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Abstract 

Accurate intima-media thickness (IMT) measurement of the carotid artery from minimal plaque 

ultrasound images is a relevant clinical need, since IMT increase is related to the progression of 

atherosclerosis. 

In this paper, we describe a novel dual snake-based model for the high-performance carotid IMT 

measurement, called CMUDS (Carotid Measurement Using Dual-Snakes). Snakes (which are 

deformable contours) adapt to the lumen-intima (LI) and media-adventitia (MA) interfaces, thus 

enabling the IMT computation as distance between the LI and MA snakes. However, traditional 

snakes might be unable to maintain a correct distance and in some spatial location along the artery, 

it might even collapse between them or diverge. The technical improvement of this work is the 

definition of a dual snake-based constrained system, which prevents the LI and MA snakes from 

collapsing or bleeding, thus optimizing the IMT estimation. 

The CMUDS system consists of two parametric models automatically initialized using far 

adventitia border which we automatically traced by using a previously developed multi-resolution 

approach. The dual snakes evolve simultaneously and are constrained by the distances between 

them, ensuring the regularization of LI/MA topology. We benchmarked our automated CMUDS 

with the previous conventional semi-automated snake system called CMUSS.  

Two independent readers manually traced the LIMA boundaries of a multi-institutional, multi-

ethnic, and multi-scanner database of 665 CCA longitudinal 2D images. We evaluated our system 

performance by comparing it with the gold standard as traced by clinical readers.  

CMUDS and CMUSS correctly processed 100% of the 665 images. When compared the 

performance with respect to two readers, our automatically measured IMT was on average very 

close to that of the two readers (IMT measurement biases for CMUSS was equal to -0.011±0.329 

mm and -0.045±0.317 mm, respectively, while for CMUDS, it was 0.030±0.284 mm and -

0.004±0.273 mm, respectively). The Figure-of-Merit of the system was 98.5% and 94.4% for 
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CMUSS, while 96.0% and 99.6% for CMUDS, respectively. Results showed that the dual-snake 

system CMUDS reduced the IMT measurement error accuracy (Wilcoxon, p < 0.02) and the IMT 

error variability (Fisher, p < 3 10-2).  

We propose the CMUDS technique for use in large multi-centric studies, where the need for a 

standard, accurate, and automated IMT measurement technique is required. 

 

Keywords: atherosclerosis, carotid intima-media thickness, deformable parametric model, snake, 

constraints, first-order absolute moment, automation, validation, accuracy, reproducibility. 
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1. Introduction 

This paper describes development of the clinically relevant approach allowing improved 

determination of intima-media thickness (IMT) of the carotid arteries. 

Recently, the data from the World Health Organization (1) indicated that cardiovascular 

diseases account from one-third of all the global deaths in Western countries. The World Health 

Organization also estimated that by 2040 the cardiovascular diseases would account for 50% of all 

global deaths, including also emerging countries and third world countries (1). Atherosclerosis is 

the earliest manifestation of the onset of a cardiovascular disease. Atherosclerosis is defined as the 

degeneration of the arterial wall, with consequent deposition of lipids, calcium, and other blood-

borne materials within the arterial wall itself. This process was documented in several studies about 

the genesis and progression of atherosclerosis (2-4). 

In the multi-centric Rotterdam study, the intima-media thickness of the carotid arteries was 

found to be a predictor of cardiovascular risk (5). Carotid IMT was also associated to the incidence 

of several cardiovascular diseases, as documented by other large clinical studies (6-10). The 

accurate measurement of the IMT from ultrasound images is, therefore, clinically very important for 

the assessment of the risk factor of the patients and for screening purposes. 

In clinical practice, the IMT is usually measured by expert sonographers on longitudinal B-

Mode images. By means of the scanner caliper, the sonographer places two markers in 

correspondence of the lumen-intima (LI) and of the media-adventitia (MA) interfaces. The distance 

between the two markers is the estimation of the IMT. This process introduces variability in the 

results, which is linked to the sonographers experience. In a recent study, Polak et al. showed (11) 

that when different trained sonographers manually measured the IMT, a difference of 0.21 mm was 

observed (since the average value of the IMT of atherosclerotic patients is about 0.9 mm, the 

difference was about 23% of the nominal value). This inter-reader variability could lead to an 

incorrect assessment of the patients’ risk assessment. Hence, computer methods aiding the IMT 
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measurement find their utility in order to reduce the measurement variability while maintaining the 

measurement precision.  

 Touboul et al., who were the first to propose a computer method to aid the IMT 

measurement (12) and used it in the epidemiological PARC study (13), which was focused on the 

assessment of carotid IMT measurement reproducibility. The results of the PARC study revealed 

the need for a computer system capable of measuring the IMT with a low error (compared to 

manual tracings by experts). Touboul et al. obtained an IMT measurement error equal to 0.0185 

mm. This study was one of the first proposing a computer system for the IMT measurement in 

multi-centric studies (i.e., in studies where images are collected by different physicians in different 

Institutions, which usually capture images using different ultrasound equipments). 

Hence, computer methods aiding the IMT measurement find their utility in order to reduce 

the measurement variability while maintaining the measurement precision. When the LI and MA 

interfaces are traced by an image processing algorithm, the process is called “segmentation”. In 

2010, Molinari et al. (14) revised all the most used computer techniques for the carotid wall 

segmentation and IMT measurement. In this work, we benchmarked our innovative Dual Snake 

paradigm for the carotid LIMA automated segmentation and IMT measurement. We called this 

novel system as CMUDS (Carotid Measurement Using Dual Snake, a patented technology by 

Global Biomedical Technologies, CA, USA under the class of AtheroEdge™ systems). To fully 

appreciate the rationale of our choice and innovation, we would like to briefly revise the previous 

proposed solutions for computer-based IMT measurement. The most used image processing 

techniques for LIMA tracings and IMT measurement can be subdivided into: 

1. edge-based and gradient-based methods (15-19); 

2. dynamic programming and modeling methods (20-24); 

3. analysis techniques based on specific distributions (e.g., Nakagami, Hough) (25-27); 

4. parametric deformable models  (i.e. snakes) (28-30). 
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The principal advantage of standalone edge-based methods is the fast computation. In fact, edge 

detection can be performed by simple operations such as the high pass filtering of the image. These 

operations are very effective and the overall time required to high pass filter a B-Mode image is less 

than 0.5 ms. The principal drawback of edge-based methods is their sensitivity to noise because 

they are based on image differentiation. In fact, since edge detectors search for intensity variations, 

noise can lead to false edge detections and false edges. 

The dynamic programming techniques are based on the minimization of a cost function, which 

derives from the image features. Cost terms and cost functions (in some algorithms up to 20 among 

terms and function were defined (21)) are related to physical characteristics of the image such as the 

pixel density. Since in ultrasounds the image characteristics depend on the scanner and on the 

settings, dynamic programming techniques are difficult to use in a multi-centric scenario, where 

images might come from different Institutions and different equipments.  

The segmentation methods that model the carotid wall boundaries usually consider predetermined 

intensity features or shapes. Among all the intensity distributions, the Nakagami distribution (25) 

models the sequence of low intensity (i.e., the carotid lumen), medium intensity (i.e., the intima and 

media layers), and the high intensity (i.e., the adventitia layer). The model can be accurate only if 

the overall intensities associated to layers do not change. Thus, the methods based on intensity 

distributions could not recognize the layers’ intensities correctly if different scanners are adapted in 

acquisition protocol. The image transforms, such as the Hough transform (26), are used to detect 

specific shapes in an image. For example, Golemati et al. (26) used the Hough transform to detect 

the lines associated to the LI and MA interfaces profiles. However, this method can only process 

images where the LIMA interfaces are straight horizontal lines and therefore, this is a limitation. 

This strategy poses a challenge to curved arteries or inclined arteries. 

The snake-based techniques have two major advantages:  
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• They are versatile because they can adapt to almost any carotid morphology. Since 

snakes are deformable curves, they can assume different shapes, and so they can 

correctly recognize the interfaces of straight, inclined, and curved carotids. 

• They maintain a smooth shape of the LIMA profiles. This is clinically important, 

because, from a physiological point of view, the profiles of the wall layers are always 

regular and not disconnected. 

Snakes, however, suffers also from two major drawbacks: 

• Need for initialization: Snakes are dynamic contours, which evolve (or change) from an 

initial shape and converge (settle down at correct stable position) over time. Therefore, 

the contour has to be created (initialized) before convergence happens. It has been 

shown that the initialization influences the final segmentation (31). This happens 

because, once initialized, the snakes evolve while following the intensity changes in the 

image. Hence, clearly, the location of the snake initialization is important for the final 

result. 

• Sensitivity to noise: This is because the snake is attracted by image discontinuities. As 

we have already discussed, intensity discontinuities are usually measured by using 

gradients. However, as mentioned above, gradients are noise sensitive. In carotid 

ultrasound images, there are different noise sources, the principal are: blood rouleaux 

and hypoechoic appearance of the LIMA interfaces due to lack of gel on the skin or 

incorrect insonation angle. 

In last years, many snake-based techniques were proposed for the IMT measurement of the 

carotid arteries. Delsanto et al. proposed a completely automated snake-based technique, where the 

snake initialization was performed after having detected the carotid lumen (29, 32). Loizou et al. 

proposed to normalize the image intensity in order to allow the snake to correctly recognize the 

LIMA boundaries even when the interfaces had different brightness (30). Cheng et al. observed that 

sometimes the snake got trapped in-between the LI and the MA boundary. They proposed a new 



	
   8	
  

model that prevented trapping (28) approximating the image discontinuities by using the Macleod 

Operator. In fact, the major problem of the snake-based techniques is the incorrect positioning of 

either the LI or the MA (or even both) snakes with respect to the actual interface. Often, this is due 

to the image gradients that are weak or noisy in correspondence of the LIMA boundaries, so that the 

snakes cannot properly follow the interfaces. If the snakes become too close, the IMT is 

underestimated, because the two snakes are too close than the actual carotid wall boundaries. We 

call this error condition as “collapsing”. If the snakes are too far, the IMT is overestimated. We call 

this error condition ad “bleeding”, meaning that the two snakes went too far away one from the 

other. Bleeding and collapsing of the LIMA snakes, therefore, are the major causes of incorrect 

IMT measurement. 

The herein presented snake system is completely innovative and the main technical 

improvement of CMUDS is its constrained model, where the LI and the MA snakes are subjected to 

a mutual constrain, whose main objective is to prevent collapsing or bleeding. Snakes, when used as 

deformable techniques, are usually initialized close to LIMA interfaces. They must then evolve 

until they converge to the actual shape (as close as possible to the delineations by readers such as 

ultrasound sonographer or vascular surgeon). In the image processing technique we developed, this 

profile generation is totally automated, meaning that carotid artery recognition, far adventitia 

detection, region of interest estimation, initialization of the snakes, snake evolution, and final 

convergence are all carried out without any intervention by the user. We benchmarked CMUDS 

against traditional snake model having no constraints as proposed by Loizou et al. (30) (which we 

called CMUSS – Carotid Measurement Using Single Snake). We validated CMUDS on a multi-

institutional, multi-ethnic, and multi-scanner database of 665 longitudinal carotid B-Mode images. 

In the following, we describe our methodology, benchmarking strategy, acquisition details on our 

image data sets, validation protocol, and the performance metrics adapted. 
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2. Materials and Methods 

 

2.1  Constrained Dual Snake Energy Formulation 

In this section we describe the automated CMUDS system. It consists of three cascaded steps: 

Step-I is the automate carotid recognition and tracing of the far adventitia wall (ADF); Step-II is the 

ROI determination followed by initialization of two snake models (one for the LI interface and one 

for the MA); Step-III is the convergence and final LIMA tracing. Figure 1 shows a flow-chart of the 

CMUDS architecture, and is described step-by-step in the following. First of all, the input image 

was automatically cropped: the black frame border which usually surrounds the ultrasound B-Mode 

image was automatically removed by using either vendor-specific information (embedded in the 

DICOM formatted image) or by using a gradient-based approach (33). 

2.1.1 Step-I: Carotid recognition and far adventitia wall tracing 

Figure 2 depicts the ADF recognition strategy. The ADF profile was automatically traced by 

means of a recognition system based on first-order Gaussian filtering and multi-resolution approach 

(23, 34) (which we named as CAMES and that is fully described in the work by Molinari et al. (in 

press)). 

The original image (fig. 2.a) is down-sampled by a factor of 2 (fig. 2.b) by using a bi-cubic 

interpolation as suggested by Zhen et al. (35). The multi-resolution method prepares the vessel 

wall’s edge boundary such that the vessel wall thickness tends to be equivalent to the scale of the 

Gaussian kernels. The image is then filtered in order to reduce the speckle (fig. 2.c). We used a 

first-order statistics filter, which was suggested by Loizou et al. (36). They proved that this filter 

attenuated speckle without blurring the wall interfaces. The despeckled image was then filtered by a 

first-order derivative Gaussian kernel. The scale parameter of the kernel (i.e., the value of ) was 

chosen to be equal to the theoretical size of the carotid wall. Since our images database comprised 

� 

σ
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both normal and pathological subjects, we considered an average IMT value of 1 mm, which we 

converted in pixels. Hence, the scale parameter of the first-order Gaussian kernel was equivalent to 

1 mm. As an example, for the images having a pixel density of 16 pixels/mm, the IMT nominal 

value scaled to half its size was 8 pixels, and this was the scale parameter of the first-order 

derivative Gaussian kernel. The effect of the first-order Gaussian filtering is shown in fig. 2.d, 

where the two bright stripes represent the carotid near and far wall position. This filtered image was 

considered column-by-column. The intensity profile of a column is shown in fig. 2.e. This profile 

was scanned starting from the bottom of the image (i.e., from the point with the higher row index). 

The ADF was defined as the farthest white point (i.e., with intensity equal to 255 in a 0-255 gray 

scale) belonging to a white segment of at least 1 mm. This because, as we described earlier, the 

scale parameter of the first-order Gaussian kernel was chosen equal to 1 mm, thus the far wall 

should have a minimum size of 1 mm. The sequence of all the detected ADF points constituted the 

final adventitia profile (fig. 2.f). This procedure has the advantage of being tuned to the size of the 

carotid wall, thereby attenuating the contribution coming from all the other image features (i.e., 

underlying tissues, blood rouleaux streams, artifacts). Also, the value of  is very easy to derive 

from the pixel density. 

 

2.1.2 Step-II: Lumen-intima and Media-adventitia snakes initializations 

The ADF profile was then used for ROI reconstruction and initialize of snakes. The LI snake was 

initialized by shifting the ADF profile 3 mm upwards. Let’s call this value as . Since the 

maximum IMT value we had in our database was about 1.7 mm, a  equal to 3 mm ensured that 

the LI snake was placed into the carotid lumen. The MA snake was initialized by shifting upwards 

the ADF profile of a value 

� 

ΔMA  equal to 0.1 mm. This value was the optimal choice to place the 

initial MA snake close to the interface without placing it in-between the LI and the MA boundaries. 

Fig. 3 shows samples of the ADF and the snake initializations. 

� 

σ

 

ΔLI

 

ΔLI
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2.1.3 Step-III: CMUDS snake model and its convergence 

A 2-D parametric deformable model (snake) is a mathematical description of a contour evolving 

on the image and driven by two energy types. The first type is the Internal energies that impose 

geometrical constraints on the contour. For example, an internal energy could limit the curvature as 

well as length of the snake. Hence, these internal energies are used for sharing and smoothing the 

contour. When snakes are used to segment the LI and MA interfaces, the internal energies can be 

used for smoothing the snakes, so that they can correctly adapt to the actual wall interfaces. The 

second type is the External energies, which are used to attract the snake in correspondence to the 

image discontinuities. Convergence is reached when the points of the snake are in correspondence 

of the image discontinuities (i.e., in this specific case, in correspondence of the lumen-intima and 

media-adventitia intensity transitions) and the internal forces counterbalance the external ones.  

From a mathematical point of view, let  represent the snake, a 2D contour, where the 

parameter s is the curvilinear coordinate on the image. The curvilinear coordinate s is space-

normalized in the range [0,1]. Each snake is associated and defined with an energy functional, 

constituting the internal and external energies. This energy functional is very important for a snake.  

This is because the snake reaches convergence when the energy functional is minimized. Therefore, 

when the energy associated to the snake is at its minimum, the internal and external forces 

counterbalance each other and the snake is stable. The energy functional we defined for our snake 

model  is the following: 

 (1) 

In eq. (1), the internal energy  consists of the first term: 

 (2) 

€ 

v s( )

€ 

v s( )

€ 

E v s( )( ) = α v ' s( ) 2
+ β e v s( )( ) + γ v s( ) − e v s( )( ) ds

0

1

∫

€ 

Ei

€ 

Ei v s( )( ) = α v ' s( ) 2ds
0

1

∫
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Whereas the external energy  is: 

 (3) 

The internal energy is used to constrain the shape of the contour and its properties. The parameter 

 is used to control the continuity, where  is the first-order derivative of the snake curve . 

Dimensionally, the term  is a velocity, ad hence the square modulus is used to model the 

associated energy (exactly as in physics the kinetic energy is associated to the square value of the 

velocity). 

The external energy is used to attract the snake towards the image discontinuities. The first term of 

the external energy  is used in capturing the LIMA interface of the far wall. In fact, the 

functional  is an edge operator called FOAM (First Order Absolute Moment), which was 

proposed by Demi et al. (37) and adapted by Faita et al. for detection of the LIMA edges (15). The 

mathematical details of FOAM are summarized in the Appendix. To summarize, the FOAM 

operator is used to enhance the intensity transitions (such as those along the LIMA edges). Hence, 

FOAM assumes a high value in intensity transitions and it is zero valued in image regions 

characterized by a constant or uniform intensity. Unlike traditional image gradients, the FOAM 

operator is shown to be more robust with respect to noise. The basic concept of the FOAM operator 

is the application of a high pass filter after the image has been filtered by a Gaussian low pass filter. 

This joint filtering operation ensured the preservation of the intensity changes combined to noise 

smoothing. Figure 4 shows an example of FOAM: fig. 4.a is relative to the original B-Mode image, 

fig. 4.b to the corresponding FOAM map.  

This first term of the external energy acts as a stopping function: when the snake points are in 

correspondence to the image edges, this energy has a high weight and therefore the points tend to be 

blocked there. The parameter  controls the strength of this stopping force. 

€ 

Ee

€ 

Ee v s( )( ) = β e v s( )( ) + γ v s( ) − e v s( )( ) ds
0

1

∫
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It must be noted that this energy term  is null when the snake points are placed far from 

the edges, where the FOAM operator is equal to zero. Therefore, we added a second term of 

external energy to our deformable model. The second term of the external energy  

models an attraction term, which attracts the snake points when they are far from the actual wall 

interfaces. This term computes the distance (i.e., the difference) between the edges  of the 

image and the snake position. Therefore, even if the snake is placed in a region where the FOAM is 

null, it is attracted by the closest edge of the FOAM itself, with an attraction force that is 

proportional to the distance of the snake from the edge. This term is always positive when the snake 

is far from the edges, whereas it becomes zero valued when the snake is found in correspondence to 

the edges. The joint action of the two components of the external energy attracts the snake to the 

edges and locks the snake once it has reached its stable position (i.e., when the snake points have 

reached the actual wall interfaces). 

In our segmentation problem, we had a total of six parameters: three for the LI snake ( , , 

and ) and three for the MA snake ( , , and ). Table 1 summarizes the parameter 

values. We chose the parameter values after pilot tests on a reduced subset of 20 images randomly 

selected from our database (results not reported here). We selected the parameters values that 

minimized the IMT measurement error on the 20 testing images. We had to impose different 

parameters for the LI and the MA snake because, like Faita et al. (15) pointed out, the LI and MA 

edges have different intensities in the FOAM edge map. Table 1 reports the variation range for the 

CMUDS parameters. As observed empirically, we defined those ranges as the numerical intervals in 

which the IMT measurement error did not change beyond 1%, with the change in dual snake 

parameters in the given interval. As it can be noticed, CMUDS was very robust, because variation 

as large as 20% did not cause a performance decrease higher than 1%. This was mainly due to the 

distance constraints in dual snakes. 
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Table 1 – Parameters value for the LI and MA snakes. Such values are same for all the images 

of the database. 

LI/MA Snake 

€ 

α  (curvature) 

€ 

β  (stopping energy) 

€ 

γ  (attraction energy) 

LI snake 

Range 

0.5 

[0.4 – 0.6] 

0.1 

[0.08 – 0.15] 

0.1 

[0.01 – 0.2] 

MA snake 

Range 

0.5 

[0.4 – 0.6] 

0.2 

[0.1 – 0.3] 

0.05 

[0.03 – 0.06] 

 

We also introduced a mutual constraint that forced the snakes to maintain a constrained 

distance from one other. This term was very important during convergence, because it prevented the 

snakes from bleeding or collapsing. We measured the distance between each point of the LI snake 

(called ) and the line segments of the MA snake (called ). We used the Polyline 

distance (PDM) as distance metric (38). Let’s call this distance as DLI-MA. We also measured the 

distance between the points of the MA snake and the line segments of the LI snake and called the 

distance as DMA-LI. When we observed that one point of the LI snake  had a distance higher 

than 3 mm or lower than 0.3 mm (which we considered as a bottom threshold for IMT) from 

, we shifted that point up or down until its DLI-MA value was within the imposed constraints. The 

same correction was applied to the points of the MA snake . 

 Once automatically initialized, the snakes evolved (without any interaction by the operator) 

according to the internal and external energies they were subject to. At each iteration step, we 

computed the coordinates of the snake points. When we observed that both the snakes had stopped 

evolving, we stopped the iteration and the shape of the snake was considered as the LIMA computer 

generated profiles. To avoid being trapped in a loop, we set a maximum limit on the number of 

iterations (called ). In this study, we set  equal to 200. We chose this value after pilot 

tests. We observed that in 100 iterations, the snakes could cover up to 0.8 mm distance. This was 

€ 

vLI (s)

€ 

vMA (s)

€ 

vLI (s)

€ 

vMA (s)

€ 

vMA (s)

� 

IMAX

� 

IMAX
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compatible with our need, since the LI profile was initialized, on average, about 0.2±0.08 mm from 

the actual LI interface. Therefore, we set  equal to 200, which is double the value we tested, in 

order to ensure convergence in every condition. 

 

2.2 Carotid Measurement Using Single Snake 

We adapted the technique proposed by Loizou et al. (30, 39, 40) since it was the best performing 

and established snake-based technique for LIMA segmentation and IMT measurement. This 

technique showed an IMT measurement error as low as 0.050 ± 0.025 mm. This is a semi-

automated method since it uses manual method for initialization of LIMA borders. This means the 

snake for LI is independently evolving to snake of MA. Thus we call it single snake method or 

CMUSS. We use CMUSS for benchmarking CMUDS. CMUSS consists of two steps: the first one 

(Step-I) is devoted to image pre-processing and snake initialization, whereas the second (Step-II) is 

the snake-based LIMA segmentation. 

2.2.1 Step-I: Image preprocessing and snake initialization 

Step-I of CMUSS requires human intervention: the operator selected a ROI containing the distal 

carotid wall. In CMUSS, all the images were first intensity normalized so that blood was 

represented by a gray level 0-5 and adventitia 180-190 (30, 40). Then, the preprocessing procedure, 

which took to the LI snake initialization, was the following (30): 

• The image (considered in the manually traced ROI – fig. 5.A) was despeckled by using a 

linear scaling filter (called as lsmv by the Loizou et al. (36)) of 7x7 size. The filter was 

applied iteratively 5 times (36) (fig. 5.B), because Loizou et al. showed that this was the 

number of iterations required to attenuate speckle without decreasing the intensity of the 

LIMA interfaces. 

� 

IMAX
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• The despeckled image was binarized (fig. 5.C). The Otsu’s criterion was used to 

automatically choose the proper threshold (41). Pixels belonging to the carotid wall should 

be mapped to white and other pixels to black. 

• Image dilation by a 3x3 circular structuring element (fig. 5.D). This operation was needed in 

order to fill possible holes in the white region of fig. 5.C. 

• Connected components analysis of the dilated image by considering 8-adjacents pixels (fig. 

5.E). Labelling connected components was used to remove erroneous small edges that might 

trap the snake. Image segments smaller than 20 pixels were removed. 

• Final image gradient (fig. 5.F) and extraction of the initial LI profile. 

The LI contour was displaced of about 1 mm in order to create the MA initial contour. This value of 

1 mm was chose since it represented the gross mean IMT value over our image set. 

 

2.2.2 Step-II: CMUSS formulation and convergence 

The CMUSS system was based on the Williams and Shah method (42). The energy 

functional associated to this snake is the following (defined in (30)): 

� 

E v s( )( ) = α s( )Econt + β s( )Ecurv + γ s( )Eimageds
0

1

∫  
(4) 

Where: 

• 

� 

α s( )Econt  is a contribute of internal energy, which is proportional to the first derivative of 

the snake 

� 

v s( ). Being proportional to the derivative of the snake contour, this internal 

energy constrains the continuity of the snake. In the original formulation of Williams and 

Shah (42), this term was named “tension”, meaning that the higher the values of 

� 

α  the 

higher was the tension of the snake (and, thus, the lower was its capacity of assuming 

curved shapes). 
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• 

� 

β s( )Ecurv  is a contribute of internal energy, which is proportional to the second-order 

derivative of the snake 

� 

v s( ). Williams and Shah (42) named this term “stiffness”, meaning 

that the higher the value of 

� 

β , the stiffer the snake. This energy term controls the bending of 

the snake. 

• The external energy 

� 

γ s( )Eimage represents the image energy computed using the image 

gradient (30). As we already described, the gradients highlight the intensity changes in the 

image, so they are used to drive the snake towards such changes (in our segmentation 

problem, the intensity changes are the LIMA interfaces of the far carotid wall). 

According to Loizou et al. (30), we have chosen in our study the initial values as: 

6.0)( =siα , 4.0)( =siβ , and , to start the snake deformation, and these values are  

consistent with other previous snake-based models (30, 40, 42). For the segmentation of the LI and 

MA interfaces, we first segmented the image at the far wall of the CCA, by extracting the LI 

interface and then the MA interface using the proposed snake algorithm (30). We kept the 

maximum numbers of iterations  equal to 200 also for the CMUSS system. 

 

2.3 Image database, performance assessment, and statistics 

We tested CMUDS and CMUSS on a database of 665 longitudinal B-Mode images. This database 

is multi-institutional, multi-ethnic, multi-scanner, and multi-operator. It also comprised healthy and 

pathologic carotids. Table 2 reports the details of the acquired images, along with the pixel density 

and the ultrasound scanner used. All the patients signed an informed consent prior of undergoing 

the ultrasound examination. Each Institution took care of obtaining approval for the data acquired 

by the respective Ethical Committee or Institutional Review Board (IRB). The five image datasets 

were acquired independently from each Institution and in different years (the years in which images 

were acquired are reported by the first row of Table 2). Hence, no standardization was made among 

the five sets. Also, each sonographer adjusted the scanner settings (TGC values and gain factors) for 

2)( =siγ

� 

IMAX
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each corresponding patient during acquisition. All images were discretized at 8 bits (256 gray 

levels) and were provided in a digital form.  

 

Table 2 – Patients demographics and ultrasound acquisition parameters. The references in the 

second row are relative to previous publications in which the specific set of images was used. (CF – 

conversion factor) 

 Torino  

(’02-’09) 

Nicosia 

(’02) 

Cagliari 

(’09) 

Porto 

(’08) 

Hong Kong 

(’10-’11) 

Total 

images 
200 100 42 23 300 

CF 

(mm/px) 
0.0625 (32) 0.0600 (43) 0.0789 (44) 0.0900 (45) 0.0585 

Patients 150 100 21 23 50 

Age 

(years) 

69 ± 16 

(50-83) 

54 ± 24 

(25-95) 

68 ± 8 

(59-81) 
[Not pub.] 

60±5 

(54-67) 

Scanner ATL HDI 

5000 

ATL HDI 

3000 

Esaote 

MyLab 70 

ATL HDI 

5000 

Siemens 

Antares 

 

An expert vascular radiologist and a neurosonographer manually segmented all the images by 

tracing the LI and MA profiles using ImgTracer™ (Global Biomedical Technologies, Inc., CA, 

USA) (46). The manual segmentations were considered as ground truth for computing the system 

performance of the computer-generated LIMA segmentations and IMT measurements. The first 

reader will be indicated as Reader-1 in the following, the second as Reader-2. 

We used the Wilcoxon signed rank test to assess the difference between the average IMT 

measurement values, as suggested in previous similar studies (47). We choose the Wilcoxon test 

because it is a paired test, meaning that it is suitable to comparing two different measurement sets 
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made on the same images. We preferred the Wilcoxon test with respect to the Student’s t-test 

because we could not assume that our values were normally distributed. To test the difference 

between the IMT measurement variances, we used the Fisher’s F-test, which is the most commonly 

used statistical test to assess the equality of the variances of two sampling populations. 
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3. Results 

Both CMUSS and CMUDS successfully processed the 665 images of the testing database. This 

100% success was important for CMUDS, because it is a completely automated technique. Figure 6 

shows samples of CMUSS (left column) and CMUDS (right column) segmentation. The top panels 

(fig. 6.A and 6.B) show the case of a straight and horizontal artery; the middle panels (fig. 6.C and 

6.D) show an inclined artery; and the bottom panels (fig. 6.E and 6.F) show a curved artery. In these 

sample images, both CMUSS and CMUDS showed accurate LIMA tracings. This demonstrates that 

the snake models can deal with the anatomical variability of the arteries. 

 Table 3 summarizes the average IMT values measured by CMUSS (first column), by the 

two readers (second and third column) and by CMUDS (fourth column). CMUSS underestimated 

the IMT value with respect to both the readers, whereas CMUDS overestimated with respect to 

Reader-1 and underestimated with respect to Reader-2.  

 Table 4 summarizes the IMT measurement errors (first row) and absolute error (second row) 

form CMUSS and CMUDS compared to the readers. The best measurement accuracy (i.e. the mean 

value of the IMT bias) was shown by CMUDS when compared to Reader-2 (-0.004 mm, about 

0.4% of error on the nominal IMT value of 1 mm). The lower accuracy was shown by CMUSS 

when compared to Reader-2 (-0.045 mm, about 4.5% of the nominal IMT value). CMUSS IMT 

estimates were found statistically different from those of Reader-1 (p < 0.04), but not from Reader-

2 (p > 0.4). CMUDS IMT values were not different from the readers’ values (p always higher than 

0.2). The measurement reproducibility (i.e. the standard deviation of the IMT bias) was always 

lower for CMUDS, both when compared to Reader-1 (p < 2.6 10-4) and Reader-2 (p < 1.6 10-4). 

Hence, CMUDS measurements were overall more reproducible than CMUSS. 

 Figure 7 reports the IMT measurement bias for CMUSS (fig. 7.A and 7.B) and CMUDS 

(fig. 7.C and 7.D). The top panels are relative to Reader-1 and the bottom to Reader-2. The black 

line overlaid to the histogram bars represents the error cumulative function. Figure 8 reports the 
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comparison between the cumulative function curves for CMUSS (dashed line) and CMUDS 

(continuous line). By looking at the histograms in fig. 7, it can be observed that the dispersion of the 

CMUDS measurement errors is lower than CMUSS. This is confirmed by the standard deviations 

of the IMT bias in Table 4, where the standard deviation of CMUDS is always lower than that of 

CMUDS. Hence, CMUDS is more reproducible than CMUSS. Reproducibility is a term used to 

indicate the variability of a technique in the measurement of a given quantity. Thus, reproducibility 

is better for the technique having the lower standard deviation of the measurement error (i.e., the 

IMT bias). 

 The last row of table 4 reports the Figure-of-Merit (FoM). FoM can be thought as the 

percent overall agreement between the IMT measurements by the readers and the computer 

measured IMTs. It can be defined as: 

� 

FoMCMUSS = 100 − CMUSSIMT − ReaderIMT
ReaderIMT

⋅100

FoMCMUDS = 100 − CMUDSIMT − ReaderIMT
ReaderIMT

⋅100
 (5) 

where CMUSSIMT is the average IMT value computed by CMUSS, CMUDSIMT is the average IMT 

value computed by CMUDS, and ReaderIMT is the average IMT value manually measured by the 

readers (either Reader-1 or 2). CMUSS showed FoM equal to 98.5% compared to Reader-1 and of 

94.4% to Reader-2. CMUDS showed FoM of 96.0% compared to Reader-1 and 99.6% to Reader-2. 

Overall, CMUDS showed the highest FoM (99.6% against Reader-2) and the best average FoM 

(97.8% against 96.5% of CMUSS). 

 

Table 3 – Comparison of average IMTs between CMUSS (column one), CMUDS (column 4) and 

the two readers (Reader-1 and Reader-2 in middle columns) 

 CMUSS Reader-1 Reader-2 CMUDS 

IMT value (mm) 0.747±0.167 0.758±0.285 0.791±0.258 0.788±0.288 
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Table 4 – Performance Evaluation Comparisons between CMUSS (left column) and CMUDS (right 

column)  

 CMUSS CMUDS 

IMT bias (mm) w.r.t Reader-1 

IMT bias (mm) w.r.t Reader-2 

-0.011±0.329 

-0.045±0.317 

0.030±0.284 

-0.004±0.273 

IMT abs. err. (mm) w.r.t Reader-1 

IMT abs. err. (mm) w.r.t Reader-2 

0.245±0.219 

0.227±0.226 

0.199±0.205 

0.180±0.205 

FoM (%) w.r.t Reader-1 

FoM (%) w.r.t Reader-2 

98.5% 

94.4% 

96.0% 

99.6% 

 

Figure 9 reports the Bland-Altmann plots for CMUSS (fig. 9.A and 9.C) and CMUDS (fig. 9.B and 

9.D) with respect to the readers’s intima-media thickness values. Bland-Altmann plots are very 

useful in clinical applications when comparing the measurement of the technique under testing to 

the measurements obtained by the technique considered the best (which is usually called the 

“golden standard”). In our application, the golden standard was the set of measurements made by 

the readers, whereas the techniques under testing were CMUDS and CMSS. The horizontal axis of 

the Bland-Altmann plots report the average IMT value between the golden standard and the 

technique under testing. The vertical axis reports the difference of the golden standard and testing 

technique IMT values. If, for example, a testing technique had a measurement bias, then the cloud 

of dots would show a trend. This is the case of CMUSS (left column of fig. 9): the Bland-Altmann 

plots report a negative trend for higher IMT values. This means that CMUSS tends to 

underestimation when IMT has values higher than 1 mm. The CMUDS graphs, conversely, show 

good accordance with manual measurements. 
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4. Discussion 

In this paper we benchmarked the constrained our snake mode with the most performing 

conventional snake model for the far carotid wall segmentation and IMT measurement. The main 

innovation of this paper is the design of the automated constrained based dual snake model 

(CMUDS) and its clinical evaluation. This system is unique and novel in the medical imaging 

scenario for the following primary reasons: 

a) Dual Snake System: two deformable parametric models (one for the LI and one for the MA) 

are initialized simultaneously and converge simultaneously in successive steps.  

b) Constrained Paradigm: the LI and MA profiles are constrained during the evolution process. 

c) Automation: the entire system is completely automated, that include: CCA recognition, ROI 

estimation, Snake initialization, Snake Evolution and Convergence; 

d) External Energy: this term utilizes high-performance edge snapper called FOAM [11] 

compared to conventional gradient methodologies. This prevents bleeding and premature 

collapses. 

No other methodologies that we are aware of use a Dual Snake system for LIMA interface 

computation and IMT measurement. Usually, as in CMUSS, snake-based methods use the snake 

sequentially in time, by first running it for LI interface computation, followed by MA computation. 

The evolution of the snakes is, therefore, independent. Our system can be considered as a Dual 

Snake, because our LIMA snakes evolve simultaneously and are constrained by each other. This 

constraint prevents the snakes from bleeding or collapsing. The effect of the mutual constraint can 

be better appreciated by looking at fig. 10. We implemented CMUDS on our database by relaxing 

the constraints. Figure 10.A shows one sample of CMUDS LIMA segmentation with constraints 

removed. The white arrow indicates a region in which the LI snake collapsed on the MA snake. The 

constrained version of CMUDS (fig. 10.B) showed accurate segmentations and without collapsing. 
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 CMUDS showed overall performance that was better than CMUSS. First of all, CMUDS 

was statistically more reproducible compared to CMUSS. Also, the overall FoM of CMUDS was 

higher than that of CMUSS (97.8% for CMUDS vs. 96.5% for CMUSS). Also, we found 125 

images in which CMUSS clearly showed inaccurate LIMA segmentations. Figure 11 shows two 

examples of inaccurate CMUSS LIMA tracings, compared to CMUDS. The white arrows in fig. 

11.A and 11.C point to portions of the LIMA profiles by CMUSS that are inaccurate (the ground 

truth tracings by Reader-1 are shown by dashed yellow line for comparison). In fig. 11.A the 

CMUSSMA profile is traced too close to the LI and it is not placed on the actual MA interface. In 

fig. 11.C, the LI snake was trapped by lumen noise (which, in this image is represented by blood 

rouleaux) and it is distant from the reference LI interface. On the contrary, Figures 11.B and 11.D 

shows the stability of CMUDS tracings. 

The suboptimal performance of CMUSS has been solved by CMUDS because of the constraints 

between the evolving LIMA curves. In fact, the external energy term linking the LI to the MA 

prevents the snakes from collapsing (i.e. from having a too low distance as in fig. 11.A) or from 

bleeding (i.e. from having a too high distance, as in fig. 11.C). Therefore, we believe that CMUDS 

represents a major improvement in the snake-based techniques for carotid LIMA segmentation. 

 The overall superior performance of CMUDS is also depicted by the Bland-Altmann plots. 

In fact, CMUSS (fig. 9.A and 9.C) showed bias for higher IMT values and had a marked tendency 

to underestimate the IMT (Table 3). We double-checked all the images corresponding to dots that 

were below the bottom dashed line in fig. 9.A and 9.C (the bottom dashed line represents the mean 

IMT bias minus one standard deviation). In total, we checked 125 images. In all those images 

(100% of the cases) the under-estimation was caused by a collapsing of the snakes: in 81 images 

(about 65%) the LI snake collapsed on the MA snake (i.e. the MA snake was correctly in 

correspondence of the actual MA border); in 37 images (about 30%) the MA snake collapsed on the 

LI snake (i.e. the LI snake was correctly positioned on the actual LI border); and in the remaining 7 

images (about 5%) both the snakes collapsed and none was in correspondence of the actual 



	
   25	
  

interfaces. Hence, all these error conditions were originated by the lack of mutual constraints 

between the snakes.  

The best performing snake-based algorithms that were published in literature were by Cheng 

et al. [24] and Delsanto et al. (29). All these techniques segmented the LIMA profiles 

independently thereby more susceptible to noise. Cheng et al. proposed a zip-lock snake. Such 

snake originates from two points that must be placed no more than 1 mm away from the interface 

one wants to segment (28). Therefore, manual interaction was required in order to start the snake 

convergence. Delsanto et al. proposed an automated method for the snake initialization. Such 

method was based on a user-independent procedure for the carotid lumen detection that was based 

on signal analysis (29, 33, 48). All the pixels that were considered as possibly belonging to the 

carotid lumen constituted a mask, which was then used to locate the distal artery wall. The LIMA 

snakes were initialized by using the vertical gradients (48) of the image. This means that the 

intensity changes in the image were computed in the vertical direction, which was orthogonal to 

CCA of LIMA interfaces, normally running horizontal in the ultrasound scan. 

However, the direct comparison of CMUSS and CMUDS performance with respect to 

previous snake-based techniques is not straightforward for the following reasons: 

• Distance Metric. Cheng et al. (28) and Delsanto et al. (29) used the root mean squared 

error as a performance metric and the Euclidean distance as IMT distance metric. We 

measured that the Euclidean distance, but due to the morphology of the arterial shape 

such as horizontal vs. curved, there can be a bias in results up to 35% due to shape 

changes (see the different carotid morphologies in fig. 6). 

• Multi-institutional dataset. We validated CMUSS and CMUDS on a 665 images 

database coming from five different Institutions. The images were acquired using four 

different ultrasound OEM scanners. The pixel density varied from a minimum of 11 

pixels/mm to a maximum of 17 pixels/mm, hence if we consider an IMT value of 1 mm, 

its representation varied from 11 pixels to 17 pixels in our dataset. Previous snake-based 
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algorithms were validated on single-institutional datasets and, therefore, with fixed pixel 

density. 

• Multi-ethnic dataset. The database we used comprised images coming from four 

different European countries (Mediterranean basin) and one Asian country (Hong-

Kong). This is an important difference, because it has been shown that different ethnic 

groups have lipid percentage around the heart and the major vessel layers (49) that could 

differ up to about 42 cm3 (when comparing, for instance, Chinese from African 

American). Hence, ethnicity might influence the echographic appearance of the carotid, 

thus constituting a further challenge for the snake system. 

• Atherosclerotic and normal arteries. Our dataset comprised normal and pathological 

vessels.  

All the above-mentioned differences between our testing dataset and previous studies also 

justify the high IMT error standard deviation we measured. Our IMT measurement reproducibility 

was of the order of 0.2 mm, which is about 20% of the nominal IMT value. The best performing 

computer methods for IMT measurement showed reproducibility of about 0.02 mm (about 2% of 

the IMT normal value). We attribute this increased variability at the above-mentioned 

characteristics of our testing image set. In fact, we computed the average difference between the 

IMT measurements between the two readers as: 0.033 ± 0.291 mm. Therefore, the reproducibility 

between the two readers was of the same order of magnitude as the IMT bias of CMUSS and 

CMUDS. 

 

5. Conclusions 

We benchmarked a dual-snake constrained snake system for the carotid wall segmentation and IMT 

measurement (which we called as CMUDS) against a single snake unconstrained system (which we 

called CMUSS). We showed that the mutual constrain between the LI and MA snakes increases the 
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overall system performance with greater clinical stability. Particularly, the reproducibility of 

CMUDS was statistically better than CMUSS. CMUDS, which is fully automated, had 100% of 

success on a large dataset of 665 images coming from different clinical centers. 

The potentialities of CMUDS represent a valuable clinical asset in large epidemiological studies. 
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Figure Legends 

Figure 1 

 

Flow-chart of the Carotid Measurement Using Dual Snake (CMUDS) system. 
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Figure 2 

 

Schematic representation of the automated far adventitia (ADF) tracing. A) Original B-Mode image. 

B) Down-sampled image. C) Filtered image after speckle noise reduction. D) Filtered image after 

convolution with a first-order derivative Gaussian kernel with scale parameter  = 8 pixels. The 

dashed vertical white line indicates a column of the image whose intensity profile is reported by 

panel E. E) Intensity profile of an image column. The ADF is recognized as the deepest pixel whose 

intensity is mapped to 255 (i.e. the maximum value on the gray scale). F) Final ADF profile. 
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Figure 3 

 

Automated initialization of the lumen-intima (LI – white line) and media-adventitia (MA – white 

dashed line) snakes starting from the far adventitia (ADF – black line) profile. 
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Figure 4 

 

Sample of First Order Absolute Moment (FOAM) edge operator. A) Original B-Mode image. B) 

FOAM edge map. 

(LI – lumen-intima interface; MA – media-adventitia interface; CCA – common carotid artery) 
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Figure 5 

 

Preprocessing strategy for LI snake initialization. A) Original normalized image (manually traced 

ROI). B) Despeckled image. C) Binarized image. D) Image after morphological opening. E) 

Connected components analysis. F) Image gradient and initial LI contour. 

(CCA – Common Carotid Artery) 
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Figure 6 

 

Samples of CMUSS (left column) and CMUDS LIMA tracings. Panels A and B are relative to a 

straight and horizontal artery, panels C and D to a inclined artery, and panels E and F to a curved 

artery. In these images, CMUSS and CMUDS both showed accurate tracings. 

(CMUSSLI – lumen-intima tracing by CMUSS; CMUSSMA – media-adventitia tracing by CMUSS; 

CMUDSLI – lumen-intima tracing by CMUDS; CMUDSMA – media-adventitia tracing by CMUDS) 

 

  



	
   40	
  

Figure 7 

 

Histogram representation of the IMT measurement error (bias) for CMUSS (left column) and 

CMUDS (right column). Top panels are relative to Reader-1 (A and B), bottom panels to Reader-2 

(C and D). The black line overlaid to the histograms represents the cumulative function. 
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Figure 8 

 

Comparison of the IMT bias cumulative functions w.r.t. Reader-1 (A) and Reader-2 (B). CMUSS 

cumulative functions are plotted by dashed lines, CMUDS by continuous lines. 
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Figure 9 

 

Bland-Altmann plots for CMUSS (left column) and CMUDS (right column) compared to the 

readers’ IMT values. The top row (panels A and B) are relative to reader1, the bottom panels (C and 

D) to Reader-2. 
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Figure 10 

 

Comparison between unconstrained (panel A) and constrained CMUDS (panel B). The white arrow 

indicates a region where the LI snake (continuous white line) collapsed on the MA (dashed white 

line) due to lack of external energy. 
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Figure 11 

 

Comparison of CMUSS (left column) and CMUDS (right column) performance on two images. The 

computer generated LIMA are represented by white continuous lines. The manual tracings by 

Reader-1 are shown by white dashed lines. The white arrows in panels A and C show inaccurate 

CMUSS profiles. 

 (CMUSSLI – lumen-intima tracing by CMUSS; CMUSSMA – media-adventitia tracing by CMUSS; 

CMUDSLI – lumen-intima tracing by CMUDS; CMUDSMA – media-adventitia tracing by CMUDS; 

Reader-1LI – lumen-intima tracing by Reader-1; Reader-1MA – media-adventitia tracing by Reader-

1) 
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List of Abbreviations 

IMT	
   Intima-­‐media	
  thickness	
  

LI	
   Lumen-­‐intima	
  

MA	
   Media-­‐adventitia	
  

CMUDS	
   Carotid	
  Measurement	
  Using	
  Dual	
  Snake	
  

CMUSS	
   Carotid	
  Measurement	
  Using	
  Single	
  Snake	
  

LIMA	
   Lumen-­‐intima	
  and	
  media-­‐adventita	
  interfaces	
  

ADF	
   Far	
  wall	
  adventitia	
  layer	
  

ROI	
   Region	
  of	
  interest	
  

FOAM	
   First-­‐order	
  absolute	
  moment	
  

CF	
   Conversion	
  factor	
  

FoM	
   Figure-­‐of-­‐Merit	
  

	
  

 


