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Abstract. Cell migration on and through extracellular matrix is fundamental

in a wide variety of physiological and pathological phenomena, and is exploited

in scaffold-based tissue engineering. Migration is regulated by a number of ex-
tracellular matrix- or cell-derived biophysical parameters, such as matrix fiber

orientation, pore size, and elasticity, or cell deformation, proteolysis, and ad-

hesion. We here present an extended Cellular Potts Model (CPM) able to
qualitatively and quantitatively describe cell migration efficiencies and pheno-

types both on two-dimensional substrates and within three-dimensional ma-
trices, close to experimental evidence. As distinct features of our approach,

cells are modeled as compartmentalized discrete objects, differentiated in the

nucleus and in the cytosolic region, while the extracellular matrix is composed
of a fibrous mesh and of a homogeneous fluid. Our model provides a strong

correlation of the directionality of migration with the topological extracellu-

lar matrix distribution and a biphasic dependence of migration on the matrix
structure, density, adhesion, and stiffness, and, moreover, simulates that cell

locomotion in highly constrained fibrillar obstacles requires the deformation of

the cell’s nucleus and/or the activity of cell-derived proteolysis. In conclusion,
we here propose a mathematical modeling approach that serves to characterize
cell migration as a biological phenomenon in healthy and diseased tissues and

in engineering applications.

1. Introduction. Cell migration on and within tissues plays a critical role in a
diverse array of processes, such as in developing embryos, where the coordinated
movement of cells of different origin along extracellular matrix (ECM) layers is
crucial for organogenesis, and migratory defects at all stages lead to severe embry-
onic malformations [42]. In adult organisms, cell movement is normally quiescent,
except in immune surveillance or inflammation, where leukocytes actively migrate
from blood vessels into infected tissues and then into the lymph node for effector
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functions [27], and in wound healing, where migration contributes to the repair of
both basement membrane-underlaid epithelium and connective tissues. In patho-
logic conditions, cell migration is involved in chronic inflammatory diseases such as
artheriosclerosis, or in cancer cell invasion into ECM and metastatization [69]. The
process of cell migration is finally exploited in biomedical engineering applications
for the regeneration of various tissues, such as cartilage, skin, or peripheral nerves
in vivo or in vitro [11, 38, 75, 86].

Cell motile behavior is modulated by a spatiotemporally integrated set of multi-
level mechanisms, that are influenced not only by the biochemistry of extracellular
and intracellular signalling, but also by the biophysics of the surrounding environ-
ment, whose basic component is the Extracellular Matrix (ECM). The ECM forms
in fact the architecture of a number of structures, i.e two-dimensional (2D) flat
basement membranes, or three-dimensional (3D) connective tissues and can be de-
scribed as a complex network of insoluble structural fibrous proteins such as collagen
type I, and soluble glycosaminoglycans and glycoproteins, which, together, provide
microstructural guidance cues and biochemical stimuli for moving individuals.

How does a cell migrate then on an in ECMs? For the basic program of cell
migration over flat ECM substrates, four requirements have been identified: mi-
grating cells (i) are morphologically polarized in the direction of motion, (ii) adhere
dynamically to their environment via adhesive molecules, i.e. integrins, (iii) gener-
ate the force necessary for propulsion by contraction of cytoskeletal elements, and
(iv) retract their rear ends [1, 45]. For migration within three-dimensional (3D)
porous environments, in addition to these basic principles, the cell requires to steer
its way throughout steric obstacles, [17, 66, 83]. This can be achieved by either (i)
passage through constricted openings of the ECM by significant cell deformation
and cytoskeletal force generation, or (ii) by activation of a cell-derived proteolytic
machinery able to degrade matrix components and to open space for cell movement
[23, 24, 41, 68, 84].

This basic motile behavior is further modulated by a number of mechanisms that
include determinants from both the surrounding extracellular matrix and the cell
itself (refer to [45, 83] and references therein) that we aim to systematically analyze
by their combination with a modeling approach based on an extended Cellular
Potts Model (CPM, [4, 33, 34, 36, 50, 71]). This is a grid-based Monte Carlo
technique employing a stochastic energy minimization principle, used here to display
the evolution of a cell population with distinct migratory behaviors that depend on
matrix- or cell-derived parameters. As a distinct feature of our approach, each cell
is modeled as a discrete compartmentalized object, differentiated into nucleus and
cytosol, while the matrices are constituted of two components, an inhomogeneous
fibrous collagen-like network, and a homogeneous interstitial medium.

The model is highly flexible, being able to characterize the migratory behavior
of cells in several conditions, both on 2D substrata and in 3D ECMs. In the simula-
tions, characteristics like cell shape and directionality are not imposed a priori, but
are a result of the interaction with the matrix fibrous component. As an outcome,
we focus on experimentally addressable characteristics of cell locomotion, i.e., cell
overall displacement, velocity and persistence time, and cell shape, predicting how
these quantities are influenced by manipulations of properties of either the matrix
(i.e., adhesive ligands, fiber distribution, pore size, elastic modulus), or the cell (i.e.,
adhesive strength, deformability, and proteolysis).
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Consistent with experimental observations, our findings provide evidence for a
biphasic cell migratory behavior for planar substrate in response to variations of
the number of matrix ligands or adhesion strength, with maximal movements at
intermediate values. In 3D matrix environments, the geometrical distribution of
the collagenous network, such as matrix alignment or pore size, or the matrix elas-
ticity will be demonstrated to affect cell behavior in a similar way. Further, the
cell compartmentalization allow to discern the mechanical rigidity of the nucleus
that, being higher than the cytosol, limits the migration capacity of the entire cell.
Finally, we will include ECM-directed proteolysis, resulting in enhanced migration
in restricted environments.

The remaining parts of this publication are organized as follows: in Section 2
(Mathematical Model), we clarify the assumptions on which our approach is based.
The computational findings are then presented in Section 3 (Results), where we
separately analyze both topological and mechanical features of different matrices,
and variations in cell biophysical properties on the cell migratory behavior. Finally,
the results are discussed in Section 4 (Discussion), and in Section 5 (Appendix),
we provide details on the estimates of statistical quantities used to characterize the
migratory capacity of moving individuals.

2. Mathematical Model. The above introduced cell-ECM system is modeled at
the mesoscopic level using an extended Cellular Potts Model, a grid-based stochastic
approach, which describes the behavior of single individuals and their interactions
with the local microenvironment in energetic terms and constraints. The simulation
domains are d-dimensional regular lattices (i.e., numerical repeated graphs formed
by equivalent sites) Ω ⊂ Rd, where d = 2, 3 (we will specify the spatial dimensions
according to the specific application described in the following). Each d-dimensional
site x ∈ Ω ⊂ Rd is labeled by an integer number, σ(x), which can be interpreted as
a degenerate spin originally coming from statistical physics [40, 61]. As classically
adopted in CPM applications, a neighbor of x is identified by x′, while its overall
neighborhood by Ω

′

x, i.e. Ω
′

x = {x′ ∈ Ω : x′ is a neighbor of x}. Subdomains of
contiguous sites with identical spin form discrete objects Σσ (i.e., Σσ = {x ∈ Ω :
σ(x) = σ}), which are characterized by an object type, τ(Σσ).

The spatial domain is then occupied by cells, ECM fibers and physiological liquid.
The simulated cells, η, are defined as compartmentalized units, composed of two
subregions which, in turn, are classical CPM objects Σσ: the nucleus, a central
cluster of type τ = N , and the surrounding cytosol, of type τ = C. Each cell
compartment is obviously characterized, as an additional attribute, by the cluster
id η(Σσ) to identify the individual it belongs to. The cell population resides either
on a two-dimensional (2D) or within a three-dimensional (3D) ECM.

The environments surrounding the cells is differentiated into a homogeneous
medium-like state, τ = M , and an inhomogeneous collagen-like state, τ = F .
The medium-like state reproduces the mixture of soluble components (among oth-
ers, proteoglycans and glycoproteins in water), which compose the interstitial fluid
constant in viscosity. It is assumed to be isotropically distributed throughout the
simulation domain, forming no large-scale structures. The collagen state represents
instead a network of insoluble macromolecules, such as collagen, that associates into
first-order fibrils and second-order fibers and displays the most abundant structure
in mammalian tissues. Each fibrous component is treated as CPM standard and
non-compartmentalized CPM objects Σσ. Dimensions, density and distribution of
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the fibrous structures will be specified in next sections and will reproduce 2D and
3D matrix types, respectively, typically employed for in vitro assays. The inclusion
of an explicit two-component matrix environment, already present in some other
CPM applications [5, 32, 49, 67], is a fundamental aspect of this work: it allows an
accurate analysis of how cells migratory behavior is influenced by the heterogeneous
fibrillar extracellular environment and therefore by the ECMs specific biophysical
and biomechanical properties while they glide in medium of constant and homoge-
neous physical properties.

The simulated cell culture evolves to iteratively and stochastically reduce the
free energy of the overall system, defined by the so-called hamiltonian H, whose
expression will be clarified below. The core algorithm is a modified Metropolis
method for Monte Carlo-Boltzmann dynamics [36, 52], which is able to implement
the natural exploratory behavior of biological individuals. Procedurally, at each
time step t in the model, called Monte Carlo Step (MCS), a lattice site, xsource, is
selected at random and assigns its spin, σ(xsource), to one of its unlike neighbors,
xtarget ∈ Ω

′

x : xtarget /∈ Σσ, also randomly selected. The net energy difference
due to the proposed change of domain configuration, ∆H|σ(xsource)→σ(xtarget) =
H(after spin copy) −H(before spin copy), is then evaluated. The trial lattice update is
finally accepted with a Boltzmann-like probability function:

P (σ(xsource) → σ(xtarget))(t) =

= tanh(εTΣσ(xsource)(t))min{1, e
−∆H|σ(xsource)→σ(xtarget)/TΣσ(xsource) (t)}

(1)

where TΣσ(xsource)(t) ∈ R+ is a Boltzmann temperature. It does not reflect any
conventional thermal temperature but it is a measure of the mobility of the moving
compartment Σσ(xsource). The specific form of (1) is a definitive improvement of
the classical function used in all CPM applications (formally recovered in the limit
ε → ∞). The standard transition probability has in fact a significant weakness
in the fact that, in the case of non positive net energy differences caused by the
proposed displacement (∆H|σ(xsource)→σ(xtarget) ≤ 0), each element Σσ(xsource) is
certainly going to move, regardless of its intrinsic motility, given by TΣσ(xsource) ,
which lacks biological realism. For example, a ”frozen” cell (i.e., with negligible
intrinsic motility) does not extend its pseudopods towards a chemical source even if
it senses a high chemotactic gradient (which, in the absence of other external forces,
would result in ∆H � 0). This issue is addressed using transition probabilities
similar to (1), i.e. which take into account the object motility TΣσ(xsource) also in
the case of energetically favorable displacement attempts. Indeed, the choice of
function tanh is a modeling option: more in general, the reader can use any other
continuous and increasing law p(TΣσ(xsource)(t)) : R+ 7→ [0, 1] characterized by

p(0) = 0;

lim
TΣσ(xsource)→+∞

p(TΣσ(xsource)) = 1,
(2)

as detailly commented in [71]. In particular, for τ(Σσ(xsource)) = N , TΣσ(xsource) =
TN gives a measure of the relative motility of the cell nucleus, while, for τ(Σσ(xsource)) =
C, TΣσ(xsource) = TC is a measure of the intrinsic motility of the overall individual, as
it gives the frequency of the ruffles of its cytosol (which, on a molecular level, are de-
termined by polarization/depolarization processes of the actin cytoskeleton, refer to
[53, 60, 64] and references therein). Finally, for τ(Σσ(xsource)) = F , TΣσ(xsource) = TF



A CPM SIMULATING CELL MIGRATION ON AND IN MATRIX ENVIRONMENTS 5

determines the vibration degree of matrix fibers. For each cell, TN is a low value
(< 1), resulting in a more passive motion of the nucleus (with respect to the cell
membrane), which, unable to have an autonomous movement, is dragged by the
surrounding cytosol, characterized instead by a high TC � 1 (see our recent work
[70] for a detailed mechanical explanation). In most simulations, the matrix fibers
are instead assumed to be fixed by setting TF = 0.

For any given time t, the system hamiltonian, whose minimization drives the
evolution of the system, is defined as:

H(t) = Hshape(t) + Hadhesion(t). (3)

Hshape models the geometrical attributes of simulated objects (both subcellular
compartments and matrix threads), which are written as non-dimensional relative
deformations in the following quadratic form:

Hshape(t) = Hvolume(t) + Hsurface(t) =

=
∑
Σσ

[
κΣσ (t)

(
vΣσ

(t)− Vτ(Σσ)

vΣσ
(t)

)2

+ νΣσ
(t)

(
sΣσ (t)− Sτ(Σσ)

sΣσ
(t)

)2
]

,
(4)

depending on the actual volume and surface of the object, vΣσ
(t) and sΣσ

(t) (which
reduce, respectively, to its surface and perimeter in two dimensions), as well as
on the same quantities in the relaxed state, Vτ(Σσ) and Sτ(Σσ), corresponding to its
initial measures. The formulation of (4) allows to have finite energetic contributions,
as well as a blow up in the case of vΣσ

(t), sΣσ
(t) → 0, see again [71] for a detailed

explanation. κΣσ (t) and νΣσ (t) ∈ R+ are mechanical moduli in units of energy:
in particular, κΣσ (t) refer to volume changes, while νΣσ (t) relates to the degree of
deformability/elasticity of the related object, i.e. the ease with which it is able to
remodel. Indeed, assuming that cells do not significantly grow during migration, the
fluctuations of their volumes are kept negligible with high constant values κΣσ

=
κ � 1, for any individual η and for Σσ such that τ(Σσ) = {N,C}. Moreover, cells
moving in matrix environments are typically deformable, but their nuclei show a
higher rigidity w.r.t. the cytoplasm region: therefore, for any η and for Σσ such
that τ(Σσ) = C, we set νΣσ

= νC � 1, while and for Σσ such that τ(Σσ) = N ,
we set νΣσ

= νN � 1. The extracellular environment is instead assumed to have
homogeneous mechanical and microstructural properties: in particular the matrix
fibers are assumed to be rigid by setting κF = νF � 1. However, it is useful to
underline that in the following we will analyze how the explicit variation of fiber
and nucleus stiffness will affect cell migratory phenotypes within three-dimensional
matrices.

Hadhesion is the general extension of Steinberg’s Differential Adhesion Hypothesis
(DAH) [36, 76, 77]. In particular, it is differentiated into the contributions of either
the generalized contact tension between the nucleus and the cytoplasm within the
same cell, or the effective adhesion between a cell and both the medium and the
fibrillar matrix component, and, in case of collision, between cells:

Hadhesion(t) = Hint
adhesion(t) + Hext

adhesion(t) =

=
∑

x∈Ω,x′∈Ω′x
η(Σσ(x))=η(Σ

σ(x′))
Σσ(x) 6=Σσ(x)

J int
τ(Σσ(x)),τ(Σσ(x′))

+
∑

x∈Ω,x′∈Ω′x
η(Σσ(x))6=η(Σ

σ(x′))
Σσ(x) 6=Σ

σ(x′)

Jext
τ(Σσ(x)),τ(Σσ(x′))

. (5)
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The Js are binding energies per unit area, which are obviously symmetric. In partic-
ular, J int

N,C implicitly models the forces exerted by intermediate and actin filaments,
and microtubules to anchor the nucleus to the cell cytoskeleton and preventing
cells from fragmenting, while Jext

C,C represents the local adhesive strength between
neighboring cells, a measure of the local quantity of active and exposed cadherin
molecules. Jext

C,M and Jext
C,F evaluate instead the heterophilic contact interactions

between cells and matrix components. Specifically, Jext
C,M and Jext

C,F are a measure of
the affinity between cell surface adhesion complexes (i.e. sugar-binding receptors or
integrins) to either non-solid (i.e. glycosaminoglycans in medium) or solid (i.e. fib-
rillar collagen) extracellular ligands, respectively [73]. In particular, given J int

N,C � 0
to prevent cell splitting, we assume Jext

C,F < Jext
C,M since, as widely demonstrated in

literature, most cell lines in standard conditions adhere more strongly with the fi-
brous part of the extracellular matrix rather than with its soluble component (see
[78] and references therein). Jext

C,C is instead kept high to avoid cell-cell adhesive
interactions upon accidental cell collisions that may affect the cell’s movement.
Setting constant and homogeneous values for the bond energies Js corresponds to
assuming a uniform distribution of adhesion molecules on cell surfaces and of lig-
ands in the external environment, without any change during the observation time.
A summary of values of all the model parameters used in the simulations is given
in Table 1.

Finally, it is useful to underline that, while in the 2D case cells can freely move
on the entire extracellular ECM-coated surface, in 3D environments, the collage-
nous part of the matrix represents instead a potential steric obstacle for moving
individuals that they must overcome during motion, whereas, in parallel, within
interstitial medium they can freely float.

3. Results.

3.1. Simulation Characteristics. To apply the Cellular Potts Model to simulate
and describe cell migration on and in ECM matrices, we start with default cell-
ECM conditions and subsequently adapt them to specific conditions, such as matrix
orientation, density, adhesiveness etc., relevant for migration in vitro and in vivo.

The basic CPM in both 2D and 3D conditions contains certain common spa-
tial and temporal characteristics. The spatial simulation domain Ω is a regular
d-dimensional lattice with periodic boundary conditions and a basic grid size of
1.3 µm. In all the bidimensional simulations, Ω ⊂ R2 represents a 3.5 cm (i.e.,
2.69 · 104-site-width) side-length squared section of an experimental dish, which
is commonly used for planar migration assays [16]. In the three-dimensional case,
Ω ⊂ R3 reproduces instead an experimental scaffold with a volumetric extension of
1 cm3 (formed by 4.55 · 1011 cubic voxels). The temporal resolution of the model
is the MCS which is set to correspond to 2 s to compare cellular dynamics with
experimental observations. All the performed simulations last 12 h (≈ 21600 MCS)
to ensure the development of sufficient long migration paths. The choice of this ob-
servation time allows also to not consider critical events, such as cell apoptosis and
duplication, which would significantly affect cell migratory behavior (i.e., during
the mitotic process, cells are prohibited to migrate [1]).

The basic cell-matrix model to be simulated consists of a heterogeneous ECM of
fibrillar and amorph (’medium’) components hosting a cell population of low density
to allow for isolated motions with very rare cell encounters.
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Table 1. Model Parameters

Parameter Description Value Reference

VN surface of cell nucleus in 2D 34.7 [µm2] [1]
SN perimeter of cell nucleus in 2D 20.8 [µm] [1]
VC surface of cell cytosol in 2D 104.3 [µm2] [1]
SC perimeter of cell cytosol in 2D 62.6 [µm] [1]
VN volume of cell nucleus in 3D 155.2 [µm3] [1]
SN surface of cell nucleus in 3D 138.8 [µm2] [1]
VC volume of cell cytosol in 3D 1076.3 [µm3] [1]
SC surface of cell cytosol in 3D 694.6 [µm2] [1]
VF surface of matrix fibers 20 [µm2] [8, 63, 65]
SF length of matrix fibers 20 [µm] [8, 63, 65]
ε coefficient of Boltzmann probability 1

TN motility of cell nucleus 0.5 [70]
TC motility of cell cytosol 9 [70]
TF motility of matrix fibers 0
κ compressibility of cell volume 10

νN rigidity of cell nucleus 8.5 [26, 70]
νC rigidity of cell cytoplasm 0.8 [26, 70]
νF rigidity of matrix fibers 11
κF compressibility of matrix fibers 11

J int
N,C generalized intercellular adhesion -20 [71]

Jext
C,C cell-cell adhesive strength 12

Jext
C,M cell-medium adhesive strength 6.5 [78]

Jext
C,F cell-fiber adhesive strength 4.5 [78]
Dm diffusion constant of MMPs 5−4 [µm2s−1] [68, 81]
λm on-rate constant of MMP decay 2 · 10−3 [s−1] [81]
πm on-rate constant of MMP production 5 · 10−3 [s−1] [81]

In all 2D simulations, we plate 1 · 103 cells/cm2, as done in [16], while in all
3D simulations, we embed 2 · 103 cells/cm3, reproducing the cellular density of
the experimental migration assays performed in [37]. The cells that interact with
collagen-like fibers, i.e. fibroblasts or cancer cells of epithelial or mesenchymal
origin, display initially a round non-migratory unpolarized morphology: therefore,
as default conditions, we start with round flat disks with a central round nucleus in
2D, and as spheres with a spherical nuclear compartment in 3D. In both cases, their
overall diameter is 10 grid sites (≈ 14 µm), while the nucleus is 5 grid sites (≈ 7
µm) in diameter. For the reader’s convenience, we underline that the entire volume
(resp, the area in 2D) of a cell is the sum of the volume (resp, the area in 2D) of the
nucleus and of the cytosolic region, while its external surface (resp, the perimeter in
2D) is instead the difference between the surface (resp, the perimeter) of the cytosol
and the surface (resp, the perimeter) of the nucleus. These dimensions, given in
Table 1, reflect the mean measures of typical eukariotic cells except white blood
cells [1].

In our model, we set the length of a collagen-like fiber equal to 15 lattice sites (≈
20 µm). Its thickness would generally range between 100 nm and 0.5 µm [8, 63, 65],
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and therefore it would be substantially smaller than the grid resolution. However,
following a common approach for CPM applications [32, 67], we here accorded a
fiber the measure of a single site, so that it is reproducible in the domain Ω. Each
simulated fiber therefore is assumed to contain nearly 106 collagen-like molecules,
given that a single matrix protein is approximately 300-600 nm long and 1.5-5 nm
wide [1]. Finally, for sake of simplicity, we will use the term fiber for both the basic
short ECM structure (≈ 20 µm long threads) simulated for the 2D condition, and
the long structure crossing the entire spatial domain of the 3D cubic network.

3.2. Isotropic 2D and 3D Matrices. We first test the model for standard ma-
trices containing an isotropic, moderately dense, fibrous network in both two and
three dimensions. As planar substrate, we distribute 3 · 105 flat collagen-like fibers
in each x and y-direction of the 3.5 cm-side length dish, yielding a density of 500
fibers/mm2, see left top panel of Fig. 1(A). The analogous isotropic 3D scaffold con-
sists of a regular cubic mesh of collagen fibers creating a uniform pore distribution of
10 µm width (i.e., the same order of magnitude of the initial cell diameter, see Fig.
1(A), right top panel). We simulate a regular fibrous network to avoid the minor
heterogeneities often experienced in experimental matrices, where the distribution
of the threads and the relative pore diameters is only roughly constant [47, 54, 82].
As shown in the wind-rose graph (Fig. 1(B)), when cells migrate on both 2D and
in 3D matrices, the selected cell paths display a random walk, without preferred
direction, in the absence of biasing chemical gradients or matrix anisotropies.

Such migratory path structures and quantitative parameters are consistent with
experimental results for both 2D and 3D porous ECMs, such as for human adult
vascular smooth muscle cells (HSMCs) plated on flat type IV collagen (CnIV) sub-
strates of similar concentrations [16] or human glioma cells plated on polyacrylamide
ECMs [79], and for different fibroblastic and cancerous cell lines migrating within
3D fibrous matrices of similar geometrical and structural properties, i.e., NR6 mouse
fibroblasts in collagen-glycosaminoglycan matrices [37], or human melanoma cells
in collagen lattices [25]. Indeed, these comparisons provide confidence in the choice
of parameters describing the biophysical and mechanical properties of the simulated
cell-ECM system.

3.3. Anisotropic 2D and 3D Matrices. Next, we analyze the migratory char-
acteristics of a cell population in the case of anisotropic matrices. In particular, we
keep fixed the quantity of fibers as displayed in Fig. 1, but progressively change
their distribution by increasing their number along the same x-direction, leaving
remaining fibers disposed in their standard direction (Fig. 2(A, B; top rows)). The
alignment of the matrix is quantified by evaluating a proper index, that can be
called aligned index, given by

Nalign =
(d nx/ntot)− 1

d− 1
, (6)

where d is the dimension of the domain, nx the number of threads along the x-
direction and ntot their overall number. This quantity scales the percentage of fibers
aligned along the x-direction, so that it is zero in the case of isotropic networks and
1 in the case of fully aligned matrices.

As a result, for both 2D and 3D migration, the paths gradually adapt towards
anisotropic random walks, in particular, the directional cell motion increases to-
wards the principal direction of alignment, see Fig. 2(A,B; bottom rows). Interest-
ingly, the cells final average velocity and MSD remain constant despite increasing
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Figure 1. Standard cell-ECM models and migration in two and three
dimensions. Top panels (A): sections of the simulation domain Ω of
both the 2D and the 3D case. Depicted are standard two-component
substrates containing both an isotropic fibrous ECM of moderate density
(yellow stripes) and the medium (black), and cells. In the 2D model, 500
fibers/mm2 fibers are distributed equally and in both x−, y−directions.
In the 3D scaffold, matrix fibers are assembled into a regular cubic mesh,
with a uniform distribution of pores of 10 µm side length. As an initial
condition, a sparse population of cells is plated on or into the matrices.
Bottom panels (B): cell migration on or within the above-represented
isotropic ECMs. Wind-rose graphs showing 10 randomly chosen cell
tracks over 12 h. Black circles represent the ending location of each cell
center of mass. In both conditions, cells display a Brownian random
movement with net final displacement ca. 50 µm, MSD ca. 9 · 104

± 0.5 · 103 µm2 (median 8.8 · 104 µm2), and velocity ca. 10 ± 0.6
µm/h (median 9.7 µm/h). As reproduced from selected cell paths, the
persistence time is low (ca. 1.5 ± 0.2 h, median 1.2 h). Here and in the
following all values are given as means ± s.d. over 50 randomly chosen
individuals (see appendix). The cell migratory behavior is consistent
with the extracellular environment isotropy, and the absence of chemical
gradients or other directional biases.
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Figure 2. Orientation of cell migration along matrix fiber topology.
Both on 2D (A) and within 3D matrix (B), the overall number of basic
fibers remains fixed with respect to the standard simulations of Fig. 1,
while their percentage along the x-axis is increased. The alignment of
the matrices is quantified by the alignment index Nalign, defined in (6),
which is 0 in the case of isotropic networks and 1 for fully aligned ECMs.
(A, B; top rows) Three specific cases for simulation-obtained threads
(yellow) and cell morphologies. (A, B; bottom rows) Wind-rose graphs
show 10 randomly chosen cell tracks over 12 h. (C) Cell mean square
displacement (MSD), average velocity and persistence time for both 2D
and 3D matrix, displayed with box-and-whisker plots, with box edges
as 25th and 75th percentiles and whiskers as 10th and 90th percentiles.
Horizontal lines, median; large black dots, mean of the distribution.
Statistical significance (p < 0.05) was determined for motile fraction
data by the Students’ t-test and for non-normally distributed data sets
by the Kolmogorov-Smirnov test over 50 randomly chosen individuals
(see also appendix). The directional component of cell motion increases
as all fibers align, with no change in cell speed.
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substrate orientation, with very similar values for both 2D and 3D conditions. How-
ever, the cell’s 2D and 3D directed motile behavior in response to fiber distribution
directly correlate with a strong increase in time (up to 5 hours) that cells are able
to perform persistent (no back-and-forth) movement. Therefore, ECM geometry
and architecture directly impact on the migration pattern of individual cells. The
directionality of cell movement is here not introduced a priori, but is a direct result
of well-defined directional-guidance cues provided by the specific matrices. The
anisotropy of the matrices induces in fact a re-orientation of moving cells in the
direction of the threads (i.e., with the formation of clearly distinguishable leading
and trailing edges, see Fig. 2(A, B; top rows)) and the consequent motion along
them, which is no longer an isotropic Brownian movement, but a highly biased
locomotion.

The efficiency of cell migration is highly affected by the orientation and spacing
of matrix components and its adhesive ligands, resp., as experimentally proven by
lithographic and microprinting techniques creating 1D ECM pathways that offer
geometric guidance and adhesive structures at a microscale [9, 17, 19, 46]. More-
over, several experimental models have demonstrated the cell’s preference to mi-
grate along aligned matrix fibers within 3D environments, such as fibroblasts in
collagen [15] or neuronal cells in fibrin substrates [18]. Lastly, in vivo intravital
imaging studies of carcinoma cells in the mammary fat pad have pointed out the
preferential chemotactic movement of invasive malignant cells along thick bundles of
collagen fibers offering a 2D surface towards blood vessels [13], while in the lymph
node paracortex, the aligned microarchitecture of collagen and fibronectin fibers
ensheathed by fibroblastic reticular cells significantly influenced the migratory be-
havior of T-cells [3].

3.4. Pore Size in 3D Matrices. The ECM fibers and bundles in in vivo tissues
that provide directional guidance cues are arranged into structures that create pores
and gaps of strongly varying local densities [82]. Connective tissues, i.e. of the skin,
are categorized into loose and dense extracellular tissues, and pores size are formed
irregularly and form gaps between ca. 1 to 1000 µm [82]. As another example,
in progressing tumors the surrounding tumor stroma changes into fibrous tissue
over time that, concomitantly, may change its structural architecture [14]. These
matrices of different densities provide physical barriers to different extents together
with varying gap sizes for moving cells.

In the CPM model, we simulate the effect of varying substrate fiber density on cell
migration in 3D networks, where matrix fiber form a regular cubic mesh, with uni-
form pore sizes that decrease due to increment in the number of fibers. In result,
the simulations predict a bimodal behavior of cell velocity and persistence (Fig.
3(A)). At low numbers of bundles the 3D scaffold constitutes a sparse network,
resulting in pores significantly larger than the diameter of the characteristic cell
shape. In this case cells exhibit a short-range movement while their body remains
in a stationary ameboid-like state, regardless of their deformation ability, presum-
ably because the distance from the nearest matrix fiber is too high to experience
adhesive interactions that enable them to extend their membrane (Fig. 3(B)). On
the other hand, the formation of pore diameters of cellular or slightly subcellular
ranges allows cells to physically interact with fibers in all three spatial directions
and is associated with most efficient migration rates [25]. In this case, migrating
cells apply an elongated morphology and slightly reduce their diameters to ca. 8-10
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Figure 3. Dependency of cell migration and morphology on the pore
size in 3D matrices. Originating from the isotropic scaffold in Fig. 1,
an increasing number of collagen fibers is introduced, which leads to a
decrement in pore sizes. (A) Box-and-whisker plots (means, lines; me-
dians, dots; see appendix) display cell MSD, cell average velocity, and
persistence time from 50 randomly selected cells migrating within matri-
ces of decreasing pore size. (B) Cell morphological transitions (evaluated
by the cell aspect ratio, see appendix) over time upon varying pore di-
mensions of 20 µm blue line, 10 µm black line, and 5 µm green line.
Cell morphologies are obtained from the simulations. Cell elongation
increases with decrements of pore size (i.e., increments in fiber number)
until a threshold value, defined by the measure of the cell region con-
taining the nucleus, that can not deform further. As in the following,
each value in the plot is shown as mean ± s.d. over 50 randomly chosen
individuals (see also appendix).

µm. Finally, an increase in the abundance of 3D matrix threads results in the for-
mation of a scaffold characterized by small pores with limited available space (i.e.,
half of a cell diameter or less), and a substantially decreased cell migration rate is
predicted. Even long cytosol formations (Fig. 3(C)) are in fact not sufficient to pass
through such steric hindrances, as the nucleus can not significantly deform (νN is
high), causing the overall individual to be confined in a small area. In a following
section, the migration ability of cells depending on their nuclear deformability will
be examined. In summary, cells display a biphasic relationship that reveals most
optimal migration at pore sizes at cellular or somewhat subcellular diameters, and
diminishes at gaps greatly bigger or smaller than the moving cell diameter.

The outcomes of our models are consistent with the relative observations pro-
vided in the experimental literature. In 3D environments, neutrophil migration
(both velocity and directional coefficient) has been reported to vary in a biphasic
manner with the gel pore size [41], while mouse fibroblasts have been observed to
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Figure 4. Biphasic relationship of cell motility and related morphol-
ogy with fiber number on 2D substrates. The number of fibers is step-
wise increased from 6 · 103 to 6 · 107 per dish (with 6 · 105 fibers
per dish representing the standard case). All other parameters remain
unchanged, such as in the standard case of Fig. 1. (A) The box-and-
whisker plots (means are lines, medians are dots, see appendix) represent
cell MSD, average velocity, and persistence time from 50 randomly se-
lected cells. (B) Changes in aspect ratio during migration over 12 hours
upon varying fiber density. Number of fibers are: 6 · 103 (blue, low
density), 2 · 106 (black, intermediate density), and 6 · 107 (green, high
fiber density). Migration-associated lamellipodial ruffling is maximal at
intermediate fiber densities, whereas at low and high number of threads
cells remained roundish, associated with little migration.

migrate more significantly in collagen-glycosaminoglycan (CG) scaffolds featuring
pore sizes somewhat smaller than cellular dimensions, whereas they have exhibited
less dispersion in matrices with larger pores [37].

3.5. Cell-Fiber Adhesiveness. Cell-matrix adhesion is mainly mediated by inte-
grins on the cell surface that form a linker to connect ECM to the cytoskeleton and
signaling pathways. Adhesion can be modulated by a number of parameters, such
as (i) the number of substratum ligands, (ii) the expression and activation levels
of integrins, and (iii) the resulting integrin-ligand binding affinity, which can be
reduced by β1 integrin antibodies that block integrin binding epitopes to ECM or
by soluble ligands that compete with ligand binding, or can be enhanced by integrin
activating agents.

From the mathematical point of view, adhesiveness is modeled by both fiber
density of the substrate or the cell-fiber adhesion parameter Jext

C,F .
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3.5.1. Substrate Density of 2D Matrices. As mentioned above, adhesion depends
on the number of substratum ligands applied here as varying fibril densities on 2D
surfaces. Such an application will induce a change in adhesive properties without
steric consequences thereby representing a controlled approach. In contrast, since
the modeling of varying fiber numbers in a 3D porous lattice will concomitantly
change available space and thereby interdependent pro-migratory co-parameters,
we excluded this approach from analysis.

We simulate here migration over a surface containing an increasing amount of
matrix fibers distributed equally and isotropically along the x− and y−directions.
Cell spreading, characterized by an increase of cell surface area over time [12] re-
mains nearly fixed (i.e., by high values of κ). Therefore, the resulting simulations
cannot capture the variation of cell contact area with the underlying substrate, char-
acterizing cell spreading in 2D assays. However, the migratory structure of the cells,
characterized for instance by the elongation of pseudopods, is clearly quantified by
the aspect ratio, defined in the Appendix.

Indeed, migration efficiencies develop a bell-shaped distribution from low towards
high fiber numbers with a maximum at intermediate fiber numbers (Fig. 4(A)). At
low ligand density, cells are unable to find sufficient collagen-like sites to attach and,
in consequence, do not significantly displace. At the other extremum, an abundance
of substratum ligands will lead to the formation of stable focal adhesions and, hence,
low detachment and migration rates. Concomitantly, in both cases, cell remains in
ameboid-like shapes (see Fig 4(B), lower inset).

At intermediate fiber densities, relatively short-lived focal adhesions will form re-
sulting in optimization of attachment-detachment cycles and in maximal cell move-
ment. The optimization of focal adhesion results in an optimal cell movement
and in an increment in membrane ruffling and in the formation of membrane-rich
structures, such as lamellipodia, filopodia, indicative of a migratory phenotype (see
Figure 4(B), upper inset).

Different studies have coherently shown that migration on planar substrates is
limited for low fiber densities by the cells impossibility to form sufficient attachments
to generate traction and to move forward [35, 44]. Optimal ligand densities, in
contrast, that preclude the formation of stable focal adhesions [2, 12, 43, 57] but
cause requires rapid focal adhesion turnovers, will result in maximal cell movement
characterized by a migratory phenotype rich in migration-associated membrane
protrusions. Eventually, at high densities migration is blocked because integrin
receptors engage into stable focal adhesions that exclude coordinated attachment-
detachment for cell movement [21, 30]. Blocked migration due to stable focal contact
formation is usually accompanied by an increased spreaded area (again, refer to
[12]), which we, however, did not capture with our approach.

3.5.2. Cell-Fiber Adhesion Strength for 2D and 3D Matrices. As integrin function
impacts adhesion, we simulate cell motility both over 2D surfaces and within 3D
matrices (at standard conditions, Fig. 1) as a function of varying cell-fiber ad-
hesion strength (Jext

C,F , which is the model counterpart of variations in integrin
activation levels and affinity). As a basic migration-adhesion relationship, the mi-
gratory capability of moving individuals can be sorted into the three regimes of
high, intermediate or low adhesion strength and in principle is valid for movements
both over a surface or within a 3D matrix (Fig. 5). At high integrin engagement
(say Jext

C,F < 3), cells display barely no detectable movement within the observation
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Figure 5. Biphasic relationship of cell motility and cell-fiber adhesion
strength, given by the model parameter Jext

C,F , for both 2D or 3D ma-
trices. All other parameters remain unchanged, such as in the standard
case of Fig. 1. The box-and-whisker plots (means are lines, medians
are dots, see appendix) represent cell MSD, average velocity, and persis-
tence time from 50 randomly selected cells. Maximal migratory capacity
is seen at intermediate values of cell-fiber adhesiveness.

period, by being unable to detach from fibers. From an energetic view point, cells
minimize the hamiltonian H by keeping such an adhesive contact. Given the high
difference between Jext

C,F and Jext
C,M , moving individuals have in fact no benefit from

further movements, meaning that an overly adhesive substrate causes the formation
of integrin clusters on the cell surface strongly binding to substrate and not allowing
detachment as needed for further migration.

Intermediate values of Jext
C,F (say, in the interval [3,6]) yield moderately high ad-

hesive forces associated with a balance of attachment and detachment, allowing
cells to efficiently move along 2D surfaces or within the fibrous network with a
maximal distance covered. Finally, above a certain value of Jext

C,F (say, > 6.5), ad-
hesion is lacking, and consequently cells display barely detectable movement within
the observation period. Given that Jext

C,M < Jext
C,F , cells prefer to fluctuate around

the initial position in the interstitial fluid, avoiding contacts with the collagenous
threads. Indeed, if a passive contact happens, cells soon detach from the fiber
without exerting the traction needed for further movements.

The biphasic distribution of MSD is associated with a similar corresponding
distribution in velocity, but only a flat curve in persistence, Figure 5. Therefore, the
adhesion-dependent overall motility is mediated mostly by a cells velocity, whereas
the persistent component of cell motion remains almost unaltered and refers to
random movement (Figure 1(B)). In particular, persistence levels at < 1 at the
lowest and highest Jext

C,F levels correspond with a running on the spot phenotype
observed in experimental assays for cells embedded in matrix [84].

In both two and three dimensions, the similarity of the biphasic dependence be-
tween the migratory properties of cells and their adhesiveness are consistent with
published experimental literature, i.e. on tumor cells expressing high levels of β1
integrins [48]. However, they are not necessarily valid for all cell types, such as leuko-
cytes that use adhesion-independent strategies when moving within a 3D collagen
network [22]. The different assays used for cells when migrating on 2D or within
3D matrices have an impact on the conclusions of migration capacities. Whereas a
non-adhesive cell detaches from a surface and cannot migrate anymore, non-adhesive
cells are caught in a 3D network and may not, or may migrate by unspecific inter-
actions with the lattice or by cytoskeleton-mediated propulsive mechanisms [24].
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In accordance with our simulated data, a number of 3D ECM assays have shown
similar trends for adherent cell types, such as human prostrate carcinoma cells,
whose velocity has been plotted as a biphasic function of an adhesiveness param-
eter such as ligands functionality as well as receptor density [88], or melanoma
cells, cultured in collagen scaffolds and stimulated with different concentrations of
integrin-binding peptide RGD [10]. Finally, cell velocity can vary non-linearly with
increasing ligand concentration, as it first increases, reaches a maximum and then
decreases while the number of ligands still increase [47]. In summary, a medium
level cell adhesion to underlying or surrounding ECM is of crucial importance for
the effectiveness of cell migration.

3.6. Fiber Elasticity of 3D Matrices. In the body, extracellular tissues display
a range of elastic characteristics that are modulated by the collagen content, the
amount of cross-links between collagenous molecules and the presence of elastic
fibers. Rigid tissues are usually dense and elastic tissues are often loose, and in-
creasing matrix density will add rigidity. In experimental studies using 3D ECM
that where either modulated in density, i.e., fiber concentration [85], or rigidity
[55, 56, 72, 74], the other component becomes influenced as well. However, to sepa-
rate the related effects, we here simulate both varying scaffold stiffness (regulated by
νF ) and the geometrical microstructure. To quantify such convoluting factors, we
provide contour plots, as joint functions of pore size and fiber elasticity, that illus-
trate cell motile parameters as differently colored ’landscapes’ (Fig. 6). It is useful
to underline that elastic fibers are also characterized by a low constant TF = 0.2,
as they are no longer rigid but can deform.

In Fig. 6(A; top panels) at high pore size (i.e., 20 µm), cells display a reduced
motile behavior, regardless of the fiber stiffness, as already shown in Fig. 3(A).
The rationale of this is that in very loose tissues cells migration is not supported
by fibers from all sides of the cell and consequently, the cell migrates along sin-
gle fibers only that, however, when stiff, again promote to some extent traction
and therefore migration. Next, at intermediate mesh dimensions, both cell velocity
and persistence (and, consequently, the overall displacement) biphasically depend
on matrix elasticity. If the collagenous threads are too elastic (i.e., νF < 3), they
can be easily deformed, without representing a sufficient anchor for pulling force
generation required for cell motion. With a moderate stiffness (i.e., 5 < νF < 9),
the matrix fibers can be slightly arranged to form contact-guidance cues, thereby
facilitating cell migration. On the contrary, a too rigid network (i.e., νF > 9) forms
steric obstacles that can be somewhat less efficiently overcome by moving individ-
uals. Finally, small pore sizes allow motility only within elastic matrices, whereas
migration is negligible for intermediate or high rigidities of the fibers. Migrating
cells are able to move within small pores in fact only by significantly deforming the
matrix network, creating open space to pass through. Therefore, if the pore size
is much smaller than cell dimension, the mechanical matrix characteristics exert
an increasing influence. When evaluating the plots at constant rigidity, cell migra-
tion displays the same bimodal dependence on pore size previously captured in Fig.
3(A).

Such variations in fiber rigidity induce a suite of cell morphological changes
(Fig. 7). Cells plated within rigid scaffolds are typically well elongated and exhibit
multiple fiber-associated constrictions along their bodies. They indeed adapt their
shape and squeeze through rigid matrix arrangements by concomitant elongation
of their body. Cells cultured in progressively soft matrices show instead decreasing
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Figure 6. 3D cell migration as a function of fiber rigidity νF and
pore size. Contour plots of cell migratory parameters for (A) standard
conditions (see Figure 1), that further includes the absence of proteolytic
activity and a stiff nucleus (νN = 8.5), (B) cells as in (A) but with an
elastic nucleus (νN = 0.5) and (C) cells as in (A) but expressing matrix
degrading enzymes, regulated by Eq. (7). Each value is given as mean
over 50 randomly chosen individuals (see appendix).
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Figure 7. Dependency of cell deformation on fiber stiffness. Varia-
tions of cells aspect ratio (defined as in Figs. 3 and 4) during migration
at different fiber elasticities: from bottom to top νF = 1, 5, 11. In par-
ticular, the pore size is kept at 5 µm.

elongation, and cells within complete compliant ECMs remain uniformly rounded,
as they easily deform the collagen-like threads and lack cytoskeletal traction [79].
In summary, cells migrate in a biphasic manner at theoretic conditions of either
increasing density or increasing stiffness alone, but, however, also at experimental
conditions, upon combined increase of density and stiffness together (imagine a
decreasing curve in the plots of Fig.6 from left top to right bottom).

As experimental examples, bimodal relationships between cell migratory ability
and the deformability of 3D matrix scaffolds have been observed in experimen-
tal models of smooth muscle cells [59] and mouse fibroblasts, cultured in stepwise
EDAC-cross-linked CG matrices of constant pore size [37]. A biphasic dependence
on matrix rigidity has been previously reported also in isotropic homogeneous net-
works, as in the case of prostate cancer cells embedded in Matrigel with a fixed
fibronectin level and variables stiffness [88].

3.7. Nuclear Compressibility in 3D Migration. As pointed out in the pre-
vious section, to migrate within ECM of pores smaller than a cellular diameter,
cells need to deform their body including their nucleus, as the most rigid organelle
[26]. The degree of nuclear deformability therefore may contribute to the migration
efficiency of a cell. The nucleus elasticity is mainly regulated by both the chro-
matin structure, and lamin intermediate filaments, that form a part of the nuclear
envelope, [26, 31]. The softness of a nucleus can be modeled by lowering the values
of the nuclear rigidity νN from 8.5 (see Table 1) to 0.5 (compare Fig. 6(A) and
(B)). At high pore size of 10 µm or higher and lower fiber rigidity (i.e., at left upper
corner), migration remains unaltered regardless of nuclear elasticity, as moving cells
do not experience steric hindrance. However, once mesh dimensions and scaffold
rigidity move to a intermediate ranges, nuclear elasticity somewhat facilitates cell
movement, measured as MSD (an estimate product of persistence time and veloc-
ity). Whereas the persistence time does not contribute to this increase (i.e., cells
with rigid nuclei were already able to migrate through the matrix networks charac-
terized by intermediate dimensions without changing direction), the velocity does
(i.e., they can quickly and efficiently remodel). Finally, as pore size and matrix
elasticity further decrease towards a highly constrained environment (lower right
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Figure 8. Dependence of migration-associated cell morphology over
time on nuclear deformability. Evolution of cells aspect ratio during
migration trough small pore sizes (i.e., 5 µm) and high fiber stiffness
(i.e., νF = 11). Green line represents cells with a standard rigid nucleus
(νN = 8.5), blue line represents cells with an elastic nucleus (νN = 0.5).
All the other model parameters are the same as the standard simulation
of Fig. 1. Note that a high deformability of the nucleus allows cells
to undergo dramatic morphological transitions, fundamental for their
migration in highly constrained environments.

corner), the simulations demonstrate that enhanced nuclear deformability is asso-
ciated with enhanced cell migration. Such facilitated locomotion is mediated by an
elongated and deformable nuclear configuration allowing the entire cell to squeeze
and stretch more easily and thereby pass through the steric obstacles of a dense
and rigid matrix (Fig. 8).

Our simulations relate to a number of experimental works, such as [81], where
cell migration efficiency decreases with matrix density and is associated with nu-
clear deformation, or [6], where glioma cell lines significantly deform their nucleus
upon recruitment of non-muscle myosin II (NMMII) for squeezing through narrow
locations in a brain model in vivo, thereby increasing their metastatic potential.

3.8. Matrix Degradation in 3D Migration. In the previous sections, we have
demonstrated that cells move within matrix fibers of varying density and stiffness,
that act as constraints, deforming both body and nucleus. As an additional mech-
anism to overcome limited space cells may upregulate proteolytic enzymes that de-
grade ECM structure (i.e., matrix metalloproteinases, MMPs) that act either bound
to the cell surface or when secreted into the extracellular space. Accordingly, cells
degrade steric fiber obstacles either in a cell contact-dependent manner targeting
locally confining fibers, or, in a diffusive manner leading to gradient formation and
consequently, a more overall weakening of the surrounding tissue structure [83]. As
a result, barrier-free matrix spaces will be created resulting in longer distance trav-
eling. We here perform simulations with cells that execute both contact-dependent
and soluble proteolysis. The local concentration of the net protolytic activity (both
surface-bound or diffusive) is defined as m(x, t), and is assumed to evolve following
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a standard reaction-diffusion equation:

∂m(x, t)
∂t

= P (x, t)︸ ︷︷ ︸
production

+Dm∇2m(x, t)︸ ︷︷ ︸
diffusion

−λmm(x, t)δ(τ(Σσ(x)),M)︸ ︷︷ ︸
decay

, (7)

where δ(τ(Σσ(x)),M) = 1 in the interstitial medium M and 0 elsewhere. λm and Dm

are, respectively, the decay rate and the effective diffusion coefficient of proteolytic
enzymes, constant and homogeneous in the extracellular environment. A low value
of Dm models proteolysis being strongly localized in regions close to cell membranes,
in agreement with experimental evidence in [68, 81]. P (x, t) models instead the local
production of proteases either at the cell surface or secreted away from the external
cell surface, at a constant rate πm collagenous component:

P (x, t) =

 πm if x : τ(Σσ(x)) = C and ∃x′ ∈ Ω
′

x : τ(Σσ(x′)) = M ;

0 else,
(8)

where we recall that C stands for cell cytosolic region. MMPs are capable to
degrade the fibrous component of the matrix: to reproduce this biological effect, a
lattice grid site x belonging to a degraded collagenous fiber becomes a generalized
medium (fluid) site when its local level of MMPs (m(x, t)) is sufficiently high (in
our simulations above 2.5 µM). This change is implemented by changing its type τ
from F (fiber) to M (medium), as done in [32]. The comparison of cell migration
of either MMP-active and MMP-inactive individuals (Fig. 6(A) and (C)), reveals
that at high and intermediate pore size and/or low matrix rigidity, the proteolytic
machinery does not appreciably affect cell motion. The loose fiber network does not
represent a significative obstacle for cell migration, which therefore is not enhanced
further by MMP activity. In the case of small pores formed by rigid collagenous
fibers (lower right), MMP activity promotes instead appreciable cell migration.
This suggests that proteases, by degrading matrix fibers, are able to break steric
obstacles in the close proximity of moving individuals, opening spaces for them to
sample greater distances without turning back.

The role of MMPs activity in cell migratory behavior captured in our model
is in good agreement with the experimental results provided in [62] for dermal
fibroblasts embedded in molecularly engineered PEG hydrogels, where a significative
increment in the number of migrating individuals was observed upon up-regulation
of proteolytic enzymes.

In conclusion, summarizing all the examined parameters, cell migration is greatly
influenced by a number of complex ECM- and cell-derived characteristics that, in
addition, display a number of interdependencies [28] and, together, determine the
net outcome on migration.

4. Discussion. Due to the increasingly recognized importance of cell migration
processes in matrix environments and its exploitation for therapy and for tissue en-
gineering, an increasing number of theoretical models have been developed. These
modeling approaches analyze the relative importance of single and interrelated pa-
rameters to predict migration behavior.

We employed a simple and intuitive version of the Cellular Potts Model to simu-
late the motile behavior of cells seeded either on two-dimensional matrix substrates
or embedded within three-dimensional matrix scaffolds. In contrast to previous
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approaches, the Cellular Potts Model used here treats each cell physical object
compartmentalized into nucleus and cytoplasm, whose movement is driven by ex-
plicit interactions with the extracellular, environment in turn differentiated into
fibers and medium. The introduction of the nucleus and its mechanical properties
on one side and of the extracellular matrix and its specific fibrous characteristics on
the other side allowed to simulate for the first time both their specific contributions
in cell migration.

In particular, we considered isolated pro-migratory parameters derived either
from the ECM, such as orientation, pore size, ligand density, or rigidity, or from the
cell, such as adhesion, nuclear rigidity, or proteolysis, that control both cell migra-
tion efficiency and migratory phenotypes. In all proposed cases, the computational
results are consistent with a number of published experimental counterparts, and
represent further complementary determinations. For instance, we have provided
evidence that cell maximal dispersion occurs at intermediates fiber densities, i.e in
matrices with a fiber mesh of an optimal size for a cell to spread (in 2D) or to squeeze
through (in 3D). Indeed, if the inter-fiber distance becomes too wide, moving cells
loose the availability of anchorage points and the contact guidance necessary for
traction and further movement. On the contrary, if planar matrices have a too
high concentration of collagenous fibers, moving individual loose their preference
for the fibrous component of the substrate, displaying limited movement. In 3D, if
the fiber network is formed by small pores, cells can not pass through, since their
nucleus is not able to sufficiently deform. The presented approach has also demon-
strated that cell migratory behavior has a biphasic dependence on the strength of
cell-fiber attachment, with maximal values at intermediate adhesive interactions in
both dimensionalities. We have then more carefully focused on how microstructural
properties of 3D scaffolds, not widely considered central to 2D motility, influence
the overall cell motile phenotype. Indeed, the model has highlighted the complex
dependency of cell motility on the matrix elastic modulus. Specifically, at interme-
diate pore size, higher level of cell migratory capacity was observed in moderately
rigid scaffolds, while at small pore dimensions, cell movement has been restricted
only in the softest matrix (i.e., characterized by highly deformable fibers). At big
pore measures, the rigidity of the collagenous threads has not been observed to influ-
ence cell locomotion. Finally, we have clearly shown that significant cell movement
through highly constrained environments can only be achieved through a combina-
tion of proteolytic degradation of the matrix and/or an enhancement contractility
of cell nucleus.

As a clear advantage of a theoretical approach, we have been able to indepen-
dently vary and modulate in a graded fashion all biophysical cell parameters and
microstructural properties of the matrix environment, which is helpful in dissecting
the complex relationships between cell motility and the biophysical, biochemical
and molecular properties of the matrix [28]. However, a modeling approach that
describes isolated parameters is unable to encompass the complexity apparent in
processes in vivo, such as cancer invasion. Some of these additional, here disre-
garded, factors are (i) additional matrix deposition of moving individuals, leading
to altered traction generation, adhesion and contact guidance; (ii) soluble or matrix-
bound gradients of chemoattractants; (iii) molecular signals transmitted from the
ECM to cells (outside-in signaling), thereby changing the activity of polarization-
or contractility-mediating proteins (Rac, Rho) [24]; or (iv) inside-out signaling for
reinforcement of adhesion [79].
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Despite the limitations of theoretical modeling, our approach could be applied
to the design of synthetic implant materials, i.e., a cellular scaffolds with optimal
values of pore size and stiffness that may accelerate cell in-growth, critically for
regenerative treatments [7, 11, 38, 80]. Further, applying the proposed model on
defined cancer invasion models and inhibitory strategies may assist to predict the
outcome on therapeutic interventions. At this regard, it would be biologically rele-
vant to adapt our approach to specific cell lines, characterized by distinct biophys-
ical phenotypes (i.e., intrinsic motility, elasticity, or proteases activity). This can
be easily done by inheriting the model parameters from experimentally-measured
quantities, characteristic of the selected cell population. It would be also interesting
to analyze collective migrations of cellular ensembles both of the same type or of
different types, which are fundamental in several physio-pathological processes, as
commented in [39]. A differentiation may in fact occur among individuals of the
same family (i.e., tip and stalk cells during angiogenic processes, or leader and fol-
lower cells during a skin wound healing [29]), whereas competitions for nutrients or
altered heterotypic interactions may significantly affect the migratory capacity of an
entire cell lineage (for example, cancer cells of epithelial origin inhibit the motility
and induce apoptosis in neighboring normal individuals). Obviously, in this case,
it is necessary to define in the model framework all cell types, with the relative
phenotypic parameters and the rules for their behavior and mutual interactions.

In summary, our findings may contribute to both understanding and exploitation
of cell migration processes on and in tissues.

Appendix A. Appendix. The position at time t of a cell η is established by
the coordinate of its center of mass (CM) xCM

η (t). The wind-rose plots in both
the two- and in the three-dimensional case are therefore generated by tracking the
position of the center of mass of 10 randomly chosen cells at 15-min (450 MCS)
intervals, overlying the starting coordinates at the origin of the graph. This type
of representation is particularly useful to evaluate the cell net displacements over
time and the distribution of their final dispersion.

Similarly, the instantaneous velocity of η is the instantaneous velocity of its center
of mass:

vη(t) =
xCM

η (t)− xCM
η (t−∆t)

∆t
, (9)

where ∆t = 1 MCS, as done in similar works [51, 58, 70].
The average velocity of an individual over the entire simulation is instead given

by

vη(t) =
xCM

η (tfinal)− xCM
η (0)

tfinal
, (10)

where tfinal corresponds to the final time of the observation period which, as ex-
plained in the text, is set to 21600 MCS (12 hours).

The mean squared displacement (MSD) at time t of a cell η, defined as < d2(t) >,
is calculated as

< d2
η(t) >=< (xCM

η (t)− xCM
η (0))2 >, (11)

where xCM
η (0) is the initial position of its center of mass. Following [16, 87], the

squared displacements are averaged over all previous time steps, in order to take
into account the back and forth motions exhibited by the moving individuals. As
demonstrated in a number of previous experimental [16, 37] and computational
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[16, 87] studies, at sufficiently long times the mean square displacements vary ap-
proximately linearly with the number of time steps. It can therefore be related
to cell instantaneous velocity (vη) and persistence time (pη, which quantifies the
directional productive motion) with the so-called persistence-random-walk (PRW)
law:

< d2
η(t) >= 2v2

η(t)pη(t)[t− pη(t)(1− e−t/pη(t))]. (12)

In particular, at still longer observation periods, (12) reduces to:

< d2
η(t) >≈ 2v2

η(t)pη(t)t, (13)

and the persistence time of a moving individual can be directly calculated as

pη(t) ≈
< d2

η(t) >

2v2
η(t)t

. (14)

The PRW relation has been demonstrated to characterize the cells migratory be-
havior more properly than other common methods, which calculate the average
distance migrated by biological individuals in an arbitrary time interval, as com-
mented in [20]. For the statistical analysis, cells that do not display a final MSD
greater than their diameters are classified as non-motile and assigned a velocity of
0 µm/h and an undefined persistence time, as we follow the criterion described in
[16, 30].

A.1. Statistics. Cell motile parameters (MSD, velocity and persistence time) are
represented in the figures as box-and-whisker plots, where the edges of the boxes
are the 25th and 75th percentiles and the whiskers the 10th and 90th percentiles.
The horizontal line represents the median, while the large black dot corresponds to
the mean of the distribution. Statistical significance (p < 0.05) was determined for
motile fraction data by the Students’ t-test and for non-normally distributed data
sets by the Kolmogorov-Smirnov test over each 50 randomly chosen individuals.

In the multidimensional contour plots the values of the cell migratory parameters
are means over 50 randomly chosen individuals.

Quantitative analysis of cell morphological changes is carried out by evaluating
the evolution of the cell aspect ratio, given by the ratio between the actual cell
surface (respectively, perimeter in 2D) and the surface of the sphere having the
same volume (respectively, the perimeter of the circle having the same area in 2D).
It is useful to underline that in our model cell volume (respectively, area in 2D)
is kept nearly fixed by high values of κ in Eq. (4), see Table 1. Therefore the
aspect ratio gives a quantitative measure of cell membrane ruffling. Finally, the
time evolution of the aspect ratio is given in the plots with mean ± s.d. over 50
randomly chosen individuals.
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[3] M. Bajénoff, J. G. Egen, L. Y. Koo, J. P. Laugier, F. Brau, N. Glaichenhaus and R. N.
Germain, Stromal cell networks regulate lymphocyte entry, migration, and territoriality in

lymph nodes, Immunity, 25 (2006), 989–1001.
[4] A. Balter, R. M. Merks, N. J. Poplawski, M. Swat and J. A. Glazier, The Glazier-Graner-

Hogeweg model: Extensions, future directions, and opportunities for further study, in “Single-

Cell-Based Models in Biology and Medicine, Mathematics and Biosciences in Interactions”
(eds. A. R. A. Anderson, M. A. J. Chaplain and K. A. Rejniak), Birkhaüser, (2007), 157–167.
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