is  

 ( ) ( )
max

max 1mf f jf jf≤ ∂ <V P , (41) 

which is not met by either design. However, the dynamic design (solid line) is largely far 

from encircling ( 1,0)−  unlikely the static case (dashed line). 

A more complete survey can be made by plotting the RMS of the attitude and of the angular 

rate tracking errors, the RMS of the command ua  in (36) and of the torque transmitted by 

the flexible link (in acceleration units) versus the complementary eigenvalue 
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( ) 1
1 2q q q qT fγ λ π

−
= − =  of the noise estimators (13) and (14). The frequency qf  

approaches the state predictor BW. Eigenvalues qλ , assumed to be each other equal, uniquely 

fix the estimator gains. The error RMS can be estimated by Lyapunov equation. 
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Figure 8 Case study 1: Nyquist diagram of the fractional error dynamics. 

10-3 10-2 10-1 1000

0.2

0.4

0.6

0.8

1

1.2

1.4

Complementary eigenvalue []

A
tti

tu
de

 [m
ra

d]

 

 

Attitude tracking error: static noise estimator
Attitude tracking error: dynamic noise estimator
Attitude RMS bound

 

Figure 9 Case study 1: attitude tracking error versus qγ . 

Figure 9 plots the tracking error RMS versus qγ , thus indicating how much the bandwidth of 

the static case (dashed line) should be narrowed for repeating the dynamic case (solid line) 
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performance. All the simulated results below refer to 0.03qγ = , that is to 0.05 Hzqf ≅ , 

where static (dashed line) and dynamic (solid line) performance approaches each other. 
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Figure 10 Case study 1: RMS of the commanded acceleration versus qγ . 

The smaller stability margin of the static case in the case of equal bandwidth, a fact that was 

already pointed out in Figure 8, can be better observed by comparing the command RMS (or 

which is the same the torque transmitted by the flexible link) in Figure 10, under zero 

reference, i.e. for 300 st ≥  in Figure 11. Above 0.01qγ = , the static RMS (dashed line) 

increases approaching instability, whereas the dynamic design (EMC, solid line) keeps the 

same effort over a large band, thus revealing robustness.  
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Figure 11 Case study 1: reference signals. 

All the simulated results assume the reference signals in Figure 11, as they aim to 

progressively rotate the payload on the top of the flexible link by a succession of half-turn 

steps.  

Figure 12 shows the commanded acceleration for the static (faint colour) and dynamic noise 

estimators. Static design approaches the command bound of 0.025 rad/s2. Figure 13 compares 

the simulated disturbance (solid line) including drag, gravity, and other torques, with the 

rejected disturbance (dashed line) which is estimated by the embedded model. It is clear that 

the rejected disturbance is capable of implicitly estimating the parametric uncertainty J∂  of 

the body inertia, as it is amplified by the reference command in Figure 11 during the interval 

100 300 st≤ ≤ . In this manner, it fully relieves the model-based control law (36) from being 

designed against uncertainty.  
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Figure 12 Case study 1: commanded acceleration. 
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Figure 13 Case study 1: simulated and rejected disturbance. 

The list of the complementary eigenvalues 1 ,  1,...,k k k nγ λ= − =  is reported in Table 2.  
Table 4. Complementary eigenvalues of the case study 1 

No. Control section Size n  Value kγ  Frequency kf  
[Hz] 

Nyquist maxf [Hz] 

0 State predictor – 
attitude (13) 

3 0.03 0.048 5 

1 Idem –rate (13) 3 0.03 0.48 50 
2 Feedback control 

(36) 
2 0.1 1.6  50 

As anticipated in Section 3.1.2, the feedback control eigenvalues fixing the gains qk  and kω  

in (36) are faster than the state predictor. They have been fixed somewhat below the Nyquist 

frequency maxf  to guaranteeing the command effort to stay within bounds less some margin 

as shown in Figure 12.  

3.3.3 Case study 2 

The trapezoidal angular position measured by the gear encoder is shown in Figure 14. The 

difference between reference and measured angle- the control error – has been already plotted 

in Figure 7, but it can be perceived from Figure 15, when the reference angle reaches the 

maximum value. The measured position reaches the maximum value after a damped 

oscillation ending in the limit cycle (the square wave overlapping the constant reference) 

imposed by backlash, friction and encoder quantization. The latter cannot be rejected [22] as 

its magnitude is less than the encoder quantization. Figure 14 also shows the ball stroke (both 
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simulated and experimental), that, being uncontrolled, swings between the beam extremes 

with some delay because of friction. The bottom extreme reveals measurement irregularities 

due to the beam surface. 
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Figure 14 Case study 2: reference and actual gear angular position (measured). 

The transient oscillation in Figure 15 is the same as in Figure 7, left hand side, and would 

disappear by adding an appropriate disturbance term m  in (37). To prove this, consider 

Figure 16 where the measured angular position is plotted from simulated and experimental 

runs. The experimental measurement is free of the transient oscillation because an appropriate 

m  has been inserted in (37) to account for viscous and static friction. The result highlights 

the different frequency bands where â  and ( )ˆ cm x  counteract the plant uncertainty. 

Assuming the ‘anti-causal limit’, â  is estimated within the BW of the sensitivity mS  in (40). 

On the contrary, ( )ˆ cm x , depending on the controllable state ˆ cx , is estimated within the 

control law BW, which, in absence of command limitations, may approach the Nyquist 

frequency max 0.5 / 1 kHzf T= = . 
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Figure 15 Case study 2: enlargement of Figure 14. 

The limit cycles in Figure 16 are different in their period because of a different static friction. 

The experimental measurement in Figure 16, though slightly biased with respect to the 

simulated profile, certifies that the design model is a faithful description of the real plant. 
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Figure 16 Case study 1: experimental and simulated measured angular position.  

Figure 17 shows the total command u  (solid line), the reference command u  (the small 

square wave around 2 and 12 s, dashed line) and the estimated disturbance ˆ / aa β  under 
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0m =  (dotted line). The latter component (opposite to u ) mainly accounts for friction 

especially during acceleration phases. Friction can be estimated from Figure 17 and explicitly 

accounted by m .  
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Figure 17 Case study 2: command voltage and its components. 

Table 5 shows the complementary eigenvalues of the state predictor, which fix the noise 

estimator gains in (16), and of the control law, which fix the gains qk  and kω  in (37). The 

state predictor eigenvalues have been selected to guarantee stability in the presence of 

neglected dynamics as in the case study 1. To this end, the resulting BW is rather narrower 

(less than 1/100, the same order as in Table 4) than the Nyquist frequency maxf . Also the 

control BW has been selected smaller than maxf  for providing the command voltage u  with 

a margin during acceleration phases.  

 
Table 5. Complementary eigenvalues of the case study 2 

No. Control section Size 
n  

Value kγ  Frequency kf  
[Hz] 

Nyquist 
maxf [Hz] 

0 State predictor (16) 5 3 0.02,  2 0.03× ×  6.4  1000 
1 Feedback control (37) 2 0.2 64  1000 
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4 CONCLUSIONS  

The key result is that the model-based control theorem fixing the control law - under the 

anti-causal limit - can be designed on the basis of the embedded model without reference to 

uncertainty. Since parametric uncertainty and unknown cross-coupling become part of the 

unknown disturbance signals, they can be accommodated by the noise estimator, whose task 

is estimating the driving noise in real-time. The estimated noise updates the state of the 

disturbance dynamics (to be explicitly modeled) and becomes the unique feedback channel 

through which plant-to-model discrepancies pass, and, if wisely filtered from the effects of 

the neglected dynamics, may continuously update the model state. It is essential to the results, 

that the control unit runs an embedded model enriched by the noise-driven disturbance 

dynamics, in parallel to the plant. 
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