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About five in the afternoon he went out

and found still others standing around.

He asked them, Why have you been standing here

all day long doing nothing?

Because no one has hired us, they answered.

He said to them, You also go and work in my vineyard.

(Matthew 20:6-7)
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Abstract

Osmosis is a fundamental physical process involved in many biological

phenomena and is exploited in many thecnological applications. In the last

decade, the interest for osmosis problems has grown with the ever-incresing

development of nano-thecnologies and the classical theories, like the Van’t

Hoff or Morse equations for osmotic pressure, have been observed to fail

in many circumstances and this has prompted the development of a quan-

tity of models trying to describe osmotic processes in non-classical regimes.

Recently some authors tried to modify the classical laws introducing some

parameters of the problem neglected before such as the solute-solvent interac-

tion and the finite volume of solute molecules, or the mechanism of transport

of molecules inside the pores of the membrane. This last issue concerning is

of particular interest and deserves further investigation. In a current article

that focuses on a new kind of phenomenon called ”transient osmosis” we find,

first of all, a clarification of the phenomenon of interest, because osmosis is

an equilibrium phenomenon and does not depend on the process which leads

to it. Moreover the proposed model presents the features of a process similar

to osmosis, but influenced by the anomalous beahvior of transport inside the

pores.

In accordance with these ideas, the aim of our work is to build a mathematical

model to describe the behavior of molecules inside the pores of membranes at

the nanometric scale, where a wide variety of anomalous transport phenom-

ena occurs. We take our inspiration observing the features of a tipical tool

used to simulate transport of matter in nanopores: the polygonal billiards.

An idealization of them has been given in terms of chains of deterministic

maps, and this is the way we undertake in this work. Therefore we intro-

duce a class of chains of deterministic maps, which we call slicer maps, which

enjoy some features of the dynamics of polygonal billiards, trying to repro-

duce the same wide range of anomalous behaviors. We manage to do this
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by furnishing our map of infinitely many scales and we study the transport

behaviors trhough the analysis of the mean square displacement produced

by the dynamics of these maps. We also compare the behavior of our maps

with a sthocastic model often used to study anomalous transport problems:

the Lévy walk. We evince that a trivial deterministic map, like our slicer

map, seems to behave indistinguishably from a Lévy walk.

Nevertheless these chain of slicer maps have an infinite range of scales intro-

duced by hand, hence they are rather different fro polygonal billiards, from

this point of view. Therefore, we try to overcame this difficulty different kind

of modifications, both in the dynamics and in the process of producing in-

finitely many scales. These variations of the model raise some new questions

that remain open to further investigations.
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Chapter 1

Introduction

Osmosis is a fundamental physical process concerning the passage of solvent

molecules across a membrane separating two liquid solutions [1]. Osmosis

is involved in many biological phenomena as fluids exchange in animal cells

and water transport in plants [2]. It also is involved in many technological

applications such as controlled drug delivery and water purification [3],[4].

In the last decade, the interest for osmosis problems has grown with the

ever-incresing development of nano-technologies and in particular of their

application to the modern challenges of biomedicine and pharmacology [5].

As a result, the classical theories have been observed to fail in many cir-

cumstances and this has prompted the development of a quantity of models

trying to describe osmotic processes in non-classical regimes, i.e. in non-ideal

diluted mixtures.

1.1 The Osmotic Problem

The best known model for osmotic pressure, applicable to ideal dilute mix-

tures, was proposed by Van’t Hoff in 1885 [6] and is expressed by the cele-

brated equation:

π = RTC (1.1)

1
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where π is the osmotic pressure, R is the universal gas constant, T is the

absolute temperature and C is the molar concentration of the solute. A

similar equation was proposed also by Morse [7]:

π = RTm (1.2)

where m is the volume molal concentration of the solute.

These classical theories are predictive, in the sense that they don’t require

adjustable parameters, but they are applicable only in the limited regime of

ideal solutions with dilute solute concentration.

To go beyond these limits the classical relations have been generalized in the

years in several forms.

For example for non-ideal dilute solutions, the virial series [8],[9],[10] has

been proposed:

π1 = RT
( c

M
+ A2c

2 + A3c
3 + . . .

)
(1.3)

where M is the molecular weight of the solute, A2, A3,... are the second,

third, etc. virial coefficients and c is the mass concentration of solute.

For non-ideal and non-dilute solutions the following logarithmic equation has

been considered [11],[12],[13],[14]:

π2 =

∣∣∣∣RTV ◦
∣∣∣∣ ln(p◦p

)
(1.4)

where V ◦ is the molar volume of pure solute, p◦ and p are the vapor pres-

sures of the pure solvent and of the solvent in the solution, respectively. Both

pressures p◦ and p are measured at the same T and P and are assumed to

obey Boyle’s law.

1.2 Recent Models

We find a further generalization of such theories also in more recent works.

Granik et al. [15] develope a model based on a system of Fick diffusion
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equations obtaining the following expression for the osmotic pressure:

π = RTΨ (1.5)

with

Ψ =
C1,AλAτ2,AC2,A − (C1,B + λBτ2,BC2,B)(C1,A + λAC2,A)

C1,B + λBC2,B

(1.6)

where Cn,i, i = A,B are the molar concentrations of solvent, solute and

solutions in the regions A and B separated by a membrane, λi are parameters

describing the relative sizes of solute and solvent and τ2,A e τ2,B represents

the solute fractions which pass through the membrane.

In the literature we can find validation of the theory of Granik et al., by means

of some experiments and of a certain analysis of already known data [16].

These authors surely introduce some innovation with respect to the classical

models of osmosis and they claim that their model holds more generally

than classical theories. Nevertheless successive experiments of Pizzi et al.

showed that the theory by Granik et al. in general substantially diverge

from experimental data [17]. Moreover they introduced a new expression of

the osmotic pressure, at low pressures and low concentrations, taking into

account the specific interaction of solvent and solute and the finite volume

of the solute molecules:

π =
KT

v

[
1 +

kpy
δ
H

v
C +

(
kpy

δ
H

v
C

)2
]

(1.7)

Here C is the solute concentration, T the absolute temperature, v the volume

of solvent molecules, yH a parameter which is meant to express the interac-

tion between solvent and solute molecules, δ, K and kp are constants related

to the model characteristics.

Another interesting approach to osmosis problem is the work of Cosentino et

al. [18]. In it a modification of the diffusion coefficient [19] is used to obtaine

a non-linear diffusion equation describing the behavior of brownian particles

that interacts with each other with Van der Walls forces.

We want to stress that all these recent theories and in many others (cf. e.g.
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[20], [21]), differently from the classical ones, based on a thermodynamic

derivation of osmotic pressure and, in particular, on the chemical potential

equation, need to consider new elements in studying osmosis, as for example

the solute molecules size and their interactions.

Moreover in these theories the problem of osmosis is referred to the transport

of the molecules of solution inside the pores of the ‘semipermeable mem-

brane’.

This fact, on one side suggest that to fully understand the osmotic problem

beyond the classical regime one has to consider the transport of mass of sol-

vent and solute through the pores of the membrane.

However, this formulation of the problem is not correct because if the solute

molecules can pass through the pores of the membrane dividing the solutions,

stricltly speaking, there can be no osmotic pressure.

Osmosis, indeed, is tipically an equilibrium phenomenon and does not de-

pend on the process which leads to it and then we cannot relate it to the

passage of solute particles in the membrane. At the same time at the nano-

scale we observe a wide variety of phenomena that require new analysis and

interpretation as they do not follow the classical thermodynamic and hydro-

dinamic laws.

1.3 Transient Osmosis

The recent work of Igarashi, Rondoni, Botrugno and Pizzi [22] calls our at-

tention precisely to the problem mentioned above, analyzing the dynamics

of concentrations of a solution inside a system consisting of two containers

connected by narrow and short channels. When the size of solute molecules

becomes smaller but still comparable with pore size, their flow across the

pore itself tipically becomes anomalous in fact they violated the basic tenets

of kinetic theory which requires the mean free paths of molecules to be much

smaller then the size of their containers [23], [24], [25], [26], [27], [28]. The
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authors of the work [22] shows how this fact may lead to a sequence of

quasi-stationary states in which the amount of solute from both sides of the

membrane remains practically constant for very long periods of time. In this

situation, pressure gradients develop, similarly to those due to the osmotic

process.

One thus has the occurrence of transient phenomena apparently similar to

osmosis, but completely different from that, since they are nonequilibrium

phenomena which sooner or later will result in a state of equilibrium at zero

pressure. In any case the relaxation to equilibrium in this context must

take into account a multitude of different parameters, including the size of

membrane pores, as well as those of solute and solvent particles, etc. These

phenomena different from osmosis, differ also from the free flux of fluids as

described by hydrodinamics. We can imagine a new class of intermediate

phenomena that vary depending on the relative size of solute, solvent and

the cross section of membrane’s pore. For example in a case in which both

the solvent and the solute molecules pass through the membrane at different

velocities, it develops a transitional imbalance of pressure, this new phe-

nomenon has been called ‘transient osmosis’. Unlike the case of standard

osmosis, in transient osmosis it becomes obviously relevant the rate of trans-

port of matter through the membrane.

Therefore, the connection between the problem of osmotic pressure and the

problem of anomalous transport of matter becomes of interest and leads us

to wonder about the possibility of building new models, describing the trans-

port of matter through the channel of microporous and mostly nanoporous

membranes.

1.4 Polygonal Billiards

Among the models of transport of matter in membranes with pore of size

of the same order of the molecules, at low densities we find the polygonal
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billiards [23], [24].

A polygonal billiard is a dynamical system generated by the motion of a point

particle with constant unit speed inside a bounded domain. Its dynamics are

not chaotic, in the sense that they have vanishing Lyapunov exponents, and

present a very rich range of transport properties, but their mathematical

complexity prevents an analytical detailed study. An idealization of billiards

has been given in terms of chains of deterministic maps [29], [30], [31] and

this is the way we undertake in this work. We will infact build a simple

deterministic map able to mimic the fundamental characteristics of polygonal

billiards, such as non-chaoticity and preservation of volumes.

1.5 Normal and Anomalous Diffusion

Commonly mass transport processes generated by gradients in chemical po-

tential are described by in terms of Fickian diffusion relating the mass flux

to gradients in local density. Fick’s first law is expressed by [32]:

J(x) = −D∂c

∂x
(1.8)

where J is the mass flow, D is the diffusion coefficient, c is the mass con-

centration and x is the position in space. This law, which can be justified

in kinetic theory [33], provides the phenomenological basis for the mathe-

matics of diffusion in molecular systems, leading to the second-order partial

differential equation:
∂c

∂t
= D

∂2c

∂x2
(1.9)

known as Fick’s second law, where t is the time variable. The well-known

Gaussian evolution

c(x, t) = (4πDt)−1/2e−x
2/4Dt (1.10)

resultS from an initial δ-function distribution, and the linearity of (1.9) en-

sures that the diffusion of a system of molecules can be considered as the

evolution of a superposition of Gaussian. In particular, we can recover from
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(1.10) the linear growth in the mean square displacement for macroscopic

diffusion process:

〈x2(t)〉 =

∫ ∞
−∞

x2c(x, t)dx = 2Dt (1.11)

We note that it has become customary to call diffusive any phenomenon

displaying a linear relation between the mean square displacement and time

as in (1.11), namely

〈∆x2(t)〉µ ∼ t (1.12)

asymptotically in time, with 〈 · 〉µ being the average with respect to the

relevant probability measure. In this work we do the same. Accordingly to

this in general the diffusion coefficient is given by [34], [35]:

D = lim
t→∞
〈 1

2t
∆x2(t)〉µ (1.13)

In analogy to this, we consider the following definition to characterize the

transport law, in non diffusive regime [36], [37]:

Definition 1.1. Let 〈∆x2(t)〉 be the mean square displacement of the parti-

cles system, i.e. the variance of the probability distribution of the particles,

and assume that the generalized diffusion coefficient is finite, i.e.

lim
t→∞

〈∆x2(t)〉
tγ

= T ∈ (0,∞), (1.14)

then

(i) If γ < 1 the transport is called sub-diffusive

(ii) If γ = 1 the transport is called diffusive

(iii) If γ > 1 the transport is called super-diffusive (in particular is called

ballistic in the case γ = 2)

γ is called transport exponent.
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1.6 Outline of the Thesis

The present work is organized as follow: in the first chapter we gave an

overview of the problem of osmosis from the classical models and their mod-

ifications, till the most recent studies, and we illustrated the connection of

osmosis with the problem of anomalous transport. Moreover we mentioned

the structure of polygonal billiards that we aim to reproduce and the main

notation and definitions we will refer in our work.

In chapter 2 we outline the mathematical background to the modeling of

transport, introducing the basis of the classical dynamical systems theories

and giving some examples relevant for our aim, as baker and multi-baker

transformations. Moreover we outline an example of weakly chaotic systems.

In chapter 3 we briefly introduce the billiards systems, focusing on polygonal

billiards and on a particular study of polygonal channels.

In the central chapters 4 and 5 we introduce and study our slicer model. In

chapter 4 we provide the definition of the model and we go through its math-

ematical details presenting asymptotic results for mean square displacement

and for successive moments, both analitically and numerically. In chapter 5

we present the comparison with a Lévy walk model underlying the indistin-

guishability between the two dynamics.

Finally, in chapter 6 we propose some variations of our model, that brings to

some open questions mentioned in the conclusions.



Chapter 2

Dynamical Systems

In this chapter we give the mathematical background on which we have built

the models proposed in this work.

We start from an introduction of classical continuous and discrete dynami-

cal systems [38], then we introduce some statistical properties of dynamical

systems [38], [39] and we conclude presenting some relevant examples, as

baker [29], [39] and multi-baker [29], [31], [40] transformations, with related

properties.

Moreover in the same framework we outline an approach to reach anomaluos

behavior starting with deterministic chaos and then reducing the degree of

chaos of the system [41].

2.1 Continuous Dynamical Systems

Let us consider a system of differential equations:

dx

dt
:= ẋ = f(x) (2.1)

where x = x(t) ∈ Rn is a vector valued function of an independent variable

and f : U → Rn is a smooth function defined on some subset U ⊆ Rn. We say

that the vector field f generates a flow φt : U → Rn, where φt(x) = φ(x, t) is

a smooth function defined for all x in U and t in some interval I = (a, b) ⊆ R,

9
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and φ satisfies (2.1) in the sense that

d

dt
φ(x, t)|t=τ = f (φ(x, τ)) (2.2)

for all x ∈ R and τ ∈ I. We note that, in its domain of definition, φt satisfies

the group properties

(i) φ0 = Id

(ii) φt+s = φt ◦ φs

Systems in which the vector field does not contain time explicitly, are called

autonomous.

We refer to the space underlying the autonomous systems as the phase space.

Often initial conditions

x(0) = x0 ∈ U (2.3)

are given, in which case we seek a solution φt(x0) such that

φ0(x0) = x0. (2.4)

In this case φt(x0) : I → Rn defines a trajectory, or orbit of differential

equation (2.1) based at x0.

Definition 2.1. The pair (U, φt) of the phase space U , with the flow φt

generated by the vector field f is called dynamical system.

An important class of solutions of (2.1) are fixed points. Fixed points

x̄ ∈ U are defined by the vanishing of the vector field f : f(x̄) = 0.

Definition 2.2. A fixed point x̄ is said to be stable if for every neighborhood

V of x̄ in U there is a neighborhood V1 ⊂ V such that every solution x(x0, t)

with x0 ∈ V1 is defined and lies in V for all t > 0. A fixed point is called

unstable if it is not stable. If, in addition, V1 can be chosen so that x(t)→ x̄

as t→∞ then x̄ is said to be asymptotically stable.

Definition 2.3. A fixed point x̄ is called an hyperbolic fixed point when the

Jacobian matrix of first partial derivative of f , Df , evaluated in x̄, has no

eigenvalues with zero real part.
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In the case of linear systems, i.e. ẋ = Ax, where A is an n×n matrix with

constant coefficients, we can classify the subspaces spanned by the eigenvec-

tors of A in the following way:

the stable subspace, spanned by the eigenvectors whose eigenvalues have neg-

ative real parts;

the unstable subspace, spanned by the eigenvectors whose eigenvalues have

positive real parts;

the center subspace, spanned by those eigenvectors whose eigenvalues have

zero real parts.

In the nonlinear case we define local stable and unstable manifolds, W s
loc(x̄)

and W u
loc(x̄) respectively, of x̄ as follows

W s
loc(x̄) = {x ∈ V : φt(x)→ x̄ as t→∞, and φt(x) ∈ V for all t ≥ 0}

W u
loc(x̄) = {x ∈ V : φt(x)→ x̄ as t→ −∞, and φt(x) ∈ V for all t ≤ 0}

(2.5)

where V ⊂ Rn is a neighborhood of the fixed point x̄. Linear and nonlinear

systems posses limit sets other than fixed points; for example, closed or

periodic orbits frequently occur.

Definition 2.4. An orbit located at x0 is called periodic if there exists 0 <

T <∞ such that φt(x0) = φt+T (x0) for all t.

2.2 Discrete Dynamical Systems

The flow of the system (2.1) gives rise to a discrete time dynamical system,

e.g. by taking G(x) = Φ1(x), and writing:

xn+1 = G(xn) (2.6)

Given an initial condition x0, an orbit of the map (2.6) is a sequence of points

{x0, x1, x2, . . . , xn}. In the linear case, i.e. for xn+1 = Bxn, where B is a con-

stant coefficient matrix, we can define stable, unstable and center subspaces
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in a analogous manner to that for linear vector fields:

the stable subspace, spanned by the eigenvectors of matrix B whose eigen-

values have modulus < 1;

the unstable subspace, spanned by the eigenvectors of matrix B whose eigen-

values have modulus > 1;

the center subspace, spanned by those eigenvectors of matrix B whose eigen-

values have modulus = 1.

The orbits in the stable and unstable subspaces are characterized by contrac-

tion and expansion, respectively. If B has no eigenvalues of unit modulus,

the eigenvalues alone serve to determine stability. In this case x = 0 is called

a hyperbolic fixed point. And in general:

Definition 2.5. A fixed point x̄ for the map G is called a hyperbolic fixed

point if DG(x̄) has no eigenvalues of unit modulus.

Stable and unstable manifolds are defined analogously to the case of flows

W s
loc(x̄) = {x ∈ V : Gn(x)→ x̄ as n→∞, and Gn(x) ∈ V for all n ≥ 0}

W u
loc(x̄) =

{
x ∈ V : G−n → x̄ as n→ −∞, and G−n(x) ∈ V for all n ≥ 0

}
(2.7)

and the corresponding global manifolds are defined by taking the unions of

backwards and forward iterates of the local manifolds.

Definition 2.6. The map φt is said to be topologically transitive on U if

there exists a point x ∈ U such that its orbit is dense in U .

2.3 Statistical Properties

Let G : X → X, be a mapping of the metric space X. An invariant measure

µ for G is a measure with the property that µ(G−1(A)) = µ(A) for all

measurable sets A. A probability measure µ is a measure for which µ(X) = 1.

The triple (X,µ,G) is called classical dynamical system.
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Definition 2.7. Let G : Rn → Rn define a discrete dynamical system and

let g : Rn → R be a real valued function. The quantity

ḡ(x) = lim
N→∞

1

N

N−1∑
k=0

g
(
Gk(x)

)
, (2.8)

is called, if it exists, time average of g on the trajectory of x.

For a continuous flow φt : Rn → Rn the time average of g on the trajectory

of x is

ḡ(x) = lim
T→∞

1

T

∫ T

0

g (φt(x)) dt. (2.9)

Definition 2.8. Let U ⊂ Rn and g : U → Rn such that g ∈ L1(U, µ). The

quantity

〈g〉 :=

∫
U

gdµ (2.10)

is called ensamble average of g.

The existence of the time averages (2.8) or (2.9) is guaranteed, under

quite general conditions, by Birkhoff theorem:

Theorem 2.3.1. Le (X,µ,G) be a classical discrete dynamical system and

let g be a function in L1(x, µ). Then the limit

ḡ(x) = lim
N→∞

1

N

N−1∑
k=0

g
(
Gk(x)

)
(2.11)

exists µ-almost everywhere, and moreover

ḡ (G(x)) = ḡ(x), 〈ḡ〉 = 〈g〉.

Definition 2.9. A property is said to hold µ-almost everywhere if the set of

elements for which the property does not hold is of measure zero with respect

to the given measure µ. In this case one also says that the property holds for

a typical element.

Definition 2.10. A dynamical system is called ergodic if

ḡ(x) = 〈g〉 (2.12)

µ-almost everywhere.
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Definition 2.11. A dynamical system (X,µ,G), is said to be mixing if for

each pair of measurable sets A and B in X the following holds

lim
n→∞

µ(G−n(A) ∩B) = µ(A)µ(B). (2.13)

Definition 2.12. Let G : Rn → Rn define a discrete dynamical system and

select a point x ∈ Rn. Suppose that there are subspaces V
(1)
i ⊃ V

(2)
i ⊃ . . . ⊃

V
(n)
i in the tangent space at Gi(x) and numbers µ1 ≥ µ2 ≥ . . . ≥ µn with the

properties that

1. DG(x)(V
(j)
i ) = V

(j)
i+1

2. dim V
(j)
i = n+ 1− j

3. limN→∞
1
N

log
∥∥DGN(x)(v)

∥∥ = µj for all v ∈ V (j)
0 \V

(j+1)
0 .

The quantities µj are called the Lyapunov exponents of G.

If x = x̄ is a fixed point for G, then the subspaces V
(j)
i = V (j) do not

depend upon i and are simply the eigenspaces associated with eigenvalues of

DG(x̄). The Lyapunov exponents are the logarithms of the moduli of these

eigenvalues.

Definition 2.13. The map G is said to be chaotic in the sens of Ljapunov

on X if it is topologically transitive and it has a positive Ljapunov exponent

for a typical x0.

With ‘typical’ we mean that this statement applies to any point that we

randomly pick up on X with non-zero probability.

Definition 2.14. The dynamics G on a phase space U is called time reversal

invariant if there exists an involution i : U → U such that iG(x) = G−1i(x)

∀x ∈ U .

An involution i is a map such that i2 = Id, hence iGn = G−ni ∀n if G is

time reversal invariant.
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Definition 2.15. Two dynamical systems (X,µ,G) and (Y, ν, F ) are iso-

morphic if there exists a µ-almost everywhere invertible map h : X → Y

which preserves the measure, i.e.

ν (h (A)) = µ(A) and µ
(
h−1 (B)

)
= ν(B) (2.14)

for all measurable sets A ⊂ X and B ⊂ Y . And such that for all t

F t ◦ h = h ◦Gt (2.15)

We proceed now to address some relevant examples of deterministic map

defyining some dynamical systems.

2.4 Relevant Examples

2.4.1 The Baker Transformation

Let the phase space be the 2-dimensional torus M = [0, 1]× [0, 1], where the

sides at 0 and 1 are identified.

Definition 2.16. The map B : M →M such that:

B(x, y) =


(

2x,
y

2

)
for 0 ≤ x < 1

2(
2x− 1,

y + 1

2

)
for 1

2
≤ x < 1

(2.16)

B is called baker map.

This map is a transformation of the square into itself which expands

distances in the x-direction (the unstable manifold) and contracts them in

the y-direction (the stable manifold). As we can see in the Fig. 2.1 the map

consists of two steps: in the first step the unit square becomes a rectangle

occupying the region 0 ≤ x ≤ 2; 0 ≤ y ≤ 1/2. This operation does not

change the area of the original region. Next, the rectangle is cut in the

middle and the right half is put on top of the left half, to recover a square.

This doesn’t change the area either. This transformation is reversible except
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on the lines where the area was cut in two and glued back. The inverse

defined on the same phase space M , is given by:

B−1 : (x, p) 7−→

{ (
x
2
, 2y
)

for 0 ≤ y < 1
2(

x+1
2
, 2y − 1

)
for 1

2
≤ y < 1

. (2.17)

Figure 2.1: Baker map

The baker map is ergodic and mixing [29]. This map is one of the simplest

illustrations of how a stretching can work togheter with compression and

folding to produce deterministic chaos. Indeed, so much chaos that baker

dynamics posses the random properties of a sequence of tosses of a balanced

coin with equal probabilities for heads and tails. This is possible by means

of an isomorphism beetween the baker map and a Bernoulli shift.

Definition 2.17. Let I be a finite set of symbols (alphabet), I = {0, 1, . . . , n− 1}
and let N = IZ the space of the bi-infinite sequences of symbols of the alpha-

bet,

N = {(. . . , x−1, x0, x1, . . .) : xi ∈ I} (2.18)

Let Ψ be a trasformation that acts on N as the translation of a position to the

left, namely it associates to the sequence x = (. . . , x−1, x0, x1, . . .) the vector

Ψ(x) = x′ = (. . . , x′−1, x
′
0, x
′
1, . . .) such that

x′k = xk+1.
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Finally we give to N the Borel-space structure, i.e. we built on N a σ-algebra

of measurable sets, taking as generators the cylinders:

C l
k := {x ∈ N : xk = l, k ∈ Z, l ∈ I}

and to build the measure ν, we take n positive, real numbers p0, . . . , pn−1 such

that
∑

l∈I pl = 1, and we set

ν(C l
k) = pl.

The dynamical system (N,Ψ, ν) so built is called Bernoulli shift and we de-

note it by Bp0,...,pn−1.

The Bernoulli shift is a model that describes a sequence of independent

events, each one with an assigned pobability. The simplest one, B 1
2
, 1
2
, corre-

sponds to the coin tossing game.

Proposition 2.4.1. The baker map and the Bernoulli shift B 1
2
, 1
2

are isomor-

phic.

Proof. Let (M,µ,Φ) and (N, ν,Ψ) be the two dynamical system and let x =

(a, b) be points of M and y the sequences of N . If we consider the binary

expression of a and b

a = 0.a0a1a2 . . . , b = 0.b0b1b2 . . . , ai, bi ∈ I = 0, 1

then we can define h associating to x ∈M the point y = h(x) ∈ N, given by

y = (. . . , y−2, y−1, y0, y1, y2, . . .)

= (. . . , b1, b0, a0, a1, a2, . . .),

namely

yi = ai for i ≥ 0, yi = b−i−1 for i < 0.

The corrispondence is defined and bijective almost everywhere; and it is

equally easily possible to verify that h commutes with the dynamics and

preserves the measure [39].
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2.4.2 Multibaker Map

Moving from the definition of baker map, we can now introduce the so-

called multibaker map [29]. We take as phase-space a chain of squares of

side a = 1, where the baker map acts in the same fashion already described

in the previous section, streching and cutting each one of the squares but

redistributing the cut pieces on several neighbouring squares. The definition

of the map is the following (cf. Fig.2.2)

Definition 2.18. Let M̂ = [0, 1)2 × Z. The map B̂ : M̂ → M̂ such that

B̂(x, y;m) =



(
2x,

y

2
;m− 1

)
for 0 ≤ x ≤ 1

2(
2x− 1,

y + 1

2
;m+ 1

)
for

1

2
≤ x ≤ 1

(2.19)

is called multibaker map.

Here we can recognize the action of the baker map on the coordinates

(x,y). This action is combined with displacement m→ m±1 along the chain.

The multibaker map is invertible with the following inverse

B̂−1 : (x, y;m) 7−→


(x

2
, 2y;m+ 1

)
for 0 ≤ y < 1

2(
x+ 1

2
, 2y − 1;m− 1

)
for 1

2
≤ y < 1

(2.20)

The multibaker dynamics is not only invertible but also time reversal invari-

ant, i.e. there exists an involution i satysfying

iB = B−1i

which is given by:

i(x, y,m) := (1− y, 1− x,m) (2.21)

The multibaker map is uniformly hyperbolic with stretching factor 2 and

thus posses a positive Lyapunov exponent equal to log 2 [40].

This system is a model of deterministic diffusion, indeed the redistribution
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Figure 2.2: Action of multibaker map on initial conditions in a generic cell

m.

of the cut pieces to neighbouring squares along the chain induces a diffusive

transport law. In other words, (1.12) holds with respect to the Lebesgue

measure on the 0-th square, for the observable x(t) representing the position

of (x, y, 0) after t steps. Moreover since the multibaker map is area-preserving

the Lebesgue measure dm = dxdy is invariant and this fact gives equal

probability 1/2 to the displacement to the right and to the left. Accordingly,

this chaotic model is isomorphic to the standard symmetric random walk,

hence we can say that it describes normal diffusion with diffusion coefficient

equal to D =
1

2
(cf. Eq. 1.13).
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2.5 Deterministic Standard and Anomalous

Diffusion

As we have said, multibaker maps reproduce diffusion by means of very simple

deterministic dynamics. In general if the resulting dynamics of an ensamble

of particles for given equations of motion has the property that a diffusion

coefficient D > 0 (1.13) exists, we speak of deterministic diffusion [29], [30],

[42]. In this section we will outline another simple model of standard de-

terministic diffusion before moving to a model of deterministic anomalous

diffusion. We will follow R.Klages’ notes, Ref. [41].

Let’s consider a point particle. The orbit of such a particle starting at initial

condition x0 may be generated by a chaotic dynamical system (M,µ, B̂a) with

equations of motion xn+1 = B̂a(xn). To define B̂a : M →M we begin with a

generalization of the Bernoulli shift, starting from Ba : [0, 1)→ [1−a/2, a/2)

that acts as follow:

Ba(x) :=

{
ax if 0 ≤ x < 1/2

ax+ 1− a if 1/2 ≤ x < 1
(2.22)

with a ≥ 2 a control parameter. Notice that for a > 2 the map defines an

open system. Indeed, when points are mapped into the interval (1/a, a−1/a)

they left the interval of definition. We can call this interval escape region

and this map the box map. We then consider a chain of L ∈ N boxes and we

extend Ba in a periodic way along the chain, i.e. on the whole real line, by

the following lift

B̂a(x+ 1) = Ba(x) + 1 (2.23)

The phase space M is then given by the whole real line. In Fig.2.3 there

is an illustration of the map Ba. By means of the escape-rate formalism [29],

[30], it is possible to calculate in a rigorous way the diffusion coefficient for

each value of the parameter a, for example for a = 4 it results:

D(4) =
1

4

L2

(L+ 1)2
+O(L−4)→ 1

4
(L→∞). (2.24)
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Figure 2.3: Open Bernoulli Shift Ba

Since this coefficient exists and is finite, we can speak of deterministic diffu-

sion.

Now we want to move towards anomalous diffusion considering a variant of

the previous piecewise linear model. To this end let’s introduce the Pomeau-

Manneville map [43], Pa,z : [0, 1]→ [0, 1], which acts as follow

Pa,z(x) = x+ axz mod1 (2.25)

where the dynamics is defined by xn+1 = Pa,z(xn). This map has two control

parameters, a ≥ 1 and the exponent of nonlinearity z ≥ 1. For a = 1 and

z = 1 this map just reduces to a map isomorphic to our familiar Bernoulli

shift, however, for z > 1 it provides a nontrivial generalization of it. Since the

map is smooth around x = 0, the dynamics resulting from the left branch of

the map is determined by the stability of this fixed point, whereas the right

branch is just of Bernoulli shift-type of map yielding ordinary chaotic dynam-

ics. There is thus a competition in the dynamics between these two different
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branches, indeed, one can observe that long, almost periodic phases, deter-

mined by the marginal fixed point around x = 0 are interrupted by chaotic

bursts reflecting the Bernoulli shift-like part of the map with slope a > 1

around x = 1 [44], [45].

Figure 2.4: The extended Pomeau-Manneville map

As done before for the map Ba, we define a spatially extended version

of the Pomeau-manneville map: for this purpose we just continue Pa,z(x) =

x+ axz, with 0 ≤ x < 1/2 onto the real line by the translation Pa,z(x+ 1) =

Pa,z(x) + 1, under reflection symmetry Pa,z(−x) = −Pa,z(x). The resulting

model is displayed in Fig.2.4. Now if we proceed calculating the mean square

displacement (1.12) either analytically or from computer simulations one

finds that for z > 2

〈x2(n)〉 ∼ nα , α < 1 (2.26)

in the large n limit, cf. (1.12). This implies that the diffusion coefficient

(1.13)

D = lim
n→∞

〈x2(n)〉
2n

(2.27)
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vanishes, despite the fact that particles can go anywhere on the real line. So

we encounter a type of diffusive beahviour that is anomalous, and precisely

subdiffusive (cf. Def. 1.1).

The generalized diffusion coefficient T (1.14), given by

T = lim
n→∞

〈∆x2(n)〉
nγ

(2.28)

behaves as a function of a and in an approximation, by means of continuous

time random walk theory, can be calculated analititcally. The result is:

Ti = pl2i


aγ sin(πγ)

πγ1+γ
, 0 < γ < 1

a
(

1− 1
γ

)
, 1 ≤ γ <∞

(2.29)

where p is the escape region, li, i ∈ {1, 2}, is a typical jump lenght and

γ := 1/(z− 1). From our perspective it is important to note that this model

of anomalous diffusion is obtained perturbing a chaotic model, so that it is

not uniformly hyperbolic anymore. However, the dynamics remains chaotic,

in the sense of having a positive Lyapunov exponent.
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Billiards

Billiards form an important class among dynamical system with singularities,

both in the general theory and in applications. By billiards we mean a

dynamical system generated by the motion by inertia of a point mass within a

domain with smooth, or piecewise smooth boundary with specular reflections

at the boundary.

In this chapter we outline first some general definitions about billiards [46],

[47], [48]. Then we focus on the sub-class of polygonal billiards [49], [50] and

among these we choose to report some results from [23], [24] about transport

behavior of non-interacting particles in simple polygonal channels.

3.1 General Definitions

Definition 3.1. Let Q be a compact closed connected domain in Rd or on

a d-torus Td = Rd/Zd. Let the boundary ∂Q be a finite union of smooth

compact manifolds of codimension one, ∂Q = Γ = Γ1 ∪ . . . ∪ Γr, r ≥ 1. We

call Q a billiard table and ∂Q its wall.

Definition 3.2. Let the set Γ∗ =
⋃
i 6=j (Γi ∩ Γj) be a finite union of smooth

compact submanifolds of codimension ≥ 2. Γ∗ is called the singular part of

∂Q. This set includes all the corner points of the wall ∂Q. Let Γ̃ = Γ\Γ∗. A

point q ∈ Γ̃ is called regular point.

24
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Let M be a unit tangent bundle of Q, i.e.

M =
{
x = (q, v); q ∈ Q, v ∈ Sd−1

}
(3.1)

where Sd−1 ⊂ Rd−1 is a unit sphere. A point x = (q, v) ∈ M is called a line

element with a footpoint q. We denote with πq and πv the natural projections

of M onto Q and Sd−1 respectively, so that πq(q, v) = q and πv(q, v) = v.

We consider on M the normalized Liuville measure dµ = cµdqdv, where dq

and dv are the Lebesgue measure on Q and Sd−1 respectively, and cµ =(
|Q| ·

∣∣Sd−1
∣∣)−1

is the normalizing factor. Here |Q| is the volume of the

domain Q and
∣∣Sd−1

∣∣ is the (d− 1)-dimensional volume of the unit sphere in

Rd. M will be the phase space for the billiard systems.

3.2 Billiard Flows

Here we construct the dynamics on billiard table. Let q ∈ Q denote the

position of the moving particle and v ∈ Sd−1 its velocity vector. Of course

q = q(t) and v = v(t) are functions of time t ∈ R. When the particle moves

inside the table, so that q ∈ intQ, it mantains a constant velocity:

q̇ = v and v̇ = 0 (3.2)

(here the dot denotes the time derivative). When the particles collides with

the regular part of the boundary, i.e. q ∈ Γ̃, its velocity vector istantaneously

get reflected across the tangent line to Γ at the point q. This is specified by

the classical rule ‘the angle of incidence equals the angle of reflection’ and it

can be expressed by:

v+ = v− − 2(n(q) · v−)n(q) (3.3)

where v+ and v− are the incoming and outgoing velocity vectors, and n(q) is

the inward unit normal vector to the wall Γ at the point of reflection q. The

vector n(q) is well defined at all regular points of ∂Q. If the particle hits the

singular set Γ∗ in general has not a unique continuation and thus it normally
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stops there and its further trajectory is not defined.

Let M̃ ⊂ M denotes the set of states (q, v) on which this dynamics of the

moving particle is defined at all times −∞ < t < +∞. Thus we obtain a

one-parameter group of transformations (flow):

Φt : M̃ → M̃ (3.4)

Definition 3.3. The group of transformations {Φt} is called a billiard in Q.

A billiard flow Φt has a natural cross-section Ω associated to the wall of

the billiard table defined by Birkhoff coordinates (qn, vn). qn is the arclenght

position of the n-th bounce measured along the billiard boundary and vn =

|v| senθn is the velocity component parallel to the boundary, where θn is the

angle between the outgoing trajectory and the normal to the boundary. In

this framework the dynamics is given by the first return map T : Ω→ Ω, s.t.

T (qn, vn) = (qn+1, vn+1), which goes from the n-th collision to the (n+1)-st

collision [51].

3.3 Polygonal Billiards

A class of interest for our work, among billiards, are the polygonal billiards.

Definition 3.4. Let P be a bounded domain in R2 or on the standard torus

T2, whose boundary ∂P consists of a finite number of (straight) line segments.

A polygonal billiard is a dynamical system generated by the motion of a point

particle with constant unit speed inside P and with elastic reflection at the

boundary.

Definition 3.5. A polygon P is called rational if the angles between its sides

are of the form πm/n, where m, n are integer. It is called irrational other-

wise.

There are various numerical and mathematical works on the ergodic, mix-

ing and transport properties of rational and irrational polygons [50], [52], [53],

[54], [55]. It is known, for instance, that rational polygons are not ergodic
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and that they posses periodic orbits. But it is not known wheter generic

irrational polygons have any periodic orbit. On the other hand , it is known

that irrational polygons whose angles admit a certain superexponentially fast

rational approximation are ergodic [52]. However, the models are limited in

number, the triangular billiards being the most studied models, and many

questions concerning them remain open. Despite the vanishing topological

entropy of polygonal channels, pairs of orbits almost always separate [56].

Consequentely, these systems present a certain sensitive dependence on the

initial conditions, and their dynamics may appear highly disordered, indis-

tinguishable to the eye from chaotic motions.

In [23] are considered a special kind of polygons which consist of channels

that are periodic in the x direction, but bounded by walls in the y direction.

The wall consists of straight edges and are arranged in a saw-tooth config-

uration such that the top and bottom walls are ‘in phase’, i.e. the peaks of

the upper and lower walls have the same horizontal coordinate. The channel

can therefore be represented as an elementary cell, as depicted in Fig. 3.1,

replicated along the x-axis. The height of this cell is denoted by h and his

length is setted to 2∆x = 1. The height of the isosceles triangles comprising

the ”teeth” along the top and bottom cell walls are denoted by ∆yt and ∆yb

respectively.

The particles dynamics in this kind of polygonal channels gives a good ap-

proximation of the transport behavior in a pore of a microporous membrane

at low densities [23], [24]. The evolution of momenta and positions of the

particles in this system are determined by solving the free-flight equations of

motion.

Despite being the simplest particle system that could be conceived this sys-

tem presents a surprising array of transport behaviors. It can be observed to

be, sub-diffusive, super-diffusive and apparently diffusive, strongly depend-

ing on the boundary geometry as we can observe in Fig. 3.2 and in Fig. 3.3.

In Fig. 3.2 the evolution of mean square displacement, as a function of time,

is reported for a series of parallel saw-tooth system (with ∆yt = ∆yb = ∆y)
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Figure 3.1: Minimal element of polygonal channel

for two different choices of the ratio ∆y/∆x. Whereas in Fig. 3.3 are shown

in the table different results for the transport exponent γ (cf. 1.14) for the

same system and for four different assigned values of height-width ratio.

The authors of [23] claim that this dependence of the transport law on

the geometry of the system characterizes such transport as ‘complex’. No-

tion of complexity of billiards dynamics, based on symbolic dynamics, are

commonly considered [57], [58] but in the context of [23],[24] the focus is on

the complexity of the mass transport as a function of the parameters of the

system, rather then the complexity of the dynamics for one given set of pa-

rameters. Accordingly to these considerations the authors of [23] introduce

the notion of transport complexity, that we report here for completeness.

Definition 3.6. Consider a transport model, whose geometry is determined

by the parameter y, which ranges in the interval [0, h], and such that its

transport law is given by

lim
t→∞

〈∆x2(t)〉
tγ

= T ∈ (0,∞) (3.5)

with γ function of y varying in [0, 2] and 〈∆x2(t)〉 the mean square dis-

placement, when y spans in [0, h]. Let ∆γ(ym, yM) ∈ (0,∞] be the differ-
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Figure 3.2: Evolution of mean square displacement for parallel saw-tooth

systems as function of time. Both in figure (a) and (b) we can evince a super-

diffusive behaviour characterized by the transport exponents respectively γ =

1.86 and γ = 1.66. These two figures correspond to two different choice of a

parameter which characterize the geometry of the system, left panel is related

to ∆y/∆x = 0.25 and right panel is related to ∆y/∆x = 1.

ence between the largest and the smallest value of γ, for y in the subinterval

(ym, yM) ⊂ [0, h], where ∆γ(ym, yM) =∞ if in (ym, yM) there are points for

which (3.5) is not satisfied by any y ≥ 0.

(i) The transport complexity of first kind of the transport model in (ym, yM)

is the number

C1(ym, yM) =
h ∆γ(ym, yM)

2 (yM − ym)
∈ [0,∞) (3.6)

if it exists.

(ii) The transport complexity of second kind of the transport model for y = ŷ

is the exponent C2 = C2(ŷ), if it exists, for which the limit

lim
ε→0

C1(ŷ − ε, ŷ + ε)

εC2(ŷ)
(3.7)

is finite.
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Figure 3.3: Transport exponents for saw-tooth boundary base triangles with

different values of height-width ratio ∆y/∆x. For each pore height tested

the observed exponent out to 106 time units is given.

(iii) The transport complexity of third kind of the transport model for y = ŷ

is the limit

C3(ŷ) = lim
ε→0

∆γ(ŷ − ε, ŷ + ε) (3.8)

Billiards thus provide a significant model for the study of the transport

of matter in non standard conditions, but at the same time they are too

complex to be studied analitically in details. An idealization of billiards

with convex obstacles has been given in terms of chains of deterministic

maps [29], [30], [31] which, even not expressing the emergent phenomena in

their totality, allow a rigourous approach. Therefore similarly we want to

build a deterministic map, that can be studied analitically, which resembles

the dynamics of polygonal billiards. In particular we want to obtain non

diffusive behavior from dynamics which preserve phase space volumes and

are not chaotic, like polygonal billiards.



Chapter 4

The Slicer Dynamics

In Chapter 2 we have seen how, reducing the degree of chaos of a deterministic

map, we can obtain anomalous behavior. Now we want to do one step further

and, looking at the polygonal billiards model, build a dynamical system that

produces anomalous transport in absence of chaos. In this chapter we will

introduce the classical dynamical system (M̂, µ, Snα) on which the new model

is based, how it is constructed and some characteristics of it. The system

is defined by means of a map S in which the vertical component is trivial.

Nevertheless we preserve the bidimensional nature of the dynamics to stress

the analogy with billiard model and in view of further developments (cf.

Chap. 6).

4.1 System Details

We will start giving a sequence of definitions about the new model. We will

denote the two spatial coordinates as x and y. As for multibaker map the

phase space M̂ of our dynamics will consist of a chain of identical square cells

of linear side a = 1 and area a× a = 1, i.e. M̂ = [0, 1]× [0, 1]× Z. We will

indicate the unit square with M = [0, 1]2. The generic cell is identified by the

set Mm = M × {m} with m ∈ Z. Moreover each cell will be equipped with

infinitely many ‘slicers’ partitioning it in subcells. At each temporal step

31
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n ∈ N the dynamics will act in each cell activating, beyond the central one,

two symmetric slicers depending on the cell index, and therefore dividing

each cell into four vertical strips. Then the map will translate each strip

within the neighbouring cells by means of the following map.

Definition 4.1. Let lm be a parameter in [0, 1/2], m ∈ Z. The map S :

M̂ → M̂ such that

S(x, y,m) =

{
(x, y,m− 1) if 0 ≤ x ≤ lm or 1

2
≤ x ≤ 1− lm

(x, y,m+ 1) if lm < x < 1
2

or 1− lm < x ≤ 1
(4.1)

is called ‘slicer map’. The vertical lines at x = lm and x = 1− lm are called

‘slicers’. Notice that lm identifies both the two active symmetric slicers in the

m-th cell, i.e. lm and 1− lm.

This map is invertible and its inverse is

S−1(x, y,m) =

{
(x, y,m+ 1) if 0 ≤ x ≤ lm or 1

2
≤ x ≤ 1− lm

(x, y,m− 1) if lm < x < 1
2

or 1− lm < x ≤ 1
(4.2)

In Fig. 4.1 the map is defined graphically starting from an initial condi-

tion concentrated and uniform in the generic cell Mm ⊂ M̂ . Moreover the

following holds:

Theorem 4.1.1. The slicer map S is time reversal invariant.

Proof. To prove the time-reversability, according to Def. 2.14, it suffices to

define an involution i : M̂ → M̂ . To this end we can take an involution

similar to the one used for the multibaker map (2.21), i.e.

i(x, y,m) := (1− x, 1− y,m) (4.3)

Notice that for this map holds that i2 = Id, in fact if we take (x, y,m) ∈ M̂
it results:

(x, y,m)
i7−→ (1− x, 1− y,m)

i7−→ (1− (1− x), 1− (1− y),m) = (x, y,m).

Moreover iS = S−1i. Indeed, if we take 0 ≤ x ≤ lm, it results

(x, y,m)
S7−→ (x, y,m− 1)

i7−→ (1− x, 1− y,m− 1)
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and

(x, y,m)
i7−→ (1− x, 1− y,m)

S−1

7−→ (1− x, 1− y,m− 1)

The same can be shown for the remaining three cases.

Figure 4.1: Slicer map action for initial conditions in a generic cell Mm =

M × {m} in two time steps.

Let us now define a family of infinitely many slicers present in each square

cell.

Definition 4.2. Let j ∈ Z be an integer and α > 0 a positive parameter in

R. The collection

Lα =

{
1

(|j|+ 21/α)
α := lj, j ∈ Z

}
(4.4)

is a family of α-slicers.

Let us introduce now a rule for the activation of the slicers in each cell.
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Definition 4.3. Let m ∈ Z be the cell index and α ∈ (0,∞) a parameter.

Let lm : Z→ [0, 1] act as follows:

lm =

(
1

|m|+ 21/α

)α
(4.5)

lm is called slicer cell position.

Altogheter we introduce a slicers dynamics governed by the mapping Sα

which is the map (4.1), where lm is given by (4.5). Namely

Sα(x, y,m) =

 (x, y,m− 1) if 0 ≤ x ≤ 1

(|m|+21/α)
α or 1

2
≤ x ≤ 1− 1

(|m|+21/α)
α

(x, y,m+ 1) if 1

(|m|+21/α)
α < x < 1

2
or 1− 1

(|m|+21/α)
α < x ≤ 1

(4.6)

This dynamics is nonchaotic, since it presents zero Lyaponuv exponents and

it preserves phase space volumes analogously to polygonal billiards. Indeed

different point neither separate nor converge, in time, except when separated

by an active slicer. In that case their distance jumps discontinuously, which

is analogous to the dynamics of polygonal billiards [23], [24].

The equations of motion of the dynamical system, given an initial condi-

tion X̂0 ∈ M̂ , are:

X̂n = Snα

(
X̂0

)
(4.7)

In particular, given X̂0 = (x0, y0,m0) ∈ M̂ , then after n time steps, it results:

Snα(x0, y0,m0) =

(
x0, y0,m0 +

n∑
i=1

ki(x0)

)
where ki ∈ {−1,+1}.

Let us now define a probability measure δ̂n that evolves with the dynamics

Snα. First of all, let δ0 be the Lebesgue measure inM and δZ the Delta measure

on the integers Z, i.e. ∀Z ⊂ Z, δZ(Z) = card(Z). Then we take as measure

on the phase-space M̂ the product measure δ̂0 = δ0 × δZ, such that, given

Ĝ ⊂ M̂ , measurable set such that Ĝ = R× {z}, with R ⊂M and z ∈ Z, we

have

δ̂0

(
Ĝ
)

= (δ0 × δZ) (R× {z}) =

= δ0 (R) δZ ({z}) (4.8)
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Notice that δZ ({z}) = 1 for all z ∈ Z. Therefore

δ̂0

(
Ĝ
)

= δ0 (R) (4.9)

Remark 1. Any measurable set in M̂ can be written as union of set like Ĝ,

namely Ê =
⋃
z∈Z Fz × {z}, with Fz ∈M and Z ⊂ Z a set of indexes. Then

it results

δ̂0

(
Ê
)

=
∑
z∈Z

δ0 (Fz) δz ({z}) =
∑
z∈Z

δ0 (Fz) (4.10)

Accordingly to this we give the following:

Definition 4.4. Let Ê ⊂ M̂ be a measurable set. Then the evolving measure

δ̂n defined by:

δ̂n(Ê) = δ̂0

(
S−nα (Ê)

)
(4.11)

is called slicer probability measure.

Remark 2. Taking as initial condition the unit square M0 = M × {0}, after

n time steps the dynamics reaches a finite number of rectangles distributed

in the cells. The farthest cell achieved at time step n is the n-th. Moreover

if this n-th cell is odd the rectangles fall only in odd cells whereas if the

n-th cell is even the rectangles fall only in even cells. Namely, let P and D

respectively be the set of even and odd numbers smaller or equal to n, then

if n ∈ P we have

Snα(M0) =
⋃
j∈P

(Rj × {j}) (4.12)

and if n ∈ D
Snα(M0) =

⋃
j∈D

(Rj × {j}) (4.13)

where Rj is a rectangle in Mj.

In Fig. 4.2 is reported the behavior of the map Sα for a particular choice

of α, starting from the initial condition mentioned above.

This kind of initial condition is fundamental for the subsequent results

relating to the dynamics (4.6), therefore from now on we assume as initial

condition the unit square M0. We want to stress that the study of the model
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Figure 4.2: Behavior of map S for α = 1/3, in 10 time steps, for a choice of

N = 104 points.

under the choice of a particular initial condition do not affect the generality

of it. We are in a situation analogous to the classical study of diffusion where

the Gaussian behavior of the particles concentration is obtained from a par-

ticular choice of the initial condition, that is a Dirac δ-function representing

an infinite concentration of particles at zero position. Moreover we want to

underlined that the choice of the zero unit square is to simplify the analytical

calculations. Infact choosing as an initial condition a generic cell m do not

change the asymptotic results. In this case the only variation is the presence

of a translation of m positions on the analytical expressions of the different

involved quantities. According to all these observations let us proceed con-

sidering the following probability distribution ρ̂0, uniform and concentrated

on the 0-th cell M0:

ρ̂0

(
X̂
)

=

{
1, if X̂ ∈M0

0, otherwise
(4.14)
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Then the probability distribution at time step n is given by:

ρn(X̂) =

{
1, if X̂ ∈ Snα (M0)

0 otherwise
(4.15)

Observe that

δ̂n

(
R̂j × {j}

)
= δ̂0

(
S−nα

(
R̂j × {j}

))
=

= δ0(Rj) := A(j) (4.16)

with Rj = Ij× [0, 1], Ij ⊂ [0, 1]. A(j) is nothing but the area of the rectangle

Rj. Therefore we give the following:

Definition 4.5. Let X̂ ∈ M̂ and n ∈ N, n ∈ P (or n ∈ D). Then

ρGn (X̂) =

{
A(j) if X̂ ∈Mj, for j ∈ P (or j ∈ D)

0 otherwise
(4.17)

is the coarse grained probability distribution for map Sα at time instant n.

Moreover, the quantity A(j) is called travelling area, and indicated by Av,

when j = ±n wheras it is called sub-travelling area, and is indicated by Ap,

when |j| < n.

The graining is constituted by the unit squares of the whole chain. Ob-

serve that the generic area A(j) depends only on the width of the interval Ij

which is directely determined by the position of the slicers in the j-th cell,

therefore

Av(±n) = l|±n|−1 =

(
1

|±n| − 1 + 21/α

)α
(4.18)

and

Ap(|j|) = l|j|−1 − l|j|+1 =
1

(|j| − 1 + 21/α)
α −

1

(|j|+ 1 + 21/α)
α (4.19)

for j = −n+ 1, . . . , n− 1 As far as the sub-travelling area are concerned we

can further distinguish two expressions depending on whether the farthest

cell reached is even or odd. More precisely, if the farthest cell n is odd, we

have

Ap(j) =

{
l|j|−1 − l|j|+1 ∀j ∈ D j 6= n

0 ∀j ∈ P
(4.20)
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Conversely, if n is even it results

Ap(j) =

{
0 ∀j ∈ D

l|j|−1 − l|j|+1 ∀j ∈ P j 6= n
(4.21)

Therefore the expression of the coarse-grained probability ρ̂Gn for the positive

part of the real line, if n ∈ P is given by:

ρ̂Gn (X̂) =


l0 − l1, for X̂ ∈M0

l2k−1 − l2k+1, for X̂ ∈M2k, k = 1, . . . , n−2
2

ln−1 for X̂ ∈Mn

0, otherwise

(4.22)

Whereas, if n ∈ D is:

ρ̂Gn (X̂) =


l2k − l2k+2, for X̂ ∈M2k+1, k = 0, . . . , n−3

2

ln−1 for X̂ ∈Mn

0, otherwise

(4.23)

For the simmetry of ρGn , it results the same on the negative part of the chain.

From numerical results reported below in the examples section, we evince

that we can approximate the marginal probability distribution ρGn (m) with

the following continuous function extended to R:

ραt (x) =

 C
1

(x+ 21/α)1+α
if x < t,

0, otherwise
(4.24)

where C is the normalization constant and t is the time variable.

4.2 Generalized Diffusion Coefficient

As we have seen in a previous chapter, the generalized diffusion coefficient is

given by the following relation, cf. 1.14:

T (γ) = lim
n→∞

〈∆x2(n)〉
nγ

(4.25)
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where γ ∈ [0, 2]. The expression in angular brackets represents the mean

square displacement (MSD) calculated for discrete times accordingly to the

coarse grained probability distribution defined in (4.17). Namely

〈∆X̂2
n〉 =

∑
X̂∈M̂

ρGn

(
X̂
)
·
∣∣∣X̂ − X̂0

∣∣∣2 =

=
n∑

j=−n

A(j)j2 (4.26)

where with |·| we indicate the euclidean distance.

Let us now give the first result for the dynamics Sα.

Theorem 4.2.1. For α ∈ (0, 2) the generalized diffusion coefficient for the

dynamics Sα, i.e. map (4.6) with an initial condition concentrated and uni-

form in the 0-th cell, is given by

Tα(γ) =


+∞ if 0 ≤ γ < 2− α

4
2−α if γ = 2− α

0 if 2− α < γ ≤ 2

(4.27)

Therefore the transport exponent (cf. Def. 1.1) results to be γ = 2− α.

Proof. Since the map is symmetric, we will give the proof only for the positive

side of the cells’ chain calculating the generalized diffusion coefficient for

j > 0, i.e. TRα (γ). Then Tα = 2TRα (γ).

For (1.14) and (4.26) one has:

TRα (γ) = lim
n→∞

1

nγ

n∑
j=0

A(j)j2 (4.28)

Since we have distinguished the area in travelling and sub-travelling we have

that

TRα (γ) = lim
n→∞

1

nγ

(
n−1∑
j=0

Ap(j)j
2 + Av(n)n2

)
(4.29)

Let’s focus first on the sub-travelling area. If we introduce the quantity:

Qn =
n−1∑
j=0

Ap(j)j
2 (4.30)
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then the Lemma 4.2.2 proved below implies

lim
n→∞

Qn

nγ
=


∞ if 0 ≤ γ < 2− α

2
2−α − 1 if γ = 2− α

0 if 2− α < γ ≤ 2

(4.31)

Let’s calculate now the limit of the travelling area:

lim
n→∞

n2

(n+ 21/α − 1)α
· 1

nγ
=


+∞ if 0 ≤ γ < 2− α

1 if γ = 2− α
0 if 2− α < γ ≤ 2

(4.32)

Summing the two limits as in (4.29) we conclude that the generalized diffusion

coefficient for the map Sα concerning the positive part of the chain (j > 0)

is given by:

TRα (γ) =


∞ if 0 ≤ γ < 2− α
2

2−α if γ = 2− α
0 if 2− α < γ ≤ 2

(4.33)

As we already said to have the coefficient for the whole map it suffices

multiply by a factor 2 since j2 takes same values for positive and negative j.

Therefore we conclude that the transport exponent is given by γ = 2−α.

Remark 3. From the result of the theorem we evince that the mean square

displacement of the map (4.6) has the following asymptotic behavior:

〈∆X̂2
n〉 ∼ n2−α (4.34)

Therefore, according to Def. 1.1, we can say that the map Sα presents a

wide range of transport behaviors, when α varies in (0, 2). Precisely, Sα is

sub-diffusive when 1 < α < 2, diffusive when α = 1 and super-diffusive when

0 < α < 1.

Lemma 4.2.2. Let Qn be the quantity

Qn =
n−1∑
j=0

Ap(j)j
2 (4.35)
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where Ap is the sub-travelling area defined by (4.19). Then

lim
n→∞

Qn

nγ
=


∞ if 0 ≤ γ < 2− α

2
2−α − 1 if γ = 2− α

0 if 2− α < γ ≤ 2

(4.36)

for α ∈ (0, 2).

Proof. As noted previously, the series Qn assumes a different form depending

on wheter n is even or odd, therefore we proceed by calculating separately

the limits for the two cases, proving that they are equal.

Let’s begin from the even series, so that n ∈ P , n > 2. Then

Qn =
n−1∑

j=1,j∈P

Ap(j)j
2 = 4

n
2
−1∑
j=1

[
1

(2j + 21/α − 1)
α −

1

(2j + 21/α + 1)
α

]
j2

(4.37)

Observe that this is a sort of telescopic sum, indeed, let’s analyze its be-

haviour for a fixed n, for example n = 8:

Q8 = 4

[
1

(1 + 21/α)
α −

1

(3 + 21/α)
α +

4

(3 + 21/α)
α −

4

(5 + 21/α)
α+

+
9

(5 + 21/α)
α −

9

(7 + 21/α)
α

]
=

= 4

[
1

(1 + 21/α)
α +

3

(3 + 21/α)
α +

5

(5 + 21/α)
α −

9

(7 + 21/α)
α

]
It can be showed by induction that the recurrence evinced from the example

with n = 8 can be set in the following general form:

Qn = 4 ·
n
2
−1∑
j=1

2j − 1

(2j − 1 + 21/α)
α −

(n− 2)2

(n− 1 + 21/α)
α (4.38)

Let Rn be defined by

Rn = 4 ·
n
2
−1∑
j=1

2j − 1

(2j − 1 + 21/α)
α (4.39)
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and consider first this term, introducing:

f(j) =
2j − 1

(2j − 1 + 21/α)α
(4.40)

whose derivative is given by

f ′(j) =
2
[
2(1− α)j + 21/α + α− 1

]
(2j + 21/α − 1)α+1

(4.41)

The sign of f ′ shows that f is always increasing for 0 < α ≤ 1. For 1 <

α < 2, f is increasing for j < j(α) and decreasing for j > j(α), where

j(α) = (1− α− 21/α)/2(α− 1).

We treat separately the three cases 0 < α < 1, 1 < α < 2 and α = 1.

First case: 0 < α < 1.

Because in this case f is monotonically increasing ∀j > 0, we can bound

our sum from above and below, taking the upper sum and lower sum for the

integral of f . This yields:

∫ n
2
−1

0

f(x)dx ≤
n
2
−1∑
j=1

f(j) ≤
∫ n

2

1

f(x)dx (4.42)

Taking the limit, we have:

lim
n→∞

1

nγ

∫ n
2
−1

0

f(x)dx ≤ lim
n→∞

1

nγ

n
2
−1∑
j=1

f(j) ≤ lim
n→∞

1

nγ

∫ n
2

1

f(x)dx (4.43)

Now let’s consider the indefinit integral:∫
f(x)dx =

∫
2x− 1

(2x− 1 + 21/α)
αdx (4.44)

It can be computed by the change of variable
(
2x− 1 + 21/α

)α
=: t, obtain-

ing:

∫
f(x)dx =

1

2

[
(2x− 1 + 21/α)2−α

2− α
− 21/α · (2x− 1 + 21/α)1−α

1− α

]
(4.45)
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Then the definite integrals, bounding the sum in (4.42) are respectively:

∫ n
2
−1

0

f(x)dx =
1

2

[
(n− 3 + 21/α)2−α

2− α
− 21/α · (n− 3 + 21/α)1−α

1− α
+

+
(
21/α − 1

)1−α · 21/α − α + 1

(2− α)(1− α)

]
(4.46)

and ∫ n
2

1

f(x)dx =
1

2

[
(n− 1 + 21/α)2−α

2− α
− 21/α · (n− 1 + 21/α)1−α

1− α
+

+ (21/α + 1)1−α · (21/α + α− 1)

(2− α)(1− α)

]
(4.47)

Now taking the n→∞ limit we have:

lim
n→∞

1

nγ

∫ n
2
−1

0

f(x)dx =


∞ if 0 ≤ γ < 2− α

1
2(2−α)

if γ = 2− α
0 if 2− α < γ ≤ 2

(4.48)

and

lim
n→∞

1

nγ

∫ n
2

1

f(x)dx =


∞ if 0 ≤ γ < 2− α

1
2(2−α)

if γ = 2− α
0 if 2− α < γ ≤ 2

(4.49)

As these two limits coincide for (4.43) the sum converges to the same limits:

lim
n→∞

1

nγ

n
2
−1∑
j=1

f(j) =


∞ if 0 ≤ γ < 2− α

1
2(2−α)

if γ = 2− α
0 if 2− α < γ ≤ 2

(4.50)

Therefore:

lim
n→∞

Rn

nγ
=


∞ if 0 ≤ γ < 2− α
2

2−α if γ = 2− α
0 if 2− α < γ ≤ 2

(4.51)

Second case: 1 < α < 2. In this case, f deacreses for j > j(α), for some

value j(α).
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Therefore, ∀α ∈ (1, 2), introduce j̄α = bj(α)c, where bxc is the integer part

of x, and consider

Rn = 4

 j̄α∑
j=1

f(j) +

n
2
−1∑

j=j̄α+1

f(j)

 (4.52)

Observe that

lim
n→∞

1

nγ

j̄α∑
j=1

f(j) = 0 (4.53)

for all γ > 0. Then, focus on the second term of the sum (4.52). Repeating

the previous reasoning, we obtain:

∫ n
2

j̄α+1

f(x)dx <

n
2
−1∑

j=j̄α+1

f(j) <

∫ n
2
−1

j̄α

f(x)dx. (4.54)

and passing to the limit as in the previous case, we have:

lim
n→∞

1

nγ

∫ n
2

j̄α+1

f(x)dx ≤ lim
n→∞

1

nγ

n
2
−1∑

j=j̄α+1

f(j) ≤ lim
n→∞

1

nγ

∫ n
2
−1

j̄α

f(x)dx. (4.55)

Recalling the result of the indefinite integral previously calculated, we have:∫ n
2

j̄α+1

f(x)dx =
1

2

[
(n− 1 + 21/α)2−α

2− α
− 21/α · (n− 1 + 21/α)1−α

1− α
+ cost1(α)

]
(4.56)

and∫ n
2
−1

j̄α

f(x)dx =
1

2

[
(n− 3 + 21/α)2−α

2− α
− 21/α · (n− 3 + 21/α)1−α

1− α
+ cost2(α)

]
(4.57)

The limits of the two integrals result the same as in (4.48) and (4.49) and

yield :

lim
n→∞

1

nγ

n
2
−1∑

j=j̄α+1

f(j) =


∞ if 0 ≤ γ < 2− α
2

2−α if γ = 2− α
0 if 2− α < γ ≤ 2

(4.58)
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Therefore, we have:

lim
n→∞

Rn

nγ
=


∞ if 0 ≤ γ < 2− α
2

2−α if γ = 2− α
0 if 2− α < γ ≤ 2

(4.59)

for all 1 < α < 2.

Third case: α = 1.

In this case f is increasing for all j > 0. Then, analogously to the first case,

we have: ∫ n
2
−1

0

f(x)dx ≤
n
2
−1∑
j=1

f(j) ≤
∫ n

2

1

f(x)dx (4.60)

and taking the limit

lim
n→∞

1

nγ

∫ n
2
−1

0

f(x)dx ≤ lim
n→∞

1

nγ

n
2
−1∑
j=1

f(j) ≤ lim
n→∞

1

nγ

∫ n
2

1

f(x)dx (4.61)

Consider the indefinite integral:∫
f(x)dx =

∫
2x− 1

2x+ 1
dx = x− log(2x+ 1) (4.62)

Therefore the values of the two definite integrals result:∫ n
2
−1

0

f(x)dx =
(n

2
− 1
)
− log (n− 1) (4.63)

and ∫ n
2

1

f(x)dx =
n

2
− log (n+ 1) + log 3− 1 (4.64)

As above taking the n→∞ limit we have:

lim
n→∞

1

nγ

∫ n
2
−1

0

f(x)dx =


∞ if 0 ≤ γ < 1

1
2

if γ = 1

0 if 1 < γ ≤ 2

(4.65)

and

lim
n→∞

1

nγ

∫ n
2

1

f(x)dx =


∞ if 0 ≤ γ < 1

1
2

if γ = 1

0 if 1 < γ ≤ 2

(4.66)
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Therefore

lim
n→∞

Rn

nγ
=


∞ if 0 ≤ γ < 1

2 if γ = 1

0 if 1 < γ ≤ 2

(4.67)

We can observe that the result of the limit of Rn/n
γ as n goes to infinity

results equal in all the three cases. Therefore remembering Eq. (4.38) we

have that:

lim
n→∞

Qn

nγ
= lim

n→∞

[
Rn

nγ
− (n− 1)2

nγ(n− 1 + 21/α)α

]
(4.68)

and we eventually obtain

lim
n→∞

Qn

nγ
=


∞ if 0 ≤ γ < 2− α

2
2−α − 1 if γ = 2− α

0 if 2− α < γ ≤ 2

(4.69)

for α ∈ (0, 2).

For the case in which the farthest cell n is odd, one proceeds similarly. In

this situation the expression of the sum is given by

Qn =
n−1∑

j=0,j∈D

Ap(j)j
2 =

n−3
2∑
j=0

[
1

(2j + 21/α)
α −

1

(2j + 2 + 21/α)
α

]
(2j + 1)2

(4.70)

The formula corrisponding to (4.38) is now given by:

Qn =
1

2
+ 8

n−3
2∑
j=1

j

(2j + 21/α)
α −

(n− 2)2

(n− 1 + 21/α)α
(4.71)

and the resulting limit is again:

lim
n→∞

Qn

nγ
=


∞ if 0 ≤ γ < 2− α

2
2−α − 1 if γ = 2− α

0 if 2− α < γ ≤ 2

(4.72)

for α ∈ (0, 2).
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We can now establish the following result.

Proposition 4.2.3. For α = 2 the generalized diffusion coefficient for the

map (4.6), with an initial condition uniform and concentrated in the 0-th

cell, is given by

T2(γ) =

{
+∞ if γ = 0

0 if 0 < γ ≤ 2
(4.73)

Proof. As for Theorem 4.2.1 the symmetry of the map requires the proof

only for the positive side of the chain.

To calculate

TR2 (γ) = lim
n→∞

1

nγ

n∑
j=0

A(j)j2 = (4.74)

= lim
n→∞

1

nγ

(
n−1∑
j=0

Ap(j)j
2 + Av(n)n2

)
(4.75)

consider first the sub-travelling area Ap and let n be in P . Then

Qn =
n−1∑

j=0,j∈P

Ap(j)j
2 = 4

n
2
−1∑
j=1

[
1(

2j +
√

2− 1
)2 −

1(
2j +

√
2 + 1

)2

]
j2 =

= 4

n
2
−1∑
j=1

2j − 1(
2j +

√
2− 1

)2 −
(n− 2)2

(n+
√

2− 1)2
(4.76)

Analyze now the generic term of the first sum in (4.76):

f(j) =
2j − 1(

2j +
√

2− 1
)2 (4.77)

whose derivative is

f ′(j) =
2 +
√

2− 4j

(2j +
√

2− 1)3
(4.78)

The sign of f ′ shows that f is decreasing for j > (1 +
√

2)/2. So we rewrite

Qn as follow:

Qn =
4

(1 +
√

2)2
+ 4

n
2
−1∑
j=2

f(j)− (n− 2)2

(n+
√

2− 1)2
(4.79)
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Now, as in the (4.42) we have∫ n
2

2

f(x)dx ≤
n
2
−1∑
j=2

f(j) ≤
∫ n

2
−1

1+
√
2

2

f(x)dx (4.80)

Operating the same change of variable as in the proof of Lemma 4.2.2 the

indefinite integral results to be:∫
f(x)dx =

∫
2j − 1(

2j +
√

2− 1
)2 =

1

2

[
log(2j − 1 +

√
2) +

√
2

2j − 1 +
√

2

]
(4.81)

Then the two definite integrals bounding the sum in (4.80) are, respectively:∫ n
2

2

f(x)dx =
1

2

(
log

n− 1 +
√

2

3 +
√

2
+

√
2

n− 1 +
√

2
−
√

2

3 +
√

2

)
(4.82)

∫ n
2
−1

1+
√

2
2

f(x)dx =
1

2

(
log

n− 3 +
√

2

2
√

2
− 1

2

)
(4.83)

Now taking the n→∞ limit we have:

lim
n→∞

1

nγ

∫ n
2

2

f(x)dx =

{
+∞ if γ = 0

0 if 0 < γ ≤ 2
(4.84)

lim
n→∞

1

nγ

∫ n
2
−1

1

f(x)dx =

{
+∞ if γ = 0

0 if 0 < γ ≤ 2
. (4.85)

Therefore

lim
n→∞

Qn

nγ
=

{
+∞ if γ = 0

0 if 0 < γ ≤ 2
. (4.86)

Repaeting the same reasoning when n ∈ D we obtain the very same result

as in (4.86). Let’s calculate now the limit for the travelling area that results

to be:

lim
n→∞

n2

(n− 1 +
√

2)2
· 1

nγ
=

{
+∞ if γ = 0

0 if 0 < γ ≤ 2
(4.87)

Therefore the generalized diffusion coefficient is

T2(γ) =

{
+∞ if γ = 0

0 if 0 < γ ≤ 2
(4.88)
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In this case we can say that the dynamics is ‘logarithmically diffusive’,

meaning that

〈∆X̂2
n〉 ∼ log n

asymptotically in n.

Theorem 4.2.4. For α ∈ (0, 2] the moments 〈∆X̂p
n〉, p > 2, p ∈ P for

the dynamics Sα, i.e. map (4.6) with an initial condition concentrated and

uniform in the 0-th cell, have the following asymptotic beahvior:

〈∆X̂p
n〉 ∼ np−α.

The moments for p ∈ D all equal zero.

We want to calculate the following limit

lim
n→∞

〈∆X̂p
n〉

nγ
:= L(α, p) (4.89)

Since the map is symmetric we give the proof only for the positive side of

the chain. Then, the even moments are given by multipling for a factor two,

whereas the odd moments result all zero because of the simmetry. As in

(4.26) one has:

〈∆X̂p
n〉 =

∑
X̂∈M̂

ρGn

(
X̂
) ∣∣∣X̂ − X̂0

∣∣∣p =
n∑

j=−n

A(j)jp (4.90)

Therefore we will consider

L(α, p) = lim
n→∞

1

nγ

n∑
j=0

A(j)jp (4.91)

Also in this case we have to consider the distinction of the area in two groups,

therefore we write

L(α, p) = lim
n→∞

1

nγ

(
n−1∑
j=0

Ap(j)j
p + Av(n)np

)
(4.92)

Let us focus first on the sub-travelling area. If we introduce the quantity:

Pn =
n−1∑
j=0

Ap(j)j
p (4.93)
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then for the Lemma 4.2.5 it results that:

lim
n→∞

1

nγ

n−1∑
j=0

Ap(j)j
2 =


∞ if 0 ≤ γ < p− α

α

p− α
> 0 if γ = p− α

0 if γ > p− α

(4.94)

Then the limit of the travelling area is given by:

lim
n→∞

np

(n+ 21/α − 1)α
· 1

nγ
=


+∞ if 0 ≤ γ < p− α

1 if γ = p− α
0 if γ > p− α

(4.95)

Therefore, summing togheter the results as in the formula (4.92) we conclude

that

L(α, p) =


∞ if 0 ≤ γ < p− α

α

p− α
+ 1 if γ = p− α

0 if γ > p− α

(4.96)

To have the limit for the whole map, for p ∈ P , it suffices multiply by a

factor 2 since jp takes same values for positive and negative j. Therefore we

conclude that the asymptotic behavior of the moments as n→∞ is

〈∆X̂p
n〉 ∼ np−α (4.97)

Lemma 4.2.5. Let Pn be the quantity defined by

Pn =
n−1∑
j=0

Ap(j)j
p (4.98)

where Ap is the sub-travelling area defined by (4.19).Then

lim
n→∞

Pn
nγ

=


∞ if 0 ≤ γ < p− α
α

p− α
if γ = p− α

0 if γ > p− α

(4.99)

for α ∈ (0, 2].
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Proof. As noted previously, the series Pn assumes a different form depending

on whether n is even or odd, therefore we proceed by calculating separately

the limits for the two cases proving that they are equal.

Let’s begin with n ∈ P . Then

Pn =
n−1∑

j=0,j∈P

Ap(j)j
p =

= 2p

n
2
−1∑
j=1

[
1

(2j + 21/α − 1)
α −

1

(2j + 21/α + 1)
α

]
jp (4.100)

Observe that this is a sort of telescopic sum, indeed, let’s analyze its be-

haviour for a fixed n, for example n = 8:

P8 = 2p
[

1

(1 + 21/α)
α −

1

(3 + 21/α)
α +

2p

(3 + 21/α)
α −

2p

(5 + 21/α)
α+

+
3p

(5 + 21/α)
α −

3p

(7 + 21/α)
α

]
=

= 2p
[

1

(1 + 21/α)
α +

2p − 1

(3 + 21/α)
α +

3p − 2p

(5 + 21/α)
α −

3p

(7 + 21/α)
α

]
It can be shown by induction that the recurrence evinced from the example

can be set in the following general form:

Pn = 2p ·
n
2
−2∑
j=0

(j + 1)p − jp

(2j + 1 + 21/α)
α −

(n− 2)p

(n− 1 + 21/α)
α (4.101)

Let Rn be defined by

Rn = 2p ·
n
2
−2∑
j=0

(j + 1)p − jp

(2j + 1 + 21/α)
α (4.102)

and consider first this term, negleting the last term in (4.101). We proceed

analyzing the generic term of Rn:

f(j) =
(j + 1)p − jp

(2j + 1 + 21/α)α
=

=

p∑
k=1

(
p

k

)
jp−k

(2j + 1 + 21/α)α
(4.103)
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whose derivative is given by:

f ′(j) =

p∑
k=1

(
p

k

)[
2(p− k − α)j + (p− k)(1 + 21/α)

]
(2j + 1 + 21/α)α+1

jp−k−1 (4.104)

Let be

fk(j) =

(
p

k

)[
2(p− k − α)j + (p− k)(1 + 21/α)

]
(2j + 1 + 21/α)α+1

jp−k−1 (4.105)

And let us study the sign of these functions fk. We should distinguish two

cases, for 0 < α ≤ 1 or for 1 < α ≤ 2.

If 0 < α ≤ 1, we can write

f ′(j) =

p−1∑
k=1

fk(j) + fp(j) (4.106)

where all the functions in the sum are positive, i.e. fk(j) > 0 for all k =

1, . . . , p− 1 and for all j > 0. Therefore the only negative contribute to the

derivative is given by fp(j). Now observe that

fp(j) = − 2α

(2j + 1 + 21/α)α+1

j→∞−→ 0 (4.107)

therefore we can conclude that the derivative, in the case of α ≤ 1, is positive

and therefore the function f is increasing for all j > 0.

Now let us consider the case 1 < α ≤ 2. In this case we can write:

f ′(j) =

p−2∑
k=1

fk(j) + fp−1(j) + fp(j) (4.108)

As before also now all the functions in the sum are positive, i.e. fk(j) > 0

for all k = 1, . . . , p− 2 and for all j > 0. Therefore the negative contributes

to the derivative are given by fp−1(j) and fp(j), for all j > jε > 0, where

jε =
⌊
(1 + 21/1+ε)/2ε

⌋
. Now observe that

fp−1(j) = p
2(1− α)j + 1 + 21/α

(2j + 1 + 21/α)α+1

j→∞−→ 0 (4.109)

and fp(j) have the same behavior as above. Therefore, also in this case

we can conclude that the derivative is overall positive and the function f is
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increasing for all j > 0.

Therefore we can bound our sum from above and below, taking it as the

upper sum and lower sum for the integral of f . This yields:

∫ n
2
−2

0

f(x)dx <

n
2
−2∑
j=0

f(j) <

∫ n
2
−1

1

f(x)dx. (4.110)

and passing to the limit as in the previous case we will have:

lim
n→∞

1

nγ

∫ n
2
−2

0

f(x)dx ≤ lim
n→∞

1

nγ

n
2
−2∑
j=0

f(j) ≤ lim
n→∞

1

nγ

∫ n
2
−1

j1

f(x)dx. (4.111)

Let’s calculate, with the same change of variable as in Lemma 4.2.2, the

indefinite integral, for the case 0 < α < 2, with α 6= 1:∫
f(x)dx =

∫
(x+ 1)p − xp

(2x+ 1 + 21/α)
αdx =

=

∫ p∑
k=1

(
p

k

)
xp−k

(2x+ 1 + 21/α)
αdx =

=

p∑
k=1

(
p

k

){p−k∑
s=0

(
p− k
s

)
(−1)s(1 + 21/α)s

2p−k+1

(
2x+ 1 + 21/α

)p−k−s+1−α

p− k − s+ 1− α

}

Therefore∫ n
2
−2

0

f(x)dx =

p∑
k=1

(
p

k

){p−k∑
s=0

(
p− k
s

)
(−1)s(1 + 21/α)s

2p−k+1

[(
n− 3 + 21/α

)p−k−s+1−α

p− k − s+ 1− α
+

+
c1(k, s)

p− k − s+ 1− α

]}
(4.112)

and∫ n
2
−1

1

f(x)dx =

p∑
k=1

(
p

k

){p−k∑
s=0

(
p− k
s

)
(−1)s(1 + 21/α)s

2p−k+1

[(
n− 1 + 21/α

)p−k−s+1−α

p− k − s+ 1− α
+

+
c2(k, s)

p− k − s+ 1− α

]}
(4.113)

where c1(k, s) = −(1 + 21/α)p−k−s+1−α and c2(k, s) = −(5 + 21/α)p−k−s+1−α.
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For α = 1 the indefinite integral is given by:∫
f(x)dx =

∫
(x+ 1)p − xp

2x+ 3
dx =

=

p∑
k=1

(
p

k

)∫
xp−k

2x+ 3
dx =

=

p∑
k=1

(
p

k

)
1

2p−k+1

{
p−k−1∑
s=0

(
p− k − 1

s

)
(−3)s

(2x+ 3)p−k−s

p− k − s
+ (−3)p−k log(2x+ 3)

}

Therefore∫ n
2
−2

0

f(x)dx =

p∑
k=1

(
p

k

)
1

2p−k+1

{
p−k−1∑
s=0

(
p− k − 1

s

)
(−3)s

(n− 1)p−k−s

p− k − s
+

+ (−3)p−k log
n− 1

3
−

p−k−1∑
s=0

(
p− k − 1

s

)
(−3)s

3p−k−s

p− k − s

}
(4.114)

and∫ n
2
−1

1

f(x)dx =

p∑
k=1

(
p

k

)
1

2p−k+1

{
p−k−1∑
s=0

(
p− k − 1

s

)
(−3)s

(n+ 1)p−k−s

p− k − s
+

+ (−3)p−k log
n+ 1

5
+

p−k−1∑
s=0

(
p− k − 1

s

)
(−3)s

5p−k−s

p− k − s

}
(4.115)

For α = 2 the indefinite integral is given by:∫
f(x)dx =

∫
(x+ 1)p − xp

(2x+ 1 +
√

2)2
dx =

p∑
k=1

(
p

k

)∫
xp−k

(2x+ 1 +
√

2)2
dx =

=

p∑
k=1

(
p

k

){ p−k∑
s=0,s 6=p−k−1

(
p− k
s

)
(−1)s(1 +

√
2)s

(2x+ 1 +
√

2)p−k−s−1

p− k − s− 1
+

+ (−1)s(1 +
√

2)s log(2j + 1 +
√

2)
}
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Therefore∫ n
2
−2

0

f(x)dx =

p∑
k=1

(
p

k

){ p−k∑
s=0,s 6=p−k−1

(
p− k
s

)
(−1)s(1 +

√
2)s

(n− 3 +
√

2)p−k−s−1

p− k − s− 1
+

+ (−1)s(1 +
√

2)s log
n− 3 +

√
2

1 +
√

2
+

−
p−k∑

s=0,s 6=p−k−1

(
p− k
s

)
(−1)s(1 +

√
2)s

1 +
√

2)p−k−s−1

p− k − s− 1

}
(4.116)

and∫ n
2
−1

1

f(x)dx =

p∑
k=1

(
p

k

){ p−k∑
s=0,s 6=p−k−1

(
p− k
s

)
(−1)s(1 +

√
2)s

(n− 1 +
√

2)p−k−s−1

p− k − s− 1
+

+ (−1)s(1 +
√

2)s log
n− 1 +

√
2

3 +
√

2
+

−
p−k∑

s=0,s 6=p−k−1

(
p− k
s

)
(−1)s(1 +

√
2)s

3 +
√

2)p−k−s−1

p− k − s− 1

}
(4.117)

In all the cases, i.e. for 0 < α ≤ 2 the limits of the integrals results to be :

lim
n→∞

1

nγ

∫ n
2
−2

0

f(x)dx =


∞ if 0 ≤ γ < p− α

p

2p(p− α)
if γ = p− α

0 if γ > p− α

(4.118)

and

lim
n→∞

1

nγ

∫ n
2
−1

1

f(x)dx =


∞ if 0 ≤ γ < p− α

p

2p(p− α)
if γ = p− α

0 if γ > p− α

(4.119)

for every α ∈ (0, 2]. Therefore

lim
n→∞

Rn

nγ
=


∞ if 0 ≤ γ < p− α

p

2p(p− α)
if γ = p− α

0 if γ > p− α

(4.120)
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At this point remembering Eq. (4.101) we finally have that

lim
n→∞

Pn
nγ

=


∞ if 0 ≤ γ < p− α
α

p− α
if γ = p− α

0 if γ > p− α

(4.121)

for α ∈ (0, 2].

For the case in which the farthest cell n is odd, series is given by:

Pn =

n−3
2∑
j=0

(
1

(2j + 21/α)α
− 1

(2j + 2 + 21/α)α

)
(2j + 1)p (4.122)

The corrispondent reduced sum is:

Rn =
1

2
+

n−3
2∑
j=1

(2j + 1)p − (2j − 1)p

(2j + 21/α)α
− (n− 3)p

2p(n− 1 + 21/α)α
(4.123)

At this point one can proceeds similarly to the even case, obtaining the very

same results.

4.3 Numerical Results

In this last section we want to present two examples of the Sα and the related

numerical results for two particular choices of α. In the numerical simula-

tions we approximate the initial condition, equal to the unit square with

the Lebesgue measure, by means of a uniform random distribution of point

particles in it. Therefore, the mean square displacement (4.26) becomes:

〈∆X̂2
n〉 ≈

1

N

N∑
i=1

(
X̂n(i)− X̂0(i)

)2

(4.124)

where N is the total number of point particles and X̂k(i) is the position of

the i-th particle at the time instant k.
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Example 1. Let’s take α = 1/2.

In this case the family of slicers is the following:

L1/2 =

{
1

(|j|+ 4)1/2
=

1√
j + 4

, j ∈ Z

}
(4.125)

From (4.34) we evince that the asymptotic behavior of the mean square

displacement of the slicer dynamics S1/2 is〈
∆X̂2

n

〉
∼ n

3
2 (4.126)

Therefore the map S1/2 presents a super-diffusive behavior with γ = 3/2

(cf. Fig. 4.3) and generalized diffusion coefficient T1/2 = 8
3

(cf. Fig. 4.4).

Moreover from the Theorem 4.2.4 we can say that the moments higher than

the second have the following behavior:

〈∆X̂p
n〉 ∼ np−

1
2 (4.127)

We illustrate this behavior in Fig. 4.5 where we show the numerical result for

the sixth moment, i.e. p = 6, compared with the function n11/2. Finally we

can report even the analitically computed probability distribution for S1/2,

cf. (4.22) and (4.23). If n ∈ P :

ρGn

(
X̂
)

=


1
2
− 1√

5
, for X̂ ∈M0

1√
2k+3
− 1√

2k+5
, for X̂ ∈M2k, k = 2, . . . , n−2

2

1√
n+3

for X̂ ∈Mn

0, otherwise

(4.128)

and if n ∈ D:

ρGn

(
X̂
)

=


1√

2k+4
− 1√

2k+6
, for X̂ ∈M2k+1, k = 2, . . . , n−3

2

1√
n+3

for X̂ ∈Mn

0, otherwise

(4.129)

In Fig. 4.6 we report the numerical result for the behavior of the marginal

probability distribution function ρGn (m) for α = 1/2 in the even case com-

pared with the function ρ1/2(m) =
1

(m+ 4)3/2
at a fixed time instant, cf.

(4.24).
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〈∆X̂2
n〉

index time n

Figure 4.3: Behavior of mean square displacement of map S1/2 (continuous

line) for n = 104 and for a choice of N = 104 points, compared with f(n) =

n3/2 (dotted line).

Example 2. Let’s take α = 1/3.

In this case the family of slicers is the following:

L1/3 =

{
1

(|j|+ 8)1/3
=

1
3
√
j + 8

j ∈ Z

}
(4.130)

From (4.34) we evince that the asymptotic behavior of the mean square

displacement of the slicer dynamics S1/3 is

〈∆X̂2
n〉 ∼ n

5
3 (4.131)

Therefore also the map S1/3 presents a super-diffusive behavior with γ = 5/3

(cf. Fig. 4.7) and generalized diffusion coefficient T1/3 = 12
5

(cf. Fig. 4.8).

From the Theorem 4.2.4 we can say that the moments higher then the second

of the map S1/3 have the following behavior:

〈∆X̂p
n〉 ∼ np−

1
3 (4.132)

We illustrate this behavior in Fig. (4.2).
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T1/2

index time n

Figure 4.4: Behavior of the numerically estimated coefficient T1/2 (continuous

line) for n = 104 and for a choice of N = 103 points compared with f(n) = 8
3

(dotted line).

Finally we report the probability probability distribution function for

S1/3, cf. (4.22) and (4.23). If n ∈ P :

ρGn

(
X̂
)

=


1
2
− 1

3√9
, for X̂ ∈M0

1√
2k+7
− 1√

2k+9
, for X̂ ∈M2k, k = 2, . . . , n−2

2

1√
n+7

for X̂

0, otherwise

(4.133)

and if n ∈ D:

ρGn

(
X̂
)

=


1√

2k+8
− 1√

2k+10
, for X̂ ∈M2k+1, k = 2, . . . , n−3

2
,

1√
n+7

for X̂ ∈Mn

0, otherwise

(4.134)

In the Fig. (4.9) we report the numerical result for the behavior of the

marginal probability distribution function ρGn (m) for α = 1/3 in the even

case, compared with the function ρ1/3(m) =
1

(m+ 8)4/3
at a fixed time in-

stant, cf. (4.24).
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Figure 4.5: Behavior of moment with p = 6 for map S1/2 (continuous line),

estimated numerically with n = 106 and for a choice of N = 104 points,

compared with f(n) = n11/2 (dotted line).
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Figure 4.6: Behavior of marginal probability distribution function ρGn (m)

(continuous line) for map S1/2 compared with ρ1/2(m) = 1/(m+4)3/2 (circles)

at fixed time n = 105 .
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Figure 4.7: Behavior of mean square displacement of map S1/3 (continuous

line) for n = 105 and for a choice of N = 105 points, compared with f(n) =

n5/3 (dotted line).
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Figure 4.8: Behavior of the numerically estimated coefficient T1/3 (continuous

line) for n = 105 time steps and for a choice of N = 105 points, compared

with f(n) = 12
5

(dotted line).
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Figure 4.9: Behavior of marginal probability distribution function ρGn (m)

for map S1/3 (continuous line) compared with ρ1/3(m) =
1

(m+ 8)4/3
(dotted

line) at fixed time n = 105. Notice that the two function do not coincide

perfeclty because we neglect the normalization constant.



Chapter 5

Slicer Map and Lévy Walks

In this section we compare our model with a model of a known sthocastic

process, the Lévy walk, which yields anomalous diffusion [59]. We start from

an introduction of the Lévy process and its properties. Then we define Lévy

flights and Lévy walks in the framework of continuous time random walk.

We find that the probability distribution characterizing our slicer dynamics

is asymptotically closely related with the distribution of a Lévy walk.

Moreover, furhter analyzing these models, we may say that observations of

the trivial dynamics described by our slicer maps cannot distinguish them

from the highly complex evolutions of Lévy walks. Indeed, all moments of

these dynamics coincide.

5.1 Lévy Stable Processes

We introduce a sequence of definitions about stable distributions and prop-

erties of random processes [60], to provide a proper framework for Lévy

processes . Throughout this section, we denote by X,X1, X2, . . . and by

Sn = X1 + · · ·+Xn mutually independent random variables with a common

distribution F and their sum.

Definition 5.1. The distribution F , not concentrated on the origin, is called

63
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stable if for all n ∈ N there exists constants cn > 0 and γn in R such that

Sn
d
= cnX + γn (5.1)

With
d
= we mean that the random variables on the two side of the equality

have the same distribution. If γn = 0 the distribution is called strictly stable.

Definition 5.2. A distribution F of a random variable X is infinitely divis-

ible if for each n ∈ N there exists X1,n; . . . ;Xn,n independent and identically

distributed random variables such that

X
d
= X1,n + . . .+Xn,n (5.2)

Definition 5.3. A process {X(t), t ≥ 0} is said to have independent incre-

ments if its increments X(tk+1) − X(tk) are mutually independent for any

finite set t1 < . . . < tn.

Definition 5.4. A process {X(t), t ≥ 0} has stationary increments if the

distribution of Xs+t − Xs depends only on the length t of the time interval

and not on s.

Remark 4. Partition the time interval (s, s + t) by n + 1 equidistant points

s = t0 < t1 < . . . < tn = s+ t and take Xk,n = X(tk)−X(tk−1). The random

variable X(s + t)−X(s) of a process X with independent stationary incre-

ments is the sum of n independent identically distributed random variables

Xk,n. Hence X(s+ t)−X(s) has an infinitely divisible distribution.

We can now give the definition of a Lévy process [61].

Definition 5.5. A continuous-time process {X(t), t ≥ 0} with values in R is

called a Lévy process if its sample paths are right continuous, have left limits

at every time t and if it has stationary independent increments. The default

initial condition is X(0) = 0.
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Let us denote a Lévy process by {L(t), t ≥ 0}. From an obvious decom-

position it follows that [62]:

L(t) = L

(
t

n

)
+

[
L

(
2t

n

)
− L

(
t

n

)]
+

+ . . .+

[
L

(
nt

n

)
− L

(
(n− 1)t

n

)]
(5.3)

in other words the random variable L(t) can be subdivided into the sum

of an arbitrary number of independent and identically distributed random

variables, hence its probability distribution belongs to the class of infinitely

divisible distributions.

If we consider a strictly stable Lévy process, its characteristic function reads

[63]:

φ(k;µ, σ, α, β) = exp

[
iµk − σα |k|α

(
1− iβ k

|k|
ω(k, α)

)]
(5.4)

where

ω(k, α) =

{
tan πα

2
, if α 6= 1

− 2
π

ln |k| , if α = 1
(5.5)

Further, we can define the probability density function related to the same

Lévy stable process, through this characteristic function. The density is the

Fourier transform of the characteristic function:

pα,β(k;µ, σ) = F {φ(k;µ, σ, α, β)} =

∫ +∞

−∞
φ(x) exp(ikx) dx (5.6)

Thus one can see that, in general, the characteristic function and, respectively

the Lévy stable probability density function are determined by four real

parameters: α, β, µ and σ. The exponent α ∈ [0, 2] is the index of stability,

β ∈ [−1, 1] is the skewness parameter, µ is the shift parameter and σ > 0 is

a scale parameter. Among these parameters the shift and scale ones play a

lesser role in the sense that they can be eliminated by proper scale and shift

transformations

pα,β(x;µ, σ) =
1

σ
pα,β

(
x− µ
σ

; 0, 1

)
(5.7)

Due to this property we can set µ = 0 and σ = 1 and denote the Lévy stable

distribution function by pα,β(x). Notice that β = 0 if the distribution is
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symmetric. Lévy stable laws are of interest in particular for their asymptotic

behavior. For x → ±∞ the symmetric stable density function scales as

follows:

pα,0(x) ∼ C1(α)
1

|x|1+α (5.8)

where C1 =
1

π
sin
(πα

2

)
Γ(1 + α). Moreover the variance (i.e. mean square

displacement) of all Lévy stable probability density functions diverges if α <

2.

5.2 Lévy Flights and Lévy Walks

Now we want to introduce Lévy flights and Lévy walks in the framework

of continuous time random walks [64], [65]. Let p(x, t) be the probability

distribution of being at position x at time t and let ψ(x, t) be the probability

distribution of making a step of lenght x in the time interval t to t+ dt. The

total transition probability in this time interval is

ψ(t) =
∑
x

ψ(x, t) = ψ(k = 0, t) (5.9)

where ψ(k, t) is the Fourier transform x → k of ψ(x, t). If we denote by

η(x, t) the probability density of just arriving at x in the time interval t to

t+ dt, then [66], [67], [68]

η(x, t) =
∑
x′

∫ t

0

η(x′, τ)ψ(x− x′, t− τ)dτ + δ(t)δx,0 (5.10)

Here we have assumed the initial condition of starting at t = 0 from x = 0.

The relation between p(x, t) and η(x, t) is given through

p(x, t) =

∫ t

0

η(x, t− τ ′)φ(τ ′)dτ ′ (5.11)

where

φ(t) = 1−
∫ t

0

ψ(τ)dτ (5.12)
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is the probability of not having left the original site up to time t. The Laplace

transform of φ(t) yields

φ(u) =
1− ψ(u)

u
(5.13)

Using (5.11) and changing the order of the integrations allows us to write

(5.10) as an integral equation for p(x, t) with kernel ψ(x, t):

p(x, t) =
∑
x′

∫ t

0

p(x′, τ)ψ(x− x′, t− τ)dτ + φ(t)δx,0 (5.14)

From this last equation one has in the Fourier-Laplace space

p(k, u) = p(k, u)ψ(k, u) + φ(u) (5.15)

from which follows

p(k, u) =
1− ψ(u)

u

1

1− ψ(k, u)
(5.16)

This quantity is the key to the determination of p(x, t) through Fourier-

Laplace inversion. Now let us consider two different cases. In the first case

we take a distribution ψ(x, t) in which x and t are decoupled [63], i.e.

ψ(x, t) = λ(x)ψ(t) (5.17)

Hence (5.16) become

p(k, u) =
1− ψ(u)

u

1

1− λ(k)ψ(u)
(5.18)

Then assume ψ(t) = δ(t − t0) and λ(x) of Lévy stable form, with index

0 < α < 2. The resulting process is markovian, but with diverging variance.

From (5.18) we obtain the Fourier image of the associated probability density

function:

p(k, t) = exp [−Kα |k|α t] (5.19)

Comparing with (5.4) this is nothing but the characteristic function of a

symmetric Lévy stable probability density function with index of stability
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α. This type of random process is called Lévy flight. In the second case we

consider a coupled form of ψ(x, t). In this respect a suitable function is [64]

ψ(x, t) = A |x|−ξ δ(|x| − tν) (5.20)

where through the δ-function x and t are coupled. In this case steps of

arbitrary lenght are allowed but long steps are penalized by required longer

time to be performed. This process is called Lévy walk.

5.3 Lévy Walk in Quenched Disordered Me-

dia

In this section we take into consideration a particular model of Lévy walk in

quenched disordered media, which is studied in Ref. [59]. In that work, the

authors introduce a one-dimensional structure with a sequence of scatterers

spaced according to a Lévy type distribution (cf. Fig. 5.1), so that the

probability density for two consecutive scatterers to be at distance r is given

by:

λ(r) ≡ βrβ0
1

rβ+1
, r ∈ [r0,+∞) (5.21)

where β > 0 and r0 is a cutoff fixing the characteristic length scale of the sys-

tem. A continuous time random walk is naturally defined on this structure,

which is to say that a walker moves ballistically (at constant velocity v) until

it reaches one of the scatterers and then it is transmitted or reflected with

probability 1/2. The authors of [59] derive an analytic expression for the

asymptotic behavior of the mean square displacement 〈r2(t)〉 when averaged

over the scattering points. At first they introduce the most general scaling

hypothesis for the probability distribution P (r, t):

P (r, t) = l−1(t)f

(
r

l(t)

)
+ g(r, t) (5.22)
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where l(t) is the characteristic length of P . The following convergences in

probability are assumed:

lim
t→+∞

∫ vt

0

∣∣∣∣P (r, t)− l−1(t)f

(
r

l(t)

)∣∣∣∣ dr = 0 (5.23)

and

lim
t→+∞

∫
|g(r, t)| dr = 0 (5.24)

Figure 5.1: Model of the unidimensional structure of Burioni et al. model

and related electric problem. At the locations r1, r2, ... we find the scatterers

placed according to a Lévy type distribution.

The explicit expression of the mean square displacement now reads:

〈r2(t)〉 =

∫ vt

0

l−1(t)f

(
r

l(t)

)
r2dr +

∫ vt

0

g(r, t)r2dr (5.25)

To get an analytic expression for this quantity, an electric problem equivalent

to a random walk has been taken into consideration [69], allowing the calcu-

lation of the number N(t) of scattering sites visited by the walker in a time t.

More precisely, in the electrical analogy N(t) is given by the resistance R of

a segment of length l(t). From [70], Burioni et al. calculated analitically the

asymptotic behavior of R at large distances obtaining R(r) ∼ rβ for β < 1

and R(r) ∼ r for β > 1, and accordingly for r � l(t):

N(t) ≈ R(l(t)) ∼

{
t

β
1+β , if 0 < β < 1

t1/2, if β ≥ 1
(5.26)
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Another assumption made by the authors of [59] is the ”single long jump”

hypothesis, which amounts to neglect the possibility of multiple consecutive

jumps of length larger then a given size. For r � l(t) this yields:

P (r, t) ∼ N(t)

r1+β
(5.27)

According to this and recalling (5.26), the asymptotic (in t and r) probability

density function for β < 1 is given by:

P (r, t) ∼ t
β

1+β
1

r1+β
(5.28)

and for β > 1 is expressed by

P (r, t) ∼ t
1
2

1

r1+β
(5.29)

Finally, the result for the mean square displacement is the following (cf. Fig.

5.2)

〈r2(t)〉 ∼


t
2+2β−β2

1+β if 0 < β < 1

t
5
2
−β if 1 ≤ β ≤ 3

2

t if
3

2
< β

(5.30)

More generally, one obtains an analytic result for the asymptotic behavior

of the moments 〈rp(t)〉 for all p > 0 that reads

〈rp(t)〉 ∼


t

p
1+β if β < 1, p < β

t
p(1+β)−β2

1+β if β < 1, p > β

t
p
2 if β > 1, p < 2β − 1

t
1
2

+p−β if β > 1, p > 2β − 1

(5.31)

5.4 Comparison

Now let us recall the result for the asymptotic behavior of the mean square

displacement produced by our slicer model (4.34):

〈∆X̂2(t)〉 ∼ t2−α (5.32)
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Figure 5.2: Asymptotic behavior of mean square displacement of Burioni et

al. model for different choices of parameter β.

for 0 < α ≤ 2, whereas the moments 〈∆X̂p(t)〉 for our slicer map for p > 2,

asymptotically go like:

〈∆X̂p(t)〉 ∼ tp−α (5.33)

for 0 < α ≤ 2 (cf. Theorem 4.2.4).

If we fix the Lévy walk parameter β, we can determine the value of our

parameter α for which the second moments of the Lévy walk and of the

slicer dynamics, (5.32) and (5.30), asymptotically coincide. We restrict the

comparison to the case with 0 < β ≤ 3
2
, since the behavior of the two model

is not comparable for β > 3
2
. Indeed, the Lévy model presents a constant

diffusive trend for β > 3
2
, whereas the slicer map changes its transport prop-

erties for every variation of the parameter. This observation proves that the

equivalence between Lévy walks and slicer dynamics is not trivial.
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Therefore we obtain the following: for

α =

{
β2

1+β
if 0 < β ≤ 1

β − 1
2

if 1 < β ≤ 3
2

(5.34)

the variances of the slicer dynamics and Lévy walk coincide asymptotically

in t. Now let us consider the moments related to the two models for p > 2,

p ∈ P . Consider the case of 0 < β < 1 first. Take the value of α from (5.34)

and substitute it in (5.33). This yields

〈∆X̂p(t)〉 ∼ t
p(1+β)−β2

1+β (5.35)

for the asymptotic behavior in t of the slicer dynamics. If we do the same

for the case 1 ≤ β ≤ 3
2

the moments of the slicer model are given by:

〈∆X̂p(t)〉 ∼ tp−β+ 1
2 (5.36)

for all p > 2. We notice that, comparing with (5.31), we obtain the same

values of the Lévy walk model. In other words, fixing α and β so that the

second moment are asymptotically equal, one obtains the asymptotic equality

of all moments of order p > 2 as well. We have thus proved the following:

Theorem 5.4.1. For all 0 < β ≤ 3
2
, β 6= 1, of a Lévy walk ∃ α ∈ (0, 2]

such that all moments of order ≥ 2 of the slicer map and of the Lévy walk

asymptotically coincides. The value α is given by (5.34).

Therefore our trivial deterministic model defined in the previous chapter

seems to be asymptotically indistiguishable from a Lévy walk for β ≤ 3
2
.

To obtain this equivalence it suffices to fix α so that the second moments

asymptotically coincide. This is confirmed also from the fact that the prob-

ability distribution of the slicer model is a Lévy-type density, for β ≤ 3
2
, i.e.

α ∈ [0, 3/2]. However, for completeness, one should check the correlations to

confirm this conjecture.

We have to precise that we are not looking at all moments of Lévy distribu-

tion as a function of two variables, which in general involve tprq. Therefore

the equality of all moments we considered des not imply the equality of the
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probability distributions. This can be obtain only for special choice of r and

t. This reinforces the non triviality of the observational indistinguishability.

Let us now compare the two dynamics for a particular choice of the param-

eters: α =
1

3
and consequently β =

1 +
√

13

6
, cf. (5.34). This yields

〈∆X̂2(t)〉 ∼ t
5
3 (5.37)

for both systems (cf. Fig. 5.3). Similarly if we substitute α = 1/3 and

β = (1 +
√

13)/6 respectively in (5.33) and (5.31), the moments for p > 2,

p ∈ P , have the following behavior:

〈∆X̂p(t)〉 ∼ t
3p−1

3 (5.38)

The value α = 1
3

is of interest because t5/3 is the numerically computed

asymptotic value of the mean square displacement for the polygonal billiards

with parallel walls which make angle of 90 degrees in [23], [24].
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Figure 5.3: Behavior of the mean square displacement of map S1/3 (stars

line) up to a time n = 105 and for a choice of N = 104 points, compared with

mean square displacement of Burioni et al. Lévy walk model (continuous

line) where α and β are related by Eq. (5.34).



Chapter 6

Variations on the Slicer Map

In this section we introduce some variations of the slicers dynamics, with the

purpose of increasing its similarity with the dynamics of polygonal billiards.

To get closer, for instance, to the 2-dimensional nature of the dynamics of

billiard map we introduce a second slicer so that the second coordinate of the

slicer dynamics is not trivial anymore. These changes are just attempts and

leave many open question to be investigated in the future. For each variation

of the original slicer model, we analyze in particular the behavior of mean

square displacement as a function of time.

For all the variations, we keep the same phase space of the original model, as

described in Chapter 4, i.e. a chain of identical square cells, M̂ = [0, 1]2×Z.

We also indicate with M0 = [0, 1]2 × {0} the 0-th cell. Analytically these

models are very complex to deal with, therefore the results we present here

are mainly of numerical nature.

6.1 Translating Slicer Map

In the first variation we consider the same slicer map S as in the slicer

dynamics, cf. (4.1), but we introduce a different law to obtain infinitely

many scales. Indeed, rather than introducing by hand infinitely many scales

75



CHAPTER 6. VARIATIONS ON THE SLICER MAP 76

by properly placing the family of slicers {lj, j ∈ Z} in the generic cell of the

chain and activating a pair of them by means of a particular rule (4.5), here

we use an ergodic translation on the 1-dimensional torus to generate the

slicers.

Let us recall the definition of the slicer map

Slα(x, y,m) =

{
(x, y,m− 1) if 0 ≤ x ≤ lα or 1

2
≤ x ≤ 1− lα

(x, y,m+ 1) if lα < x < 1
2

or 1− lα < x ≤ 1
(6.1)

We want to stress that now we do not have anymore the dependence of the

active slicers from the cell index, but we have just two symmetric slicers lα

and 1− lα active at each time step, equal for all the cells.

Let us now introduce a temporal evolution for the slicers.

Definition 6.1. Let n ∈ N be the temporal index and α ∈ (0, 1] a parameter.

lα : N→ [0, 1] is a map such that:

lα(n) = (lα(n− 1)− α) MOD1/2. (6.2)

The function (x)MOD1/2 acts as follow:

(x)MOD1/2 =

{
x, if 0 ≤ x ≤ 1

2

x+ 1
2
, if x < 0

(6.3)

If α /∈ Q the dynamical slicer (6.2) explores (ergodically) densely the interval

[0, 1/2]. If α ∈ Q, the motion of lα is periodic.

Altogheter the translating slicer dynamics is thus governed by the mapping

ST = Slα where lα is given by (6.2) and defines at each time step the pairs

of slicers lα and 1 − lα in the map Slα (4.1), starting from the central slicer

l(0) = 1/2. More precisely at time step n we have

SnT = Slα(n−1) ◦ Slα(n−2) ◦ . . . ◦ Slα(1) ◦ Slα(0) (6.4)

We give now some examples. The first two results are about the case of

a rational α, for which we can also do some analytical evaluations.
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Example 3. Let α =
1

6
. The time evolution l1/6, (6.2), generates the follow-

ing periodic sequence of slicers

{
1

2
,
1

3
,
1

6
, 0,

1

3
,
1

6
, 0, . . .

}
in time, whereas the

complete dynamics ST is described by Fig. 6.1.

We can obtain at this point some analytical results. Recalling the notion

Figure 6.1: Behavior of map ST for α = 1/6 in the positive part of the chain,

in 10 time steps, for a choice of N = 105 points. In the horizontal direction

there is the cell index, in the vertical direction there is the time index.

of travelling and subtravelling area we notice that the sub-travelling area

becomes periodic, and the travelling area makes a step forward in the chain

every third step. Hence the only significant contribution to the mean square

displacement (4.26) is given by the travelling aerea. Therefore the mean

square displacement at time step n = 3t, with t = 1, 2, . . ., results:

〈∆X̂2
3t〉 =

(t+ 2)2

6
(6.5)

In the two temporal steps, right before a multiple of three, the dynamics

follow a slightly different recurrence law for the mean square displacement,
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but always dominated by a power of two. In fact, let the last time step be

n = 3t− 1, with t = 1, 2, . . . then

〈∆X̂2
3t−1〉 =

(t+ 3)2

6
(6.6)

And finally, if the last time step is n = 3t− 2, with t = 1, 2, . . . then

〈∆X̂2
3t−2〉 =

(t+ 4)2

6
(6.7)

In each of the three cases, the limit of the mean square displacement as

n→ +∞ is asymptotically given by:

〈∆X̂2
n〉 ∼ n2 (6.8)
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Figure 6.2: Behavior of mean square displacement of map ST for α = 1
6

(continuous line), for a time of n = 105 and for a choice of N = 104 points,

compared with n2 (dotted line).

This case is illustrated by Fig. 6.2 where the behavior of the mean square

displacement is reported for the map ST with α = 1/6 for a total number of

time steps n = 105, togheter with the function f(n) = n2.
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Example 4. Let us choose α =
1

7
. In this case the evolution rule (6.2) gener-

ates another periodic sequence of slicers Lα =

{
1

2
,
3

7
,
2

7
,
1

7
, 0,

3

7
,
2

7
,
1

7
, 0, . . .

}
in time, with longer period with respect to the previous case. Fig. 6.3 de-

scribes the dynamics of ST for this choice of α.

Figure 6.3: Behavior of map ST for α = 1/7 for the positive part of the chain,

in 10 time steps, for a choice of N = 105 points. In the horizontal direction

there is the cell index, in the vertical direction there is the time index.

Fig. 6.4 illustrates the asymptotic behavior of mean square displacement

for the map ST with α = 1/7 and n = 105, togheter with the function

f(n) = n2.

To complete this brief analysis of the rational case, we also report in Fig.

6.5 the comparison between the asymptotic behavior of the mean square

displacement concerning the two cases addressed above, i.e. α =
1

6
and

α =
1

7
.

Let us consider now an irrational choice of α. In this case, it is very
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Figure 6.4: Behavior of mean square displacement of map ST for α = 1
7

(continuous line), for a time of n = 105 and for a choice of N = 104 points,

compared with n2 (dotted line).

difficult to do analytical calculations, therefore we present numerical results.

In Fig. 6.6 we observe the behavior of the map ST for α =
1√
7

. The only

analytical result we obtained is the following. Consider the positive part of

the chain. The dynamical slicer moves on the interval [0, 1/2] never passing

again in the same point because we are considering a ratio between the cell

width, which is 1/2 and the traslation parameter α that is irrational. In

other words lα moves on the interval [0, 1/2] for a certain number of steps P ,

then, because of the modulo operation, it re-enters the same interval in an

onother point and moves forward for another number of steps Q. Q and P

do not necessarily coincide. In this case the travelling area diminishes during

the first P steps, then it remains constant for the successive Q steps and so

on, with fractions of times always different. These kinds of considerations

do not suffice to clarify the behavior of the dynamics. From the numerical

results we can reasonably deduce that the asymptotic behavior of the mean
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Figure 6.5: Behavior of mean square displacement of map ST for n = 105

time steps and for a choice of N = 104 points. The dotted line is for α = 1/6,

the continuous line is for α = 1/7 and the circles are for f(n) = n2.

square displacement is, as above

〈∆X̂2
n〉 ∼ n2 (6.9)

In Fig. 6.7 we report these results for α =
1√
7

and α = 2.846 · 10−4 togheter

with f(n) = n2.

6.2 Double Traslating Slicer Map

In this section we try to improve the previous model adding a second floating

slicer, normal to the first one, in order to slow down the particles motion.

Definition 6.2. Let Slv : M̂ → M̂ such that

Slv(x, y,m) =

{
(x, y,m+ 1), if (lα ≤ x ≤ 1) and (0 ≤ y < vβ)

(x, y,m− 1) otherwise
(6.10)
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Figure 6.6: Behavior of map ST for α = 1/
√

7 for the positive part of the

chain, in 10 time steps, for a choice of N = 104 points. In the horizontal

direction there is the cell index, in the vertical direction there is the time

index.

Slv is called double slicers map. lα is a vertical slicer and vβ is a horyzontal

one.

We apply the same temporal evolution given in Def. 6.1 to the vertical

slicer lα, whereas for the horyzontal slicer vβ we define a slightly different

translation rule:

Definition 6.3. Let n ∈ N and β ∈ [0, 1], then vβ : N → [0, 1] acts as

follows:

vβ(n) = (vβ(n− 1)− β)MOD1 (6.11)

The function (x)MOD1 is such that:

(x)MOD1 =

{
x, if 0 ≤ x ≤ 1

x− 1, if x > 1
(6.12)
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Figure 6.7: Asymptotic behavior of mean square displacement of map ST for

two different choices of irrational α, for a time of 106 steps and for a choice

of N = 103 points compared with n2.

The dynamics of the new system is therefore determined by the map Sαβ :=

Slαvβ where lα is given by (6.2) and vβ is given by (6.11). More precisely at

time step n we have

Snαβ = Slα(n−1)vβ(n−1) ◦ Slα(n−2)vβ(n−2) ◦ . . . ◦ Slα(1)vβ(1) ◦ Slα(0)vβ(0) (6.13)

The initial conditions for the evolution of the vertical and the horyzontal

slicers are respectively lα(0) = 1/2 and vβ(0) = 1.

In Fig. 6.8 we can observe the action of the map Sαβ, for α = 2.65 · 10−2

and β = 2.65 · 10−3 and for a choice of 103 points. We report the numerical

results related to mean square displacement of Sαβ for these choices of α and

β in Fig. 6.9. We choose very small parameters to make slower the decrease

of the travelling area, but we evince that this is not enough to obtain a mean

square displacement slower then ballistic although the behavior of the mean

square displacement appears to be more complex than in the previous cases.

The parameter are α = 2.65 ·10−2 and β = 2.65 ·10−3 for the dotted line and
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Figure 6.8: Behavior of map Sαβ for α = 2.65 ·10−2 and β = 2.65 ·10−3, in 10

time steps. In the horizontal direction there is the cell index, in the vertical

direction there is the time index. The low resolution of the image is due to

the choice of a low amounts of initial points (N = 103).

α = 8.37 · 10−2 and β = 8.37 · 10−5 for the continuous line. In both case we

start with from the 0-th cell with 105 points for n = 107. We compare these

results with the function f(n) = n2.

Moreover, in Fig. 6.10 we report the behavior of the only travelling area,

for the same values of parameters α and β . Observing these results we

notice that the travelling area seems to present a linear behavior, so that

we can deduce that the travelling area alone does not determine the ballistic

behavior of the mean square displacement, but also sub-travelling areas give

a significant contribution to this trend.
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Figure 6.9: Behavior of mean square displacement of map Sαβ for two dif-

ferent choices of α and β, for n = 107 and for a choice of N = 105 points.

The dotted line is for α = 2.65 · 10−2 and β = 2.65 · 10−3 and the continuous

line is for α = 8.37 · 10−2 and β = 8.37 · 10−5, whereas the stars line is for

f(n) = n2.

6.3 Fix Slicer and Traslating Points

The third attempt we make is to consider a fixed slicer and apply to points

of the phase space an additional translational dynamics.

Let us recall again the definition of the slicer map

Sl(x, y,m) =

{
(x, y,m− 1) if 0 ≤ x ≤ l or 1

2
≤ x ≤ 1− l

(x, y,m+ 1) if l < x < 1
2

or 1− l < x ≤ 1
(6.14)

This time we want to stress that now we do not have any dependence of the

active slicers from the cell index neither from the time index. We have just

two fixed symmetric slicers l and 1− l in all the cells.

Let us now define a translation for the points:

Definition 6.4. Let α ∈ [0, 1] be a parameter. T : M̂ → M̂ acts as follow

T (x, y,m) = ((x+ α)MOD1, y,m) (6.15)
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Figure 6.10: Behavior of travelling area of map Sαβ for two diferent choices

of α and β, for n = 107 and for a choice of N = 105 points. The dotted

line is for α = 2.65 · 10−2 and β = 2.65 · 10−3 and the continuous line is for

α = 8.37 · 10−2 and β = 8.37 · 10−5 whereas the stars lines are for the same

f(n) = n2 at two different quotes.

where (x)MOD1 is the same operation defined in (6.12).

Definition 6.5. The map STP : M̂ → M̂ such that STP = Sl ◦ T is called

translated points slicer map. Sl is the map defined in (6.14) with l ∈ (0, 1]

fixed.

Below we report the result related to this dynamics for l =
1

2
, α =

1√
7

for a choice of 100 points and n = 9 · 107.

In Fig. 6.11 we can observe a view of the dynamics that seems quite simi-

lar to almost all the other maps presented above, but in Fig. 6.12 surprisingly

we notice an apparent sub-diffusive trend of the mean square displacement.

Obviously we wonder if we can trust this result or not. The number of points

is quite low, therefore the first step should be to retry the simulation with an

higher number of points. Then it should be possible, despite the complexity
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Figure 6.11: Behavior of map STP for α = 1/
√

7, in 10 time steps. In the

horizontal direction there is the cell index, in the vertical direction there is

the time index. The low resolution of the image is due to the choice of a low

amounts of initial points (N = 103).

of the problem, to do at least some general analytical considerations about

the trend of the areas. At least the travelling one.
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Figure 6.12: Behavior of mean square displacement of map STP for α = 1/
√

7

(continuous line), n = 9 · 107 and for a choice of N = 102 points, compared

with f(n) ≈ n−0.11 (stars lines).



Chapter 7

Concluding remarks

In this thesis, in order to provide mathematically tractable models of anoma-

lous diffusion, for the phenomenon of transient osmosis a new deterministic

map, called slicer map, has been introduced. To this end we have also tried

to reproduce features of the polygonal billiards dynamics. We have tried to

go one step closer to such dynamics, than in the current literature. Indeed

we have adopted area-preserving, non-chaotic dynamics. Results both of

analytical and numerical nature related to this model have been presented.

In particular two theorems have been obtained, which establish the asymp-

totic beahvior respectively of the mean square displacement and of the other

moments of the map. A coarse grained probability density function has

been introduced for the model, which enabled us to compare our model

with stochastic models frequently used in the approach to the problem of

anomalous transport. The analytical results for the mean square displace-

ment presented a perfect agreement with a stochastic model of Lévy walks.

Our conclusion is that a trivial deterministic area preserving and non-chaotic

model, such as our slicer map results indistiguishable from Lévy walks, bea-

cuse of the equality of the asymptotic behaviour of all moments once the mean

square displacements agree. Nevertheless for completeness one should check

also the behavior of correlations. The infinitely many scales that characterize

our slicer map seem to be indispensable to obtain anomalous behavior. The

89



CHAPTER 7. CONCLUDING REMARKS 90

triviality of the proposed slicer model is unquestionable, but it is interesting

precisely for that. The detailed mathematical study provided in this work

opens the way to evolutions of the model, and give at the same time some

hints about how to set up the mathematical framework in which it is possible

to continue the work. In this work, some possible modifications of the model

have been already outlined, pointing out the limits and the potentialities

that they present. In particular to get closer to the 2-dimensional dynamics

of billiard maps, a horyzontal slicer, which moves along the y axis, has been

introduced. The first two modifications, obtained by means of a translational

dynamics applied to the slicer, pose the limit of the exponential growth of

the analytical tractability of the problem. At the same time the numerical

results concerning these variations do not seem to give hope to find trans-

port behaviors different from the ballistic one. Conversely the addition of a

translational dynamics to the areas of the maps, fixing the slicer, at least in

the numerical simulation, has provided some interesting results, with an ex-

ponent for the mean square displacement asymptotic trend γ ≈ 0.11, which

identifies a sub-diffusive transport behavior. This makes us think that fur-

ther insight in this direction could bring same deeper and interesting results.

In particular, one feature of polygonal billiards, which has not been intro-

duced in the above models is the presence of rotations within the elementary

cell. This ingredient seems essential to fully exploit the 2 dimensions of the

phase space.



Appendix A

Numerical Codes

A.1 Slicer Map S1/2

c**********************************************************************

c NON-EXPANDING MULTI-BAKER MAP alfa=1/2

c SOURCE CODE FOR MSD CALCULATION

c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(30000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil,wstep

integer Icont,iseed

double precision X(30000000),Y(30000000),deltax

double precision slice

real r

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)

READ(8,*) slice,Npoint,Ntot

READ(8,*) iseed,r,Icont,wstep

CLOSE(8)

91
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Nmil= wstep

OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)

Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0

ENDDO

CLOSE(7)

785 CONTINUE

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)

Niter = 0

786 CONTINUE

deltax = 0.0D0

DO Np = 1,Npoint

slice = 1.0D0/((DABS(DFLOAT(mm(Np)))+4)**0.5)

IF(mm(Np) .GT. 0) THEN

IF(X(Np) .LE. 1.0D0 - slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 1.0D0 - slice) mm(Np) = mm(Np) + 1

ELSEIF(mm(Np) .LT. 0) THEN

IF(X(Np) .LE. slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. slice) mm(Np) = mm(Np) + 1

ELSE

IF(X(Np) .LE. 0.50D0) mm(Np) = mm(Np) - 1
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IF(X(Np) .GT. 0.50D0) mm(Np) = mm(Np) + 1

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

j = Npoint/100

IF(MOD(Niter,Nmil).EQ.0)

& WRITE(8,*) Niter+Nitdon,deltax/DFLOAT(Npoint)

Niter = Niter + 1

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c-----------------------------------------------------------------------

c Random number generator

c-----------------------------------------------------------------------

SUBROUTINE rand(iseed,r)

integer iseed

double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)

r = dseed/d2p31
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iseed = int(dseed)

return

end

c**********************************************************************

c********************************************************************** c NON-EXPANDING MULTI-BAKER MAP alfa=1/2

c SOURCE CODE FOR ILLUSTRATION OF DYNAMICS

c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(30000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil,wstep

integer Icont,iseed

double precision X(30000000),Y(30000000),deltax

double precision slice

real r

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)

READ(8,*) slice,Npoint,Ntot

READ(8,*) iseed,r,Icont,wstep

CLOSE(8)

Nmil= wstep

OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)

Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0
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ENDDO

CLOSE(7)

785 CONTINUE

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)

Niter = 0

786 CONTINUE

deltax = 0.0D0

DO Np = 1,Npoint -

slice = 1.0D0/((DABS(DFLOAT(mm(Np)))+4)**0.5)

IF(mm(Np) .GT. 0) THEN

IF(X(Np) .LE. 1.0D0 - slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 1.0D0 - slice) mm(Np) = mm(Np) + 1

ELSEIF(mm(Np) .LT. 0) THEN

IF(X(Np) .LE. slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. slice) mm(Np) = mm(Np) + 1

ELSE

IF(X(Np) .LE. 0.50D0) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 0.50D0) mm(Np) = mm(Np) + 1

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

j = Npoint/100

IF(MOD(Niter,Nmil).EQ.0)

& WRITE(8,*) Niter+Nitdon,deltax/DFLOAT(Npoint)
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Niter = Niter + 1

IF(Niter .EQ. 1) THEN

OPEN(7,file=’Passo1’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*)Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 2) THEN

OPEN(7,file=’Passo2’,form=’formatted’,status=’unknown’)

DO Np=1,Npoint

WRITE(7,*)Niter,X(Np)+mm(Np), Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 3) THEN

OPEN(7,file=’Passo3’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 4) THEN

OPEN(7,file=’Passo4’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO
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CLOSE(7)

ENDIF

IF(Niter .EQ. 5) THEN

OPEN(7,file=’Passo5’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 6) THEN

OPEN(7,file=’Passo6’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 7) THEN

OPEN(7,file=’Passo7’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 8) THEN

OPEN(7,file=’Passo8’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)
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ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 9) THEN

OPEN(7,file=’Passo9’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 10) THEN

OPEN(7,file=’Passo10’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c----------------------------------------------------------------------

c Random number generator

c----------------------------------------------------------------------

SUBROUTINE rand(iseed,r)
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integer iseed

double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)

r = dseed/d2p31

iseed = int(dseed)

return

end

c**********************************************************************

A.2 Slicer Map S1/3

c**********************************************************************

c NON-EXPANDING MULTI-BAKER MAP alfa=1/3

c SOURCE CODE FOR MSD CALCULATION

c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(30000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil

integer Icont,iseed

double precision X(30000000),Y(30000000),deltax

double precision slice

real r

Nmil=10

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)

READ(8,*) slice,Npoint,Ntot
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READ(8,*) iseed,r,Icont

CLOSE(8)

OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)

Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0

ENDDO

CLOSE(7)

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)

Niter = 0

786 CONTINUE

deltax = 0.0D0

DO Np = 1,Npoint

slice = 1.0D0/((DABS(DFLOAT(mm(Np)))+8)**0.34)

IF(mm(Np) .GT. 0) THEN

IF(X(Np) .LE. 1.0D0 - slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 1.0D0 - slice) mm(Np) = mm(Np) + 1

ELSEIF(mm(Np) .LT. 0) THEN

IF(X(Np) .LE. slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. slice) mm(Np) = mm(Np) + 1

ELSE

IF(X(Np) .LE. 0.50D0) mm(Np) = mm(Np) - 1
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IF(X(Np) .GT. 0.50D0) mm(Np) = mm(Np) + 1

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

j = Npoint/100

IF(MOD(Niter,Nmil).EQ.0)

& WRITE(8,*) Niter+Nitdon,deltax/DFLOAT(Npoint)

Niter = Niter + 1

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c----------------------------------------------------------------------

c Random number generator

c----------------------------------------------------------------------

SUBROUTINE rand(iseed,r)

integer iseed

double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)

r = dseed/d2p31
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iseed = int(dseed)

return

end

c**********************************************************************

c

c

c**********************************************************************

c NON-EXPANDING MULTI-BAKER alfa=1/3

c SOURCE CODE FOR ILLUSTRATION OF DYNAMICS

c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(30000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil,wstep

integer Icont,iseed

double precision X(30000000),Y(30000000),deltax

double precision slice

real r

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)

READ(8,*) slice,Npoint,Ntot

READ(8,*) iseed,r,Icont,wstep

CLOSE(8)

Nmil= wstep

Nitdon = 0

OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)
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Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0

ENDDO

CLOSE(7)

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)

Niter = 0

786 CONTINUE

deltax = 0.0D0

DO Np = 1,Npoint

slice = 1.0D0/((DABS(DFLOAT(mm(Np)))+8)**0.34)

IF(mm(Np) .GT. 0) THEN

IF(X(Np) .LT. 1.0D0 - slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 1.0D0 - slice) mm(Np) = mm(Np) + 1

ELSEIF(mm(Np) .LT. 0) THEN

IF(X(Np) .LT. slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. slice) mm(Np) = mm(Np) + 1

ELSE

IF(X(Np) .LT. 0.50D0) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 0.50D0) mm(Np) = mm(Np) + 1

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

j = Npoint/100

IF(MOD(Niter,Nmil).EQ.0)
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& WRITE(8,*) Niter+Nitdon,deltax/DFLOAT(Npoint)

Niter = Niter + 1

IF(Niter .EQ. 1) THEN

OPEN(7,file=’Passo1’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*)Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 2) THEN

OPEN(7,file=’Passo2’,form=’formatted’,status=’unknown’)

DO Np=1,Npoint

WRITE(7,*)Niter,X(Np)+mm(Np), Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 3) THEN

OPEN(7,file=’Passo3’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 4) THEN

OPEN(7,file=’Passo4’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)
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ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 5) THEN

OPEN(7,file=’Passo5’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 6) THEN

OPEN(7,file=’Passo6’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 7) THEN

OPEN(7,file=’Passo7’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 8) THEN

OPEN(7,file=’Passo8’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint
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WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 9) THEN

OPEN(7,file=’Passo9’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .EQ. 10) THEN

OPEN(7,file=’Passo10’,form=’formatted’,status=’unknown’)

DO Np = 1,Npoint

WRITE(7,*) Niter,X(Np)+mm(Np),Y(Np)

ENDDO

CLOSE(7)

ENDIF

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c----------------------------------------------------------------------

c Random number generator

c----------------------------------------------------------------------
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SUBROUTINE rand(iseed,r)

integer iseed

double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)

r = dseed/d2p31

iseed = int(dseed)

return

end

c**********************************************************************

A.3 Traslating Slicer Dynamics

c**********************************************************************

c TRANSLATING SLICER

c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(10000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil

integer Icont,iseed

double precision X(10000000),Y(10000000),deltax,Xmin

double precision a,b,alfa,slicepos,sliceneg,slicezero

real r

Nmil=10

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)
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READ(8,*) Npoint,Ntot,a,b

READ(8,*) iseed,r,Icont

CLOSE(8)

OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)

Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0

ENDDO

CLOSE(7)

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)

Niter = 0

slicepos = 0.5D0

sliceneg = 0.5D0

slicezero = 0.5D0

786 CONTINUE

deltax = 0.0D0

alfa = 1.0D0/(a**b)

DO Np = 1,Npoint

IF (mm(Np) .GT. 0.0D0) THEN

IF (X(Np) .LE. slicepos) THEN



APPENDIX A. NUMERICAL CODES 109

mm(Np) = mm(Np) - 1

ELSE

mm(Np) = mm(Np) + 1

ENDIF

ELSEIF (mm(Np) .LT. 0.0D0) THEN

IF (X(Np) .LE. sliceneg) THEN

mm(Np) = mm(Np) - 1

ELSE

mm(Np) = mm(Np) + 1

ENDIF

ELSE

IF (X(Np) .LT. slicezero) THEN

mm(Np) = mm(Np) - 1

ELSE

mm(Np) = mm(Np) + 1

ENDIF

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

IF(MOD(Niter,Nmil).EQ.0)

& WRITE(8,*) Niter, deltax/DFLOAT(Npoint)

IF (slicepos .LE. 1.0D0 - alfa) THEN

slicepos = slicepos + alfa

ELSE

slicepos = slicepos + alfa - 0.5D0

ENDIF

IF (sliceneg .GE. alfa) THEN

sliceneg = sliceneg - alfa
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ELSE

sliceneg = sliceneg - alfa + 0.5D0

ENDIF

Niter = Niter + 1

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

785 CONTINUE

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c----------------------------------------------------------------------

c Random number generator

c----------------------------------------------------------------------

SUBROUTINE rand(iseed,r)

integer iseed

double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)

r = dseed/d2p31

iseed = int(dseed)

return

end

c**********************************************************************
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A.4 Double Translating Slicer Dynamics

c**********************************************************************

c DOUBLE TRANSLATING SLICER

c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(10000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil

integer Icont,iseed

double precision X(10000000),Y(10000000),deltax,Xmin,h,k,beta

double precision a,b,alfa,sp,sn,spc,snc,sv

real r

Nmil=1000000

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)

READ(8,*) Npoint,Ntot,a,b,h,k

READ(8,*) iseed,r,Icont

CLOSE(8)

OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)

Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0

ENDDO

CLOSE(7)

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)
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Niter = 0

sp = 0.5D0

sn = 0.5D0

spc = 0.7D0

snc = 0.3D0

sv = 1.0D0

786 CONTINUE

deltax = 0.0D0

alfa = a**b

beta = h**k

DO Np = 1,Npoint

IF(X(Np) .GE. 0.5D0) THEN

IF ((X(Np) .GE. sp) .AND. (Y(Np) .LE. sv)) THEN

mm(Np) = mm(Np) + 1

ELSEIF ((X(Np) .GT. sp) .AND. (Y(Np) .GT. sv)) THEN

mm(Np) = mm(Np)

ELSEIF ((X(Np) .GT. spc) .AND. (X(Np) .LT. sp) .AND.

& (Y(Np) .LT. sv)) THEN

mm(Np) = mm(Np) + 1

ELSEIF ((X(Np) .GT. spc) .AND. (X(Np) .LT. sp) .AND.

& (Y(Np) .GT. sv)) THEN

mm(Np) = mm(Np) + 1

ELSEIF ((X(Np) .LT. spc) .AND. (Y(Np) .LT. sv)) THEN

mm(Np) = mm(Np) - 1

ELSEIF ((X(Np) .LT. spc) .AND. (Y(Np) .GT. sv)) THEN

mm(Np) = mm(Np) - 1
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ENDIF

ENDIF

IF (X(Np) .LE. 0.5D0) THEN

IF ((X(Np) .LE. sn) .AND. (Y(Np) .LE. sv)) THEN

mm(Np) = mm(Np) - 1

ELSEIF ((X(Np) .LT. sn) .AND. (Y(Np) .GT. sv)) THEN

mm(Np) = mm(Np)

ELSEIF ((X(Np) .GT. sn) .AND. (X(Np) .LT. snc) .AND.

& (Y(Np) .LT. sv)) THEN

mm(Np) = mm(Np) - 1

ELSEIF ((X(Np) .GT. sn) .AND. (X(Np) .LT. snc) .AND.

& (Y(Np) .GT. sv)) THEN

mm(Np) = mm(Np) - 1

ELSEIF ((X(Np) .GT. snc) .AND. (Y(Np) .LT. sv)) THEN

mm(Np) = mm(Np) + 1

ELSEIF ((X(Np) .GT. snc) .AND. (Y(Np) .GT. sv)) THEN

mm(Np) = mm(Np) + 1

ENDIF

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

IF(MOD(Niter,Nmil).EQ.0)

& WRITE(8,*) Niter, deltax/DFLOAT(Npoint)

IF (sp .LE. 1.0D0 - alfa) THEN

sp = sp + alfa

ELSE
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sp = sp + alfa - 0.5D0

ENDIF

IF (sn .GE. alfa) THEN

sn = sn - alfa

ELSE

sn = sn - alfa + 0.5D0

ENDIF

IF (sv .GE. beta) THEN

sv = sv - beta

ELSE

sv = sv - beta + 1.0D0

ENDIF

Niter = Niter + 1

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

785 CONTINUE

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c----------------------------------------------------------------------

c Random number generator

c----------------------------------------------------------------------

SUBROUTINE rand(iseed,r)

integer iseed
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double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)

r = dseed/d2p31

iseed = int(dseed)

return

end

c**********************************************************************

A.5 Fix Slicer and Translating Points

c**********************************************************************

c NON-EXPANDING MULTI-BAKER MAP with POINT TRASLATION c**********************************************************************

IMPLICIT NONE

integer*8 i,j,mm(10000000),Npoint,Np,Ntot,Niter,Nitdon,Nmil

integer Icont,iseed

double precision X(10000000),Y(10000000),deltax

double precision slice,alfa

real r

Nmil=10000

OPEN(8,file=’Parameters’,form=’formatted’,status=’old’)

READ(8,*) slice,Npoint,Ntot

READ(8,*) iseed,r,Icont

CLOSE(8)
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OPEN(7,file=’IC’,form=’formatted’,status=’unknown’)

DO i = 1,Npoint

CALL rand(iseed,r)

X(i) = r

CALL rand(iseed,r)

Y(i) = r

WRITE(7,*) i,X(i),Y(i)

mm(i) = 0

ENDDO

CLOSE(7)

785 CONTINUE

OPEN(8,file=’msd’,form=’formatted’,status=’unknown’)

Niter = 0

786 CONTINUE

deltax = 0.0D0

alfa = 1.0D0/((7.0D0)**(1.0D0/7.0D0))

DO Np = 1,Npoint

IF (X(Np) .LT. 1.0D0 - alfa) THEN

X(Np) = X(Np) + alfa

ELSEIF (X(Np) .GT. 1.0D0 - alfa) THEN

X(Np) = X(Np) + alfa - 1

ENDIF

IF(mm(Np) .GT. 0) THEN

IF(X(Np) .LT. 1.0D0 - slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 1.0D0 - slice) mm(Np) = mm(Np) + 1

ELSEIF(mm(Np) .LT. 0) THEN
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IF(X(Np) .LT. slice) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. slice) mm(Np) = mm(Np) + 1

ELSE

IF(X(Np) .LT. 0.50D0) mm(Np) = mm(Np) - 1

IF(X(Np) .GT. 0.50D0) mm(Np) = mm(Np) + 1

ENDIF

deltax = deltax + mm(Np)**2

ENDDO

IF(MOD(Niter,Nmil).EQ.0)

& WRITE(8,*) Niter+Nitdon,deltax/DFLOAT(Npoint)

Niter = Niter + 1

IF(Niter .LT. Ntot) GOTO 786

CLOSE(8)

10 FORMAT(2x,i7,1x,10(f15.8,2x,i5,2x))

STOP

END

c----------------------------------------------------------------------

c Random number generator

c----------------------------------------------------------------------

SUBROUTINE rand(iseed,r)

integer iseed

double precision dseed,d2p31m,d2p31

real r

d2p31m = 2147483647.D0

d2p31 = 2147483648.D0

dseed = iseed

dseed = dmod(16807.D0*dseed,d2p31m)
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r = dseed/d2p31

iseed = int(dseed)

return

end

c**********************************************************************
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