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Abstract –
In this letter, we propose a lattice Boltzmann (LB) model for reactive flow simulations at the
low Mach number regime, which is suitable to accommodate significant density variation. A
recently proposed model for compressible thermal flows on standard lattices is herein extended to
combustion applications, where species equations are properly described in order to account for
compressibility effects. This fundamental extension allows to apply LB approach to a wide range
of combustion phenomena, which were not properly addressed so far. The effectiveness of the
proposed approach is proved by simulating combustion of hydrogen/air mixtures in a mesoscale
channel, and a validation against reference numerical solution in the continuum limit is presented.

Introduction. – Lattice Boltzmann method (LB) has
become a very popular technique for simulating fluid flows
[1–6] in a variety of applications such as laminar, turbu-
lent, thermal and multiphase flows, and even beyond hy-
drodynamics, according to some authors [7]. Reasons for
this success are simplicity of implementation, easy han-
dling of complex geometries and suitability for parallel
realization. Despite all this, applications of LB to com-
bustion are still limited (see [8] and references therein).
One reason is that the original LB recovers Navier-Stokes
equations in the incompressible limit, where the density
is (approximately) constant. On the contrary, combustion
problems exhibit significant density variations due to the
heat release in chemical reactions. Therefore, consistent
LB models are requested to accurately recover the Navier-
Stokes-Fourier equations, coupled to a transport equation
for each chemical species. Hence, the numerical model
is expected to behave macroscopically like a compressible
solver, so as to account for large density and temperature
variations.

The first model for combustion simulation was proposed
by Succi at al. [9], assuming fast chemistry and cold flames
with weak heat release. As a consequence, large density
variation was not allowed in the model. Yamamoto et al.
[10] presented a model for reactive flows based on the clas-
sical incompressible LB formulation [11], under the quite
restrictive assumption that the flow field is not affected by
chemical reactions. Filippova and Hänel [12] proposed a

scheme for modeling reactive flows at low Mach numbers
able to handle density variation. In this model, continuity
and momentum equations are solved by means of a modi-
fied Bhatnagar-Gross-Krook (BGK) scheme, coupled with
finite difference schemes for the solution of energy and
species equations. The LB model was derived by modify-
ing the equilibrium populations to have pressure-velocity
coupling included in the relaxation step of the distribu-
tion function. Macroscopically, this model behaves like a
weak-compressible solver. The coupling among continuity,
momentum and energy equations is carried out by intro-
ducing an additional factor to the rest particle in order to
model temporal changes of the density. However, in this
way the simplicity of the LB algorithm is somehow lost.
Chen et al. [13] overcame this limitation using the model
proposed by Guo et al. [14] for the solution of the flow
field.

In Ref. [15], an LB model has been introduced with en-
ergy conservation on standard lattices. This (consistent)
LB model is still limited to weakly compressible flows and
is not suitable to accurately simulate thermal flows with
large density and temperature variations. However, un-
like more traditional approaches, this model makes un-
necessary the introduction of a separate population set
for the energy field. In Refs. [16] and [17], the consis-
tent LB has been extended to derive a model for sim-
ulating compressible thermal flows on standard lattices.
The key ingredient is introduction of correction terms into
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the kinetic Boltzmann-BGK equation, so that the Navier-
Stokes-Fourier equations are accurately recovered. In [17]
the same model has been tested and validated in case of
subsonic flows with large temperature variations, typically
encountered in combustion. More specifically, by solving
the benchmark problem in [18], this model proved to be
a good candidate for simulating reactive flows as it has
shown capacity to handle temperature ratios larger than
10.

In this letter, we investigate the suitability of the afore-
mentioned compressible thermal model for the solution of
combustion problems. To this purpose, without a lack of
generality, we will not consider detailed chemistry, while
a global chemical step for hydrogen/air reactive mixtures
is used instead. The letter is organized as follows. In Sec-
tion 1, the governing equations for reactive flows at the
low Mach number limit are summarized. In Section 2, the
lattice Boltzmann model for simulating reactive flows is
presented: the LB scheme for the species equations is de-
scribed. In Section 3, the LB model for the species trans-
port equation is validated for a one-dimensional problem,
for which the analytical solution can be found. The re-
active LB model is validated for a mesoscale channel [19]
against a reference solution obtained by means of FLU-
ENT [20]. In Section 4 conclusions are drawn and future
works outlined.

1. Governing Equations. – Simulation of reactive
flows at low Mach number requires the solution of con-
servation equations for mass, momentum, and energy as
follows [21]:

∂tρ+∇ · (ρu) = 0, (1a)

∂t (ρu) +∇ · (ρu⊗ u + pI) = ∇ ·Π, (1b)

∂t (ρhs) +∇ · (ρuhs + q) =
dp

dt
+ Π : ∇u−

N∑
k=1

h0kω̇kWk,

(1c)
∂t (ρYk) +∇ · (ρuYk)−∇ · (ρDk∇Yk) = ω̇kWk, (1d)

where ρ is the mixture density, u the mass weighted veloc-
ity, p the pressure, Π the viscous tensor, hs = cp,kT the
sensible enthalpy, T being the mixture temperature and
cp,k the specific heat of the k-th species (k = 1, ..., N).
Fick’s law applies to diffusion of chemical species. The
mass fraction, the reaction rate, the molecular weight and
the enthalpy of formation of the k-th species are denoted
by Yk, ω̇k, Wk and h0k, respectively. In Eq. (1c) spa-
tially isobaric assumption has been used. Here, in the
heat flux q, we neglect the species relative enthalpy flux
ρ
∑
k Ykh

s
kVk, with Vk the diffusion velocity of species k.

2. Lattice Boltzmann Method for reactive flows.
– LB approach solves a discrete kinetic equation where
the main unknowns are the distribution functions of mov-
ing particles. Updating these distribution functions re-
quires only informations along fixed directions identified
by the lattice velocity ei. According to standard termi-
nology, LB schemes are denoted as DdQq, meaning that q

particle ensembles move on a d -dimensional lattice. Eqs.
(1a-1c) and Eq. (1d) are recovered in the macroscopic
limit by the following kinetic equations with the BGK col-
lision model:

gi (x + eiδt, t+ δt) = gi (x, t)

+
2δt

δt+ 2τ
[feqi (x, t)− gi (x, t)]

+
2τδt

δt+ 2τ
[Ψi (x, t) + Φi (x, t)] ,

(2)

ξi,k (x + eiδt, t+ δt) = ξi,k (x, t)

+ω
(∗)
k

[
ξ
eq(∗)
i,k (x, t)− ξi,k (x, t)

]
+QYk

.

(3)
ρ, u and T are computed as moments of gi, while Yk as
moment of ξi. Ψ and Φ are the correction terms designed
in such a way to properly recover the momentum and en-
ergy equations, respectively. The quantity Φ also includes
the energy source term Qh = −

∑
k h

0
kω̇kWk. Detailed

derivation of the thermal model (2) and its implementa-
tion can be found in Refs. [16] and [17]. Below, the LB
model for the species equation is discussed. It is worth
stressing that the model (2) is based on a fixed heat ca-
pacity cp = 2 in LB units (due to a restriction on the
ratio of specific heats, γ = 2, and non-dimensionalisation
of the gas constant R = 1 in LB units). Therefore, the
present model for reactive flows inherits this same feature,
whereas the latter limitation may be overcome in future
works by additional properly designed correction terms.

2.1 Lattice Boltzmann model for species equation.
Standard lattice Boltzmann models for combustion (e.g.
[13]) emulate advection-diffusion-reaction transport equa-
tions by means of the following kinetic equation:

ξi,k (x + eiδt, t+ δt) = ξi,k (x, t)

+ωk

[
ξeqi,k (x, t)− ξi,k (x, t)

]
+QYk

(4)

where ξi,k and ξeqi,k are the distribution function and the
equilibrium distribution functions for species k along the
lattice direction i, respectively, and ωk is the relaxation
frequency. QYk

is the species source term defined as:

QYk
= ω̇kWk. (5)

Both D2Q9 and D2Q5 models can be used to recover the
species transport equation. However, here for simplicity,
we consider the D2Q5 model, where the equilibrium pop-
ulations are defined as:

ξeqi,k = wiρYk [1 + 3(ei · u)] , (6)

with the lattice weights w0 = 1/3, wi = 1/6 (i = 1, ..., 4),
and the lattice velocities e0 = (0, 0), ei = (cos(i −
1)π/2, sin(i − 1)π/2) (i = 1, ..., 4). The moments corre-
sponding to the equilibrium populations (6) are:

4∑
i=0

ξeqi,k =

4∑
i=0

ξi,k = ρYk, (7a)
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4∑
i=0

ei,αξ
eq
i,k = ρYkuα, (7b)

4∑
i=0

e2i,αξ
eq
i,k =

1

3
ρYk. (7c)

Unfortunately the previous approach fails in case of large
density gradients. To the best of our knowledge, some
models allow large density variations in the fluid flow, but
neglecting the corresponding feedback to the species fields
(see, e.g., [13]).

Eq. (4)-(5) recover the species transport equation (1d)
with a deviation term:

∇ · (DkYk∇ρ) , (8)

which is activated in case of significant compressibility ef-
fects (i.e. large ∇ρ). In order to remove the deviation
term in the species equation, two possible strategies may
be adopted:

a. To introduce in Eq. (4) a correction term to be ap-
proximated, e.g., by means of finite difference formu-
las, consistently with the thermal model described in
Refs. [16] and [17];

b. To modify the equilibrium population and the relax-
ation frequency in order to enforce Eq. (4) to accu-
rately recover Eq. (1d).

In this letter, we follow the second strategy, because it
only relies upon the LB formulation.

Deviation term (8) stems from the second-order mo-
ment. In order to remove it, the first step is to modify the
equilibrium distribution function as follows:

ξ
eq(∗)
0,k = ρYk

(
1− 2

3
ϕ

)
,

ξ
eq(∗)
1,...,4,k =

1

6
ρYk (ϕ+ 3 (ei · u)) ,

(9)

where ϕ = ρ(∗)/ρ, ρ(∗) is a fixed value for the entire domain
at any time step, with ρ(∗) being the minimum value of the
density field. The moments corresponding to the modified
equilibrium (9) are:

4∑
i=0

ξ
eq(∗)
i,k =

4∑
i=0

ξi,k = ρYk, (10a)

4∑
i=0

ei,αξ
eq(∗)
i,k = ρYkuα, (10b)

4∑
i=0

e2i,αξ
eq(∗)
i,k =

1

3
ρ(∗)Yk. (10c)

The second step for recovering Eq. (1d) consists in redefin-
ing the relaxation frequency in Eq. (4). The following
relation is proposed:

ω
(∗)
k =

1

1

2
+

1

ϕ

(
1

ωk
− 1

2

) , (11)

δx Error L2[Y ] Slope
0.05 2.745521× 10−2 −
0.025 8.186644× 10−3 1.75
0.0125 2.495928× 10−3 1.71

Table 1: Convergence analysis of the LB model for the species
equations in the case of diffusive scaling (δt ∼ δx2).

such that, if ϕ = 1 then ω
(∗)
k = ωk. In both D2Q5 and

D2Q9 models the relaxation frequency ωk is related to the
k-th species mass diffusivity Dk in Eq. (1d) as:

Dk =
1

3

(
1

ωk
− 1

2

)
. (12)

With the suggested modification, Eq. (3) recovers Eq.
(1d) in the macroscopic limit. It is clear from Eq. (11)
that, for stability reasons, ϕ < 1. It is worth stressing
that, in the proposed model, there is a single consistent
density field which is the one coming from populations
gi (2), and can thus properly accommodate large density
variations. Therefore here, compressibility is taken into
account using the gi populations for computing density,
which is in turn adopted in both the equilibrium popula-
tions (9) and the relaxation frequency (11) (through ϕ):
In this way, density variations are consistently introduced
in the species equations (3) (asymptotically recovering Eq.
(1d)).

Without a lack of generality, a minimal lattice D2Q5 is
used for the species transport equations (unlike the hydro-
dynamic part (2) which is based on a D2Q9 lattice). Such
a choice is motivated by convenience in reducing the mem-
ory demand. This is particularly desirable in the case of
detailed chemical kinetics, where a large number of species
is typically taken into account. To this respect, the com-
parative study performed below provides numerical evi-
dence that this choice is feasible. However, for the sake
of completeness, we report below the equilibrium popula-
tions in the case a D2Q9 lattice is adopted for the species
transport equations:

ξ
eq(∗)
0,k =

1

9
ρYk (9− 5ϕ) ,

ξ
eq(∗)
1,...,4,k =

1

9
ρYk (ϕ+ 3 (ei · u)) ,

ξ
eq(∗)
5,...,8,k =

1

36
ρYk (ϕ+ 3 (ei · u)) .

(13)

3. Numerical results. – First, validation of the pro-
posed LB model for the species transport equation is dis-
cussed in this section. The 1D non-dimensional form of
Eq. (1d) at the steady state for one species (k = 1) non-
reacting flow with constant mass diffusivity is:

ρ′u′x
dY

dx′
=

D′

ReSc

d

dx′

(
ρ′
dY

dx′

)
, (14)

where x′ = x/L0, ρ′ = ρ/ρ0, u′x = ux/u0 and D′ =
D/(u0L0), with 0 and ′ denoting the reference and the
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Fig. 1: Species mass fractions along the channel walls pre-
dicted by basic model (4) (dashed-lines) are compared to those
recovered by the proposed model (solid-lines). Symbols are
the reference solution (circles H2O, squares O2, triangles H2).
Present application is Test 1 described in Section 3.

Fig. 2: Test 1: Mixture density and velocity along the horizon-
tal plane of symmetry. Solid lines and symbols represent the
LB and the reference solutions, respectively.

Fig. 3: Test 1: Mixture temperature and H2 mass fraction
along the horizontal plane of symmetry. Solid lines and sym-
bols represent the LB and the reference solutions, respectively.

Fig. 4: Test 1: H2O and O2 mass fractions along the horizontal
plane of symmetry. Solid lines and symbols represent the LB
and the reference solutions, respectively.

Fig. 5: Test 2: Mixture density and x-velocity component along
the horizontal plane of symmetry. Solid lines and symbols rep-
resent the LB and the reference solutions, respectively.

non-dimensional quantities, respectively. Re and Sc are
the Reynolds number and the Schmidt number. Defining
Z = dY/dx′ and Λ = ρ′Z, Eq. (14) is rewritten as:

u′xΛ =
D′

ReSc

dΛ

dx′
. (15)

Imposing u′ = 1/Λ, the solution of Eq. (15) is:

Λ = x′
ReSc

D′
+ Λ0, (16)

where Λ0 is an arbitrary constant. The condition
d(ρ′u′x)/dx′ = 0 is satisfied imposing ρ′ = Λ, such that
Z = 1. Thus, the analytical solution of Eq. (14) is:

Yan = x′ + Y0, (17)

which can be used to validate the proposed LB model for
species transport equation. Here, periodicity is assumed
in the y-direction of a square domain, so as to reduce the
problem to 1D. Analytical solution is imposed at the inlet
(x′ = 0) and the outlet (x′ = 1) of the domain. The
L2 norm of deviation of numerical results from the exact
solution are reported in Table 1, in case of diffusive scaling
(i.e. δt ∼ δx2) [22].

In order to validate the LB model for reactive flows,
we consider combustion of stoichiometric premixed hy-
drogen/air reactive mixture between two parallel hori-
zontal plates, with a fixed length-to-height aspect ratio,
L/h = 2.5 and length L = 5 mm. This domain is usually
referred to as mesochannel [19]. Ignition of the reactive
mixture is produced and sustained by heated walls. For
fixed values of the channel height h and the wall temper-
ature, different types of flames are observed, as function
of the inlet velocity Uin [19]. Validation of the present
LB model is carried out for Uin = 0.85 m/s (Test 1) and
Uin = 0.48 m/s (Test 2). In both cases, constant tem-
perature Tin = 300 K is prescribed at the inflow and a
well premixed stoichiometric H2-air mixture enters from
the inlet. Along the channel walls, zero-flux for all species
(e.g. chemically inert walls) and no-slip conditions for
both velocity component are imposed. The wall temper-
ature is prescribed via a hyperbolic tangent connecting

p-4



A Lattice Boltzmann model for reactive flows simulation

Fig. 6: Test 2: Mixture temperature and H2 mass fraction
along the horizontal plane of symmetry. Solid lines and sym-
bols represent the LB and the reference solutions, respectively.

fresh conditions up to the highest temperature Tw = 960K,
according to T (x) = S1 tanh(βx − γ) + (Tw − S1), with
S1 = 330 K, β = 5, γ = 4.2 with x expressed in millime-
ters. Such profile mimics heat losses at the channel inlet
due to convective cooling of the cold incoming flow and
radiative heat losses to the colder surroundings. At the
outlet, atmospheric pressure and zero Neumann bound-
ary conditions are imposed. For the sake of simplicity, we
have assumed Dk = D and cp,k = cp for the mass diffu-
sivity and specific heat of all chemical species. The global
reaction H2 + 1/2 O2 → H2O by Marinov et al. [23] is em-
ployed for the evaluation of the reaction rates in Eqs. (1c)
and (1d):

R = ACH2C
0.5
O2

exp

(
− E

RT

)
, (18)

with A = 1.8 × 1013 mol−0.5 cm1.5 s−1 and E =
146.4 kJ/mol.

For validation purposes, solutions of the LB scheme have
been compared against solutions from FLUENT [20]. In
this simulation we make use of 501(Nx)×201(Ny) regu-
lar lattice. Mixture properties have been assumed con-
stant: the specific heat is cp = 1.4 kJ/(kgK), the kinematic
viscosity is ν = 0.22 × 10−4 m2/s, the mass diffusivity
D = 1.4× 10−4 m2/s, the Prandtl number Pr = 0.465 and
the Lewis number Le = α/D = 1/3, where α is thermal
diffusivity. Concerning the flow field, diffusive boundary
conditions [24] are used for the walls, while equilibrium
populations are imposed at the inlet and outlet as follows:

gini (l = 1,m) = feqi

(
p (l = 2,m)

T in
,uin, T in

)
, (19)

gouti (l = Nx,m) = feqi

[
pout

T (l = Nx − 1,m)
,

u (l = Nx − 1,m) , T (l = Nx − 1,m)] ,
(20)

where indices l and m denote the nodes along x- and y-
directions, respectively, with pout being the LB outlet pres-
sure corresponding to p = 1 atm.

For the species equations, bounce-back is applied at the
walls while equilibrium populations are used at the inlet
and outlet as follows:

ξini,k (l = 1,m) = ξeqi,k
(
ρinY ink ,uin

)
, (21)

Fig. 7: Test 2: H2O and O2 mass fractions along the horizontal
plane of symmetry. Solid lines and symbols represent the LB
and the reference solutions, respectively.

ξouti,k (l = Nx,m) = ξeqi,k

[
(ρYk)

out
,

u (l = Nx,m)]
(22)

where Y ink represents the mass fraction of the fresh
mixture, while ρin = p (l = 2,m) /T in, u (l = Nx,m) =
u (l = Nx − 1,m) and(

ρY k
)out

= 3
2ρ (l = Nx − 1,m)Yk (l = Nx − 1,

m)− 1
2ρ (l = Nx − 3,m)Y k (l = Nx − 3,m) .

(23)
Eqs. (19) ensure first-order accurate homogeneous Neu-

mann condition for pressure at the inlet while, owing to
(20), same boundary condition holds for velocity and tem-
perature at the outlet. Finally, Eqs. (22) and (23) mimic
free outlet condition for ρYk though extrapolation over
nodes with l = Nx − 3 and l = Nx − 1.

The proposed reactive LB model is validated against
reference solutions from FLUENT for both test problems.
In Figs. 2-7, comparisons between our results and the
reference ones are reported at steady state. Good agree-
ment is demonstrated. In Figs. 2-4, the solutions for
Uin = 0.85 m/s are presented. In this case, a longer chan-
nel is needed, in order to have complete fuel conversion.
However, a smaller channel length has been chosen for val-
idation purposes, so to reduce the computational effort. In
order to check the suitability of the model at larger tem-
perature ratios in the bulk, the velocity at the inlet is
reduced to Uin = 0.48 m/s. In this case, a closed symmet-
ric flame is anchored at the vicinity of the inlet and fully
converts the fuel within the channel (Figs. 5-7). In the
test problems, the maximum relative difference between
solutions are found to be: 2% for the density, 4.2% for the
velocity, 5.7% for the temperature, and 3% for the chem-
ical species. In order to check the consistency of the LB
scheme, we computed the following quantities for the H,
O and N elements:

Mn =

∫ h

0

N∑
k=1

ρuxYkck,ndy, (24)

where ck,n is the number of atoms of the n-th element in
the k-th species. Mass conservation is verified by mea-
suring the previous quantities through the domain. For
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Test 1, MH = 8.01 × 10−5 ± 5 × 10−6, MO = 6.42 ×
10−4 ± 9.42× 10−6 and MN = 2.11× 10−3 ± 3.96× 10−5.
For Test 2, MH = 8.26 × 10−5 ± 1.73 × 10−6, MO =
5.15×10−5±7.4×10−7 andMN = 3.17×10−4±1.96×10−9.
We finally stress that mass conservation through (24) is
accurate at the same level as FLUENT solution.

4. Conclusions. – In this letter, we introduce a lat-
tice Boltzmann scheme for simulating reactive flows in the
low Mach number limit, on the basis of a recently proposed
thermal model. The latter method enables to handle sig-
nificant density and temperature variations without loss
of numerical stability and with good accuracy.

Moreover, the thermal model had to be coupled with
mass conservation equations for the chemical species. For
this case, a model able to deal with compressibility ef-
fects was also derived. To this purpose, we proposed a
new scheme for solving the advection-diffusion equation
of chemical species, where compressibility effects are taken
into account by modifying both the equilibrium distribu-
tion function and the relaxation frequency in the BGK col-
lision term. This fundamental extension allows to apply
LB approach to a wide range of combustion phenomena,
which were not properly addressed so far.

The present model for reactive flows has been validated
against a reference code in the continuum limit for hydro-
gen/air reactive mixture, by simulating two different test
problems. Solutions of the proposed model are found to
be in very good agreement with the reference results.

Here, a global step mechanism with only three reac-
tive species has been used. Simulation of reactive flows
with detailed chemistry by means of lattice Boltzmann
method, poses a challenge due to large number of fields
needed to store in memory (compared to a conventional
method). Moreover, stiffness imposes small time steps,
making the computational effort even more demanding.
From this point of view, model reduction techniques rep-
resent a possible solution, where both stiffness and the
number of fields involved in the computations are drasti-
cally reduced [25,26].

REFERENCES

[1] F. J. Higuera, S. Succi, R. Benzi, Lattice Gas Dynamics
with Enhanced Collisions, EuroPhys. Lett, 1989, 9, 345-39

[2] F. J. Higuera, J. Jimenez, Boltzmann approach to lattice
gas simulations, EuroPhys. Lett., 1989, 9, 663-668

[3] H. Chen, S. Chen, H. W. Matthaeus, Recovery the Navier-
Stokes equations using lattice gas Boltzmann method,
Phys. Rev. A, 1992, 45, R5339-R5342

[4] Y. Qian, D. d’Humieres, P. Lallemand, Lattice BGK mod-
els for Navier-Stokes equation, Europhys.Lett., 1992, 17,
479-484

[5] X. He, L. S. Luo, Theory of lattice Boltzmann method:
from the Boltzmann equation to the lattice Boltzmann
equation, Phys. Rev. E, 1997, 56, 6811-6817

[6] S. Succi, The lattice Boltzmann equation for fluid dynamics
and beyond, 2nd ed. Oxford University Press, New York,
2001

[7] M. Sbragaglia, S. Succi, A note on the lattice Boltzmann
method beyond the Chapman-Enskog limits, Europhys.
Lett. , 2006, 73 (3), 370-376

[8] C. E. Frouzakis, Lattice Boltzmann Methods for Reac-
tive and Other Flows, in Turbulent Combustion Modeling
edited by T. Echekki and E. Mastorakos, Fluid Mechanics
and Its Applications, 2011, 95, Part 4, 461-486

[9] S. Succi, G. Bella, F. Papetti, Lattice kinetic theory for
numerical combustion, J. Sci. Comp., 1997, 12, 395-408

[10] K. Yamamoto, X. He, G. D. Doolen, Simulation of com-
bustion field with lattice Boltzmann method, J. Stat.
Phys., 2002, 107, 367-383

[11] Q. Zou, S. Hou, S. Chen, G. D. Doolen, An im-
proved incompressible lattice Boltzmann model for time-
independent flows, J. Stat. Phys, 1995, 81, 35-48

[12] O. Filippova, D. Hänel, A novel lattice BGK approah for
low Mah number combustion, J. Comp. Phys., 2000, 158,
139-160

[13] S. Chen, Z. Liu, Z. Tian, B. Shi,. C. Zheng, A simple lat-
tice Boltzmann scheme for combustion simulation, Comp.
Math. Appl., 2008, 55, 1424-1432

[14] Z. L. Guo, B. C. Shi, N. C. Wang, Lattice BGK model
for incompressible NavierStokes equation, J. Comp. Phys.,
2000, 165, 288-306

[15] S. Ansumali, I. V. Karlin, Consistent Lattice Boltzmann
method, Phys. Rev. Lett., 2005, 95, 260605-260608

[16] N. I. Prasianakis and I.V. Karlin, Lattice Boltzmann
method for simulation of thermal flows on standard lat-
tices, Phys. Rev. E, 2007, 76, 016702-016712

[17] N. I. Prasianakis, I. V. Karlin, Lattice Boltzmann method
for simulation of compressible flows on standard lattices,
Phys. Rev. E, 2008, 78, 016704-016710

[18] A. G. Tomboulides, S. A. Orzag, A quasi-two dimensional
benchmark problem for low Mach number compressible
codes, J. Comp. Phys., 1998, 146, 691-706

[19] G. Pizza, C. E. Frouzakis, J. Mantzaras, A. G.
Tomboulides, K. Boulouchos, Dynamics of premixed hy-
drogen/air flames in mesoscale channels, Comb. Flame,
2008, 155, 2-20

[20] Fluent Inc., Fluent Release 6. 3 User Guide, Fluent Inc.
(2006)

[21] C. K. Law, Combustion Physics, Cambridge University
Press, 2006

[22] M. Junk, A. Klar, L. S. Luo, Asymptotic analysis of the
lattice Boltzmann equation, Journ. Comp. Phys., 2005,
210, 676-704

[23] N. M. Marinov, C. K. Westbrook, W. J. Pitz, Detailed
global chemical kinetics model for hydrogen, 8th Int. Symp.
on Transport Properties, 1995, San Francisco, CA

[24] S. Ansumali, I. V. Karlin, Kinetic boundary condition for
the lattice Boltzmann method, Phys. Rev. E, 2002, 66,
026311-026316

[25] E. Chiavazzo, I. V. Karlin, A. N. Gorban, K. Boulouchos,
Combustion simulation via lattice Boltzmann and reduced
chemical kinetics, J. Stat. Mech., 2009, P06013

[26] E. Chiavazzo, I. V. Karlin, A. N. Gorban, K. Boulouchos,
Coupling of the model reduction technique with the lat-
tice Boltzmann method for combustion simulations, Comb.
Flame, 2010, 157, 1833-1849

p-6


