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Chapter 1

Introduction

A general problem in the control field is to derive a model of the system to be controlled.
The classical approach consists in building a mathematical model on the basis of the laws
governing the system (e.g. mechanical, physical, economical) and then exploit it for de-
signing a model-based control law that fulfills the desired specifications. However, such
approach is not always possible for two main reasons: the uncomplete knowledge of the
system laws and its nonlinearity which, respectively, do not enable to derive an accurate
and tractable model. On the other hand, considering that the most of the existing sys-
tems are nonlinear, the model to be derived should be a trade-off between accuracy and
tractability. Indeed, the accuracy of the model, employed to design the control system,
plays a crucial role since the performance achievable by the controlled system strongly
depends on the size of the modeling error. In the presence of a poor accurate model, not
only a performance degradation may occurr, but the closed loop stability may also be
missed.
The literature of nonlinear control usually assumes that the system to be controlled and
its model are well known, altough this is not always true as pointed out above. In par-
ticular, the nonlinear models usually employed are neural networks or parametric models
whose parameters are identified from input/output data of the process. Due to the nature
of these models, does not exist a systematic procedure to obtain a suitable description of
the uncertainty associated with them, which in turn hampers a systematic dealing of the
robust stability.
Thus, in order to investigate the control of nonlinear and unknown systems, guaranteeing
the stability of the closed loop system in the presence of model uncertainty, objective of
this thesis is study the robust control of nonlinear dynamic systems from experimental
data.
At this aim, a Nonlinear Set Membership (NSM) identification methodology is used to
derive a data-based model. Such technique identifies a model from input/output data col-
lected in previous experiments and provides a finite measure of the uncertainty associated
to the model (see [1] for more details). The obtained model results to be accurate both in
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1 – Introduction

linear and nonlinear conditions and its accuracy can be further improved using a greater
quantity of data related to several experiments performed in different conditions for its
identification. Moreover, when a NSM model is employed within a control scheme, the
knowledge of its uncertainty bound is fundamental to study the robust stability of the
closed loop control scheme.
Among the model-based control techniques, this thesis focuses on Nonlinear Internal
Model Control (NIMC) and Nonlinear Model Predictive Control (NMPC), which both
require a tractable as well as accurate model also in the presence of highly nonlinear
dynamics and parameter uncertainties. For this purpose, two methodologies which em-
ploy a NSM model are proposed in this thesis: a Set Membership Internal Model Control
(SIMC) and a Set Membership Model Predictive Control (SMPC) .
The novelty of SIMC consists in deriving the controller by cascading a filter describing
the desired input/output system behavior and the inverse of the system model (see [2]).
Such a novel procedure exploits the recent results on the right–inversion (see [3]) and
does not require the knowledge and the invertibility of the system. This is a not negligible
advantage because the inversion of nonlinear systems is not trivial and sometimes impos-
sible. Moreover, a robust stability study shows that the obtained SIMC control structure
is input/output stable with finite gain by imposing a small gain condition in the control
design phase (see [4], [5]). This is the second main result proposed because usually, in
literature, the stability of NIMC control loops is empirically verified a posteriori.
The SMPC methodology, instead, uses a NSM model to predict the system behavior and
the its uncertainty bound to assess the robust stability of the proposed scheme (see [6]).
In fact, at first, exploiting the uncertainty measure, it is shown that the SMPC control
structure is robustly stable through an a posteriori stability analysis (see [7]). Then, a
procedure to design a robust SMPC control law is proposed (see [8], [9]) and applied to
control a nonlinear oscillator. In the case of SIMC and SMPC robust analysis, a vehicle
yaw control system is designed to show the effectiveness of the proposed methodologies.
A minor research theme, dealt in this thesis, is the design of robust control law using
the technology of Direct Virtual Sensors (DVSs). DVSs are software algorithms derived
directly from input/output data by means the NSM identification technique. They are
able to estimate a variable of interest of a system exploiting some measures already avail-
able [10]. It is shown that the direct identification from data implies a greater accuracy of
the estimate w.r.t. the classical two steps approach (e.g. Kalman filter) [11]. Further, it is
shown that using data collected in closed loop fashion allows to obtain a much accurate
estimate than using open loop data [10, 11]. In this thesis, DVSs are used to develop a
fault tolerant vehicle yaw control system: the DVS gets on duty and replaces the physical
yaw rate sensor when a fault of the last one occurs. The DVS provides the estimate of
the yaw rate which is the feedback variable guaranteeing the right working of the stability
control system and hence the vehicle safety (see [12]). The novelty consists in the use of
an estimated variable from experimental data for control purposes and, in particular, to
replace the feedback variable. Moreover, the system in closed loop which employs the
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DVS results to be robustly stable through an a posteriori analysis.
The thesis is organized as follows: Chapter 2 and 3 introduce, respectively, the proposed
SIMC and SMPC methodologies and the results obtained in terms of performance and
stability, while Chapter 4 introduces the technology of DVSs and its employment within
the context of vehicle stability control systems. Finally, Appendix A introduces the NSM
methodology used to derive the system model from data.
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Chapter 2

Set Membership Internal Model
Control

Internal Model Control (IMC) is a powerful technique which offers a practical and effec-
tive approach to the synthesis of control systems (for more details see e.g. [13]). Initially,
the IMC scheme was introduced for linear systems, then it was extended to the case of
nonlinear ones see e.g. [14]. The peculiar characteristic of IMC, see Figure 2.1, is that
the control structure incorporates a model fc of the system f0 to be controlled. In such a
structure, a typical design approach consists in computing the controller Q by cascading
the inverse of the system model with a suitably chosen filter which describes the desired
input/output behavior and guarantees stability in the presence of plant model mismatch
(see e.g. [13] and [14]).
Therefore, model inversion issues play a significant role in the design of IMC controllers.

Figure 2.1. NIMC control system.

In the case of linear systems, these problems can be analyzed and, when possible, solved
in a systematic way [15]. For nonlinear systems, instead, they are considerably more dif-
ficult because of the non invertibility of the system or the complex nonlinear dynamics
which may characterize the system itself. In literature, the problem of inversion of nonlin-
ear systems has been addressed both from theoretical, see e.g. [16], [17], [18], [19], [20]
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2 – Set Membership Internal Model Control

and application point of view, see e.g. [21], [22], [23], [24]. In the context of Nonlinear
Internal Model Control (NIMC), a possible solution is to identify the inverse model from
data collected during suitable experiments on the system. Along this line of research, the
contributions introduced in [19] and [25] solve the problem by means of neural networks.
In this thesis, instead, the novel approach investigated consists in deriving the system
model and its inverse directly from data [4]. In particular, the system model is obtained
by means the NSM methodology as described in Appendix A, while, the inverse model
is computed from the system model, previously identified, applying an inversion algo-
rithm [26]. Therefore, the proposed methodology Set Membership Internal Model Con-
trol (SIMC), for nonlinear and unknown systems, consists in designing a NIMC structure
including a NSM model and a controller obtained by cascading the inverse NSM model
and a filter describing the desired input/output behavior. Moreover, a robust stability study
shows that the derived SIMC control structure is input/output stable with finite gain by im-
posing a small gain condition in the control design phase (see [4], [5]). The effectiveness
of the proposed approach is shown through a vehicle yaw control application [2].

2.1 Inversion of nonlinear systems

2.1.1 Problem formulation

Consider a nonlinear discrete-time dynamic system in regression form:

yt+1 = fo
(
yt,ut

)
t ∈ Z (2.1)

yt = [yt; . . . ; yt−ny ]

ut = [ut; . . . ;ut−nu ]

where ut ∈ U ⊂ R, yt+1 ∈ Y ⊂ R, fo : Φ ⊂ Rn → R, n = ny + nu. U , Y and Φ are
convex compact sets. The regression function fo is assumed differentiable. The notation
[. . . ; . . . ; . . .] indicates vertical concatenation.
The regression system (2.1) is a nonlinear operator fo mapping the initial condition y0 ∈
Y ny , and the input sequence u = [u1; u2; . . .] ∈ U∞ ⊂ R∞ into an output sequence
y = [y1; y2; . . .] ∈ Y ∞ ⊂ R∞. The operator fo is defined as

y = fo
(
y0, u

)
= [f1

o

(
y0, u

)
; f2
o

(
y0, u

)
; . . .] (2.2)

where fo : R∞ → R∞, f to : Rny+t → R. The notation y = fo (u) will be used when it will
be not needed to explicit the dependence on initial conditions.
The output of fo at a time τ is given by

yτ = f τo
(
y0, u

)
= f τo

(
y0, [u1; . . . ;uτ ]

)
(2.3)
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2.1 – Inversion of nonlinear systems

where f τo (y0, u) is computed by iterating τ times the difference equation (2.1), starting
from the initial condition y0. As indicated in (2.3), f τo (y0, u) depends only on the first τ
samples of u. The notation f τo (y0, u) will be used if it will not needed to highlight this
dependence, the notation f τo (y0, [u1; . . . ;uτ ]) will be used otherwise.
The sequence y is called solution of the system fo corresponding to the initial condition
y0 and to the input sequence u. A sequence v is a solution of the system fo if an initial
condition v0 and an input sequence u ∈ U exist such that v = fo (v0, u).
Let us consider a system f−1 defined by

u = f−1
(
u0, v

)
. (2.4)

where u = [u1, u2, . . .], ut ∈ U , v = [v1, v2, . . .], vt ∈ Y , u0 ∈ Unu . Suppose that the
output u of f−1 is used as the input of fo:

y = fo
(
y0, u

)
= fo

(
y0, f−1

(
u0, v

))
(2.5)

where y = [y1, y2, . . .], yt ∈ Y , y0 ∈ Y ny . Then, f−1 is called a right-inverse of fo
and |vt − yt| is called inversion error of f−1. The notion of exact right-inverse is now
introduced. Let So be the set of all solutions of fo.

Definition 1 A system f−1
ex is an exact right-inverse of fo if

e∞
(
f−1
ex , fo, So

) .
= sup

y0∈Y ny
u0∈Unu
v∈So

lim
t→∞

∣∣vt − yt∣∣ = 0. �

According to this definition, a system is an exact right-inverse of fo if its inversion error
converges to zero for all initial conditions y0 ∈ Y ny and u0 ∈ Unu , and for all solutions
of fo. Note that the above definition requires the existence of limt→∞ |vt − yt| for every
y0 ∈ Y ny , u0 ∈ Unu , and v ∈ So.
In many cases, deriving an exact right-inverse of fo may be difficult or even impossible,
e.g. when fo is characterized by unstable zero dynamics. In these cases, it is of interest to
derive an approximate right-inverse with fading memory, since this property, as it will be
shown later, ensures a bounded inversion error.

Definition 2 A system f has fading memory if, for any α > 0, a N > 0 exists such that∣∣fk+τ
(
y0, [q;u]

)
− fk+τ

(
ŷ0, [q̂;u]

)∣∣ < α, τ ≥ N

for every k ≥ 0, every initial conditions y0, ŷ0, and every sequences q = [q1; q2; . . . ; qk],
q̂ = [q̂1; q̂2; . . . ; q̂k], u = [u1; u2; . . . ;uτ ], with qt, q̂t, ut ∈ U . �
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2 – Set Membership Internal Model Control

Thus, the output of a fading memory system essentially depends on the recent values of
the input, while the influence of far past values of the input and of initial conditions is
negligible. Note that the fading memory property is commonly used in nonlinear system
identification, see e.g. [27], [28].
Let us now introduce the following right-inverse system:

f−1
fm

.
= arg min

f−1∈FM(γinv)
e∞
(
f−1, fo, So

)
(2.6)

where FM (γinv) is the set of all NFIR (Nonlinear Finite Impulse Response) systems of
order my with Lipschitz continuous regression function:

FM (γinv)
.
= {f : ut = f

(
yt+1, . . . , yt−my

)
, f ∈ F (γinv)} (2.7)

F (γ) is the set of all functions with Lipschitz constant γ, see (7), and γinv < ∞ is the
Lipschitz constant of the f−1

fm regression function. Note that, the existence of an inverse
f−1 having finite error e∞ is guaranteed by the facts that Y is a compact set and that
f−1 ∈ FM (γinv).
According to (2.6), f−1

fm is the best right-inverse of fo within the set FM (γinv) and, due
to its NFIR form, it is guaranteed to have fading memory. In general, f−1

fm cannot be
explicitly computed, since solving the optimization problem (2.6) is hard. However, an
approximation f̂−1 of f−1

fm can be identified from a set of data generated by the system
(A.1). This approximation is described in regression form as

ut = f̂−1
(
yt+1

)
(2.8)

yt+1 = [yt+1; . . . ; yt−my ] (2.9)

where f̂−1 is an approximation of the regression function f−1
fm defining f−1

fm. Note that the
optimization problem (2.6) is fundamental, not for the explicit evaluation of f−1

fm (which
is hard), but for the proper definition of f̂−1.
In Subsection 2.1.2 optimal approximate right-inverses of the form (2.9) will be derived,
i.e. right-inverses ensuring a tight bound on the inversion error |vt − yt|. In order to pre-
cisely define the notion of optimal right-inverse it is convenient to introduce the Feasible
Inverse System Set:

The Feasible Inverse System Set, denoted by FSSinv, is the smallest system set which,
on the basis of the available information, is guaranteed to contain f−1

fm.
The available information consists of all prior and experimental information that can be
exploited in order to identify the unknown system f−1

fm. In Subsections 2.1.2 and 2.1.3,
this information will be described in detail for the considered specific cases. The corre-
sponding formal definitions of FSSinv will be given as well. Let us also introduce the
following bound on the inversion error:

einv

(
f̂−1, f−1, f , S,m

)
.
= sup

y0∈Y ny
u0∈Unu

sup
t>m
v∈S

∣∣vt − yt∣∣
8



2.1 – Inversion of nonlinear systems

where y = f
(
y0, f̂−1 (u0, v)

)
, and v ∈ S ⊆ Y ∞ ⊂ R∞. The notion of optimal right

inverse can now be given.

Definition 3 A system f−1
opt is an optimal right-inverse of fo if

EO
(
f−1
opt ,m

) .
= sup

f−1∈FSSinv

einv
(
f−1
opt , f

−1, fo, So,m
)

= inf
f̂−1

sup
f−1∈FSSinv

einv

(
f̂−1, f−1, fo, So,m

)
for some m <∞. EO is called worst-case inversion error. �

Besides the cases where an exact right-inverse of the system fo is difficult to derive, there
are other situations, quite common in practical applications, where an exact right-inverse
cannot be found since fo is unknown and has to be identified from data. In these cases, it
is useful to introduce the Feasible System Set:

The Feasible System Set, denoted by FSS, is the smallest system set which, on the
basis of the available information, is guaranteed to contain fo.
The available information consists of all prior and experimental information that can be
exploited in order to identify the unknown system fo. In Subsections 2.1.2 and 2.1.3, this
information will be described in detail for the considered specific cases. The correspond-
ing formal definitions of FSS will also be given.
According to the above definition, FSS provides a description of the uncertainty asso-
ciated with the identification process. Clearly, right-inverses ensuring a tight bound on
the inversion error |vt − yt| for all the systems in the uncertainty set FSS are of interest.
Such right-inverses are called robustly optimal.

Definition 4 A system f−1
rob is a robustly optimal right-inverse of fo if

ER
(
f−1
rob,m

) .
= sup

f∈FSS
f−1∈FSSinv

einv
(
f−1
rob, f

−1, f , S,m
)

= inf
f̂−1

sup
f∈FSS

f−1∈FSSinv

einv

(
f̂−1, f−1, f , S,m

)
for some m <∞. ER is called worst-case inversion error. �

According to Definitions 3 and 4, optimal and robustly optimal right-inverses are systems
for which finite bounds on the inversion error can be guaranteed, and these bounds are the
tightest ones that can be achieved on the basis of the available information.
In the Subsections 2.1.2 and 2.1.3, the following problem will be considered: if fo is
known derive an exact right-inverse (when possible), or an optimal right-inverse. Other-
wise, when fo is unknown derive a robustly optimal right-inverse of fo.

Note 1 Altough this thesis focuses on unknown systems and thus models identified from
data, the inversion of known systems is a prerequisite for introducing the inversion of data
based models.
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2.1.2 Inversion of known system
Consider a generic nonlinear system f (y0, u) of the form (2.1) defined by a known re-
gression function f . A right-inverse of f can be obtained using the following algorithm.

Inversion Algorithm 1 Compute the right-inverse f−1 (u0, y) of f (y0, u) through the
following regression equation:

ut = f−1 (ut−1,yt+1) , t > 0
yt+1 = [yt+1; . . . ; yt−ny ]
ut−1 = [ut−1; . . . ;ut−nu ]

(2.10)

where u0 = [0; . . . ; 0] and

f−1
(
ut−1,yt+1

) .
= max (U) (2.11)

U = arg min
u∈U

∣∣yt+1 − f
(
yt, [u;ut−1; . . . ;ut−nu ]

)∣∣ . (2.12)

�
The function f−1 is computed by means of the scalar optimization problem (2.12), which
can be easily solved using any one-dimensional optimization technique, see e.g. [29], [30],
[31]. The set U of minimizers of |yt+1 −f(yt, [u;ut−1; . . . ;ut−nu ])| may be composed of
several elements. The max (U) is performed to select a unique value, so that the function
f−1 is properly defined.

Remark 1 Inversion Algorithm 1 does not require the invertibility of the function f in
order to compute f−1. �

For fixed yt and [ut−1; . . . ;ut−nu ], f(yt, [u;ut−1; . . . ;ut−nu ]) is a function of u only,
i.e. f(yt, [u;ut−1; . . . ;ut−nu ]) ≡ f(u). For any yt+1 in the codomain of f(u), we have
min
u
|yt+1 −f(u)| = 0, and then

yt+1 = f
(
yt, [f−1

(
ut−1,yt+1

)
;ut−1; . . . ;ut−nu ]

)
. (2.13)

The function f−1 is thus an exact right-inverse of the function f (with respect to ut).
Consider now the system fo defined by the regression equation (2.1) and let

y = fo
(
y0, u

)
, u = f−1

o

(
u0, v

)
(2.14)

where f−1
o is the right-inverse of fo computed by means of Inversion Algorithm 1. Note

that even if the regression function f−1
o defining f−1

o is an exact right-inverse of the func-
tion fo defining fo, this does not ensure that f−1

o is a reliable right-inverse of fo. Indeed,
f−1
o is described by an autoregressive equation of the form (2.10), which in general may

display unstable solutions and high sensitivity to initial conditions, and this may lead to
large or even unbounded inversion errors. The following result shows that this does not
happen if both the system and the inverse have fading memory.
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2.1 – Inversion of nonlinear systems

Theorem 1 Assume that fo and f−1
o have fading memory. Then, f−1

o is an exact inverse of
fo.

Proof. This theorem is a direct consequence of the fact that fo and f−1
o have fading

memory. �

Theorem 1 assumes that the inverse f−1
o computed by means of Inversion Algorithm 1 has

fading memory. However, this assumption may not hold, e.g. in the case of unstable zero
dynamics of fo. In order to overcome this problem, an approach based on the identifica-
tion from data of the inverse f−1

fm defined in (2.6) is now proposed.

The data set used for identification is the following:

Dsim
inv

.
=

{(
ỹt, ũta

)
, t ∈ T

}
(2.15)

ỹt = [yt; . . . ; yt−my ]

ũta = f−1
o (ut−1, . . . , ut−nu , yt, . . . , yt−ny)

where T .
= {−T + 1,−T + 2, ...,0}, (ut, yt) are obtained by simulation of the system

(2.1), and f−1
o is computed from fo according to (2.11). Note that the direct identification

of f−1
o from the data (yt, ut) , t ∈ T , without using the values ũta, may not be possible

since in general the regression function fo is not invertible.
Let y be the output of the system (2.1) corresponding to the input u and to the initial
condition y0. Then,

u = f−1
fm (y) + dnf (2.16)

where f−1
fm (y) is defined in (2.6) and dnf

.
= u − f−1

fm (y). For large my and γinv, dnf can
be interpreted as the non fading memory part of f−1

o . Since f−1
fm ∈ FM (γinv), γinv <∞,

and Y and U are compact sets, we have that dnf is tightly bounded as ‖dnf‖∞ ≤ η, for
some η <∞.
Consider now the system fo defined by the regression equation (2.1) and let

y = fo
(
y0, u

)
, u = f−1

a (v)

where f−1
a is a system of the form (2.9) with regression function f−1

a . Let f−1
a be an

approximation of f−1
fm (the regression function defining f−1

fm) identified from the dataDsim
inv

defined in (2.16) by means of the NSM method summarized in Chapter A. Let rinvI be
the corresponding radius of information in l∞ norm (see (9) for the definition of radius of
information). Since fo has fading memory, then it can be described as

y = fo
(
y0, u

)
= f̂o (u) + dtrunc (2.17)

where f̂o is an NFIR system defined by a regression equation yt+1 = f̂o(u
t, . . . , ut−mu),

and dtrunc is a “small” truncation error, tightly bounded as ‖dtrunc‖∞ ≤ µ, for some

11



2 – Set Membership Internal Model Control

µ <∞. The regression function f̂o is Lipschitz continuous, since it is obtained by a finite
number of fo compositions, and fo is assumed Lipschitz continuous. Then, let Γ <∞ be
the `∞ Lipschitz constant of f̂o, i.e. a constant such that |f̂o(u)− f̂o(û)| / ‖u− û‖∞ ≤ Γ,
for any u, û ∈ Umu+1. Note that Γ and µ can be estimated from a set of data generated
by (2.1) by means of the validation analysis presented in [1].
The available information is the following:

• The system fo is known and has fading memory.

• The inverse f−1
o is known but has not fading memory. The inverse f−1

fm defined in
(2.6) is unknown, but it is known that f−1

fm ∈ FM (γinv) and
∣∣ũta − f−1

fm (ỹt+1)
∣∣ ≤ η,

t ∈ T .

On the basis of this information, the Feasible Inverse System Set is defined as

FSSinv
.
=
{
f ∈ FM (γinv) :

∣∣ũta − f−1
fm

(
ỹt+1

)∣∣ ≤ η, t ∈ T
}
. (2.18)

This definition allows us to present the following result.

Theorem 2 Assume that fo has fading memory. Then, for anymu <∞, f−1
a is an optimal

right-inverse of fo, with worst-case inversion error given by

EO
(
f−1
a ,mu

)
= inf

f̂−1

sup
f−1∈FSSinv

einv

(
f̂−1, f−1, fo, So,mu

)
= 2µ+ ΓrinvI + Γη (2.19)

where µ,Γ, η, rinvI <∞, and So is the set of all solutions of fo.

Theorem 2 can be interpreted as follows. The inversion error of the optimal right-inverse
f−1
a is tightly bounded by the sum of three terms: 2µ, ΓrinvI , and Γη. The first one can be

made arbitrarily small by choosing a sufficiently large mu in (2.17). The second one can
be made arbitrarily small by improving the inverse approximation accuracy, measured by
rinvI . This can be accomplished by using a sufficiently informative data set, i.e. a data set
which gives a good exploration of the involved regressor domains (a method for assessing
the degree of information of a given data set is presented in [32]). The third term accounts
for the non fading memory part of f−1

o and in general cannot be made as small as desired.

2.1.3 Inversion of data-based model
Assume that the system fo defined by (2.1) is not known, but a set of noise-corrupted
measurements (ỹt, ũt, ỹt+1) of (yt,ut, yt+1), is available:

Dmeas
dir

.
=
{

(ỹt, ũt, ỹt+1), t ∈ T
}
. (2.20)
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2.1 – Inversion of nonlinear systems

where t ∈ T .
= {−T + 1,−T + 2, . . . ,0}. Assume that fo has fading memory and that

these measurements have been collected in an open-loop experiment.
Let fc be a model of fo identified from these data using the NSM method described in
Appendix A, and let rI be the corresponding radius of information in l∞ norm. Let f−1

c

be the right-inverse of fc, computed by means of Inversion Algorithm 1. Let

y = fo
(
y0, u

)
, u = f−1

c

(
u0, v

)
where v ∈ Sc ⊆ Y ∞ ⊂ R∞, and Sc is the set of all solutions of fc. Since fo and f−1

c have
fading memory, it follows that fo can be described as in (2.17), and f−1

c can be described
as

u = f−1
c

(
u0, v

)
= f̂−1

c (v) + d̂trunc (2.21)

where f̂−1
c is an NFIR system defined by a regression equation ut = f̂−1

c (vt, . . . , vt−my),
and d̂trunc is a “small” truncation error, tightly bounded as

∥∥∥d̂trunc∥∥∥
∞
≤ µinv, for some

µinv <∞.
The available information is the following:

• The system fo is unknown, but it is known that fo ∈ FMo, where FMo is the set of
all systems of the form (2.1) with fading memory, and that fo ∈ FFS, where FFS
is the Feasible Function Set defined as

FFS
.
= {f ∈ F (γ):

∣∣ỹt+1 − f
(
ỹt, ũt

)∣∣ ≤ ε, t ∈ T }

see also (A.4). Here, F (γ) is the set of all functions with Lipschitz constant γand
ε is a tight bound on |ỹt+1 − fo(ϕ̃t)|, see (7).

• The inverse f−1
o is unknown. The inverse f−1

c is known and has fading memory.

On the basis of this information, the Feasible System Set is defined as

FSS
.
=
{
f ∈ FMo : yt+1 = f

(
yt,ut

)
, f ∈ FFS

}
. (2.22)

This definition allows us to present the following result.

Theorem 3 Assume that fo and f−1
c have fading memory. Then, for anym .

= max (mu,my) <
∞, f−1

c is a robustly optimal right-inverse of fo, with worst-case inversion error given by

ER
(
f−1
c ,m

)
= inf

f̂−1

sup
f∈FSS

einv

(
f̂−1, f−1

c , f , Sc,m
)

= 2µ+ 2Γµinv + ΛrI (2.23)

where µ, µinv,Λ,Γ, rI <∞, and Sc is the set of all solutions of fc.

13



2 – Set Membership Internal Model Control

Theorem 3 can be interpreted as follows. The inversion error of the robustly optimal right-
inverse f−1

c is tightly bounded by the sum of three terms: 2µ, 2Γµinv, and ΛrI . The first
two terms can be made arbitrarily small by choosing sufficiently largemu andmy in (2.17)
and (2.21). The third one can be made arbitrarily small by improving the approximation
accuracy, measured by rI . This can be accomplished by using a sufficiently informative
data set (see [32]).
Theorem 3 assumes that f−1

c has fading memory, but this assumption may not always
hold. In order to overcome this problem, an approach based on the identification from
data of a robustly optimal inverse is now proposed.
The data set used for identification is the following:

Dmeas
inv

.
= {(ỹt+1, ũta) , t ∈ T }

ỹt+1 = [ỹt+1; . . . ; ỹt−my ]
ũta = f−1

c (ũt−1, . . . , ũt−nu , ỹt+1, . . . , ỹt−ny)
(2.24)

where T .
= {−T + 1,−T + 2, ...,0}, (ũt, ỹt) are noise-corrupted measurements of (ut, yt),

f−1
c is computed from fc according to (2.11), and fc is the regression function of the model

fc.
Consider now the system fo defined by the regression equation (2.1) and let

y = fo
(
y0, u

)
, u = f−1

a (v)

where f−1
a is a system of the form (2.9) with regression function f−1

a . Let f−1
a be an

inverse identified from the data Dmeas
inv defined in (2.24) by means of the NSM method

summarized in Appendix A. f−1
a is an approximation of f−1

fm, the regression function of
f−1
fm, where f−1

fm is defined in (2.6), with fo → fc, So → Sc. Let rinvI be the radius of infor-
mation in L∞ norm associated to f−1

a (see (9) for the definition of radius of information).
Consider that fo can be described as in (2.17).
The available information is the following:

• The system fo is unknown, but it is known that fo ∈ FMo with fo ∈ FFS.

• The inverse f−1
o is unknown. The inverse f−1

c is known but has not fading memory.
The inverse f−1

fm, defined in (2.6) with fo → fc, So → Sc, is unknown. It is known
that f−1

fm ∈ FM (γinv) and
∣∣ũta − f−1

fm (ỹt+1)
∣∣ ≤ η, t ∈ T .

On the basis of this information, the Feasible System Set is given by (2.22), the Feasible
Inverse System Set is given by (2.18).

Theorem 4 Assume that fo has fading memory. Then, for any m .
= max (mu,my) <∞,

f−1
a is a robustly optimal right-inverse of fo, with worst-case inversion error given by

ER
(
f−1
a ,m

)
= inf

f̂−1

sup
f∈FSS

f−1∈FSSinv

einv

(
f̂−1, f−1, f , Sc,m

)
= 2µ+ΛrI +ΓrinvI +Γη (2.25)

where µ,Λ,Γ, η, rI , rinvI <∞, and Sc is the set of all solutions of fc.
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2.2 – Set Membership Internal Model Control

Theorem 4 can be interpreted as follows. The inversion error of the robustly optimal right-
inverse f−1

a is tightly bounded by the sum of four terms: 2µ, ΛrI , ΓrinvI , and Γη. The first
one can be made arbitrarily small by choosing sufficiently large mu and my in (2.17) and
(2.9). The second and the third terms can be made arbitrarily small by improving the
approximation accuracies, measured by rI and rinvI . This can be accomplished by using
a sufficiently informative data set (see [32]). The fourth one accounts for the non fading
memory part of f−1

o and in general cannot be made as small as desired.

Remark 2 Consider a system with non-zero relative degree:

yt = fo
(
yt−1,ut−k

)
, k > 0.

The proposed inversion methods can be applied also in this case without significant mod-
ifications, using the input signal qt .

= ut−k. This clearly leads to a delay in the inver-
sion process, but this delay cannot be avoided using only the information considered
here. �

Remark 3 The approximate inverse f−1
a can be used instead of f−1

o or f−1
c also when

these exact inverses have fading memory, in order to improve the computation efficiency
in on-line applications. �

2.2 Set Membership Internal Model Control
In this Section, the inversion method from data introduced in Section 2.1.3 is used to
design a robust Set Membership Internal Model Control (SIMC), see [33]).
Consider the control scheme in Figure 2.1, fo is the unknown plant to be controlled, fc
is a model of fo and Q is the controller. The feedback system T having input (r, w) and
output yw is defined by

yw = T(r, w).

From Figure 2.1, we have that

yw = w + y = w + fo (u) = w + foQ (v) =
= w + fo (Q (r − w − ζ))

(2.26)

where ζ = y − ŷ = fo (u)− fc (u). This relationship shows that, if fc = fo and Q = f−1
c ,

then the perfect control yw = r is achieved, i.e. exact tracking and total disturbance
rejection.
Clearly, the perfect control cannot be obtained in practical applications, due to the facts
that only approximate models can actually be identified from a finite set of data and that
exact inversion may not be possible. However, a robust SIMC control can be designed,
able to give stability and a tight bound on the tracking error |rt − ytw| for all the plants
fo ∈ FSS.
The following SIMC control scheme is proposed:
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• The plant fo is represented according to (2.17):

yt = f̂o
(
ut
)

+ dttrunc (2.27)

where ut = [ut; . . . ;ut−mu ] and dtrunc is a “small” truncation error accounting for
the initial condition y0 and for uk, k < t − mu. This truncation error is tightly
bounded as ‖dtrunc‖∞ ≤ µ, for some µ <∞.

• The model fc of fo is identified from a set of data (ỹt, ũt), t ∈ T , by means of the
nonlinear SM method summarized in Appendix A. This model is given by

ŷt = fc
(
ut
)

where fc has Lipschitz constant Γ. Let us also define γres as the Lipschitz constant
of f̂o − fc. Note that γres can be estimated by means of the validation procedure
introduced in [1].

• The controller is Q = f−1
a , where f−1

a is an inverse of fo identified from the data
Dmeas
inv defined in (2.24), by means of the method of Subsection 2.1.3. f−1

a is repre-
sented in NFIR form as

ut = f−1
a

(
vt−1

)
where vt−1 = [vt−1; . . . ; vt−mv ]. Note that a delay between v and u has been in-
serted in this controller in order to avoid algebraic loops in the SIMC control struc-
ture. The Lipschitz constant γinv of f−1

a is chosen such that

γinvγres < 1. (2.28)

Let η be the bound on the non fading memory part of f−1
c (the exact inverse of fc). Let

rinvI be the radius of information associated to f−1
a .

The case Q = f−1
a G, where G is a linear filter with unitary gain which can be inserted to

improve the dynamic properties of the control system, can be treated as a trivial extension.
In order to evaluate the robustness of this control system, consider that the available in-
formation is the following:

• The system fo is unknown, but it is known that fo ∈ FMo with fo ∈ FFS.

• The model fc is known.

• The inverse f−1
o is unknown. The inverse f−1

c is known but, in general, it has not
fading memory. The inverse f−1

fm, defined in (2.6) with fo → fc, So → Sc, is
unknown. It is known that f−1

fm ∈ FM (γinv) and
∣∣ũta − f−1

fm (ỹt+1)
∣∣ ≤ η, t ∈ T .

On the basis of this information, the Feasible System Set is given by (2.22), the Feasible
Inverse System Set is given by (2.18).
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2.2.1 Robustness analysis
Let us now introduce the following stability notion (see e.g. [34]).

Definition 5 A nonlinear system f is finite-gain `∞ stable (with bias) if finite and non-
negative λ and β exist such that

‖f (u)‖∞ ≤ λ ‖u‖∞ + β

for every u = [u1;u2; . . .] ∈ `∞. �

Let us define the following tight bound on the tracking error:

enimc

(
Q̂, f̂ , f−1, f , S,m

)
.
= sup

y0∈Y ny
sup
t>m
r∈S

∣∣rt − ytw∣∣
where r ∈ S ⊆ Y ∞ ⊂ R∞ and S is the set of all solutions of fc. A robust SIMC controller
is defined as follows.

Definition 6 The SIMC control system is said robust if the feedback system yw = T(r, w)
is finite-gain `∞ stable for all fo ∈ FSS, and

EI (Q, fc,m)
.
= sup

f∈FSS
f−1∈FSSinv

enimc
(
Q, fc, f

−1, f , S,m
)

= inf
Q̂,̂f

sup
f∈FSS

f−1∈FSSinv

enimc

(
Q̂, f̂ , f−1, f , S,m

)
for some m <∞. EI (Q, fc,m) is called worst-case tracking error. �

Theorem 5 Consider the SIMC control system in Figure 2.1, where fc and Q are the
model and controller described above.
(i) The SIMC control system is robust.
(ii) For any m .

= max (mu,mv) <∞, the worst-case tracking error is given by

EI (Q, fc,m) = inf
Q̂,̂f

sup
f∈FSS

f−1∈FSSinv

enimc

(
Q̂, f̂ , f−1, f , S,m

)
= 2µ+ ΓrinvI + Γη (2.29)

where µ,Γ, η, rinvI <∞, and Sc is the set of all solutions of fc.

Proof. Since γres is the Lipschitz constant of ∆ = f̂o − fc, we have that∣∣∆ (ut)−∆ (0)
∣∣ ≤ γres

∥∥ut − 0
∥∥
∞ , ∀t

Then, ∣∣∆ (ut)∣∣ =
∣∣∣f̂o (ut)− fc (ut)∣∣∣ ≤ γres

∥∥ut∥∥∞ + |∆ (0)| , ∀t.
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Since f̂o and fc are NFIR systems, this implies that

‖fo (u)− fc (u)‖∞ ≤
∥∥∥f̂o (u)− fc (u)

∥∥∥
∞

+ µ ≤ γres ‖u‖∞ + |∆ (0)|+ µ. (2.30)

Following similar argumentations, it can be shown that∥∥f−1
a (v)

∥∥
∞ ≤ γinv ‖v‖∞ + |fa (0)| , (2.31)

‖fo (u)‖∞ ≤ Γ ‖u‖∞ +
∣∣∣f̂o (0)

∣∣∣+ 2µ. (2.32)

Consider now the feedback system in Figure 2.2, which is equivalent to the one in Figure
2.1. Inequalities (2.30), (2.31) and (2.28) imply that the stability condition γresγinv < 1
of the small gain theorem is satisfied, see e.g. [34]. Consequently, the feedback system
v = T̂ (r, w) is finite-gain `∞ stable.
From this result, and from inequalities (2.31) and (2.32), it follows that the feedback
system yw = T(r, w) is also finite-gain `∞ stable. This holds for all fo ∈ FSS, thus
proving claim (i).
Claim (ii) can be proven considering that, as it can be easily seen in Figure 2.1,

r − yw = v − ŷ. (2.33)

Note that ŷ = fc (f−1
a (v)), where f−1

a is the approximated inverse of fc. Then, according
to Theorem 2, ∣∣vt − yt∣∣ ≤ 2µ+ ΓrinvI + Γη (2.34)

for any m .
= max (mu,mv) <∞. As shown in the proof of Theorem 2 the bound (2.34)

is tight. Claim (ii) follows from (2.33). �

Figure 2.2. Feedback system.

Theorem 5 shows that the tracking error is bounded by the sum three terms: 2µ, ΓrinvI ,
and Γη. The first one can be made arbitrarily small if sufficiently large mu and my are
chosen. The second one can be reduced by using a SM optimal model fc of fo. In this
way, an arbitrarily small value of γres can be obtained (it can be proven that γres ≤ Γ)
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and thus a “large” value of γinv can be used to design f−1
a , see (2.28). The larger is γinv,

the larger is the set F (γinv), the smaller is f−1
c (u0, y) − f−1

fm (y), the smaller is η. Note
that, in some cases, η cannot be reduced to 0 even using a “large” γinv. In these cases,
η limits the accuracy performance that can be achieved by an SIMC approach. A similar
situation happens in linear IMC, when the plant to control has some unstable zero and
cannot be fully inverted, [35]. The third one can be made “small” deriving an accurate
approximation f−1

a of f−1
fm, so that rinvI is “small”. This requirement can be met by using

a sufficiently informative data set, i.e. a data set which gives a good exploration of f−1
c

domain (see [32]).

Remark 4 The present SIMC control scheme takes advantage of the output feedback and
gives better tracking/inversion accuracy with respect to the inversion schemes presented
in Section 2.1, where feedback is not used. Indeed, the SIMC tracking error bound (2.29),
obtained not using the knowledge of the system fo, is the same as the one given in The-
orem 2, where fo is assumed to be known. The tracking error bound (2.29) is smaller
than the one provided in Theorem 4, which has been derived on the basis of the same
information used here. In any case the SIMC control scheme allows for noise attenuation
(see the example in Subsection 2.3), a task that cannot be accomplished using only open
loop inversion. On the other hand, it must be noted that output feedback is not always
practicable. �

Remark 5 Since data are supposed to be collected in open loop experiments, the plant
must be stable. In principle, the case of unstable plants can be treated by means of closed
loop identification techniques. However, closed-loop identification of unstable nonlinear
systems is an open research area which goes behind the scopes of this work. �

Remark 6 In most of the papers available in the literature, the SIMC control system
is designed and its stability is empirically verified a posteriori. On the contrary, the
SIMC technique proposed here allows us to impose closed loop stability in the design
phase. �

2.3 Vehicle yaw control application
In this Section, the proposed SIMC design approach is employed to develop a vehicle yaw
control.
Yaw stability control systems have been introduced in order to significantly enhance
safety and handling properties of vehicles (see e.g. [36] and [37]) by modifying their
passive dynamic behavior using suitable control structures and actuation devices. In par-
ticular, in this paper, a vehicle equipped with a front steer-by-wire actuator, based on a
classical rack and pinion steering system (see e.g. [38]) is considered.
In the considered application, the objective is the control of the vehicle yaw rate ψ̇(t) in
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order to improve its handling and understeer performance by suitably acting on the steer-
ing angle δ(t) by means of a front steer by wire actuation device. Referring to the SIMC
structure of Figure 2.1, the variable to control y is thus the yaw rate ψ̇. The reference r is
the desired yaw rate sequence. The output yw is the measured yaw rate. The control input
u is the steering angle δ.
In this example, it is assumed that a vehicle model is not available and the SIMC controller
is designed directly from data. To this end, a set of about 7000 values of ψ̇ and δ have
been generated simulating the nonlinear vehicle single track model described in [37], and
imposing a suitably designed handwheel course composed of quick ramps and constant
intervals plus a random signal with a sampling time of 0.05 s. The values of ψ̇ have been
corrupted by a white noise having a noise-to-signal standard deviation ratio of 3%.
From this data set, a NFIR model fc of the vehicle has been identified using the SM
methodology described in Appendix A. The model is described in regression form by

ψ̇t+1 = fc(δ
t, . . . , δt−mu) (2.35)

where a regressor length mu = 30 has been considered.
The `∞ gain (see (2.30)) of the model error has been evaluated as

γres = 0.056.

Then, the inverse model f−1
c computed according to Inversion Algorithm 1 has been im-

plemented:
δt = f−1

c (ψ̇t+1, δt−1, . . . , δt−mu) (2.36)

However, this inverse model displayed an unstable behavior in some maneuvers, indicat-
ing that the fading memory assumption required by Theorem 3 was not satisfied. There-
fore, an approximation f−1

a has been identified, described in regression form by

δt = f−1
a (ψ̇t+1, . . . , ψ̇t−mu)

for which the fading memory property is guaranteed by definition. The approximation
f−1
a has been obtained by means of the NSM method, using the following data set: ϕ̃t =

[ ˜̇ψt, δ̃t−1, . . . , δ̃t−nu ], ỹt+1 = f−1
c (ϕ̃t), t ∈ T where ˜̇ψt and δ̃t are the measured values of

ψ̇t and δt.
The controller has been chosen as Q = f−1

a G, where the filter G is the linear second
order filter G(s) = 1/(1 + s/2)2, inserted in order to improve the dynamic properties of
the feedback system.
In order to evaluate the SIMC control structure performance, simulations have been per-
formed using the nonlinear single track model considered in the identification to describe
the vehicle dynamics. In Figure 2.3 the results for a 40◦ step steer maneuver performed
at 100 km/h are shown. In particular, the course of the yaw rate ψ̇(t) for the controlled
vehicle is reported (solid line) and compared with the desired behavior (dashed line) and
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Figure 2.3. Step steer maneuver. Dashed line: reference. Solid line: controlled vehicle
(SIMC). Dotted line: uncontrolled vehicle.

with the uncontrolled one (dotted line). From Figure 2.3, it can be seen that zero steady
state error is achieved and good transient behavior performance is obtained in terms of
readiness and damping.
The performance of the SIMC control has also been tested in the presence of a strong
disturbance. A simulation has been performed, where the steering angle δ has been kept
null, and a bump disturbance w of amplitude 0.033 rad/s lasting 3 s has been introduced.
This situation may happen for example when the vehicle is traveling on a motorway and
a blast of wind comes, giving a yaw rate deviation of 0.033 rad/s in the absence of a
control action. The result of this simulation is shown in Figure 2.4. The solid and dotted
line represent, respectively, the yaw rate of controlled and uncontrolled vehicle. It can
be noted that a significant disturbance attenuation is achieved by the SIMC control. In
particular, the yaw rate deviation is reduced by about 66% with respect to the uncontrolled
vehicle.
Finally, a comparison with the standard linear IMC design is presented. In order to make
proper and significant such a comparison, a control design from data approach has been
followed as done in the SIMC case. In particular, the same data set used to obtain the
model (2.35) has been employed to identify an ARX model by suitably choosing its
structure in order to minimize the `∞ norm of the model error. The application of this
procedure gives rise to a fourth order minimum phase system described by the transfer
function Mψ̇,δ(z) between the steering angle δ and the yaw rate ψ̇. The `∞ gain of the
model error is given by

γres,lin = 0.11.
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Figure 2.4. Bump disturbance. Thin line: reference yaw rate. Dotted line: yaw rate of
the uncontrolled vehicle. Solid line: yaw rate of the controlled vehicle.
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Figure 2.5. Step steer maneuver. Solid line: controlled vehicle (SIMC). Dash-dot line:
controlled vehicle (linear IMC)

As expected, the linear model gives rise to a less accurate result in terms of modeling
error. The linear IMC controller Q(s) has been obtained through the standard procedure
(see e.g. [39]) described by

Q(s) = G(s)M−1

ψ̇,δ
(s)

where Mψ̇,δ(s) is the continuous time counterpart of Mψ̇,δ(z) and G(s) is a strictly proper
transfer function which describes the desired performance. In particular, in order to make
a realistic comparison G(s) has been chosen equal to the filter G(s) = G(s) = 1/(1 +
s/2)2 employed in the SIMC design.
In Figure 2.5 the performance comparison between the SIMC and IMC designs is re-
ported for the 40◦ step steer maneuver performed at 100 km/h previously considered. In
particular, in Figure 2.5 the yaw rate behavior obtained by the nonlinear controller is re-
ported (solid line) together with the one achieved by the linear controller (dash-dot line).
It can be seen that the SIMC design shows better performance than IMC both in terms of
response speed and damping properties and similar characteristics in terms of steady state
accuracy.
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Chapter 3

Set Membership Model Predictive
Control

3.1 Nonlinear Model Predictive Control
Consider the following nonlinear discrete–time state space model:

xt+1 = g(xt, ut) t ∈ Z (3.1)

where g : Rm+1 → Rm is a nonlinear function, ut ∈ R and xt ∈ Rm are the system input
and state respectively.
Assume that the problem is to regulate the system state to the origin under some input and
state constraints. By defining the prediction horizonNp and the control horizonNc ≤ Np,
it is possible to define a cost function Jt(U, xt|t) of the form

Jt(U, xt|t) =

Np−1∑
j=0

L(xt+j|t, ut+j|t) + Ψ(xt+Np|t) (3.2)

The per-stage cost function L(·) and the terminal state cost Ψ(·) are suitably chosen and
tuned according to the desired control performance. L(·) is typically continuous and
convex in its arguments. The cost function Jt(·) is evaluated on the basis of the predicted
state values xt+j|t, j ∈ [1, Np] obtained using the model (3.1), the input sequence Ut =
[ut|t . . . ut+Nc−1|t] and the initial state xt|t = xt. The sequence Ut is a decision variable
in the problem, while the remaining input values [ut+Nc|t, ..., ut+Np−1|t] can be computed
according to different strategies [40], [41].
The Nonlinear Model Predictive Control (NMPC) control is computed according to the
Receding Horizon (RH) strategy:

1. At time instant t, get the state xt|t
.
= xt
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3 – Set Membership Model Predictive Control

2. Solve the optimization problem

min
U

Jt(U, xt|t) (3.3a)

subject to
xt+j+1|t = g(xt+j|t, ut+j|t), j ∈ [0, Np− 1] (3.3b)

xt+j|t ∈ X, j ∈ [1, Np] (3.3c)
ut+k|t ∈ U, k ∈ [0, Np − 1] (3.3d)
stabilizing constraints (3.3e)

where the input and state constraints are represented by a set X ⊆ Rm and a
compact set U ⊆ R, both containing the origin in their interiors; denote with
U∗t = [u∗t|t . . . u

∗
t+Nc−1|t] the minimizer of (3.3)

3. Apply the first element of U∗t as the actual control action ut = u∗t|t.

4. Repeat the whole procedure at the next sampling time t+ 1.

Possible additional stabilizing constraints (e.g. state contraction, terminal set) can be
included in (3.3e) in order to ensure stability of the controlled system.
A model derived from physical laws is usually employed as model of the plant (3.1) to be
controlled. In this work, instead, an approximated model derived from data by means a
Nonlinear Set Membership (NSM) methodology is used.

3.2 Set Membership Model Predictive Control

Let consider the plant fo (2.1) and its NSM model fc (A.8) identified from data by means
the NSM technique (see Appendix A). fo and fc can be re-written in state space form, by
using ut as input value and xt as pseudo–state:

xt
.
= [yt · · · yt−nyut−1 · · ·ut−nu ]

= [x
(1)
t · · · x

(ny+1)
t x

(ny+2)
t · · · x(ny+nu+1)

t ] ∈ Rn−1 (3.4)

The state space equation of the plant (2.1) results to be

xt+1 = fSSo (xt, ut) (3.5)
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3.2 – Set Membership Model Predictive Control

where fSSo : Rn → Rn−1 is defined as:

fSSo (xt, ut)
.
=



fo(x
(1)
t , . . . , x

(ny+1)
t , ut, x

(ny+2)
t , . . . , x

(ny+nu+1)
t )

x
(1)
t
...

x
(ny)
t

ut
...

x
(ny+nu)
t


(3.6)

Note that since fo(·) is assumed to be Lipschitz continuous with constant γ, function
fSSo (·) in (3.6) results to be Lipschitz continuous too, with constant L0 =

√
1 + γ2:

||fSSo (x1, u1)− fSSo (x2, u2)||22 =

= ||fo(·)− fo(·)||22 + ||x(1)
1 − x

(1)
2 ||22 + . . .+ ||u1 − u2||22 + . . .+ ||x(nu+ny)

1 − x(nu+ny)
2 ||22 =

≤ (1 + γ2)
(
||x(1)

1 − x
(1)
2 ||22 + . . .+ ||u1 − u2||22 + . . .+ ||x(nu+ny)

1 − x(nu+ny)
2 ||22

)
=

= (1 + γ2)
(
||x1 − x2||22 + ||u1 − u2||22

)
= L2

0

(
||x1 − x2||22 + ||u1 − u2||22

)
(3.7)

Applying the same procedure to the model fc (A.8) leads to the state space description

xt+1 = fSSc (xt, ut) (3.8)

where

fSSc (xt, ut)
.
=



fc(x
(1)
t , . . . , x

(ny+1)
t , ut, x

(ny+2)
t , . . . , x

(ny+nu+1)
t )

x
(1)
t
...

x
(ny)
t

ut
...

x
(ny+nu)
t


(3.9)

By construction, taking into account Theorem 8, function fSSc (·) in (3.9) is also Lipschitz
continuous with constant Lc =

√
1 + γ2 (i.e. Lc = L0).

Moreover, it can be shown that the estimation error is upper bounded byRI :

‖fSSo − fSSc ‖∞ ≤ RI . (3.10)

The SMPC law is derived according to the RH strategy described in Section 3.1, by using
the model (A.8). The resulting controller is a static function of the pseudo–state xt, i.e.
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ut = κ(xt), defined on a compact set X of values of x where the optimization problem
is feasible. Note that X ⊆ Rn−1 is a subset of Φ ⊆ Rn. Now, from (3.10) the following
bound on the model uncertainty can be obtained:

sup
x∈X
‖fSSo − fSSc ‖2 ≤ RI (3.11)

Note that the bound (3.11) can be derived because only the first components of the model
equations (3.6) and (3.9) are different, so that the 2-norm of the difference fSSo (x) −
fSSc (x) is equivalent to the absolute value of the difference fo(φ)− fc(φ).
When the predictive controller ut = κ(xt) is applied to the systems (3.5) and (3.8), the
following autonomous systems are obtained

xt+1 = fSSo (xt, κ(xt)) = F o(xt) (3.12)
xt+1 = fSSc (xt, κ(xt)) = F c(xt) (3.13)

Now, notations φo(t, x0) = F o(F o(. . . F o︸ ︷︷ ︸
t times

(x0) . . .)) and

φc(t, x0) = F c(F c(. . . F c︸ ︷︷ ︸
t times

(x0) . . .)) denote the state trajectories of systems (3.12) and

(3.13), respectively.
Moreover, the following assumptions are made:

Assumption 1 The control law ut = κ(xt) is a Lipschitz continuous function over X ,
with constant Lκ.

Assumption 2 The autonomous system (3.13) is uniformly asymptotically stable at the
origin for any initial condition x0 ∈ X , i.e. it is stable and

∀ε > 0,∀ξ > 0 ∃ τ ∈ N s.t. ||φc(t+ τ, x0)||2 < ε, ∀t ≥ 0, ∀x0 ∈ X : ||x0||2 ≤ ξ
(3.14)

Assumption 1 is related to the structure of the optimization problem (i.e. the regularity
of model (3.10) and employed cost function and constraint sets, see e.g. [42, 43]), while
Assumption 2 can be satisfied with a suitable choice of the cost function Jt (3.2) and of
the stabilizing constraints (3.3c) (see e.g. [40]- [41]).
Define the closed loop one step prediction error as

e(xt)
.
= fSSo (xt, κ(xt))− fSSc (xt, κ(xt)). (3.15)

Due to (3.11), the prediction error (3.15) results to be bounded:

‖e(xt)‖2 ≤ RI = µ (3.16)
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Finally, according to Assumption 1, the function fSSc (·) in (3.13) results to be Lipschitz
continuous over X , with constant Lcl =

√
(1 + L2

κ)(1 + L2
c):

||fSSc (x1, κ(x1))− fSSc (x2, κ(x2))||22 =

= ||fc(·)− fc(·)||22 + ||x(1)
1 − x

(1)
2 ||22 + . . .+ ||κ(x1)− κ(x2)||22 + . . .

+ ||x(nu+ny)
1 − x(nu+ny)

2 ||22 =

≤ L2
c

(
||x(1)

1 − x
(1)
2 ||22 + . . .+ ||κ(x1)− κ(x2)||22 + . . .+ ||x(nu+ny)

1 − x(nu+ny)
2 ||22

)
+

+ ||x(1)
1 − x

(1)
2 ||22 + . . .+ ||κ(x1)− κ(x2)||22 + . . .+ ||x(nu+ny)

1 − x(nu+ny)
2 ||22 =

≤ L2
c ||x1 − x2||22 + L2

cL
2
κ||x1 − x2||22 + ||x1 − x2||22 + L2

κ||x1 − x2||22 =

= (1 + L2
c)(1 + L2

κ)||x1 − x2||22 = L2
cl||x1 − x2||22 (3.17)

3.3 Robustness analysis

In this Section, a Theorem showing that the trajectory φo of system (3.12), converges
to a neighborhood of the origin, whose size depends on the accuracy of the model fSSc ,
(3.13) will be introduced. Before stating the Theorem, the following candidate Lyapunov
function V : X → R+ for system (3.13) is defined:

V (x)
.
=

T̂−1∑
j=0

‖φc(j, x)‖2 (3.18)

where T̂ ≥ T and T = inf
x∈X

(T ∈ N : ‖φc(t+ T, x)‖2 < ‖x‖2, ∀t ≥ 0).

V (x) results to be Lipschitz continuous with constant LV =
T̂−1∑
j=0

(Lcl)
j:

|V (x1)− V (x2)| ≤ | ‖x1‖2 − ‖x2‖2 + ‖F c(x1)‖2 − ‖F c(x2)‖2 + . . .+

+ ‖F c(φc(T̂ − 2, x1))‖2 − ‖F c(φc(T̂ − 2, x2))‖2| ≤
≤ ‖x1 − x2‖2 + ‖F c(x1)− F c(x2)‖2 + . . .+

+ ‖F c(φc(T̂ − 2, x1))− F c(φc(T̂ − 2, x2))‖2 ≤

≤ ‖x1 − x2‖2 + Lcl‖x1 − x2‖2 + . . .+ (Lcl)
T̂−1‖x1 − x2‖2 =

=
T̂−1∑
j=0

(Lcl)
j‖x1 − x2‖2 =

= LV ‖x1 − x2‖2, ∀x1, x2 ∈ X (3.19)
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Moreover, the following inequality holds

∀x ∈ X , ∀e : (F c(x) + e) ∈ X
V (F c(x) + e) ≤ V (F c(x)) + LV µ (3.20)

Furthermore,

‖x‖2 ≤ V (x) ≤ sup
x∈X

V (x)

‖x‖2

‖x‖2 = b ‖x‖2, ∀x ∈ X (3.21)

V (F c(x))− V (x) = ∆V (x) = −‖x‖2 − ‖φc(T̂ , x)‖2

‖x‖2

‖x‖2 ≤ −K‖x‖2, ∀x ∈ X

(3.22)

where

b = sup
x∈X

V (x)

‖x‖2

(3.23)

and

K = inf
x∈X

‖x‖2 − ‖φc(T̂ , x)‖2

‖x‖2

, 0 < K < 1 (3.24)

Note that b in (3.23) exists finite by definition of V (x).
Therefore, V (x) is a Lyapunov function for system (3.13) over X .

Theorem 6 Suppose that Assumptions 1 and 2 hold, then ∀x0 ∈ X such that φo(t, x0) ∈
X ∀t ≥ 0 :

i) the trajectory distance d(t, x0) = ‖φo(t, x0) − φc(t, x0)‖2 is bounded by ∆ which
increases monotonically with the bound µ introduced in (3.16), i.e.

‖φo(t, x0)− φc(t, x0)‖2 ≤ ∆ = ∆(µ)

ii) the trajectory φo asymptotically converges to a neighborhood of the origin whose size
depends linearly on the value of µ introduced in (3.16) (i.e. the worst-case accuracy
of the model fc)

lim
t→∞
‖φo(t, x0)‖2 ≤ q = q(µ)

Proof 1 i) Choose any x0 ∈ X as initial condition for system (3.12) and model (3.13).
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On the basis of (3.16) and of the Lipschitz property of fSSc it can be noted that:

d(1, x0) = ‖φo(1, x0)− φc(1, x0)‖2 ≤ µ

d(2, x0) = ‖φo(2, x0)− φc(2, x0)‖2 =

= ‖fSSo (SS0 (x0, κ(x0)))− fSSc (fSSc (x0, κ(x0)))‖2 ≤
≤ ‖fSSc (fSSo (x0, κ(x0))) + e− fSSc (fSSc (x0, κ(x0)))‖2 ≤
≤ ‖fSSc (fSSo (x0, κ(x0)))− fSSc (fSSc (x0, κ(x0)))‖2 + ‖e‖2 ≤
≤ Lcl‖fSSo (x0, κ(x0))− fSSc (x0, κ(x0))‖2 + µ ≤
≤ Lclµ+ µ = (1 + Lcl)µ

d(3, x0) = ‖φo(3, x0)− φc(3, x0)‖2 =

= ‖fSSo (fSSo (fSSo (x0, κ(x0))))− fSSc (fSSc (fSSc (x0, κ(x0))))‖2 ≤
≤ . . . ≤ (1 + Lcl + L2

cl)µ

d(t, x0) = ‖φo(t, x0)− φc(t, x0)‖2 ≤
t−1∑
k=0

(Lcl)
kµ

Thus, the following upper bound of the distance between trajectories φo(t, x0) and
φc(t, x0) is obtained:

d(t, x0) ≤
t−1∑
k=0

(Lcl)
kµ = ∆1(t, µ) , ∀x0 ∀t ≥ 1 (3.25)

Since Lcl ≥ 1 (see (3.17)), it cannot be proved, on the basis of inequality (3.25)
alone, that the trajectory distance d(t, x0) is bounded. However, by means the prop-
erties of Lyapunov function (3.18), a second upper bound ∆2(t, µ) of d(t, x0) can
be computed. In fact, through equations (3.20) and (3.22) the following inequality
holds:

V (F c(x) + e) ≤ V (x)−K‖x‖2 + LV µ (3.26)
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then, on the basis of (3.21) and (3.26), the state trajectory φo(t, x0) is such that:

‖φo(t, x0)‖2 ≤ V (φo(t, x0)) = V (F o(φo(t− 1, x0))) =

= V (F c(φo(t− 1, x0)) + e(φo(t− 1, x0))) ≤
≤ V (φo(t− 1, x0))−K‖φo(t− 1, x0)‖2 + LV µ ≤

≤ V (φo(t− 1, x0))− K

b
V (φo(t− 1, x0)) + LV µ =

=

(
1− K

b

)
V (φo(t− 1, x0)) + LV µ =

= ηV (φo(t− 1, x0)) + LV µ ≤

≤ ηtV (x0) +
t−1∑
j=0

ηjLV µ ≤

≤ ηtV (x0) +
LV µ

1− η
(3.27)

with η =

(
1− K

b

)
< 1. Thus, the following result is obtained:

‖φo(t, x0)‖2 ≤ ηtV (x0) +
b

K
LV µ (3.28)

‖φc(t, x0)‖2 ≤ ηtV (x0) (3.29)

By means of inequalities (3.28) and (3.29) the upper bound ∆2(t, µ) can be com-
puted:

d(t, x0) = ‖φo(t, x0)− φc(t, x0)‖2 ≤
≤ ‖φo(t, x0)‖2 + ‖φc(t, x0)‖2 ≤

≤ 2 ηtV (x0) +
b

K
LV µ ≤

≤ 2 ηt sup
x0∈X

V (x0) +
b

K
LV µ =

= ∆2(t, µ) , ∀x0 ∀t ≥ 0 (3.30)

Note that, since µ <∞ and X is compact

∆2(t, µ) <∞, ∀t ≥ 0

lim
t→∞

∆2(t, µ) =
b

K
LV µ = q

q < ∆2(t, µ) <∞, ∀t ≥ 0

32



3.3 – Robustness analysis

Thus, as t increases towards∞, the bound ∆2(t, µ) (3.30) decreases monotonically

from a finite positive value equal to 2 sup
x0∈X

V (x0)+
b

K
LV µ towards a finite positive

value q, while the bound ∆1(t, µ) (3.25) increases monotonically from 0 to ∞.
Therefore, for a fixed value of µ there exists a finite discrete time instant t̂ > 0
such that ∆1(t̂, µ) > ∆2(t̂, µ). As a consequence, by considering the lowest bound
between ∆1(t, µ) and ∆2(t, µ) for any t ≥ 0, the following bound ∆(µ) of d(t, x),
which depends only on µ, is obtained:

∆(µ) = sup
t≥0

min(∆1(t, µ),∆2(t, µ))

q ≤ ∆(µ) <∞
‖φo(t, x0)− φc(t, x0)‖2 ≤ ∆(µ), ∀x0 ∈ X ∀t ≥ 0

Since both ∆1(t, µ) and ∆2(t, µ) increase monotonically with µ, also their point-
wise minimum w.r.t. to t does.

ii) On the basis of (3.28) it can be noted that

lim
t→∞
‖φo(t, x0)‖2 ≤ lim

t→∞
ηtb‖x0‖2 +

b

K
LV µ

=
b

K
LV µ = q, ∀x0 ∈ X , (3.31)

and that q is linear in µ.

�
In the sequel, the following notation will be used:

B(A, r) =
⋃
x∈A

B(x, r) A ⊂ Rn

where B(x, r)
.
= {ξ ∈ Rn : ‖x− ξ‖2 ≤ r}.

Proposition 1 Suppose there exists a positively invariant set G ⊂ X such that:

1. φc(t, x0) ∈ G, ∀x0 ∈ G,∀t ≥ 0

2. B(G,∆) ⊂ X

then points i) and ii) of Theorem 6 hold ∀x0 ∈ G.

Remark
The more accurate is the nominal model (i.e. the lower RI) the stronger are the ro-
bust stability properties of the controlled system. Assuming a local Lipschitz constant,
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instead of a global one, can be useful in order to obtain improvements in identifica-
tion accuracy. A very simple local approach is based on the identification of an im-
proved model exploiting an existing model f̂ (obtained by any desired technique) and
input/output process data. In particular, the NSM methodology is applied to the residue
function f∆ (ϕ)

.
= fo (ϕ)− f̂ (ϕ), using the data ∆yt+1 = ỹt+1 − f̂ (ϕ̃t) , t ∈ T . See [44]

for more details.

The main consequence of Proposition 1 is that for any initial condition x0 ∈ G it is guar-
anteed that the state trajectory is kept inside the set X and converges to the set B(0, q),
whose size depends on the accuracy of the model fc. Theorem 6 is to be intended mainly
as a qualitative result that establishes local robust attractivity of the origin of the closed-
loop system. The difficulty of using this result also for quantitative analysis lies in the
practical computation of the involved quantities and in the related conservativeness. On
the other hand, to find non-conservative and practically useful results for nonlinear sys-
tems is quite a hard task, unless some more restrictive assumptions on the structure of the
system and of the problem are made.

3.3.1 Vehicle yaw control application
In order to show the effectiveness of the proposed SMPC methodology, an application
to a vehicle yaw stability control system is presented here. A brief description of yaw
stability control systems is in Section 2.3.

Control Requirements

The control objective is the tracking of a reference yaw rate value ψ̇ref(t), whose course is
designed in order to improve the vehicle maneuverability, and to assist the driver in keep-
ing directional stability under different driving conditions. In the considered situation,
the vehicle front steering angle δ represents the control input, while the yaw rate ψ̇ is the
controlled output.
A feedback control law receives as input the reference yaw rate value, together with the
measured yaw rate ψ̇, and computes a suitable command current for the steer-by-wire de-
vice, that imposes accordingly the pinion angle and, consequently, the steering angle δ of
the front wheels. The desired vehicle behavior is taken into account in the control design
by a suitable choice of the reference signal ψ̇ref. Details on the computation of the ψ̇ref

can be found in [37]. The tracking of ψ̇ref can be taken into account by minimizing the
amount of the tracking error e, defined as:

e = ψ̇ref − ψ̇

The value of the front steering angle δ, generated by the employed active device, is subject
to its physical limits. In particular, the range of allowed front steering angles that can be
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mechanically generated is ± 35◦, thus, saturation of the control input (i.e. the angle δ)
has to be taken into account in the control design.

Vehicle model identification and SMPC design

A set of measured values of ˜̇ψt and δ̃t are collected in order to identify the NSM vehicle
model fc (A.8).
The number of output and input regressors, ny and nu, have to be chosen in order to
achieve a suitable tradeoff between model complexity and accuracy, while the values of
the Lipschitz constant γ and of the noise bound ε are estimated from the data in order to
achieve a non-empty FSS (for more details on the regressor choice and on the computa-
tion of γ and ε, the interested reader is referred to [1]).
According to equation (3.4) the pseudo–state results to be:

xt =
[
ψ̇t . . . ψ̇t−nyδt−1 . . . δt−nu

]
∈ Rn−1 (3.32)

The control move is obtained, according to the RH strategy (Section 3.1), by optimizing
the following cost function:

min
U

Np∑
j=1

Qe2
t+j+1|t +Rδ2

t+j|t (3.33)

subject to

xt+j+1|t = fSSc (xt+j|t, δt+j|t), j ∈ [0, Np− 1] (3.34)

U ∈ U =
{
δt+j|t : |δt+j|t| ≤ δ̄, j ∈ [1, Nc]

}
(3.35)

et+Np|t = 0 (3.36)
ut+Nc|t, . . . , ut+Np−1|t = ut+Nc−1|t (3.37)

where Q, R ∈ R+ are suitable weights, et+j|k is the jth step ahead prediction of the
tracking error obtained as

et+j|t
.
= ψ̇ref,t − ψ̇t+j|t

The terminal state (3.36) equality constraint induces asymptotic closed loop stablity of
the nominal model as required by Assumption 1, since, in the presence of this constraint,
the optimal cost function turns out to be a Lyapunov function for the tracking error’s dy-
namics. Please refer to [45] for more details.

The saturation value δ̄ is the maximum steering angle that can be mechanically generated
i.e. δ̄ = ±35◦. The values of Q, R, Np, Nc are design parameters suitably chosen in
order to achieve a good compromise between closed loop stability and performance (see
e.g. [40]).
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Simulation results

In order to evaluate the effectiveness of the proposed approach in a realistic way, a de-
tailed 14 degrees of freedom (d.o.f.) Simulinkr vehicle model is employed. Such a model
gives an accurate description of the vehicle dynamics as compared to actual measurements
and includes nonlinear suspension, steer and tyre characteristics, obtained on the basis of
measurements on the real vehicle (see [37] for a detailed description of such a model).
The 14 d.o.f. model has been employed at first stance to generate ˜̇ψt and δ̃t data with
sampling time Ts = 0.01 s, by simulating a series of standard maneuvers. Then, such
data have been divided into two subsets: i.e. the identification and the validation data.
The identification data have been employed to derive the NSM vehicle model (A.8) while
the validation ones to evaluate its accuracy and to tune the values of nu, ny, γ and ε. In
particular, after a series of trial-and-error iterations, the values ny = 1, nu = 3, γ = 3
and ε = 0.02 rad/s have been chosen. The SMPC law has then been designed using the
following parameters Np = 30, Nc = 3, Q = 10 and R = 5.

In order to evaluate the proposed SMPC approach, a performance comparison with a
NMPC controller designed using the nonlinear single–track vehicle model described by
the state equations (3.38) (see [36] and Figure 3.1 for more details) has been carried out:

mv(t)β̇(t) +mv(t)ψ̇(t) = Fyf (t) + Fyr(t)

Jzψ̈(t) = aFyf (t)− bFyr(t) (3.38)

where m is the vehicle mass, Jz is the moment of inertia around the vertical axis, β is
the sideslip angle, ψ is the yaw angle, v is the vehicle speed, a and b are the distances
between the center of gravity and the front and rear axles respectively.
The nominal parameter values used are: m = 1715 kg Jz = 2700 kgm2 a = 1.07 m
b = 1.47 m. The sampling time Ts = 0.01 s is used to discretize the model by means the
forward difference approximation. Fyf and Fyr are the front and rear tyre lateral forces,
which can be expressed as nonlinear functions of the state, the input and of the vehicle
speed (see [37] and [46] for more details):

Fyf = Fyf (β, ψ̇, v, δ)

Fyr = Fyr(β, ψ̇, v, δ) (3.39)

At first, the NMPC parameters Q, R, Np and Nc, were set to be the same of the SMPC
ones. In such a way, the performance of the NMPC controller was significantly worse
than that of the SMPC. After that, in order to make a fair comparison, the NMPC parame-
ters have been tuned via a trial-and-error procedure in order to improve the performance.
The final choice was: Q = 2, R = 10, Np = 80 and Nc = 2.
In both cases the control move computation has been performed using the MatLabr opti-
mization function fmincon.
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Figure 3.1. Single track model schematic.

Assumptions 1-3 have been checked through numerical inspection using an approach sim-
ilar to the estimation of the Lipschitz constant proposed in [1] and [47].

An open loop (i.e. without driver’s feedback) maneuver has been chosen to test the control
effectiveness and to compare the two approaches. In particular, a 50◦ handwheel step at
100 km/h, with a handwheel speed of 400◦/s has been performed in different conditions:

• with nominal vehicle parameters

• with increased vehicle mass, +100 kg, with consequent variations of the other in-
volved inertial and geometrical characteristics

• with a lateral wind gust, which exerts on the vehicle a lateral force and a moment
of 800 N and 500 Nm, respectively, for a period of 1 s

Such tests aimed at evaluating both the transient and steady state performance of the
controlled vehicle.
The obtained results in nominal conditions (i.e. when the parameters of the 14 d.o.f.
model match with those of the physical model (3.38)) are reported in Figure 3.2. It can be
noted that the NMPC law based on the physical model achieves a steady–state regulation
error of about 3%. This is due to the neglected dynamics and under-modeling of the
physical model. On the other hand, the SMPC approach, by employing a model identified
directly from data, achieves better regulation precision with 0.9% steady–state tracking
error. The advantages of the SMPC technique are also evident in an handwheel step test
with increased vehicle mass. The result of this test is shown in Figure 3.3: while the
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Figure 3.2. Results of the 50◦ handwheel step test with nominal parameters. Uncon-
trolled vehicle yaw rate (dotted), reference yaw rate (thin solid line), and yaw rate obtained
with the SMPC (solid) and NMPC based on a physical model (dashed) control laws.

SMPC law is able to keep a nearly zero tracking error (0.9%), the NMPC law based on
the physical model achieves a slightly higher steady–state tracking error (1.9%) w.r.t the
SMPC law. Further, Figure 3.4 shows that the SMPC controller is more robust w.r.t. with
the NMCP controller when an external disturbance occurs (0.9% versus 3.8%).
Thus, the presented simulation results highlight that the proposed SMPC methodology
improves both robustness and regulation precision of the closed loop system w.r.t. NMPC
one, based on physical modelling of the system.

3.4 Robust design
Recalling the state space representation (3.6) and (3.9), of fSS0 and fSSc , with a slight
abuse of notation, it can be obtained that

fSSc (xt, ut) − fSS0 (xt, ut) =

=


fc(xt, ut)− f0(xt, ut)

0
...
0


.
= wt(xt, ut) (3.40)
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Figure 3.3. Results of the 50◦ handwheel step test with increased mass. Uncontrolled
vehicle yaw rate (dotted), reference yaw rate (thin solid line), and yaw rate obtained with
the SMPC (solid) and NMPC based on a physical model (dashed) control laws.

thus the following equation can be derived:

xt+1 = fSS0 (xt, ut) = fSSc (xt, ut) + wt(xt, ut) (3.41)

i.e. the model uncertainty is described in terms of an additive, input-and-state-dependent
perturbation wt(xt, ut) ∈ Rny+nu+1, whose elements are all equal to zero except for the
first one. Then, according to Theorem 8-3), it can be shown that the quantity wt(xt, ut) is
pointwise bounded as:

|wt(xt, ut)| ≤
1

2
|F (xt, ut)− F (xt, ut)|

.
= w(xt, ut), for any (xt, ut) ∈ Φ,

(3.42)

where the bound w(xt, ut) is computed in the NSM approach together with the estimate
fSSc (xt, ut). Note that, in (3.42), wt ∈ Rny+nu+1, while F (xt, ut), F (xt, ut) ∈ R: yet, eq.
(3.42) holds due to the particular structure of wt (3.40).
In principle, one could use the nominal model (3.8) and the uncertainty bound (3.42) to
design a robust controller for the system (3.5). However, the related control design may
be too complex. Thus, in this work a “global”, rather than pointwise, uncertainty bound
is employed, derived by using Theorem 8-4) with the∞-norm as a measure of accuracy
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Figure 3.4. Results of the 50◦ handwheel step test when a blust of wind occurs at
1 s. Uncontrolled vehicle yaw rate (dotted), reference yaw rate (thin solid line), and
yaw rate obtained with the SMPC (solid) and NMPC based on a physical model
(dashed) control laws.

of the estimate fc w.r.t. the real system:

∀(x, u) ∈ Φ, w(x, u) =
1

2
|F (x, u)− F (x, u)|

≤ 1

2
‖F (x, u)− F (x, u)‖∞ = RI,∞

.
= µ.

(3.43)

Summing up, on the basis of eqs. (3.41)-(3.43) the pseudo-state model to be employed in
the robust SMPC design is the following:

xt+1 = fSSc (xt, ut) + wt, |wt| ≤ µ, (3.44)

where xt, wt ∈ Rnu+ny+1 = Rr and ut ∈ R. An estimate of the bound µ can be computed
e.g. by using the approach of [32].

In the sequel the robust design of a SMPC control law is introduced.
In the following, the sequence of k control inputs
{ut}t1+k−1

t1 , starting from the generic time instant t = t1 up to time instant t = t1 + k− 1,
is indicated as Uk

t1
. Similarly,W k

t1
indicates a sequence {wt}t1+k−1

t1 of “disturbances” from
time instant t1 up to time instant t1 + k − 1. The set of all the possible state values at
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time t1 + k, that originate from the generic state value xt1 at time t1 by applying the input
sequence Uk

t1
to system (3.44), is defined as:

S(xt1 , U
k
t1

)
.
= {{xt}t1+k

t1 :

xt1+k+1 = fSSc (xt1+k, ut1+k) + wt1+k,

∀k ∈ [0, k − 1] , ∀wt1+k : |wt1+k| ≤ µ} (3.45)

while φ(xt1 , U
k
t1

) indicates the nominal state value (i.e. with wt = 0∀t) and φSS0 (xt1 , U
k
t1

)

is the state value of the real plant at time t1 + k, obtained starting at xt1 and applying the
input sequence Uk

t1
. Clearly, it holds that

{φ(xt1 , U
k
t1

), φ0(xt1 , U
k
t1

)} ⊂ S(xt1 , U
k
t1

). The Hausdorff distance (see e.g. [48]) between
any two sets S ∈ Rr and X ∈ Rr is defined as:

d(S,X ) =

max

(
sup
x1∈S

inf
x2∈X
|x1 − x2|, sup

x1∈X
inf
x2∈S
|x1 − x2|

)

It is assumed that the control problem is to robustly asymptotically regulate the state of
system (3.44) to a convex and compact neighborhood of the origin, indicated as Xf ⊆ Rr,
under state and input constraints, indicated respectively by a convex set X ⊆ Rr and a
convex, compact set U ⊆ R, both containing the origin in their interiors. The notation
Uk
t1
∈ U indicates that each one of the elements of the sequence Uk

t1
belongs to U. The

following assumption is considered for Xf :

Assumption 3 a
∀xt ∈ Xf , ∀k ∈ [1,∞), ∃Uk

t ∈ U : S(x, Uk
t ) ∈ Xf ,

i.e. there exists a feasible control sequence that robustly keeps the state inside the set
Xf for any future time step. The set Xf ⊂ X is a design parameter that has to be chosen
according to a tradeoff between better regulation precision and NMPC problem feasibility,
as it will be clear in the following. Obviously, Xf can not be chosen arbitrarily small, due
to the presence of the uncertainty w. By indicating as N ∈ N the prediction horizon, the
following cost function J can be defined:

J(xt, U
N
t ) = d(xt,Xf ) +

N−1∑
k=1

d(S(xt, U
k
t ),Xf ) (3.46)
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then, the FHOCP to be solved in the SMPC approach is:

J∗(xt) = min
UNt

J(xt, U
N
t ) (3.47a)

subject to

S(x, Uk
t ) ∈ X, ∀k ∈ [1, N ] (3.47b)

UN
t ∈ U (3.47c)

S(x, UN
t ) ∈ Xf (3.47d)

A (possibly local) optimal control sequence is indicated as UN∗
t (xt). The following as-

sumption is considered about the constrained FHOCP (3.47):

Assumption 4 There exists a setF ∈ Rr such that the FHOCP (3.47) is feasible ∀x ∈ F .

Remark 7 The feasibility of (3.47) depends on many factors, such as the model (3.44),
the related uncertainty bound, the constraint sets and the choice of the terminal set Xf . In
the quite general settings of this work, it is difficult to derive sufficient conditions on these
factors to satisfy Assumption 4 and to evaluate the feasibility set F ∈ Rr. These aspects
are beyond the scope of this thesis and are subjects of future research.

The FHOCP (3.47) is typically solved numerically. In particular, it is assumed that the
employed algorithm, denoted as UN∗

t (xt) = λ(xt), enjoys the following properties:

Assumption 5 For any x ∈ F , λ(x) returns a (eventually local) minimum J∗(x) and the
related minimizer UN∗

t (x)

Assumption 6 a

(a) For any predicted time instant t + k and any control sequence Uk
t ∈ U such that

S(xt, U
k
t ) ∈ Xf , the algorithm λ(xt) is able to compute a control sequence ÛN−k

t+k ∈
U, such that
S(S(xt, U

k
t ), Ûk

t+k) ∈ Xf , ∀k ∈ [1, N − k].

(b) The minimizer UN∗
t (xt) provided by λ(xt) is such that, for any predicted time instant

t+ k : S(xt, U
k∗
t ) ∈ Xf , k ∈ [0, N ], it happens that

S(xt, U
k+k∗
t ) ∈ Xf , ∀k ∈ [1, N − k], i.e. the state trajectories are robustly kept

inside the terminal set Xf .

Remark 8 Assumptions 5-6 are quite mild, provided that Assumptions 3-4 hold. In par-
ticular, with the settings of this work Assumption 5 is satisfied if the problem is feasible
and the solver is initialized with a feasible solution (or is able to find a feasible solution).
Assumption 6(a) can be satisfied if Assumption 3 holds (so that there exists a sequence
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that robustly keeps the state inside the terminal set) and if the algorithm λ(xt) is able to
find a sequence ÛN−k

t+k and a scalar t̂ = 0 that solve the following optimization problem:(
t̂, ÛN−k

t+k

)
= arg min

t,U
N−k
t+k

t

s.t.
S(S(xt, U

k
t ), Ûk

t+k) ≤ t, ∀k ∈ [1, N − k].

Finally, it can be noted that Assumption 6(b) holds as a consequence of Assumption 6(a),
by considering that, according to the chosen cost function (3.46), the stage cost related to
any predicted set S(xt, U

k
t ) : S(xt, U

k
t ) ∈ Xf is zero (i.e. minimal).

Assumptions 6(a)-(b) can be replaced by assuming that a terminal control policy is known,
under which the set Xf is robustly positively invariant (see e.g. [40]). In some sense, in
this work the terminal control policy is not known a priori, while it is assumed that the
algorithm λ(xt) is able to derive it.

According to the RH strategy, the SMPC controller is implemented as follows:

Algorithm 1 a

1. At time instant t, get xt.

2. Solve (3.47), by initializing the algorithm λ(xt) with the optimal sequence ŨN∗
t ,

computed at time instant t− 1 and suitably shifted.

3. Apply the first element of the solution sequence UN∗
t as the actual control action ut.

4. Repeat the whole procedure at time t+ 1.

The control law resulting from Algorithm 1 is indicated here as ut = κ∗(xt), and the
related sequence, starting from the generic time instant t1 up to time t1 +k−1, is denoted
as Kk

t1
= {κ∗(xt)}t1+k−1

t1 . The following stability result holds.

Theorem 7 Under Assumptions 3-6, the distance between the state of system (3.44), con-
trolled by the feedback law κ∗, and the terminal set Xf asymptotically robustly converges
to zero for any initial condition xt ∈ F , i.e.:

∀xt ∈ F , lim
k→∞

d(S(xt, K
k
t ),Xf ) = 0

Proof 2 At first, the recursive feasibility of Algorithm 1 is analyzed. Take any xt ∈ F .
Assumptions 4 and 5 imply that the algorithm λ(xt) is able to find a feasible, locally
optimal solution sequence. Such a sequence is indicated here as UN∗

t|t ∈ U, to highlight
that it is the solution of (3.47) at time t. By applying the first element of such a sequence
to the system, the state xt+1 = φP (xt, U

1∗
t|t ) is obtained at the following time step, t + 1.
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By initializing the algorithm λ(xt+1) with the shifted optimal sequence UN−1∗
t+1|t computed

at time step t, it can be noted that S(xt+1, U
k∗
t+1|t) ∈ X, ∀k ∈ [0, N − 1) and that the set

S(xt+1, U
N−1∗
t+1|t ) ∈ Xf , i.e. at the second last prediction step the state trajectory is robustly

inside the terminal setXf . Then, according to Assumptions 3 and 6, the algorithm λ(xt+1)

is able to find a control input ût+N ∈ U so that S(xt+1, Û
N∗
t+1|t) ∈ Xf , where the sequence

ÛN∗
t+1|t ∈ U is constructed by using as first N−1 components the elements {u∗t}Nt+1|t of the

optimal sequence UN∗
t|t , and as the last component the value ût+N . The sequence ÛN∗

t+1|t
provides a feasible input sequence for the problem (3.47) at time xt+1. Such a reasoning
can be iterated for any time instant t + k, k ∈ [2,∞), so that recursive feasibility is
proved. The asymptotic convergence of the distance
d(S(xt, K

k
t ),Xf ) to zero, as k → ∞, will be now proved. For any state value xt ∈ F ,

consider the optimal cost J∗(xt), computed at time t by algorithm λ(xt), corresponding
to the optimal solution sequence UN∗

t|t (xt). For the sake of simplicity of notation, define
d(xt)

.
= d(xt,Xf ). From the definition of the cost function J (3.46), it can be noted that

0 ≤ d(xt) ≤ J∗(xt), (3.48)

i.e. the distance between the state xt and the set Xf is upper-bounded by J∗(xt). More-
over, due to Assumptions 3 and 6,

J∗(xt) = 0 ⇐⇒ d(xt) = 0 (3.49)

so that J∗(xt) = 0 if and only if xt ∈ Xf . Finally, consider the difference J∗(xt+1) −
J∗(xt). Since the algorithm λ(xt+1) at time t + 1 is provided with the feasible input
sequence ÛN∗

t+1|t, which is suboptimal, it holds that:

J∗(xt+1) ≤ J(xt+1, Û
N∗
t+1|t). (3.50)

J(xt+1, Û
N∗
t+1|t) is such that:

J(xt+1, Û
N∗
t+1|t) ≤ J∗(xt)− d(xt) (3.51)

By combining eqs. (3.50) and (3.51), it can be noted that:

J∗(xt+1)− J∗(xt) ≤ −d(xt) (3.52)

with:
J∗(xt+1)− J∗(xt) = 0 ⇐⇒ d(xt) = 0, (3.53)

in which case J∗(xt+1) = J∗(xt) = 0, due to Assumption 4. Thus, it holds that:

J∗(xt+1)− J∗(xt) < 0∀xt ∈ F \Xf

J∗(xt+1)− J∗(xt) = 0 ⇐⇒ xt ∈ Xf
(3.54)
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Equations (3.48) and (3.54) are sufficient to prove robust asymptotic convergence of d(xt)
to 0:

lim
t→∞

d(xt) ≤ lim
t→∞

J∗(xt) = 0, ∀x0 ∈ F (3.55)

�

Remark 9 Theorem 7 also implies that the distance between the state φP (xt1 , U
k
t1

) of the
controlled system and the set Xf asymptotically converges to zero.

Remark 10 In order to reduce the conservativeness of the presented approach and to im-
prove the feasibility of (3.47), the FHOCP can be generalized by optimizing over control
policies κ, i.e. UN

t1
= {κ(xt)}t+N−1

t1 + V t+N−1
t1 , so that the predictions involved in (3.47)

can be carried out in a closed-loop fashion. It is widely recognized (see e.g. [49]) that
this approach leads to better performance and reduced feasibility problems. Optimiza-
tion over control policies has not been adopted in the theoretical framework of this study
just for simplicity of notation, yet it can be straightforwardly used and indeed it has been
employed in the numerical example of Section 3.4.1

Remark 11 It has to be noted that the set F has to be a subset (with lower dimension) of
the set Φ, over which the NSM identification procedure is applied.

3.4.1 Nonlinear oscillator application
Consider the following two-dimensional, discrete-time nonlinear oscillator obtained from
the Duffing equation (see e.g. [50]):

ξt+1 =

[
1 Ts

−Ts ω2 1− 2 ζ Ts

]
ξt+

[
0 0
−Ts 0

]
ξ3
t +

[
0
Ts

]
ut

yt =
[

1 0
]
ξt + vt

(3.56)

where ξt = [ξ
(1)
t ξ

(2)
t ]T is the system state (the symbol ·T denotes the transpose operator),

vt ∈ [−0.01,0.01] is an unknown-but-bounded measurement noise, ζ = 0.3, ω = 1 and
Ts = 0.05 s.
The control objective is to regulate the output y to the origin, under the following output
and input constraints:

|y| ≤ 3 |u| ≤ 5 (3.57)
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The system (3.56) is supposed to be unknown, but a set of noise-corrupted measure-
ments can be collected through preliminary experiments. Note that the origin of system
(3.56) is an open-loop asymptotically stable fixed point for any initial condition ξ0 ∈ R2,
so that the preliminary experiment can be carried out in open-loop fashion. In partic-
ular, 30 experiments have been carried out, starting from 30 different initial conditions
ξ0 ∈ R2 : ‖ξ0‖∞ ≤ 3. In each one of these experiments, a uniformly distributed random
sequence {ũt}1·103

0 : ∀t, |ũt| ≤ 5 has been used as input, and a second uniformly dis-
tributed random sequence {ṽt}1·103

0 : ∀t, |ṽt| ≤ 0.01 has been employed as measurement
noise. The overall collected data form a set of 3 · 104 samples (ỹ, ũ) (A.2), which has
been split in an identification set of 2.5 ·104 samples, to be used in the NSM identification
procedure, and in a validation set containing the remaining 5 · 103 samples. The num-
ber of output and input regressors, ny and nu respectively, have been chosen in order to
achieve a suitable tradeoff between model complexity and accuracy, while the values of
the Lipschitz constant γ and of the noise bound ε have been estimated from the data in
order to achieve a non-empty FSS (for more details on the regressor’s choice and on the
computation of γ and ε, the interested reader is referred to [1]). In this case, the values
ny = 2, nu = 2, γ = 2.3 and ε = 0.02 have been chosen. The obtained NSM model has
the form (3.44):

xt+1 = fSSc (xt, ut) + wt

where

xt =

 x
(1)
t

x
(2)
t

x
(3)
t

 =

 yt
yt−1

ut−1



fSSc (xt, ut) =

 fc(xt, ut)

x
(1)
t

ut

 (3.58)

and fc(xt, ut) is the identified NSM model (see (3.9)). The estimated uncertainty bound
µ results to be equal to 0.1. The derived model is then employed to design the SMPC law,
according to Algorithm 1, by optimizing over linear feedback control policies of the form
ut = K xt + u′t (see Remark 10). In particular, the horizon N = 30 and the terminal set
Xf = {x ∈ R3 : |x(1)|, |x(2)| ≤ 0.1; |x(3)| ≤ 2} have been employed. Finally, on the
basis of the constraints (3.57) on the actual system and of the pseudo-state choice (3.4.1),
the sets X and U are selected as follows:

X =
{
x ∈ R3 : |x(1)|, |x(2)| ≤ 3; |x(3)| ≤ 5

}
U = {u ∈ R : |u| ≤ 5}

The obtained results, starting as an example from the initial state ξ0 = [1.85, −3.41]T

(and initial pseudo-state x0 = [1.85, 2, 0]T ), are shown in Figure 3.5-3.7, where they
are compared to the results achieved in an “ideal” case, i.e. with a NMPC law designed
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and implemented assuming exact knowledge of the system equations (3.56) and measure-
ment of the whole state with zero noise. In particular, Figures 3.5 and 3.6(a)-(b) show
the trajectories of the system output y and state ξ respectively. It can be noted that quite
good regulation precision is achieved by the SMPC law (see Figure 3.6(b)), while its
performance in the transient phase are worse w.r.t. the standard NMPC law, due to the
conservativeness of the robust design employed in SMPC and the presence of measure-
ment noise. The courses of the input u are shown in Figure 3.7, where it can be noted that
the input constraints are always satisfied by both controllers.
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Time step t

Figure 3.5. Numerical example: courses of the system output y with the SMPC control
law (∗) and with a state-feedback NMPC law (◦). Initial state: ξ0 = [1.85, −3.41]T , initial
pseudo-state: x0 = [1.85, 2, 0]T .
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Figure 3.6. Numerical example: (a) Trajectories of the system state ξ with the SMPC
control law (∗) and with a state-feedback NMPC law (◦). (b) Zoom of the trajectories close
to the origin. Initial state: ξ0 = [1.85, −3.41]T , initial pseudo-state: x0 = [1.85, 2, 0]T .
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Figure 3.7. Numerical example: courses of the system input u with the SMPC control
law (∗) and with a state-feedback NMPC law (◦). Initial state: ξ0 = [1.85, −3.41]T , initial
pseudo-state: x0 = [1.85, 2, 0]T .
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Chapter 4

Stability control systems using Direct
Virtual Sensors

Lateral stability control systems significantly enhance safety and handling properties by
modifying the dynamics of the passive vehicle (see [51]). These systems usually employ
a closed loop control strategy with a yaw rate feedback (see [36]). Clearly, the yaw rate
sensor plays a crucial role for the correct operation of the control system and sensor faults
may lead to performance deterioration or even safety risks, unless a proper recovery strat-
egy is adopted. In this context, virtual sensors can be employed to carry out a recovery
strategy. Once the sensor fault has been detected, the measure of the yaw rate can be
replaced by its estimate, provided by the virtual sensor.
In this thesis, the design of a linear yaw rate Direct Virtual Sensor (DVS) and its use in
feedback control is studied.
A quite extensive literature can be found regarding yaw rate estimation using the mea-
sures of wheel speeds, steering angle and/or lateral acceleration (see [12] and the refer-
ence therein for more details). However, few works investigate the use of combined yaw
rate estimation and feedback for yaw control and none of them addresses the issue of
guaranteeing closed loop system stability in the presence of virtual sensor.
Here, such issues are investigated. At first, the problem of how to make a suitable choice
of the measured variables needed by the DVS is studied in order to enhance the estima-
tion accuracy. It is shown that, using data collected in a closed loop fashion, better overall
estimation performance can be obtained, with a reduced number of measured variables.
The stability of the controlled system using the DVS is studied via an a posteriori robust-
ness analysis. Finally, through simulations, the performance of the controlled vehicle is
evaluated in critical conditions and when a recovery strategy is used in order to face a yaw
rate sensor fault.
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4.1 Vehicle modeling
Vehicle stability control systems usually employ a feedback control structure where the
controlled variable is the yaw rate ψ̇(t) and the controller is designed on the basis of
a linear vehicle model. The control input is able to modify the vehicle dynamics by
influencing the longitudinal and/or lateral tyre forces, using several physical mechanisms.
Among the existing solutions (see e.g. [52–57]), in this paper an approach similar to AFS
systems (see e.g. [52]) is adopted: the steering angle δ(t) of the front wheels is the sum
of the contribution δd(t), issued by the driver via the conventional steering system, with
the contribution δf (t), provided by the active system via an electromechanical device:

δ(t) = δd(t) + δf (t) (4.1)

Angle δd is related to the handwheel angle δv, provided by the driver, through the steering
ratio τ , i.e. δd = δv/τ . The value of δf (t) is restricted in the range±5◦ due to the actuator
limitations in the considered AFS system. The adopted actuation solution is motivated by
safety reasons, since the driver intervention on the front steering angle is always kept.
For the control design, a linear single track vehicle model is considered, assuming that
angle δ(t) is the control input (see e.g. [36] for details). Under the typical assumptions for
single track models, for a fixed vehicle speed v the following dynamic equilibria hold:

ay(t) = v(β̇(t) + ψ̇(t)) = (Fyf (t) + Fyr(t))/m

Jψ̈(t) = aFyf (t)− bFyr(t)
(4.2)

where m is the vehicle mass, J is the moment of inertia around the vertical axis, β is
the side–slip angle, a and b are the distances between the center of gravity and the front
and rear axles respectively and Fyf and Fyr are the front and rear axle lateral forces,
respectively. The dynamic generation of tyre forces is also taken into account through the
following first order equations:

Fyf (t) +
lf
v
Ḟyf (t) = −cf

(
β(t) + a ψ̇(t)

v
− δ(t)

)
Fyr(t) + lr

v
Ḟyr(t) = −cr

(
β(t)− b ψ̇(t)

v

) (4.3)

where lf and lr are the front and rear tyre relaxation lengths and the variables cf and cr
stand for the front and rear axle cornering stiffnesses (see [58]).
In the presence of a physical yaw rate sensor, the measure of ψ̇(t) is employed for feed-
back control and the controller design is carried out on the basis of the transfer function
Gψ̇(s), between the steering angle δ(t) and the yaw rate ψ̇(t):

Gψ̇(s) =
b2s

2 + b1s+ b0

a4s4 + a3s3 + a2s2 + a1s+ a0

(4.4)
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4.1 – Vehicle modeling

where
a4 = mJlf lr, a3 = mvJ(lf + lr)
a2 = J(mv2 + cf lr + crlf ) +m(cfa

2lr + crb
2lf )

a1 = v(J(cf + cr) +m(cfa(a− lr) + crb(b+ lf )))
a0 = cfcrl

2 −mv2(cfa− crb)
b2 = mvacf lr, b1 = mv2acf , b0 = vcfcrl

(4.5)

Transfer function Gψ̇(s) can be derived, for a fixed value of the speed v, by applying the
Laplace transform to equations (4.1)–(4.3). It is also useful to describe the relationships
between the vehicle input δ and the lateral acceleration ay, the difference between the
angular speeds of the front wheels, ∆ωf , and of the rear wheels, ∆ωr. Such variables
have been considered since their measures are either usually available on vehicles, due
to the presence of electric power steering (EPS) and anti–lock braking (ABS) systems
and thus they can be used as inputs for the yaw rate virtual sensor. Moreover, as a first
approximation, under the same assumptions of the single track vehicle model, the values
of ∆ωf (t) and ∆ωr(t) are related to ψ̇(t) through the following equations (see e.g. [36]):

∆ωf (t) = ψ̇(t)df/Rw

∆ωr(t) = ψ̇(t)dr/Rw
(4.6)

whereRw is the nominal wheel radius (supposed to be the same for all of the four wheels)
and df , dr are the front and rear wheelbases respectively. Note that variables ∆ωf and
∆ωr are defined as:

∆ωf = ωf,h − ωf,v
∆ωr = ωr,h − ωr,v

where ω denotes the wheel angular speed and the subscripts f, r, h, v stand for front, rear,
right and left wheel position, respectively. On the basis of equations (4.1)–(4.6), transfer
functions Gay(s), G∆ωf (s) and G∆ωr(s) are derived, respectively between the input δ and
the output variables ay, ∆ωf and ∆ωr:

Gay(s) =
c3s

3 + c2s
2 + c1s+ c0

a4s4 + a3s3 + a2s2 + a1s+ a0

G∆ωf (s) =
g2s

2 + g1s+ g0

a4s4 + a3s3 + a2s2 + a1s+ a0

G∆ωr(s) =
h2s

2 + h1s+ h0

a4s4 + a3s3 + a2s2 + a1s+ a0

(4.7)

where
c3 = Jlrcfv, c2 = Jv2cf , c1 = vblcfcr, c0 = v2cfcrl
g2 = mvacf lrdf/Rw, g1 = mv2acfdf/Rw

g0 = vcfcrldf/Rw, h2 = mvacf lrdr/Rw

h1 = mv2acfdr/Rw, h0 = vcfcrldr/Rw

(4.8)
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4 – Stability control systems using Direct Virtual Sensors

4.2 Vehicle yaw control using physical sensor

In this Section, the adopted control structure is presented, together with its design pro-
cedure(Figure 4.2). The control objective is to track a reference yaw rate value ψ̇ref (t),
whose course is designed in order to improve the vehicle maneuverability, and to assist the
driver in keeping directional stability under the different driving conditions. In particular,
ψ̇ref (t) is computed by means of a static map whose inputs are the handwheel angle δv(t),
issued by the driver, and the vehicle speed v(t). For given values of δv and v(t), the map is
designed so that the desired yaw rate is higher than the one obtained by the uncontrolled
vehicle, thus obtaining a higher lateral acceleration value and narrower paths, i.e. better
maneuverability. At the same time, the reference yaw rate map is designed in such a way
that the related side-slip angle β is limited, so to improve directional stability. Finally,
the map also takes into account the nonlinear behaviour of the vehicle as it approaches its
lateral acceleration limit. The reference yaw rate map employed in this paper is shown in
Figure 4.1. For a detailed description of the criteria followed in the map construction, the
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Figure 4.1. Yaw-rate reference map employed in the control system.

interested reader is referred to [37] and [59].
In the considered control structure, denoted as (Q + ψ̇) in the following, the value of
the control input δf (t) is the sum of a feedback contribution δfb(t) with a feedforward
one δff (t). The feedback controller is designed using IMC methodologies, since they
have been proved to be effective in the context of robust vehicle stability control (see
e.g. [37, 53, 59] for their application in different contexts).
The IMC controller Q(s) is designed to optimize the vehicle performance, while guaran-
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4.2 – Vehicle yaw control using physical sensor

Figure 4.2. Control structure with measured yaw rate feedback and
IMC controller Q(s) (Q+ ψ̇).

teeing robust stability in the presence of the model uncertainty induced by the wide range
of operating conditions. In order to take into account such uncertainty in the control
design, an additive model set of the following form is employed:

Gψ̇(Gψ̇,Γψ̇) = {(Gψ̇(s) + ∆ψ̇(s)) : |∆ψ̇(jω)| ≤ Γψ̇(ω)} (4.9)

∆ψ̇(s) is the unstructured additive uncertainty (see e.g. [60]), while Γψ̇(ω) is an upper
bound on the magnitude of ∆ψ̇(jω). Such model set can be obtained considering varia-
tions of the vehicle and tyre parameters with respect to their nominal values (see [60]),
as described in Section 4.5. The design of Q(s) is performed by means of the following
optimization problem (see e.g. [39]):

Q (s) = arg min
‖Q(s)Γ̄ψ̇(s)‖∞<1

∥∥W−1
S (s)S (s)

∥∥
∞ (4.10)

where Γ̄ψ̇ (s) is a suitable real rational stable function, whose magnitude strictly over-
bounds Γψ̇(ω) (4.9) and WS(s) is a weighting function which accounts for the desired
performance on the nominal sensitivity S(s) = 1 − Gψ̇(s)Q(s). WS(s) is chosen to
achieve good closed loop damping properties and to slightly improve the system band-
width with respect to the uncontrolled vehicle.
The feedforward contribution δff , computed through the filter F (s) from the measure of
angle δd, issued by the driver, has been added to improve the dynamic response charac-
teristic. In particular, the filter F (s) is designed to match the desired open loop yaw rate
behavior, between the driver input δd and vehicle yaw rate ψ̇, with the one described by
an objective transfer function T des(s):

ψ̇(s) = T des(s)δd(s) (4.11)
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4 – Stability control systems using Direct Virtual Sensors

According to the scheme in Figure 4.2, it results that

T des(s)δd(s) = Gψ̇(s)δd(s) +Gψ̇(s)δff (s) =

= Gψ̇(s)δd(s) +Gψ̇(s)F (s)δd(s)

thus the filter F (s) can be computed as

F (s) =
T des(s)

Gψ̇(s)
− 1 (4.12)

Moreover, since F (s) aims at enhancing the transient response only, its contribution
should be deactivated in steady state conditions. This is achieved when the dc–gains
of T des(s) and Gψ̇(s) are equal.

4.3 Virtual Sensors vs Direct Virtual Sensors

4.3.1 Virtual Sensors
Let us consider a process S with a set of known inputs u ∈ Rm, some unknown inputs
(named disturbances) w ∈ Rr, a set of measured outputs y ∈ Rq and an internal variable
of interest z ∈ R, to be estimated. A virtual sensor (see e.g. [61]) is a causal and stable
dynamic system that takes as inputs the known inputs u and a subset of the measured
outputs y of S, and whose output is an estimate ẑ of the internal variable z ∈ R. In the
linear case, the virtual sensor dynamic behavior can be described as:

Ẑ(s) = Hẑ,y(s)Y (s) +Hẑ,u(s)U(s) (4.13)

where Hẑ,u(s) and Hẑ,y(s) are real rational stable transfer matrices of suitable dimension.
Figure 4.3 shows the general process–virtual sensor scheme together with the approxima-
tion error ε. Different methodologies can be employed to build a virtual sensor, according
to the considered prior information and assumptions. The most common techniques rely
on the use of a (usually linear) process model and particular hypotheses about distur-
bances. Some of these approaches are the minimum variance (Kalman) and H∞ filtering
techniques. With these techniques, the obtained estimation accuracy may be poor due to
neglected dynamics in the employed model and due to the presence of (often uncertain)
nonlinear characteristics in the real process (see [62]).

4.3.2 Direct Virtual Sensors
When the process is not completely known, a data–driven approach to the virtual sensor
design problem can be considered. In this paper, a direct procedure is followed, in which
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4.3 – Virtual Sensors vs Direct Virtual Sensors

Figure 4.3. Process–virtual sensor scheme.

suitable process input–output experimental data are used to design a DVS in one step,
avoiding the identification of a model of the process. A preliminary experiment can be
performed also when the variable z is measured. This assumption is not restrictive, since
some measurements of z are needed to evaluate the performance of any virtual sensor,
independently on the employed design methodology. Moreover, in the considered auto-
motive context, extensive experimental testing campaigns are usually carried out, in order
to tune the control algorithms and to assess the active system performance. During such
experimental tests, in order to collect large quantities of data, the employed prototype car
is equipped with a full set of sensors that, usually, are not all installed on the final com-
mercialized vehicle due to their excessive costs.
Denote with uk, yk and zk the sampled values of u, y and z respectively, corresponding
to any sampling instant k ∈ N, with fixed sampling period Ts. N measurements of uk,
yk and zk, corresponding to sampling instants k Ts, ∀k ∈ [1, N ], are collected in the pre-
liminary experiment. In the following, the values of uk, yk, zk, k = 1, ..., N , are referred
to as the “data set”. Since a virtual sensor must be a stable system, its impulse response
has an exponential decay and it can be approximated with desired precision by a Finite
Impulse Response (FIR) filter that uses present and past values of uk and yk to give an
estimate ẑk of zk, that is:

ẑk =
nu∑
j=0

αTj uk−j +

ny∑
j=0

βTj yk−j (4.14)

where nu, ny are design parameters which define the structure of the DVS and αj ∈
Rm, j = 0, . . . , nu and βj ∈ Rq, j = 0, . . . , ny are the filter coefficients, whose values
are constrained by the following exponential decay:

‖αj‖∞ ≤ Luρ
j, j ∈ [0,1, . . . , nu]

‖βj‖∞ ≤ Lyρ
j, j ∈ [0,1, . . . , ny]

where Lu > 0, Ly > 0 and 0 < ρ < 1. Lu, Ly and ρ are the parameters that define the
model class where the DVS is looked for. In particular, Lu and Ly define the maximum
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4 – Stability control systems using Direct Virtual Sensors

absolute value of any one of the elements of the first coefficients in the impulse response
(i.e. α0 and β0), while ρ is the decay rate.
Assuming that z is observable from y, it can be shown that the estimation error εk =
zk − ẑk is bounded for any bounded input sequence (see [63]). Using FIR filters with
the structure (4.14), the DVS can be designed by minimizing a weighted p–norm of the
estimation error on the collected data set, i.e. on the collected values of uk, yk and zk for
any k ∈ [k,N ], where k = max(nu, ny):

[α̂0, . . . , α̂nu , β̂0, . . . , β̂ny ] = arg min

(
N∑
k=k

∣∣w−1
k εk

∣∣p)1/p

such that
εk=zk−

nu∑
j=0

αjuk−j−
ny∑
j=0

βjyk−j k ∈ [k,N ]

‖αj‖∞ ≤ Luρ
j, j ∈ [0,1, . . . , nu]

‖βj‖∞ ≤ Lyρ
j, j ∈ [0,1, . . . , ny]

(4.15)

This convex optimization problem with linear constraints can be efficiently solved. By
suitably selecting the weights wk in (4.15), it is possible to consider noise measures de-
pendent on k, for example relative measurement errors. Details on how to select the
exponential decay parameters Lu, Ly and ρ and weights wk are given in [64].
Depending on the data set employed in the design, the obtained linear DVS is able to
give good estimation performance also in nonlinear process operating conditions, when
the linear models used in classic approaches suffer from under–modeling (for a complete
comparison, see [63]).
Regardless of the used norm, solution to problem (4.15) is usually a high order FIR filter.
Then, model order reduction techniques are used to fit the identified impulse responses
with a stable and causal IIR filter of a prefixed order n. An n-th order state-space re-
alization is obtained by singular value decomposition of the Hankel matrix of the filter
impulse response, such that the H∞ distance between the original and the low order filter
is bounded, see [65]. Finally, a bilinear transformation is applied to the resulting estimator
in order to obtain the form (4.13).

4.3.3 Direct Virtual Sensors for yaw rate

The design and the use of a yaw rate DVS for feedback control is now studied. Thus,
referring to Section 4.3.2, the variable z to be estimated is the yaw rate ψ̇, while the
variable u is the front steering angle, i.e. u = δ. As to variable y, it is assumed that the
measures of the lateral acceleration ay and of the differences between the wheel angular
speeds of the front and rear axles, ∆ωf and ∆ωr respectively, are available. Therefore,
the considered output y is composed of a suitable subset of the variables ay, ∆ωf and
∆ωr. Table 4.1 lists all the possible virtual sensors.
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4.4 – Vehicle yaw control using Direct Virtual Sensor

DVS Measurements
1 [δ, ay]
2 [δ,∆ωf ]
3 [δ,∆ωr]
4 [δ, ay,∆ωf ]
5 [δ, ay,∆ωr]
6 [δ,∆ωf ,∆ωr]
7 [δ, ay,∆ωf ,∆ωr]

Table 4.1. Subsets of measurements used for the DVS design

By intuition, it could be expected that the best estimation accuracy can be obtained when
all of the possible available measurements are used. However, an interesting outcome of
this paper is that this is not true in general, since the use of all of the three measures of ay,
∆ωf and ∆ωr does not always lead to the best accuracy results. In particular, it will be
shown that, if the initial experiment is performed in closed loop fashion, the DVS which
achieves the best accuracy employs the measures of ay and ∆ωr only. Moreover, such
DVS has better accuracy than those designed using data collected with the uncontrolled
vehicle, independently on the number of employed measurements. However, figuring out
a priori which measured variables should be used to obtain good accuracy appears to be
a hard task: physical insight and trial–and–error procedures can be used to practically
establish the best combination of measurements to be employed.

4.4 Vehicle yaw control using Direct Virtual Sensor

Closed loop stability when the DVS is used for feedback control is now investigated.
Figure 4.4 shows the considered control scheme where the yaw rate DVS replaces the
physical one, e.g. to recover the yaw rate sensor fault. This scheme is denoted (Q+DV S)

for brevity. Since the estimated variable ẑ is the yaw rate ̂̇ψ and the input u is the steering
angle δ, the transfer matrices of the DVS (see (4.13))are denoted with Ĥ̇

ψ,y
and Ĥ̇

ψ,δ
. A

sufficient robust stability condition, based on the small gain theorem (see e.g. [60]), is
employed to assess if the controller Q(s) is still able to robustly stabilize the system in
the presence of the DVS. To this end, the nominal transfer matrix Gy(s), from input δ to
the considered output y, is computed. Gy(s) is a single–column transfer matrix whose
components are one or more of the transfer functions (4.7), depending on the particular
considered variable y. For example, the transfer matrix Gy(s) related to DVS 4 (see Table
4.1 and (4.7)) is defined as:

Gy(s) =

[
Gay(s)
G∆ωf (s)

]
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4 – Stability control systems using Direct Virtual Sensors

Figure 4.4. Control structure with estimated yaw rate feedback and IMC con-
troller Q(s) (Q+DV S).

Model uncertainty is taken into account by the following additive model set:
Gy(Gy,Γy) = {Gy(s) + ∆y(s) : σ̄ (∆y(jω)) ≤ Γy(ω)} (4.16)

where σ̄(·) is the maximum singular value and ∆y(s) is the transfer matrix of the additive
uncertainty associated to Gy(s), while Γy(ω) is an upper bound of σ̄ (∆y(jω)), which can
be computed by considering variations of the vehicle and tyre parameters with respect to
their nominal values (as described e.g. in [60]).
Referring to Figure 4.4 and defining the functions:

GDV S(s) = Ĥ̇
ψ,y

(s)Gy(s) +Ĥ̇
ψ,δ

(s)

∆DV S(s) = Ĥ̇
ψ,y

(s)∆y(s)

C(s) = Q(s)(1−Gψ̇(s)Q(s))−1

the following sufficient condition can be used to check robust stability of control scheme
(Q+DV S).
Robust stability of control scheme (Q+DV S)
The control scheme (Q + DV S) is robustly stable with respect to the model uncertainty
∆y in the model set (4.16) if∥∥ΓDV S(s)C(s)(1 + C(s)GDV S(s))−1

∥∥
∞ < 1 (4.17)

where ΓDV S(s) is a stable real rational transfer function, such that

σ̄ (∆DV S(jω)) ≤ |ΓDV S(jω)|

Proof. C(s) is the equivalent feedback controller of the IMC loop formed by Q(s) and

Gψ̇(s), GDV S(s) is the nominal transfer function from δ to ˆ̇ψ and ∆DV S(s) is the result-
ing additive uncertainty of GDV S(s). Equation (4.17) follows from the application of the
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small gain theorem to the equivalent feedback loop with additive uncertainty. �

4.5 Vehicle yaw control design using Direct Virtual Sen-
sor

4.5.1 Yaw control design

The IMC design has been performed using transfer functionGψ̇(s) (see (4.4)) and vehicle
parameter values as shown in Table 4.2. Model sets (4.9) and (4.16) have been obtained

Model parameters Values
m 1715 kg
v 100 km/h
J 2697 kgm2

a 1.07 m
b 1.47 m
lf 1 m
lr 1 m
cf 89733 Nm/rad
cr 114100 Nm/rad
Rw 0.303 m
df 1.48 m
dr 1.35 m
τ 15.4

Table 4.2. Vehicle model parameters

by considering variations of the vehicle nominal speed between 70 and 130 km/h, in-
dependent variations of rear and front tyre cornering stiffness between [-30%, +10%],
increments of vehicle mass up to +20% distributed as 30% on the front axle and 70% on
the rear axle, with the consequent changes of distances between the center of gravity and
the front and rear axles and of moment of inertia. Moreover, a variation of ±10% of the
tyre radius has been considered too. The control input δf is supposed to be mechanically
limited such that |δf | ≤ 5◦.
The IMC controller Q(s) has been obtained as the solution of (4.10), using the following
weighting function:

WS(s) = 1.06
s

s+ 5
(4.18)
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The feedforward filter F (s) in (4.12) has been computed using the following transfer
function T des(s):

T des(s) =
4.488

(1 + s/20)2
.

Functions WS(s) and T des(s) have been chosen and tuned in order to achieve a good
compromise between steady state behavior and closed loop specifications. In particular,
for WS(s), a zero at the origin has been employed to ensure servo performance, so that in
steady-state conditions the reference yaw rate, which has been chosen in order to improve
vehicle maneuverability, is attained with zero tracking error. The gain and the pole of
WS(s) have been chosen to impose a limited resonance peak and larger bandwidth with
respect to the uncontrolled vehicle, so to improve the damping of the vehicle transient
response and reduce the response time, thus enhancing the vehicle handling performance.

4.5.2 Direct Virtual Sensor design and performance

A 14 d.o.f. nonlinear vehicle model has been used to generate the data sets required for
the design and the validation of the virtual sensors. Nonlinear characteristics obtained
on the basis of measurements on a real vehicle have been employed to model the tyre,
steer and suspension behavior. A first-order dynamical model of each wheel has been
used to compute the wheel speed. The employed tyre model, described e.g. in [58],
takes into account the interaction between longitudinal and lateral slip, as well as vertical
tyre load and suspension motion, to compute the tyre longitudinal and lateral forces and
self–aligning moments. An example of the employed tyre friction ellipses is shown in
Figure 4.5, where the lateral friction coefficient is reported as a function of the exploited
longitudinal friction (during traction) and of the tyre slip angle α.

Figure 4.6 shows a comparison between the yaw rate measured on the real vehicle
during a track test, and the one obtained in simulation with the considered model.
Using such detailed 14 d.o.f. vehicle model, two data sets have been obtained through two
different experiments, lasting 90 s each. In both experiments, the vehicle speed is kept
constant at 70 km/h during the first 25 s, then it is gradually increased up to 100 km/h
at 35 s, from 35 s to 55 s it is kept at 100 km/h, in the next 10 s the speed is gradually
increased up to 130 km/h and maintained at this value for the last 25 s.
In the first experiment, the vehicle has been driven in open loop, by imposing a suit-
ably designed course δid

d (t) of δd, composed of quick ramps and constant intervals plus a
pseudo–random binary signal. The second experiment has been performed in closed loop
fashion using the control scheme (Q + ψ̇). In this case, the vehicle is driven by means
of the same driver input δid

d (t) and employing the controller Q(s) and the filter F (s) de-
signed as described in Section 4.2 and 4.5.1.
Seven DVS have been designed for each data set, considering all possible combination of
the available measurements (see Table 4.1). Each DVS has been identified by solving the
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real vehicle, the simulated yaw rate obtained with the 14 d.o.f. model (dotted) and the
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4 – Stability control systems using Direct Virtual Sensors

optimization problem (4.15) using either the open or the closed loop data set, for p = 2
and unitary weights, i.e. the resulting filter is the FIR model that minimizes the sum of
squared errors, while having an impulse response bounded by the decay rate defined by L
and ρ.
Different bounds on the decay rate have been considered for each DVS, adjusting the
filter lengths accordingly, and the ones giving the lowest estimation error, while satisfy-
ing the robust stability condition (4.17), have been selected. Table 4.3 shows the length
nFIR = nu = ny and decay rate constraints L = Lu = Ly and ρ of the designed DVSs,
and the order n of the corresponding virtual sensors obtained after the order reduction
step.

In order to evaluate the control system performance when the yaw rate estimate ̂̇ψ given

DVS L ρ nFIR n
1 0.4 0.96 150 10
2 0.3 0.92 100 8
3 0.3 0.92 100 8
4 0.6 0.92 100 8
5 0.6 0.90 100 10
6 0.3 0.95 150 8
7 0.3 0.95 150 10

Table 4.3. Parameters for DVS design

by the DVS is used, simulations have been performed employing the 14 d.o.f. nonlinear
vehicle model and the control structure (Q + DV S). In particular, the following maneu-
vers have been considered:

• constant speed steering pad at 100 km/h: the handwheel angle is increased slowly
(1◦/s) to evaluate the steady state tracking behavior

• steer reversal test with handwheel angle of 5◦ and 50◦, at 90 km/h, to evaluate steady
state and transient vehicle performance in linear and nonlinear operating conditions.

Table 4.4 shows the obtained accuracy results for the steering pad tests, in terms of maxi-
mum relative estimation error Êmax and mean relative estimation error Êmean:

Êmax = max
t∈[t0,tend]

ê(t) (4.19)

Êmean =
1

tend − t0

∫ tend

t0

ê(t)dt (4.20)

where

ê(t) =

∣∣∣∣∣ ˆ̇ψ(t)− ψ̇(t)

ψ̇(t)

∣∣∣∣∣ , ψ̇(t) /= 0
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and t0, tend are the starting and final test time instants respectively. Since the steering pad
is a steady state maneuver, the values of Êmax and Êmean can be considered as measures of
the static DVS performance.
The results presented in Table 4.4 show that a bounded estimation error is obtained with

Open loop Closed loop
DVS Êmax Êmean Êmax Êmean

1 34.9% 24.8% 43.8% 30.8%
2 22.4% 14.3% 16.2% 9.3%
3 24.5% 16.2% 17.3% 9.7%
4 19.8% 13.4% 12.8% 8.5%
5 20.6% 13.6% 12.2% 6.9%
6 20.0% 9.5% 19.6% 13.2%
7 14.7% 7.1% 13.3% 8.2%

Table 4.4. Steering pad test using DVS

all the considered virtual sensors. DVS 1, which employs the measure of ay(t) only, gives
the worst performance, while all of the other filters show similar estimation errors. In
most cases, the use of closed loop data gives better results than using open loop data.

Open loop Closed loop
DVS Êmean Emean Êmean Emean

1 37.1% 37.2% 33.7% 29.8%
2 31.3% 24.6% 20.4% 16.0%
3 33.0% 25.2% 20.9% 16.2%
4 21.9% 21.6% 16.4% 13.5%
5 24.8% 23.2% 16.0% 13.9%
6 23.2% 17.3% 24.2% 18.7%
7 21.2% 17.8% 16.0% 14.0%

Table 4.5. 5◦ steer reversal test using DVS

Tables 4.5 and 4.6 show the obtained performance in the steer reversal tests in terms of
the index Êmean (4.20) and of the mean relative tracking error Emean:

Emean =
1

tend − t0

∫ tend

t0

eref (t)dt (4.21)

where

eref (t) =

∣∣∣∣∣ ψ̇ref (t)− ψ̇(t)

ψ̇ref (t)

∣∣∣∣∣ , ψ̇ref (t) /= 0
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Open loop Closed loop
DVS Êmean Emean Êmean Emean

1 20.0% 22.4% 16.4% 12.6%
2 12.5% 8.4% 9.0% 4.7%
3 13.2% 10.6% 8.6% 5.0%
4 12.3% 10.8% 8.6% 5.1%
5 9.5% 15.4% 6.8% 2.8%
6 8.4% 4.4% 8.4% 4.8%
7 10.3% 6.2% 7.2% 3.2%

Table 4.6.
50◦ steer reversal test using DVS

Note that virtual sensors identified from closed loop data perform better than those identi-
fied from open loop data, especially in the 50◦ steer reversal maneuver. This is due to the
fact that, in the presence of the control action, the closed loop vehicle transient response
is different from the open loop one. Thus, by using closed loop experimental data a more
appropriate information about the process is taken into account in the DVS design.
Moreover, it can be noted (see Tables 4.4–4.6, bold–faced text) that the best overall es-
timation accuracy is given by DVS 5, obtained using the closed loop data set and the
measures of ay(t) and ∆ωr(t) only, which performs better than DVS 7 that exploits all
of the possible available measurements, designed either using the closed loop or the open
loop data sets. It is not trivial to explain, from the practical point of view, why such a
result has been obtained. From a theoretical point of view, the signals with higher corre-
lation with the estimated variables are those that give more information and that should be
employed. This is surely the case, in this particular application, of the lateral acceleration,
as it is intuitive and also evident by the poor results achieved by DVSs n. 2, 3 and 6, and
of at least one of the two wheel speed differentials, since DVS 1 (that does not employ the
measure of wheel speed difference) also has bad performance. The remaining DVSs n. 4,
5 and 7 have very similar estimation accuracy. The employed vehicle is an all-wheel drive
one, so that wheel slip during traction is present on all wheels, which may explain why the
results of DVSs 4,5 and 7 (closed-loop) are so close one to the other. With a 2-wheel drive
vehicle, one would expect the non-driven wheel speeds to give a more accurate yaw-rate
estimate.
Finally, the accuracy of the DVS 5 has been evaluated on experimental data measured
on the real vehicle during a track test with vehicle speed varying between 50 km/h and
120 km/h and lateral acceleration up to 7.5 m/s2. In Figure 4.6, the estimate provided
by DVS 5 is compared to the yaw rate measured during a track test and to the yaw rate
course obtained with the 14 d.o.f. vehicle model. The mean relative error between the
measured yaw rate and the simulated one is 8.6%, while the mean relative error between
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the measured yaw rate and the one given by DVS 5 is 13%.

4.5.3 Simulation results
According to the results reported in Tables 4.4–4.6, DVS 5, identified from closed loop
data, has been chosen to compare performance of the control structures (Q + ψ̇) and
(Q + DV S) which use, respectively, the measured and estimated yaw rate. In Figure
4.7, sensitivity functions of the considered control schemes are compared with the de-
sired sensitivity described by the weighting function WS(s) (4.18). It can be noted that
the magnitude course of sensitivity functions related to the scheme (Q + ψ̇) satisfies the
nominal performance. Although the magnitude of the nominal sensitivity of the closed
loop system (Q+DV S) shows a higher peak value, it has a greater noise attenuation level
at low frequencies.

In order to assess the behaviour of the control systems when a DVS is employed for
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Figure 4.7. Thin solid line: weighting function WS . Sensitivity functions of the control
scheme (Q+ ψ̇) (solid), (Q+DV S) (dashed).

feedback and to analyze the results of the recovery strategy when a fault of the yaw rate
sensor occurs, the following simulation tests have been performed:

• 50◦ steer reversal maneuver performed on dry road with vehicle speed varying be-
tween 50 km/h and 120 km/h. This test aims to assess the robustness of the control
system both in the absence and in the presence of DVS, in different operating con-
ditions.
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• brake–in–a–turn test performed at 110 km/h with handwheel angle of 15◦ and a
braking action of 0.5g (g is the gravitational acceleration). The braking occurs
when the transient phase of the step steer has been finished and lasts 3 s, from
the 5th until the 8th second of the maneuver. Note that during this maneuver the
vehicle is subject to significant lateral acceleration and non constant longitudinal
speed (from 110 to 50 km/h) due to the sudden braking, thus making this a quite
demanding robustness test. The maneuver has been also performed when a fault of
the yaw rate sensor occurs after 7 s from the beginning.

• ISO double lane change maneuver as reported in [58]. This maneuver has been per-
formed once on wet road with constant speed vref = 100 km/h and with vehicle mass
increased by +200 kg and then on iced road, with constant speed vref = 50 km/h in
a fault recovery situation. After 6 s from the start of the maneuver, a fault of the
yaw rate sensor occurs and the measure of the yaw rate is replaced by its estimate
provided by the DVS. The following driver’s model has been used:

τdδ̇v(t) + δv(t) = Kd (ψref(t)− ψ(t)) (4.22)

where ψref(t) is the course of the reference yaw angle, corresponding to the ISO
double lane change path at the considered speed (see [58]), andKd, τd are the driver
gain and the driver time constant respectively. Although more complex driver mod-
els could be employed (see e.g. [58]), the simple model (4.22) has been considered
in this work because the purpose here is to make a comparison between the behavior
of the uncontrolled vehicle and of the controlled ones, given the same driver model,
rather than to use a detailed driver model. As regards the driver’s model parameters,
the values Kd = 10.8 and τd = 0.2 s have been considered. Note that the values of
τd roughly range from 0.08 s (experienced driver) to 0.25 s (unexperienced driver),
while the higher is the driver gain, the more aggressive is the driving action which
could more likely cause vehicle instability.

Figure 4.8 shows the variation of time responses of the controlled vehicle with physical
sensor and DVS in terms of normalized yaw rate ψ̇(t)/ψ̇ref (t). As expected, the vehicle
using the measured yaw rate shows better performance both in transient and steady state
however robust stability is achieved in both cases. It can be noted that the DVS tends to
underestimate the vehicle yaw rate, so that the actual yaw rate results to be higher than
the reference one (see Figure 4.8, bottom), thus bringing the vehicle closer to its lateral
acceleration limit. This issue can be circumvented both by designing a reference yaw rate
map that takes into account the potential estimation errors of the DVS (i.e. leaving some
“margin” between the reference yaw rate and the limits of handling) and by alerting the
driver, in case of sensor fault, through suitable warning lights and/or sounds that notify
that the yaw control systems is running in recovery regime, so to induce a more cautious
driving behavior.
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Figure 4.8. Steer reversal test with handwheel angle value of 50◦, performed with vary-
ing vehicle speed between 50 km/h and 120km/h. Courses of the normalized yaw rate
ψ̇(t)/ψ̇ref (t) of the vehicle controlled with (Q+ ψ̇) (top) and with (Q+DV S)(bottom).
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Figure 4.9. Brake in a turn test at 110 km/h with 15◦ handwheel angle and deceleration
of 0.5g. Thin line: reference yaw rate. (a) Dotted line: uncontrolled vehicle, solid: vehicle
controlled with (Q + ψ̇). (b) Solid: vehicle controlled with (Q + ψ̇) until 7 s when the
sensor fault occurs and then with (Q + DVS). Dashed: vehicle controlled with (Q + ψ̇)
until 7 s and then it remains in open loop.
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Figure 4.10. ISO double line change test at 100 km/h on wet road with vehicle mass
increased by +200 kg w.r.t. nominal conditions. From top to bottom: vehicle yaw rate,
vehicle lateral acceleration. Dotted line: uncontrolled vehicle, solid line: vehicle controlled
with (Q+ ψ̇), dashed line: vehicle controlled with (Q+DV S).

71



4 – Stability control systems using Direct Virtual Sensors

0 50 100 150 200
−20
−10

0
10

  X (m)

  Y
 (

m
)

0 50 100 150 200
−10

0
10

  X (m)

  Y
 (

m
)

0 50 100 150 200
−10

0
10

  X (m)

  Y
 (

m
)

Figure 4.11. Vehicle trajectories obtained in the ISO double line change test at
100 km/h on wet road with vehicle mass increased by +200 kg w.r.t. nominal
conditions. From top to bottom: uncontrolled vehicle, vehicle controlled with
(Q+ ψ̇), vehicle controlled with (Q+DV S).
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Figure 4.12. ISO double line change test at 50 km/h on iced road. From top to bottom:
vehicle yaw rate, vehicle lateral acceleration. Dotted line: uncontrolled vehicle, solid line:
vehicle controlled with (Q + ψ̇), dashed line: vehicle controlled with (Q + ψ̇) until 6 s
when the fault occurs and then with (Q+DV S).
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Figure 4.13. Vehicle trajectories obtained in the ISO double line change test at 50 km/h
on iced road. From top to bottom: uncontrolled vehicle, vehicle controlled with (Q + ψ̇),
vehicle controlled with (Q+ ψ̇) until 6 s when the fault occurs and then with (Q+DV S).
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Figure 4.9 shows the results of the brake–in–a–turn maneuver. The results of this test
indicate that the designed yaw control system is able to effectively intervene when the
vehicle is driven in a turn at high speed and significant braking forces occur. Note that
such a test is quite demanding for the considered control system, since braking forces have
not been considered neither in the control design (based on a LTI single track model), nor
in the DVS design (since no such maneuvers have been included in the data set collected in
the preliminary experiments). Moreover, from Figure 4.9.a it can be noted that while the
passive vehicle is stable, the controlled one becomes unstable when a fault of the yaw rate
sensor occurs and it is not recovered, see Figure 4.9.b. In fact, since no yaw rate measure
is provided in feedback, the control loop is open. On the other hand, recovery of the fault
is allowed when the DVS gets on duty ensuring stability and acceptable performance on
the controlled system.
Figures 4.10–4.11 show the results obtained in the ISO double lane change maneuver on
wet road, in absence of fault, when the vehicle mass is increased of 200 kg. It can be
noted that the uncontrolled vehicle shows excessive oversteering and instability in the last
part of the maneuver. On the other hand the controlled vehicles (i.e. using the (Q + ψ̇)
and (Q + DV S) schemes) are able to successfully complete the test giving a further
evidence of the robustness properties of Q + DV S structure. Note that, as shown in
Figure 4.10, a lateral acceleration value of about 7.3 m/s2, corresponding to about 95% of
the maximal vehicle lateral acceleration, is reached by the vehicles controlled using the
schemes (Q+DV S). Thus, the results of this test indicate that the designed yaw control
system is able to effectively aid the driver, also when the DVS is used instead of a physical
sensor, despite the presence of driver’s feedback, wet road and increased mass, that were
not considered in the preliminary experiments performed to collect the data for the DVS
identification.
Figures 4.12–4.13 show the results obtained with the ISO double lane change maneuver
on iced road when the yaw rate sensor fault occurs. It can be noted that the uncontrolled
vehicle is unstable in the last part of the maneuver, while the controlled ones are able to
successfully complete the test. In particular, the controlled vehicle remains stable when,
at 6 s, the physical sensor is no more able to provide the measure of the yaw rate and it is
replaced by the DVS which estimates the yaw rate.
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Chapter 5

Conclusion

This thesis investigated the robust control of nonlinear dynamic systems from data. Such
approach is particularly interesting when the plant is not completely known or its laws
are too complex thus it is not possible or convenient to derive a mathematical model. At
this aim two methodologies were developed to control unknown and nonlinear systems
employing a model derived from data. In order to derive data based model, the NSM
identification was used. Such a technique provides both a system model and a model
uncertainty bound; moreover, the model accuracy can be improved by using a greater
number of data from different experiments for the identification.
The research focused on model-based techniques such as NIMC and NMPC, which em-
ploy the system model, respectively, as a part of the controller and of the prediction al-
gorithm. Indeed, considering the developed NIMC methodology [2], the novelty consists
in deriving the controller by cascading a filter describing the desired input/output system
behavior and the inverse of the system model. Such a novel procedure exploits the recent
results on the right-inversion and, above all, does not require the knowledge and the in-
vertibility of the system. The last one is a not negligible advantage because the inversion
of nonlinear systems is not trivial and sometimes impossible.
The knowledge of the uncertainty bound of the NSM model is of great importance to
assess the robustness of the closed loop systems designed applying the proposed method-
ologies. A robust stability study showed that the obtained NIMC control structure is
input/output stable by imposing a small gain condition in the control design phase [4].
Concerning the proposed NMPC control structure, instead, the robust stability was veri-
fied first through an a posteriori analysis [7] and then guaranteed by means a robust design
procedure [8]. The carried out robust stability studies represent some of the main contri-
butions of this thesis, because, at the best of author’s knowledge, no similar results can be
found in literature. As a matter of fact, for nonlinear systems, the robust stability issue is
not tackled systematically since it is not available a suitable description of the uncertainty
associated with the system models usually employed.
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5 – Conclusion

As minor research theme, it was investigated the design of vehicle stability control sys-
tems using the technology of Direct Virtual Sensors (DVSs) [11]. DVSs are software
algorithms able to estimate a variable of interest of a system exploiting some available
measures. It was shown that the direct identification from data implies a greater accuracy
of the estimate w.r.t. the classical two steps approach (e.g. Kalman filter) [10]. Further,
it was shown that using data collected in closed loop fashion allows to obtain a much
accurate estimate than using open loop data. Then, the DVSs were used to develop a fault
tolerant vehicle yaw control system: the DVS gets on duty and replaces the physical yaw
rate sensor when a fault of the last one occurs [12]. Thus the novelty is that the feedback
variable is replaced by the estimate yaw rate provided by the DVS guaranteeing the right
working of the stability control system and hence the vehicle safety. Finally, through an
a posteriori analysis, it was shown that the closed loop system employing the DVS is
robustly stable.
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Appendix A

Nonlinear Set Membership
Identification

In this Appendix the main arguments of the Nonlinear Set Membership Identification
(NSM) methodology are introduced, for more details see [1].
Consider a nonlinear discrete-time dynamic system in regression form:

yt+1 = fo (yt,ut) t ∈ Z (A.1)
yt = [yt; . . . ; yt−ny ]

ut = [ut; . . . ;ut−nu ]

where ut ∈ U ⊂ R, yt+1 ∈ Y ⊂ R, fo : Φ ⊂ Rn → R, n = ny + nu. U , Y and Φ are
convex compact sets. The regression function fo is assumed differentiable. The notation
[. . . ; . . . ; . . .] indicates vertical concatenation.
Suppose that the system to be controlled fo is not known, but a set of noise-corrupted
measurements is available

(ỹt, ũt) t ∈ T .
= {−T + 1,−T + 2, ...,0} (A.2)

Measurements (A.2) can be collected in a initial experiment on the plant to be controlled.
Note that such measurements are needed also in the case of physical models, in order
to tune the model parameters. Let ϕ̃t

.
= [ỹt; ũt] where ỹt = [ỹt; . . . ; ỹt−ny ] and ũt =

[ũt; . . . ; ũt−nu ].
Then, (A.1) can be re-written as

ỹt+1 = fo(ϕ̃t) + dt, t ∈ T (A.3)

where the term dt accounts for the fact that yt and ϕt
.
= [yt; ut] are not exactly known.

The aim is to derive a model f of fo from the available measurements (ỹt, ũt). The esti-
mate f should be chosen to give small (possibly minimal) Lp error ||fo − f ||p , where the
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p−norm of a given function F (ϕ) is defined as ‖F‖p
.
=
[∫

φ
|F (ϕ)|p dϕ

] 1
p
, p ∈ (1,∞) ,

where ‖F‖∞
.
= ess sup

ϕ∈Φ
|F (ϕ)|, | · | denotes the Euclidean norm and Φ is a bounded set in

Rn.
Whatever estimate is chosen, no information on the identification error can be derived,
unless some assumptions are made on the function fo and on the noise d.

Assumption 7 aa

• fo ∈ F (γ)

F (γ)
.
= {F ∈ C1 : |F (ϕ)− F (ϕ̄) | ≤ γ|ϕ− ϕ̄| ∀ϕ, ϕ̄ ∈ Φ ⊂ Rn}

• |dt| ≤ ε <∞, t ∈ T .

Thus, F (γ) is the set of Lipschitz continuous functions on Φ with Lipschitz constant γ. It
is assumed that Φ is a compact set. Assumption 7 represents the only restriction imposed
on the model “structure” in this study.

A key role in the SM framework is played by the Feasible Systems Set, often called
“unfalsified systems set”, i.e. the set of all systems consistent with prior assumptions and
measured data.

Definition 7 Feasible Systems Set:

FSS
.
= {F ∈ F (γ): |ỹt − F (ϕ̃t)| ≤ ε, t ∈ T }. (A.4)

�
If Assumption 7 is “true”, then fo ∈ FSS.
For a given estimate f ' fo, the related Lp error ‖fo − f‖p cannot be exactly computed,
but its tightest bound is given by

‖fo − f‖p ≤ sup
F∈FSS

‖fo − f‖p

This motivates the following definition of worst-case identification error.

Definition 8 The worst-case identification error of the estimate f is

E(M)
.
= sup

F∈FSS
‖F −M‖p .

�
Looking for estimates that minimize the worst-case identification error leads to the fol-
lowing optimality concept.
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Definition 9 An estimate F ∗ is optimal if

E (F ∗) = inf
M
E (M) = RI,p.

�
The quantity RI,p, called radius of information, gives the minimal worst-case identifica-
tion error that can be guaranteed by any estimate based on the available information.
Define the following functions:

F (ϕ)
.
= min

t∈T

(
ht + γ|ϕ− ϕ̃t|

)
F (ϕ)

.
= max

t∈T
(ht − γ|ϕ− ϕ̃t|)

ht
.
= ỹt + ε

ht
.
= ỹt − ε (A.5)

The next Theorem shows that the estimate

fc
.
=

1

2
(F + F ) (A.6)

is optimal for any Lp norm.

Theorem 8 For any Lp norm, with p ∈ [1,∞]:

1. fc ∈ FSS

2. The estimate fc = 1
2
(F + F ) is optimal

3. The worst case identification error E (fc) is given by:

E (fc) =
1

2

∥∥F − F∥∥
p

= RI,p (A.7)

4. For any ϕ ∈ Φ, |fc(ϕ)− fo(ϕ)| ≤ 1
2
|F (ϕ)− F (ϕ)|

The model fc (A.6) can be written as a nonlinear regression:

yt+1 = fc(yt; . . . ; yt−ny , ut; . . . ;ut−nu) t ∈ Z (A.8)

where fc is a Lipschitz continuous function with Lipschitz constant γ (see [1] for more
details).
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Remark 12 A global Lipschitz constant over all Φ has been assumed. However, a lo-
cal Lipschitz constant can be useful in order to obtain improvements in identification
accuracy. A very simple local approach is based on the identification of an improved
model exploiting an existing model f̂ (obtained by any desired technique) and input/output
process data. In particular, the NSM methodology is applied to the residue function
f∆ (ϕ)

.
= fo (ϕ) − f̂ (ϕ), using the data ∆yt+1 = ỹt+1 − f̂ (ϕ̃t) , t ∈ T . See [44]

for more details.
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