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Chapter 1

Introduction

The data mining and knowledge discovery (KDD) process accomplishes the
task of converting the raw data into useful information [107]. The core part
of data mining process entails the application of predictive or descriptive
techniques to analyze the data of interest. A widely used descriptive data
mining technique is pattern discovery (also called association analysis). It
focuses on discovering associations (i.e., the patterns) that represent strong
correlations among data [107]. Useful applications of this analysis in differ-
ent real-life contexts have been already proposed in literature (e.g., medical
images [7], network traffic analysis [15], biological data [37], context-aware
applications [50, 112]).

The suitability of pattern discovery approaches for effectively supporting
business analysis and decision making strictly depends on the granularity
level of the available information. This thesis is mainly focused on the study
and the application of pattern discovery algorithms that aggregate database
knowledge to discover and exploit valuable correlations, hidden in the ana-
lyzed data, at different abstraction levels. More specifically, the aim of the
research effort described in this work is two-fold: the discovery of associa-
tions, in the form of generalized patterns, from large data collections and
the inference of semantic models, i.e., taxonomies and ontologies, suitable
for driving the mining process.

Association discovery focuses on discovering hidden correlations among
data. Taxonomies provide hierarchies of aggregations over the analyzed data
that may be exploited to drive the extraction of correlations at different
abstraction levels, i.e., the generalized patterns. The automatic inference of
sound semantic models, such as taxonomies and ontologies, customized on
the analyzed data may be effectively combined with the process of generalized
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2 CHAPTER 1. INTRODUCTION

pattern discovery to ease the domain expert’s task and, thus, to enhance the
knowledge discovery process. To this aim, a semi-automatic approach [32]
to support the construction of ontologies and taxonomies based on well-
founded database and data mining techniques, i.e., functional dependency
discovery [107] and association rule discovery [3], is presented.

The study of novel and more effective generalized pattern mining algo-
rithms is focused on selecting the most informative and not redundant pat-
terns and making the extracted pattern sets manageable by domain experts.
In the context of frequent itemset and association rule mining [3], a signif-
icant research effort has been devoted to (i) preventing the generation of
redundant or less interesting patterns by pushing ad-hoc constraints into
the mining process and (ii) selecting most valuable patterns by means of
postprocessing steps. This thesis addresses both issues in the context of gen-
eralized itemsets and rules [103]. It presents an effective generalized itemset
mining algorithm [16] that prevents the extraction of redundant patterns by
lazily evaluating the given taxonomy and a rule mining constraint useful for
reducing the number of generated high level rules [17].

A parallel effort has been devoted to perform change mining from times-
tamped data collections by means of association discovery. Change mining
concerns the analysis and the comparison of the information extracted by
different data mining and knowledge discovery sessions scheduled over time.
The aim is to track the evolution of patterns over consecutive time periods
to discover and select most significant history patterns, i.e., patterns that
represent the evolution of correlations among data from one time period to
another. This thesis also addresses the usage of generalized pattern in change
mining. More specifically, a type of history pattern, i.e., the history general-
ized pattern [31], that represents dynamic knowledge at different abstraction
levels is presented. The history generalized patterns may include general-
izations of the same low level pattern to prevent the discarding of possibly
relevant knowledge that unexpectedly occurs rarely in a certain time period.

Finally, the application of the previously described mining patterns and
algorithms [16, 17, 31, 32] to a number of real application contexts is dis-
cussed. Experimental results achieved on real data coming from mobile
context-aware applications [19], the network traffic domain [16, 17], and social
networks analysis [33, 34] show the effectiveness of the proposed approaches.
The obtained results have been validated by domain experts to select most
relevant patterns and figure out most useful applications for each domain.

This thesis is organized as follows. Chapter 2 overviews main research
efforts pertaining to generalized pattern discovery, change mining, seman-
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tic model construction, and their applications in real application contexts.
Chapter 3 presents the background knowledge about generalized pattern dis-
covery and formally states the generalized itemset and association rule mining
problems. Chapter 4 presents an algorithm, namely GenIO (Generalized
Itemset DiscOverer), to accomplish the generalized itemset mining task ef-
fectively and efficiently. Furthermore, it also presents three data mining sys-
tems based on the same algorithm to perform knowledge discovery from data
coming from different application domains. Chapter 5 presents constraints
to push into the generalized association rule mining process to select the
patterns of interests. Chapter 6 addresses the problem of change mining in
the presence of taxonomies by introducing the HiGen (History Generalized
Pattern), while Chapter 7 presents a semi-automatic approach for seman-
tic model construction. Finally, Chapter 8 draws conclusions and presents
future developments for the discussed approaches.
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Chapter 2

Related work

This chapter overviews main research work pertaining to the research prob-
lems tackled by this thesis. In particular, Section 2.1 present most rele-
vant work concerning generalized pattern discovery. Sections 2.2 and 2.3
presents most significant research efforts concerning, respectively, pattern
change mining and the inference of meaningful semantic models (e.g., ontolo-
gies and taxonomies) customized on the analyzed data. Finally, Section 2.4
overviews main data mining applications contexts in which the use of gen-
eralized patterns has been already investigated, i.e., context-aware systems,
network traffic analysis, and social network analysis.

2.1 Generalized pattern discovery

A significant research effort has been devoted to the design and the devel-
opment of novel algorithms to efficiently extract generalized itemsets and
association rules. This issue was first addressed in [103] to perform market
basket analysis. The first generalized association rule mining algorithm [103]
generates itemsets by considering, for each item, all its parents in a taxon-
omy (i.e., a is-a hierarchy built over data items). Hence, candidate frequent
itemsets are generated by exhaustively evaluating the taxonomy and, thus,
by extracting a large amount of redundant patterns.

One step further towards a more efficient extraction process for general-
ized association rules was based on new optimization strategies [16, 52, 58,
94]. In [58] a faster support counting is proposed to compute the TID inter-
section in algorithms that exploit the vertical data format [122]. Differently,
in [52], an optimization strategy based on a top-down hierarchy traversal

5



6 CHAPTER 2. RELATED WORK

is proposed. It identifies in advance itemsets that cannot be frequent in
a transactional dataset by exploiting the Apriori principle [2]. To further
prune the search space, it also proposes to mainly focus on a valuable subset
of generalized itemsets, namely the level-sharing itemset, characterized by
items belonging to the same level of the taxonomy. In [52] the discovery
of interesting generalized association rules is driven by the enforcement of a
level-dependent multiple support threshold when level-sharing itemsets are
extracted. The idea to drive the extraction of traditional generalized item-
sets by means of opportunistic aggregation has been first proposed in [16]
and exploited in [8, 17, 19, 31, 34]. The algorithm proposed in [16], namely
GenIO (Generalized Itemset DiscOverer), discovers all frequent itemsets
and all (traditional) generalized itemsets having at least an infrequent de-
scendant. It has been profitability exploited in different application domains
(i.e., network traffic analysis [8], context-aware application [19], social net-
work mining [34]) where the extracted knowledge has deemed valuable by the
corresponding domain experts. A more through description of the approaches
proposed in [17, 19, 31, 34] is given in the following sections.

Typically, the analyst is not interested in all the frequent (generalized)
itemsets or rules. Hence, many previous works [5, 9, 23, 105, 116] have been
devoted to enforcing constraints to extract only a subset of the patterns of
interest. Some of them are based on the items of interest according to the
analyst preferences (e.g., [5, 9, 105]) while others are based on statistical and
objective measures (e.g., [23, 116]). Since the analyst commonly knows the
items or the type of patterns he/she is mainly interested in, this knowledge
can be used to prune the search space. The first algorithm that allows the
user to specify a set of constraints on the patterns of interest is proposed
in [5]. It allows specifying a set of item constraints, which are used to select
the items of interest and how they could be combined, by means of boolean
expressions (e.g., the presence and the absence of items into the mined set).
Differently, in [105], subset-superset and parent-child relationships in the
lattice of generalized patterns are exploited to constrain the mining process.
Futhermore, authors in [12] propose to extend the traditional association rule
mining problem [2] by exploiting a broader set of logical operators that could
appear in data items, rather than just the equality. This approach allows
analysts to state the item value ranges of interest. However, the usage of both
item constraints [5] and more general item forms [12] requires to explicate all
the items that can appear together and those that cannot. Hence, constraints
based on the pattern schema are definitely more compact and easy to use.
In [9] an ad-hoc language to enforce constraints on the characteristics of the
rule body and head has been proposed. Other approaches (e.g., [116]) exploit
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objective measures and statistical tests to perform pattern selection, instead
of analyst preferences. For example, in [116] a set of statistical tests have
been used to select significant patterns. The proposed approach is orthogonal
with respect to the aforementioned ones [5, 9] as it could be applied to
select the most statistically significant patterns among those of analyst’s
interest. Finally, authors in [84] combine the usage of objective measures
with a subjective association rule evaluation driven by ontologies to select
the subset of rules of interest. Authors in [17] exploit schema constraints,
i.e., constraints at the level of the database schema, to early patterns not
of analyst’s interest during the generalized association rule mining process.
Furthermore, a constraint on the set of extracted high level rules, namely the
generalized confidence constraint, is proposed with the aim at preventing the
extraction of redundant high level rules. A more through description of the
approach proposed in [17] is given in Chapter 5.

In the context of fuzzy association rules [71] the problem of generalized
rule mining has been also addressed. In [73] a top-down deepening approach
has been adopted in fuzzy association rule mining by enforcing, as in [52, 79],
different minimum support thresholds on different items.

A parallel effort has been devoted to mining generalized rules from both
categorical and quantitative (i.e., numerical) data [4], by extending the con-
cFrequent ept of boolean association rules introduced in [2]. While categorical
attributes are aggregated by following a user-provided taxonomy, quantita-
tive data are aggregated by minimizing the information loss measure [53].

2.2 Pattern change mining

Frequent itemset mining has been first proposed in [2], in the context of mar-
ket basket analysis, as the first step of the association rule extraction process.
The problem of discovering relevant changes in the history of itemsets and
association rules has been already addressed by a number of research papers
(e.g., [6, 10, 21, 26, 44, 80]). Active data mining [6] was the first attempt
to represent and query the history pattern of the discovered association rule
quality indexes. It first mines rules, from datasets collected in different time
periods, by adding rules and their related quality indexes (e.g., support and
confidence [2]) to a common rule base. Next, the analyst could specify a
history pattern in a trigger which is fired when such a pattern trend is ex-
hibiting. More recently, other time-related data mining frameworks tailored
to monitor and detect changes in rule support and confidence have been pro-
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posed [21, 26, 109]. In [26] patterns are evaluated and pruned based on both
subjective and objective interestingness measures. The aim of [21] is to mon-
itor the mined patterns and to reduce the effort spent in data mining. To
achieve this goal, new patterns are observed as soon as they emerge, and old
patterns are removed from the rule base as soon as they become extinct. To
further reduce the computational cost, at one time period a subset of rules is
selected and monitored, while data changes that occur in subsequent periods
are measured by their impact on the rules being monitored. Similarly, in [109]
itemset change mining from time-varying data streams is addressed. Differ-
ently,the work presented in [82] deals with rule change mining by discovering
two main types of rules: (i) the stable rules, i.e., rules that do not change a
great deal over time and, thus, are more reliable and could be trusted and (ii)
the trend rules, i.e., rules that indicate some underlying systematic trends of
potential interest.

The problem of discovering the subset of most relevant changes in as-
sociation rules has been addressed by (i) evaluating rule changes that oc-
cur between two time periods by means of chi-square test [80], (ii) search-
ing for border descriptions of emerging patterns extracted from a pair of
datasets [44], and (iii) applying a fuzzy approach to rule change evalua-
tion [10]. Unlike [10, 44, 80], the approach proposed in [31] addresses change
mining in the presence of taxonomies by representing patterns that become
infrequent in a certain time period by means of one of their generalizations
characterized by minimal redundancy. A more detailed description of the
abovementioned approach is reported in Chapter 6.

A parallel issue concerns the detection of most notable changes in mul-
tidimensional data measures. Authors in [65] first introduce the concept of
cubegrade and compare the multidimensional data cube cells with their gra-
dient cells, namely their ancestors, descendants, and siblings. In [43] authors
extend the work proposed in [65] by pushing anti-monotone constraints into
the mining of highly similar data cube cell pairs with hugely different measure
values.

2.3 inference of semantic models

An ontology is a complete domain knowledge representation through con-
cepts and the corresponding relationships. Semantic Web tools provide the
platforms to significantly enrich knowledge representation through a wide
range of semantic-based models. These models support users in understand-
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ing the meaning of a resource and the related domain. However, the creation
of ontologies in a Web Ontology Language, like OWL [115], heavily rely on
human intervention. Thus, the automatic construction of conceptual ontolo-
gies is becoming an increasingly appealing target in several research fields,
including information retrieval, data mining, data summarization, and text
categorization.

Ontology inference has been addressed in different application contexts,
such as social network analysis [51] and e-learning environments [72]. Offline
ontology generation addresses the construction of hierarchical data models
that could be effectively and efficiently used by the online systems. In [51] the
authors proposed the integration of social relations coming from social net-
works with collaborative tagging to extract lightweight ontologies by means
of hierarchical clustering. Differently, in [72], the extraction of ontologies
from textual messages in an e-learning environment is proposed. To this
aim, it performs fuzzy text mining and categorization by exploiting statistical
measures (e.g., mutual information) to evaluate term significance. Inferred
ontologies were posted on online forums to support instructors in quickly
identifying the progress of their students.

A parallel effort has been devoted to either constructing or automatically
building a taxonomy, which is a specialization of an ontology. A taxonomy is
a hierarchical organization of concepts, topics, and keywords in which only
is-a relationships among concepts hold. Several works address taxonomy
construction by exploiting well-known data mining techniques. Mostly pro-
posed algorithms exploited clustering techniques to provide a well-founded
structuring of concepts of interest [36, 42, 49, 64]. The mostly used tech-
niques are based on hierarchical clustering, which produces a set of nested
clusters organized as a hierarchical tree, called dendrogram. The most rel-
evant application context in which clustering techniques have been adopted
to address taxonomy construction is the context of textual data analysis
[36, 42, 49, 54, 59, 64]. A similar technique has been also applied to the
results of Web search engines to improve user browsing [123] and to enhance
the quality of recommendation systems [77].

To overcome well-known hierarchical clustering algorithm limitations in
terms of complexity and optimality, diverse techniques have been devised in
different application domains [86, 97, 117]. In the context of textual data
analysis, in [86] authors first proposed to exploit neural networks to produce
a compound similarity measure of words. Differently, in [117] salient words
are extracted from documents and hierarchically organized by using, simi-
larly to [97], term co-occurrence frequency as an indicator of the semantic
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closeness between terms. To address the building of an efficient text summa-
rization system,authors in [61] proposed to use a lexical thesaurus, namely
WordNet, to generalize concepts and, thus, to identify the topics within a text
document, while, in [100], a taxonomy is constructed to provide a structure
for linking similar concepts in different dissertation abstracts. Differently,
in [49] a system for the construction of taxonomies that yields high accuracy
with automated categorization systems on the Web is presented. Differently,
the focus of the approach presented in [32] is to support the construction
of schema ontologies and their corresponding instances, based on Descrip-
tion Logics, by exploiting both functional dependencies [70] and association
rules [2]. A more detailed description of the proposed method is given in
Chapter 7.

2.4 Data mining applications

This section overviews main data mining systems relative to three of the
application contexts in which the use of generalized patterns has been already
investigated: context-aware analysis (see Section 2.4.1), social network data
analysis (see Section 2.4.3), and network traffic analysis (see Section 2.4.2).

2.4.1 Context-aware systems

Context-aware applications allow service providers to adapt their services to
the actual user needs, thus offering them personalized services depending on
their current application context. Provided services could be personalized by
exploiting either the current context of the user [27, 66], or historic context
and behavior of the user [30]. An effective user and service context profiling
focuses on supporting user activities and service provisioning by means of a
general-purpose system able to tailor service supply with high flexibility.

Research activities on context-awareness computing have been devoted
both to providing different definitions of context-awareness and to build-
ing different context-aware applications (e.g., mobile phone applications [50],
medical applications [113], computer vision applications [120]). Context con-
sists of any circumstantial factors or application context users are involved in.
Thus, context-awareness means that the system is able to use context infor-
mation. A system is context-aware if it can extract, interpret and use context
information and adapt its functionalities to the current usage context.
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An in-depth literature review focused on context-aware systems has been
presented and discussed in [60], in which a classification of the most sig-
nificant related papers is proposed. In particular, the analyzed papers are
classified according to the architectural layer of a general context-aware sys-
tem to which each paper refers (e.g., application layer, middleware layer,
network layer). Differently, in [25] the authors propose a survey focused on
data-oriented context models. Firstly, a set of currently available context
models is described, then a comprehensive evaluation framework is intro-
duced to allow application designers to select the appropriate context model
for a given target application. Main contextual information retrieval evalua-
tion methodologies are also discussed in [106].

The usage of statistical and machine learning techniques (e.g., rule induc-
tion, neural networks, Bayesian networks) or data mining techniques (e.g.,
classification algorithms) has been proposed to exploit context data in build-
ing more accurate predictive user models (e.g., [89], [110], and [124]) and
user profiles (e.g., [88]). Usually, different service and application models
are tailored to the user and to the situation in which she/he is involved by
means, for example, of rule based or probabilistic approaches. These models
are then exploited to (i) suggest applications and services depending on what
are the user interests in his/her current situation [112], (ii) perform customer
segmentation [67], and (iii) personalize information retrieval tasks [41, 74].
Differently from previously cited works, in [18] the problem of user and ser-
vice profiling is addressed by means of generalized association rules, which
are classified in semantic groups by exploiting a set of rule templates. A
more through description of the proposed system is reported in Chapter 4.

Integration of contextual information and data mining techniques is also
discussed in [102]. However, in the proposed context-based data mining
framework, the context information is exclusively used to integrate multi-
ple datasets thus allowing consolidated mining on multiple physical datasets.
Hence, the context knowledge neither directly drives the mining algorithms
nor guides the selection of the mined patterns. Contextual information
has been recently adopted in [102] for interactive postmining of association
rules [2] driven by both ontologies and ad-hoc rule schemas [81] representing,
respectively, user knowledge and expectations.

Context-awareness in the specific domain of mobile applications has been
addressed from many different points of view. For example, context informa-
tion has been used to analyze the collaboration between a mobile terminal
user and another party [50] (i.e., another user or a mobile service), or to ad-
dress context-based data reduction in mobile environments [56] for tailoring
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a service to both the current user context and the characteristics of the used
mobile device. The analysis of the logs containing user locations, provided
by the mobile devices, has been also performed by means of data mining
algorithms. For example, in [14] a location-based recommendation system
for mobile devices is presented. It performs context-based data mining by
means of a decision tree classification algorithm. Generalized association rule
extraction has been successfully employed in context-aware domain. For in-
stance, in [112] context-aware service and location pattern discovery in mobile
Web environments are both addressed by means of multiple-level association
rules. Similarly, in [18] a framework, namely CASMine, for context-aware
user and service profiling is presented. Unlike [112], it performs a support-
driven generalized association rule extraction, based on the algorithm first
proposed in [16]. The application of some of the reasearch works presented
in this thesis to real-life context-aware mobile systems is discussed in Chap-
ters 4, 5, and 6.

2.4.2 Network traffic analysis

A relevant effort has been devoted to the application of data mining tech-
niques in network traffic domain [68]. Related works commonly analyze net-
work traffic captures of network streams for (i) network monitoring pur-
poses, (ii) service profiling, (iii) bandwidth shaping, or (iv) intrusion detec-
tion. For instance, research activities include studying correlation among
data [15, 96, 46] mining information for prediction [47, 85] or grouping net-
work data with similar properties [45].

Frequent itemsets and association rules mining are shown to be promis-
ing techniques to highlight hidden knowledge in network flows [15]. NED
(NEtwork Digest Framework) [39] is an efficient tool to characterize traffic
data and detect anomalies by means of continuous queries, traffic filtering
and refinement analysis (i.e., association rules). In [8] authors address traffic
characterization by means of generalized association rule extraction. It ex-
ploits a generalized itemset mining similar to that first proposed in [16] and
applies it network captures obtained from continuous queries. Some applica-
tions of the generalized itemsets in the context of network traffic monitoring
and bandwidth shaping are reported in Chapters 4 and 5.
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2.4.3 Social network analysis

Online communities provide a powerful resource suitable for discovering rele-
vant social knowledge by means of data mining algorithms and tools tailored
to most common user interests. In the last years, many different research
efforts have been devoted to (i) developing new recommender systems to en-
hance the quality of product suggestions to the customers, (ii) improving the
understanding of online resources by means of the categorization of UGC, and
(iii) building query engines that take advantage of emerging semantics in so-
cial networks. For example, recommender systems are focused on identifying
the objects (e.g., products, news) that highlight the highest correlation with
the user behavior and preferences. Different approaches have been proposed
to characterize the users and the items to be suggested. For example, in [119]
a news recommendation system that also takes into account the opinion of
readers is discussed. For each news discussion thread that has been posted
on a social bookmarking site a topic profile is built. An extension of the pre-
vious approach exploited a graph-based representation to model the content
similarity between comments and logic relationships among them [76]. Rec-
ommendation systems can be also exploited to enhance the quality of tags
by analyzing the interest of a single user and/or the trend of social communi-
ties. For example, in [22] a classification system identifies the documents and
the associated tags that are more likely to be of user interest. Differently,
in [99] the authors exploited a hierarchical clustering algorithm to identify
the correlation among groups of tags in order to reduce tag redundancy and
ambiguity. To improve the quality of suggested tags for photo annotation,
in [101] the authors proposed a method based on two steps. Given a photo
with user-defined tags, for each tag an ordered list of candidate tags is first
provided based on co-occurrence measure. Next, the lists of candidate tags
are aggregated to generate a ranked list of recommended tags. An inter-
esting overview of the most popular algorithms for computing the similarity
among users of the online communities based on the recommended items is
presented in [55].

The user-generated content has been extensively studied to improve the
understanding of online resources (e.g., Web pages, photos, videos). For
example, the discovery of most relevant social interests and the categorization
of Web objects have been both addressed in [78] by exploiting tags assigned
by users. In [121] proposed an optimization framework to assign the correct
category to web resources is proposed. It focused on representing, by means
of a graph-based model, the relationships between Web objects and social
tags provided by del.icio.us and propagating the category information of
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training samples from one domain to another.

Other kinds of applications are targeted to advanced analysis of UGC re-
trieved from online communities. As pointed out by [57], query engines can
take advantage of folksonomies and ontologies extracted from social networks
sites. For example, in [24] a framework to improve query results according
to the user interest is proposed. The social relationships between users and
the correlation among tags associated with media resources are represented
by a unified graph model. Finally, the information provided by posts on
social network sites has been exploited to improve the quality of online news
searches. In [1] Twitter messages are exploited to retrieve keywords that are
highly correlated with the user query. In particular, the authors analyzed
the geographical content of Twitter message to determine which messages
are more relevant according to the user query and retrieve a set of semanti-
cally related keywords. Differently, the system proposed in [34, 33] addresse
Twitter post characterization through static and dynamic generalized associ-
ation rule mining by considering both tweet keywords and related contextual
features, including geographical information. A more detailed description of
the proposed frameworks is reported in Chapters 4 and 6.



Chapter 3

Generalized association rule
mining

Generalized association discovery focuses on discovering associations, i.e.,
patterns, among data at different abstraction levels by exploiting hierarchical
semantic model, i.e., taxonomies, to aggregate knowledge into higher level
concepts.

In this chapter the generalized itemset and association rule mining prob-
lems are formally stated.

The Chapter is organized as follows. Section 3.1 introduces preliminary
definitions and notations, while Section 3.2 formally states the problems of
frequent generalized itemset and association rule mining.

3.1 Preliminary definitions

In this section, the main notions concerning generalized itemset mining from
structured data are introduced. Definition 1 formally describes the input
structured data on the top of which the generalized itemsets and rules are
mined.

Definition 1 Structured dataset. Let T ={t1, t2, . . . , tn} be a set of data
features and Ω={Ω1,Ω2, . . . ,Ωn} the set of corresponding domains. ti may
be either a categorical or a numerical discrete feature1. A structured dataset

1In the case of structured datasets with continuous attributes, the value range should

be discretized into intervals, and the intervals mapped into consecutive positive integers.

15
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D is a collection of records, where each record r is a set of pairs (ti,valuei)
where ti ∈ T and valuei ∈ Ωi. Each ti ∈ T , also called attribute, may occur
at most once in any record.

Table 3.1 shows the structured dataset exploited as a running example. It
reports some pieces of information coming from a business-oriented scenario,
in which different factories submit orders to their supplier. For each order,
the order date, the name of the factory who submitted the order, and the
city in which it is located are stored.

Order date Factory name City

2010-06-17 Factory A Turin
2009-09-01 Factory A Turin
2010-10-20 Factory B Cambridge
2010-05-01 Factory C Rome
2010-05-01 Factory C Tivoli
2010-10-20 Factory B Asti
2010-10-20 Factory A Cuneo
2010-05-01 Factory A Cuneo
2010-10-20 Factory C Alba

Table 3.1: Structured dataset - Running example.

To generalize concepts represented in a structured dataset at a higher
level of abstraction, the notions of generalization hierarchy and taxonomy are
introduced. To formally state, in Definition 2, the concept of generalization
hierarchy, the definition of rooted labeled tree is recalled first. A rooted
labeled tree is an acyclic connected graph in which a node is selected as the
root. A rooted labeled tree T could be denoted as T (r,N, Label, E), where
(1) N is the set of nodes; (2) r ∈ N is the root node; (3) Label is the set of
node labels, for any node n ∈ N , Label(n) is the label of node n; and (4)
E = {(x, y) | x, y ∈ N, x 6= y} is the set of edges.

A generalization hierarchy (see Figure 3.1(a)) is a rooted labeled tree used
to represent how the values of an attribute domain are aggregated into higher
level values/concepts. Each leaf node belonging to the tree reported in Fig-
ure 3.1(a) represents a distinct value of the domain of the order date attribute
of the running example, while each non-leaf node represents a generalization
(higher level concept) of its children which may be further generalized by its
parent.



3.1. PRELIMINARY DEFINITIONS 17

Definition 2 Generalization hierarchy. Let ti be a data feature and Ωi its
domain. A generalization tree GTi is a hierarchy of generalizations built over
values in Ωi and it is represented by a rooted labeled tree GTi(r,N, Label, E)
where

• the set of labels Label is a superset of Ωi (i.e., Ωi ⊆ Label) and includes
both the values in the attribute domain and their generalizations,

• leaf nodes in GTi are labeled with values in Ωi,

• non-leaf nodes are aggregations of the values in Ωi and are labeled with
values not in Ωi,

• the root node is labeled with the special value ⊥ (i.e., undefined).

• for each label l ∈ Label there is one and only one node in GTi labeled
with l.

Figure 3.1 reports three examples of generalization hierarchies built over
the attributes of the dataset D shown in Table 3.1. The order date at-
tribute has the canonical form YYYY-MM-DD and might be generalized
into its corresponding month, semester, and year (see Figure 3.1(a)), while
the city attribute might be generalized into region/country and state (see
Figure 3.1(b)). Since the factory name attribute has no meaningful aggrega-
tions, the relative GT3 aggregates all leaves labeled with values in Ω3 directly
in the root node (see Figure 3.1(c)).

A taxonomy is defined as a set of generalization hierarchies on the at-
tributes of a structured dataset. For instance, the set of the three gener-
alization hierarchies reported in Figure 3.1, is a taxonomy defined on the
attributes of the running example dataset.

Definition 3 Taxonomy. Let T be a set of attributes. A taxonomy Γ =
{GT1, GT2, . . . , GTn} is a forest of generalization hierarchies, where GTi is a
generalization hierarchy defined on the attribute ti ∈ T .

Albeit a taxonomy may include an arbitrary set of generalization hierar-
chies for each attribute, for the sake of simplicity in the following we let Γ
contain one and only one generalization hierarchy for each attribute.

By means of Definitions 4-12 we formally define the concept of itemset
and its main characteristics and properties. To this aim, we first introduce
the concept of item as a couple (attribute,value). For example, (city, Turin)
and (city, Italy) are two examples of items.
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Definition 4 Item. Let T be a set of attributes and Γ a taxonomy built on
T . An item is a pair (ti, valuei) where ti ∈ T , valuei is the label of one node
of GTi ∈ Γ, and valuei 6= ⊥.

An itemset is a set of items (e.g., {(date,2010-06-17), (city,Turin), (factory
name,Factory A)} and {(date,may 2010), (city,Lazio)}). In Definition 5 the
concept of itemset in the context of structured data is defined.

Definition 5 Itemset. Let I be the enumeration of all items. An itemset
X ⊆ I is a set of items such that each attribute ti may occur at most once
in X.

In the context of structured data, an itemset is called k-itemset if it
contains exactly k items, each one belonging to a distinct data attribute.. For
example, {(date,may 2010), (city,Lazio)} is a 2-itemset, while {(date,2010-
06-17), (city,Turin), (factory name,Factory A)} is a 3-itemset.

Generalized itemsets represent high level recurrences hidden in the ana-
lyzed data. A generalized itemset of length k (i.e., a generalized k-itemset) is
a set of generalized or not generalized items including at least one generalized
item. A more formal definition follows.

Definition 6 Generalized itemset. Let T ={t1, t2, . . . , tn} be a set of at-
tributes belonging to a structured dataset and I the enumeration of all the
items in the corresponding dataset. Let Γ be a taxonomy over T , and E the
set of generalized items derived by all the generalization hierarchies in Γ. A
generalized itemset Y is a subset of I ⋃ E including at least one generalized
item in E. Each attribute ti ∈ T may occur at most once in Y .

In the following, four different (generalized) itemset characteristics and
properties of interest are enumerated. In particular,

1. itemset matching and support (Cf. Definition 7), exploited to evaluate
the frequency of occurrence of a given generalized itemset in the source
data (Cf. Definitions 7 and 8),

2. itemset level (Cf. Definition 9), exploited to categorize itemsets de-
pending on their generalization grade,

3. well-formed itemset (Cf. Definition 10), exploited to identify a subset
of level-sharing itemsets during the mining process, and
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4. itemset ancestor, direct ancestor, and descendant (Cf. Definition 11),
exploited to define the relationships among itemsets at different ab-
straction levels.

To identify which dataset records are supported (covered) by a (gener-
alized) itemset we introduce the concept of (generalized) itemset matching.
An (generalized) itemset matches a given record if all its items either be-
long to the record or are ancestor nodes, in the corresponding generalization
hierarchy, of a record item.

Definition 7 (generalized) Itemset matching. Let X be a (generalized)
k-itemset, D a structured dataset, and Γ a taxonomy. A (generalized) itemset
X matches a record r ∈ D if and only if ∀ (ti, valuei) ∈ X:

1. (ti, valuei) ∈ r, or

2. valuei is the label of a non-leaf node of the generalization hierarchy GTi

defined on ti, such that it exists a path from that node to a leaf node h
and (ti, Label(h)) ∈ r.

Definition 8 (Generalized) itemset support. Let D be a structured
dataset and Γ a taxonomy built over D. The support of a generalized item-
set X is given by the number of records r ∈ D matching X divided by the
cardinality of D.

For example, the itemset {(date,2010-06-17), (city, Turin)} has support
equal to 1

5
as it matches the first record in the running example dataset (in

Table 3.1), while the generalized itemset {(date,may 2010),(city, Lazio)} has
support 2

5
as it matches the fourth and the fifth records.

Generalized itemsets may be classified based on the abstraction level of
their items. The level L[(ti, valuei)] of an item (ti, valuei) is given by the
height of the node labeled with valuei in GTi plus 1, i.e., it is the length of
the longest downward path to a leaf from that node plus 1. Consider, for
instance, the generalization hierarchy GT2 on the city shown in Figure 3.1(b).
The level of the item (city, Italy) is 3 as the longest path on GT2 from Italy
to a leaf node has length 2, while the level of (city, Turin) is 1. Definition 9
extends the notion of item level to (generalized) itemsets. The level of an
(generalized) itemset X is defined as the maximum level of the items in X.
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Definition 9 (generalized) itemset level. Let X be a k-itemset. The
level L[X] of a (generalized) itemset is the maximum item level by considering
items in X, i.e., L[X] = max1≤j≤k{L[(tj,valuej)]}.

For instance, the level of {(date,2010-06-17), (city,Italy)} is 3.

Authors in [52] first propose to exploit the generalized itemset level to
mine, from transactional data, only the subset of itemsets composed of item
of the same level, i.e., the level-sharing generalized itemset. For example,
{(date,2010-06-17), (city,Turin)} is a level-sharing generalized itemset, while
{(date,2010-06-17), (city,Italy)} is not. However, the notion of level-sharing
generalized itemset is proposed for transactional data and is based on one
single generalization hierarchy defined on the whole set of possible items.
When considering structured datasets and a taxonomies composed of many
generalization hierarchies characterized by different heights (consider, for in-
stance, the three GTi reported in Figure 3.1), A similar notion of well-formed
itemset, which is customized on structured data and allows dealing with tax-
onomies composed of unbalanced generalization hierarchies (i.e., taxonomies
characterized by different heights like the one reported in Figure 3.1) is in-
troduced.

Definition 10 Well-formed Itemset. Let X be a k-itemset, m=L[X] the
level of X, and Γ a taxonomy. X is a well-formed itemset if and only if
∀ xi ∈ X:

1. L[xi] = m, or

2. L[xi] < m and xi is a child of the root node for GTi.

Condition (A) in Definition 10 is satisfied by itemsets composed of items
of the same level, while Condition (B) is satisfied by itemsets composed of
items belonging to different levels and related to unbalanced generalization
hierarchies. For instance, {(date,may 2010),(city,Piemonte)} is a well-formed
itemset, according to condition (A), as the level of its items is 2. Differ-
ently, itemset {(date,year 2010), (city,Italy)} does not satisfy condition (A)
as L[(date,year 2010)] = 4 while L[(city,Italy)] = 3. However, according to
Definition 10 - condition (B), it is well-formed as well. In fact, the node
labeled Italy is a child of the root node, while there is no level-4 items in the
generalization hierarchy defined on the city attribute (see Figure 3.1). Thus,
it does not exist any level-4 generalization of (city,Italy).
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Dependencies among similar itemsets of different levels are expressed by
the ancestor/descendant relationships. For example, the generalized itemset
{(date,may 2010), (city,Piemonte)} is an ancestor of both {(date,2010-05-01),
(city,Turin)} and {(date,2010-05-01), (city,Piemonte)}.

Definition 11 (Generalized) itemset ancestor and descendant. Let
X,Y ⊆ I be two (generalized) k-itemsets and Γ a taxonomy. X is an ances-
tor of Y on Γ, denoted as X ∈ Anc[Y , Γ], if and only if ∀ item yi ∈ Y exists
an item xi ∈ X such that either xi is an ancestor of yi in GTi or xi = yi. If
X is an ancestor of Y , then Y is a descendant of X, denoted as Y ∈ Desc[X,
Γ].

Since the generalization process over an itemset X is typically performed
by climbing up the corresponding taxonomy stepwise to obtain the first
well-formed ancestor of X we introduce the notion of direct ancestor as the
first well-formed ancestor itemset. For instance, both Y={(date,may 2010),
(city,Piemonte)} and Z={(date,1st Semester 2010), (city,Italy)} are ances-
tors of X={(date,2010-05-01), (city,Turin)}. However, Y={(date,may 2010),
(city,Piemonte)} is the direct ancestor ofX={(date,2010-05-01), (city,Turin)}
because Y is the first well-formed ancestor of X generated by climbing up
the taxonomy stepwise over the items of X.

Definition 12 (generalized) itemset direct well-formed ancestor. Let
X,Y ⊆ I be two k-itemsets and Γ a taxonomy. X is a direct ancestor of Y
over Γ if and only if

1. X ∈ Anc[Y,Γ], and

2. X is a well-formed itemset, and

3. ∀ Z ∈ Anc[Y,Γ], if Z is well-formed and Z 6= X then L[X] < L[Z].

Two (generalized) itemsets are disjoint if their corresponding item at-
tribute sets are disjoint.

Definition 13 Disjoint (generalized) itemsets. Let A and B be two
arbitrary generalized itemsets. A and B are disjoint iff attr(A) ∩ attr(B)
= ∅.

Association rules are implications in the form A⇒ B where A and B are
disjoint generalized itemsets.
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Definition 14 Generalized Association Rule. Let A and B be two dis-
joint (generalized) itemsets. A generalized association rule is represented in
the form A ⇒ B, where A and B are the body and the head of the rule
respectively.

A and B are respectively denoted as antecedent and consequent of the
generalized rule A⇒ B. Generalized association rule discovery is commonly
driven by the rule support quality index, whose formal definition follows.

Definition 15 Generalized Association Rule Support. Let A⇒ B be
a generalized association rule. Its support s is the support of the generalized
itemset A ∪B.

In general, the support represents the prior probability of A and B (i.e.,
its observed frequency) in the source dataset.

Definition 16 Generalized Association Rule Confidence. Let A⇒ B
be a generalized association rule. Its confidence c is given by s(A∪B)

s(A)
.

The confidence of a rule A ⇒ B is the conditional probability of the
generalized itemset B given the generalized itemset A.

For example, the following generalized association rule states the service
FlightStat, offered by a Web provider, is frequently asked by its visitors
during the time slot [1 p.m., 4 p.m.].

(service: FlightStat → time: from 1 p.m. to 4 p.m.) (s = 10%,c = 88%)

3.2 Problem statement

Given a structured dataset D, a taxonomy Γ, a minimum support threshold
min sup, and a minimum confidence threshold min conf the generalized
association rule mining problem entails the extraction of all generalized and
not generalized association rules (Cf. Definition14) that satisfy both min sup
and min conf .

Generalized association rules are commonly discovered by means of a
two-step process: (i) Frequent generalized itemset extraction and (ii) rule
generation from the extracted frequent itemsets. The first step entails the
extraction of all (generalized) itemsets (Cf. Definition6) that satisfy min sup.
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(a) Date - Generalized Tree GH1

(b) City - Generalized Tree GH2 (c) Factory name - General-
ized Tree GH3

Figure 3.1: Generalization hierarchies for the attributes in the example
dataset
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Chapter 4

The Generalized Itemset
DiscOverer algorithm

This chapter presents a generalized itemset mining algorithm, namely Ge-
nIO (Generalized Itemset DiscOverer) that performs an opportunistic knowl-
edge aggregation, driven by the given taxonomy, to prevent the extraction
of redundant high level patterns. The chapter is organized as follows. Sec-
tion 4.1 thoroughly describes the GenIO algorithm. Section 4.2 evaluates the
performance of the GenIO algorithm on data coming from the network traf-
fic domain. Sections 4.3 and 4.4 present two data mining systems, based on
the GenIO algorithm, to perform knowledge discovery from context-aware
and social network data. Furthermore, they also report an experimental
assessment of the effectiveness of the proposed systems in the correspond-
ing application contexts. Finally, Section 4.5 evaluates the scalability of the
proposed algorithm on synthetic data in terms of execution time.

4.1 The GenIO Algorithm

The GenIO (Generalized Itemset DiscOverer) algorithm extracts frequent
generalized itemsets. However, it mines a generalized itemset if and only if at
least one of its descendants is infrequent with respect to the minimum support
threshold. It exploits a taxonomy Γ (i.e., a set of generalization hierarchies
of arbitrary heights) to generalize concepts defined in the structured dataset
under analysis.

GenIO takes in input a structured dataset D, a taxonomy Γ built over
D, and a minimum support threshold min sup. It discovers all frequent item-

25



26CHAPTER 4. THE GENERALIZED ITEMSET DISCOVERER ALGORITHM

Algorithm 1 Generalized Itemset Discoverer
Input: minimum support min sup, taxonomy Γ, dataset D
Output: L, set of generalized frequent itemsets
1: k = 1, L = ∅
2: C1 = set of items in D
3: repeat

4: scan D and count support for each c ∈ Ck

5: Gen = ∅ // generalized itemset container
6: for all c in Ck do

7: if support of c <min sup then

8: new gen itemset = taxonomy evaluation( Γ, c )
9: update Gen with new gen itemset
10: end if

11: end for

12: if Gen 6= ∅ then

13: scan D and count support for each itemset in Gen
14: end if

15: Lk = { itemsets in {Ck ∪Gen} whose support ≥ min sup }
16: k = k + 1
17: Ck = candidate generation( Lk−1 )
18: until Ck 6= ∅
19: return L

sets and generalized itemsets having at least an infrequent descendant. The
generalization process, driven by the taxonomy Γ, is support-driven, i.e., it
generalizes an itemset only if it is infrequent with respect to the minimum
support threshold. The pseudo-code of GenIO is given by Algorithm 1.
GenIO implementation is based on Apriori [2].The Apriori algorithm is a
level-wise algorithm that, at each iteration, generates all frequent itemsets
of a given length. At arbitrary iteration k, two steps are performed: (i)
Ccndidate generation, the most computationally and memory intensive step,
in which all possible k-itemsets are generated from (k-1)-itemsets, (ii) can-
didate pruning, which is based on the property that all subsets of frequent
itemsets must also be frequent, to discard candidate itemsets which cannot
be frequent. Finally, actual candidate support value is counted by scanning
the dataset.

GenIO follows the same level-wise pattern generation. However, it en-
tails (i) aggregating knowledge associated with rare itemsets into higher level
concepts by lazily evaluating the taxonomy Γ (lines 6-11), and (ii) exploiting
the characteristics of the structured datasets to prune candidates effectively
(line 17). Once the support value of each candidate itemset in Ck has been
computed (line 4), the generalized versions of the infrequent ones are gener-
ated by evaluating the taxonomy (line 8) and included in the Gen set (line 9).
In particular, by applying on each item (tj, valuej) in itemset c the corre-
sponding generalization hierarchy RRj, the generalized versions of each item
in c are generated (line 8). All the itemsets obtained by replacing one or
more items in c with their generalized versions are generalized itemsets of c.
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Hence, the taxonomy evaluation process applied on the itemset c may poten-
tially generate many generalized itemsets. The generalization process of c is
triggered if and only if c is infrequent with respect to the minimum support
threshold (line 7). Once triggered, the generalization process is repeated
until a complete taxonomy evaluation has been performed. For example,
let {(destination-IP-address, 130.192.15.17), (destination-port = 21)} be an
infrequent itemset in Ck. By applying on the destination port the general-
ization hierarchy RRport shown in Figure 5.9(a) and on the destination IP
address RRIP−address shown in Figure 4.1, the following generalized itemsets
are generated:

• {(destination-IP-address = 130.192.15.0/24), (destination-port = 21)}

• {(destination-IP-address = 130.192.15.17), (destination-port = Well-
known)}

• {(destination-IP-address = 130.192.15.0/24), (destination-port = Well-
known)}

The insertion of redundant generalized itemsets (i.e., generalized itemsets
previously generated by different infrequent descendants) in Gen is prevented
by the update procedure in line 9. If the Gen set is not empty, the support
value of each generalized itemset in Gen is computed by performing a further
scan of the source dataset (line 13).

During the candidate generation step (line 17), GenIO exploits the unique-
ness of attributes in a given record of a structured dataset to further prune
candidate itemsets (e.g., in the traffic network domain a flow, i.e., a record
of the network trace, with multiple destination-IP-address cannot be de-
fined). For example, suppose that after the first dataset traversal, we have
m frequent 1-itemsets tagged source-IP-address and n tagged destination-
IP-address. Apriori exhaustive candidate generation would produce

(

m+n
2

)

possible combinations. Since each attribute could appear only once in each
record, only m ·n 2-itemsets (obtained by combining one item tagged source-
IP-address and one item tagged destination-IP-address) are relevant combi-
nations. Hence, GenIO generates only this subset of candidates. Thus, the
required computational and memory cost is reduced.
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ID Number of records Number of different items

D1 18051 32143
D2 17374 30617
D3 16783 30072
D4 3802 9350
D5 2074 5825

Table 4.1: Characteristics of the network traffic datasets

4.2 Experimental evaluation ofGenIO on net-

work traffic data

The performance of the GenIO algorithm has been evaluated in the context
of network traffic analysis by means of a large set of experiments. In partic-
ular, they analyzed (i) the performance of the frequent generalized itemset
miner and (ii) the number and the relevance of the extracted itemsets.

Figure 4.1: A generalization hierarchy RRIP−address for the source and des-
tination IP address data attributes

4.2.1 Experimental setting

Experiments have been performed on an AMD Sempron
TM

2400+ PC with
1666 MHz CPU and 512 Mb main memory, Linux operating system. Five
real datasets have been exploited to validate the efficiency and effectiveness
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of the GenIO algorithm. These datasets were obtained by performing differ-
ent capture sessions using the open-source Network Analyzer tool [87] on a
backbone link of the campus network. Captured traffic has been aggregated
in traffic flows, i.e., records which summarize a group of similar and tem-
porally contiguous packets. Each flow is a data record characterized by six
attributes: Source IP address, destination IP address, source port, destina-
tion port, flow size (i.e., the size of the flow expressed in byte), and number of
IP packets aggregated in that flow. We will refer to each dataset by using the
ID shown in the first column of Table 4.1. Table 4.1 reports the number of
records and the number of different items for each dataset. The used datasets
have significantly different characteristics in terms of the cardinality and the
number of different items. Dataset ids are sorted by decreasing cardinality.

The taxonomy used in the experiments aggregates infrequent items ac-
cording to the following generalization hierarchies: (1) source and destina-
tion ports are aggregated by exploiting the generalization hierarchy shown
in Figure 5.9(a), which introduces three established aggregation values (i.e.,
well-known, registered, dynamic). (2) Source and destination IP addresses are
aggregated by exploiting the generalization hierarchy shown in Figure 4.1. IP
addresses are aggregated in subnet if they are local to the campus network.
IP addresses which do not belong to the campus network are aggregated
in a more general external address node. Furthermore, both the flow size
(bytes) and number of IP packets attributes are uniformly discretized in 4
bins, whose intervals are [1,1,000), [1,000, 2,000), [2,000, 3,000), and equal
or greater than 3,000.

4.2.2 Frequent generalized itemset extraction perfor-
mance

To evaluate the performance of the GenIO algorithm, the following issues
have been addressed: (i) the performance of the proposed generalized item-
set miner, in terms of execution time, number of extracted itemsets, and
aggregation impact factor, (ii) comparison between GenIO and an opti-
mized version of the well-known multiple-level algorithm, namely Cumulate,
proposed in [103], in terms of time reduction and pruning selectivity.

The GenIO algorithm performance

Figure 4.2 shows the execution time (Figure 4.2(a)), the number of extracted
generalized itemsets (see Figure 4.2(b)), and the aggregation impact factor
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(a) Execution time (b) Number of extracted itemsets
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Figure 4.2: Performance of the GenIO algorithm

(see Figure 4.2(c)) yielded by the GenIO algorithm by enforcing different
support thresholds. The execution time spent by GenIO in itemset mining,
shown in Figure 4.2(a), is mainly due to the generalization process and the
dataset scans. While the former factor depends on taxonomy features (e.g.,
number of aggregation levels), the latter is proportional to the number of
transactions. Since the taxonomy exploited in the network traffic analysis is
characterized by a few aggregation levels, the time spent for dataset scans is
dominant. Furthermore, the execution time increases when larger datasets
and lower support thresholds are enforced as the dataset scans require much
more time.

Figure 4.2(b) shows the number of extracted generalized itemsets by en-
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Figure 4.3: GenIO w.r.t. Cumulate: Time reduction (%)

forcing different support thresholds. When support threshold decreases the
number of mined itemsets increases. For high support thresholds, the num-
ber of extracted generalized itemsets is quite constant. When low support
thresholds are enforced, the number of generalized itemsets significantly in-
creases especially when the data distribution becomes sparser (see datasets
D4 and D5 in Figure 4.2(b)). This effect is given by the high number of
low frequency items characterizing a sparse dataset. These items become
frequent when the mining process is performed by enforcing a low support
threshold.

The impact of the aggregation process on the number of mined itemsets
has been also analyzed for each dataset. In particular, Figure 4.2(c) reports
the percentage of itemsets achieved by the generalization process with respect
to the total number of extracted itemsets by varying the minimum support
threshold. Since the generalization process is a support-driven process, the
number of itemsets containing terms at higher level of the taxonomy increases
by enforcing higher support thresholds.

Comparison between GenIO and Cumulate

A comparison between GenIO and our optimized implementation of Cumu-
late [103], a traditional well-known generalized itemset mining algorithm, has
been performed. Figure 4.3 shows the time reduction for generalized item-
set extraction yielded by GenIO with respect to Cumulate. Experiments,
on all considered datasets, have been performed by enforcing different sup-
port thresholds. Cumulate did not correctly terminate the extraction task
on datasets D1, D2, D3 for the lowest considered support (see Figure 4.3).
GenIO algorithm yields a significant reduction of the execution time for any
considered datasets and for all support thresholds. The reduction is mainly
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Figure 4.4: GenIO w.r.t. Cumulate: Pruned generalized itemsets (%)

due to the support driven opportunistic aggregation, which reduces the num-
ber of extracted generalized itemsets (as shown in Figure 4.4), and to the
exploited strategy to further prune candidate itemsets (see Section 4.1).

To evaluate the pruning selectivity of our approach, the corresponding
percentage of pruned generalized itemsets with respect to Cumulate is re-
ported. Since the GenIO algorithm performs a support driven opportunistic
aggregation of itemsets, it extracts a smaller number of generalized itemsets
than Cumulate. Figure 4.4 shows the percentage of pruned generalized item-
sets for all datasets. GenIO yields a good percentage of pruned itemsets
for any considered support threshold. For high support thresholds, since the
absolute number of generalized itemsets is relatively small (see Figure 4.2(b))
the corresponding percentage of pruned generalized itemset is about 4%-6%
(see Figure 4.4). For low support thresholds, a high number of low frequency
items become frequent. Thus, the absolute number of generalized itemsets
significantly increases (see Figure 4.2(b)), while the percentage of pruned
generalized itemsets (see Figure 4.4) preserves its trend. Hence, the GenIO
algorithm significantly reduces the cardinality of the extracted knowledge.
The Cumulate algorithm could obtain the same knowledge mined by Ge-
nIO only through a very expensive post-processing analysis over a very large
set of itemsets.

4.2.3 Analysis of the extracted generalized itemsets

In the following the meaning and the usefulness of the extracted generalized
itemsets in the network traffic domain are discussed.

Figure 4.5 shows the support of the generalized 2-itemsets in the form
{destination-IP-address, destination-port} obtained from dataset D1. For
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Figure 4.5: GenIO: support values of the extracted 2-itemsets for different
destination IP addresses and ports

better visualization, results have been restricted to addresses of the campus
network. Thus, no external IP address has been considered. The address is
automatically aggregated into the corresponding subnet when the single IP
address support value is below the minimum support threshold (set to 1%).
Figure 4.5 provides a characterization of the traffic on the campus network.
Many of the extracted itemsets describe general network features. For exam-
ple, the most supported generalized itemset identifies the VPN concentrator
of the campus network.

Larger generalized itemsets (i.e., itemsets with more than 2 items) can
be exploited to focus the analysis on specific traffic behaviors. For exam-
ple, the 4-itemsets {(destination-IP-address, 130.192.O.o), (destination-port,
57403), (source-IP-address, x.x.x.x), (source-port, registered-port)}, having
support equal to 2.3%, highlights an unconventional high-volume traffic to-
wards a specific host of the campus network, whereas the 4-itemsets {(destination-
IP-address, 130.192.A.a), (destination-port, registered-port), (source-IP-address,
y.y.y.y), (source-port, well-known)}, having support equal to 2%, identifies
connections to the VPN concentrator by means of a client using well-known
source ports.

4.3 A context-aware application: The CAS-

Mine Framework

The CAS-Mine framework is a context-aware environment, based on the
GenIO algorithm, to perform both user and service profiling effectively. It
allows shaping service provisioning by considering the current context of the
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user. By discovering recurrent patterns on user habits, service providers
can partition users into predefined categories over which service provisioning
may be modeled and personalized. Furthermore, service profiling may allow
providers to effectively shape service supply, promotions, and system size
depending on the actual application usage.

CAS-Mine exploits the GenIO algorithm [16] to discover generalized as-
sociation rules. The main architectural blocks of the CAS-Mine framework
(shown in Figure 4.6) are described in the following.

Data collection and preprocessing. Context knowledge is provided by
different and heterogeneous sources (e.g., mobile devices) collecting in-
formation about the context of the user submitting the request (e.g.,
GPS coordinates, temporal information), and the requested services
(e.g., service description). Next, data is cleaned by removing irrele-
vant and redundant information and integrated into a common data
structure.

Mining activity. The aim of the mining activity block is to discover in-
teresting correlations and recurrent patterns in context data. In the
CAS-Mine framework, interesting patterns are extracted in the form
of generalized association rules, i.e., rules that represent general corre-
lations among context data. The generalization step is performed by
means of an analyst-provided taxonomy (i.e., is-a hierarchy) defined
on structured data. Analysts should provide meaningful sets of gener-
alization hierarchies based on their knowledge on context information
concerning user requests collected in the source dataset. Context data
can be aggregated at different granularity levels to discover more infor-
mative and compact knowledge in a flexible way.

The extraction of generalized association rules is performed by means
of a (traditional) two-step process: (i) frequent generalized itemset
extraction and (ii) rule generation from the extracted frequent itemsets.
Since the GenIO algorithm [16] is known to be more efficient than
previous approaches (e.g., [52]) in automatically extracting interesting
generalized itemsets from structured data, CAS-Mine exploits GenIO
to perform the first step. The extraction of generalized rules (i.e., the
second step) is performed by our implementation of the rule mining
step of the Apriori algorithm [2].

In-depth analysis. The aim of the in-depth analysis block is two-fold:
(i) selection of the most relevant rules and (ii) rule classification. Cur-
rently, extracted patterns are ranked by exploiting the lift correlation
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Figure 4.6: The CAS-Mine framework architecture

measure to effectively discriminate between reliable and unreliable pat-
terns. The lift measure highlights rule correlation, thus overcoming the
support and confidence well-known drawbacks without requiring com-
plex computations. However, other data quality indices [107] could be
easily integrated into the CAS-Mine framework as well.

The rule classification step categorizes the extracted rules according
to their semantic interpretation in context-aware applications. Thus,
extracted rules are partitioned in two main classes: user rules and
service rules. User rules characterize user habits at different aggregation
levels and allow service providers to offer personalized services tailored
to the current user context. Service rules, instead, describe service
characteristics and allow service providers to adapt service provisioning
to the current context, independently of the requesting user. For each
class, some relevant rule templates have been identified and discussed.

A more detailed description of each block and its functionalities is pre-
sented in the following sections.

4.3.1 Data Collection and Preprocessing

Since service requests typically depend on the requesting user environment,
a collection of information describing the user context at request submission
may enhance the quality of the provided services. The data collection and
preprocessing block of the CAS-Mine framework handles data collection
through services on mobile devices that collect user and service context in-
formation (e.g., temporal information, GPS coordinates, service description).
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To ensure user privacy, context data retrieval and processing in a context-
aware environment requires both the user informed consent on personal data
treatment and compliance with laws in force.

Due to the distributed nature of mobile systems, separate logs have been
recorded in different systems, describing different parts of the user activity.
The data collection phase takes in input the raw context data provided by
different, maybe heterogeneous, sources and join them into a unique data
repository.

The preprocessing phase aims at making the raw input data fully com-
patible with the repository format. During the joining process, data are
tailored to a common data structure by means of a data cleaning process.
Data cleaning also discards useless or redundant information and correctly
manages missing values. After preprocessing, the collected context informa-
tion can be modeled as a structured dataset, where records represent service
requests.

A structured context dataset is a structured dataset holding information
on both service requests performed by different users, and the corresponding
application context in which requests are submitted. Each record is a set
of items describing a specific user service request. Attributes describe the
represented information (e.g., user identifier, service, time) and take values
(e.g., ID54, weather, 4:06 p.m.) in the corresponding attribute domains.

4.3.2 Generalized association rule extraction

Generalized association rules provide a high level domain knowledge abstrac-
tion that allows a compact representation of general correlations among con-
text data. In Chapter 3 the problem of generalized association rule mining
is formally defined.

The discovery of the generalized association rules is driven by an analyst-
provided taxonomy, i.e., a set of generalization hierarchies. Consider, for
example, the time attribute, which defines the submission time of a service
request. A simple generalization hierarchy that may be devised by a domain
analyst is shown in Figure 4.7. The generalization hierarchy aggregates the
submission time of the service request by 4-hour timeslots, and A.M./P.M.
time periods. The root (represented as {}) aggregates all values allowed for
the time attribute.

In the context-aware service profiling domain, many different generaliza-
tion hierarchies may be defined for the time, date, service, phone number,
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Figure 4.7: A generalization hierarchy RRtime for the time attribute

and location attributes. Analysts should provide meaningful generalization
hierarchies based on their knowledge on context data collected into the source
dataset.

Generalized association rules are discovered by means of a two-step pro-
cess: (i) frequent generalized itemset extraction and (ii) rule generation from
the extracted frequent itemsets. The first step exploits the GenIO algo-
rithm [16] while the second step is performed by our implementation of the
rule mining step of the Apriori algorithm [3]. The mining process is driven
by the support threshold, which drives the itemset extraction process.

4.3.3 Supporting in-depth rule analysis

The in-depth analysis block of CAS-Mine addresses (i) the ranking of the
most relevant rules by exploiting the lift quality index [107] and (ii) the
classification of interesting rules useful for effectively supporting user and
service profiling in context-aware applications.

Ranking relevant rules

Many quality measures [107] may support selection and ranking of the most
interesting rules. The rules mined by CAS-Mine are sorted by means of the
lift index [107], which measures the (symmetric) correlation between body
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Table 4.2: CAS-Mine: length-2 user rule classes
Class Question Rule template Example
AU-T Given a user (or a user cat-

egory), in what time pe-
riod does he request ser-
vices (or classes of ser-
vices)?

{user} ⇒ {time} {user = John} ⇒ {time = 6 −
7 p.m.} means that user John sub-
mits service requests between 6 and
7 p.m.

AU-D Given a user (or a user cat-
egory), in what period of
the year does he request
services (or classes of ser-
vices)?

{user} ⇒ {date} {user = John} ⇒ {date =
winter} means that user John sub-
mits service requests during the
winter.

AU-P Given a user (or a user cat-
egory), where does he re-
quest services?

{user} ⇒ {place} {user = John} ⇒ {place =
OFFICE} means that user John
requests services in his office.

RS Given a user or a user cat-
egory, which services (or
class of services) is he in-
terested in?

{user} ⇒ {service} {user = John} ⇒ {Service =
SMS} means that user John re-
quests the SMS service.

and head of the extracted rules. The lift of a (generalized) association rule
A ⇒ B is defined as [107]

lift(A,B) =
c(A⇒ B)

s(B)
=

s(A⇒ B)

s(A)s(B)
(4.1)

where s(A ⇒ B) and c(A ⇒ B) are, respectively, the rule support and
confidence, and s(A) and s(B) are the supports of the rule antecedent and
consequent. If lift(A,B)=1, the itemsets A and B are not correlated, i.e., they
are statistically independent. Lift values below 1 show negative correlation,
while values above 1 indicate a positive correlation between itemsets A and
B.

Both positively and negatively correlated rules are selected by CAS-Mine
to highlight interesting situations. For instance, positively correlated rules
highlight the preferred user services, while negatively correlated rules identify
the services used less than expected. Similarly, the interest of rules having a
lift value close to 1 may be marginal. Hence, CAS-Mine ranks the mined
rules according to their lift value to focus the analysis on the set of most
(positively or negatively) correlated rules.

Rule Classification

The rule classification block categorizes correlated rules in classes to effec-
tively address context-aware profiling. Since service providers are mainly
interested in profiling both users and services, the CAS-Mine framework
identifies two main classes of generalized association rules: (i) user rules and
(ii) service rules.
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To classify the extracted rules, we propose rule templates that define
the general structure of interesting subsets of generalized association rules.
All the rules that share the same template are characterized by the same
attribute(s), but not necessarily the same values, in the body and in the
head of the rule.

Definition 17 Generalized association rule template. Let T ={t1, t2,
. . ., tn} be a set of attributes. A generalized association rule template is
represented in the form X ⇒ Y , where X and Y (the body and the head
of the rule template, respectively) are two disjoint sets of attributes (i.e.,
X ⊆ T ∧ Y ⊆ T ∧X ∩ Y = ∅).

User rules User rules characterize user habits at any aggregation level.
These rules allow service providers to offer personalized services depending on
the current context of the user. Hence, the provided services can be adapted
to actual user needs. In user rules the attribute “user” always appears either
in the body or in the head of the rule.

User rules are further partitioned in more specific categories. For each
category, a set of interesting rule templates is defined. For the sake of sim-
plicity, rule templates are currently defined on length-2 and length-3 rules.
The most interesting user rule templates are summarized in Table 4.2 and
Table 4.3. They always include the user attribute in the body of the rule.
For each template, an example and a short explanation are provided. User
rules compliant with a given template describe user context knowledge at
the appropriate1 hierarchical level. Thus, they are suitable for context-aware
user profiling.

Table 4.2 shows length-2 user rule classes. These classes are characterized
by a single attribute both in the body and in the head of the rule. They have
been further semantically partitioned into (a) common requested services
(denoted as RS ), defining the service type a user is mainly interested in, and
(b) context of the requested service, identifying when or where users request
for services (denoted with prefix AU ). For the AU category three different
rule templates have been defined. The AU-T template identifies the time
period at which the user requests services. The AU-D template models the
period of the year in which the user requests services. The AU-P template
defines the location (place) of the user requesting services.

User rules not falling into the above classes may belong to two categories:
(a) The rule is a specialization of rules belonging to templates in Table 4.2

1The appropriate level depends on the selected support threshold.
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Table 4.3: CAS-Mine: length-3 user rule classes
Class Question Rule template Example
AU-PT Given a user (or a user cat-

egory), where does he re-
quest services and in which
time period?

{user} ⇒ {place, time} {user, John} ⇒ {(place, office),
(time, morning)} means that user
John requests application services
during the morning in his office.

AU-PD Given a user (or a user cat-
egory), where does he re-
quest services and in which
period of the year?

{user} ⇒ {place, date} {(user, John)} ⇒
{(place, office), (date, winter)}
means that user John requests
application services during the
winter in his office.

AU-PPa Given a user (or a user
category), where does he
request services and which
service parameters are
specified?

{user} ⇒ {place, param} {(user, John)} ⇒
{(place, office), (param, OUT )}
means that user John requests
outgoing application services in his
office.

AU-DT Given a user (or a user cat-
egory), in what time and
year periods does he re-
quest services?

{user} ⇒ {date, time} {user = John} ⇒ {(date, June),
(time, morning)} means that user
John requests application services
during the morning in June.

AU-PaT Given a user (or a user
category), in what daily
time periods does he re-
quest and which service
parameters are specified?

{user} ⇒ {param, time} {(user, John)} ⇒
{(param, OUT ),
(time, morning)} means that
user John requests outgoing appli-
cation services during the morning.

AU-PaD Given a user (or a user cat-
egory), in what period of
the year does he request
services and which service
parameters are specified?

{user} ⇒ {param, date} {(user, John)} ⇒
{(param, OUT ), (date, winter)}
means that user John requests
outgoing application services in
winter.

RS-T Given a user (or a user
category), what service
(class) does he request and
in what time period?

{user} ⇒ {service, time} {(user, John)} ⇒
{(service, CALL), (time, 2 −
6p.m.)} means that user John
requests the CALL service during
the afternoon.

RS-D Given a user (or a user
category), what service
(class) does he request and
in what period of the year?

{user} ⇒ {service, date} {(user, John)} ⇒
{(service, CALL),
(date, December)} means that
user John requests the CALL
service in December.

RS-P Given a user (or a user
category), what service
(class) does he request and
where?

{user} ⇒ {service, place} {(user, John)} ⇒
{(service, CALL),
(place, office)} means that user
John requests the CALL service in
his office.

RS-Pa Given a user (or a user
category), what service
(class) does he request and
with which service param-
eters?

{user} ⇒ {service, param} {(user, John)} ⇒
{(service, CALL),
(param, OUT )} means that user
John requests the CALL service for
outgoing calls.

(i.e., it includes a superset of the attributes of rule templates in Table 4.2),
or (b) it references different attributes, thus representing knowledge that
needs not to be separately classified. Table 4.3 defines templates for a subset
of the specialized rules in category (a). Specialized templates are grouped
in two subsets, analogously to templates in Table 4.2. The first six rule
templates in Table 4.3 are specializations of the AU class template, while
the last rules are specializations of RS. For instance, the specialized rule
template {user} ⇒ {place, time} adds the time attribute to the rule template
{user} ⇒ {place}. Hence, it specializes the application usage class by also
considering the correlation with the time period of the user requests.

All the categories in Tables 4.2 and 4.3 focus on different characteristics
of the user-system interaction. User personalization has the goal of enhanc-
ing user-friendliness of the applications by capturing valuable recurrences in
user habits. The knowledge provided by user rule analysis can be exploited
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Table 4.4: CAS-Mine: length-2 service rule classes
Class Question Rule template Example
ST Given a service (or a class

of services), at which time
period is it requested?

{service} ⇒ {time} {(service, WEATHER)} ⇒
{(time, morning)} means that
weather forecasts are requested in
the morning.

SD Given a service (or a class
of services), in which pe-
riod of the year is it re-
quested?

{service} ⇒ {date} {(service, WEATHER)} ⇒
{(date, June)} means that weather
forecasts are requested during
June.

SP Given a service (or a class
of services), where is it re-
quested?

{service} ⇒ {place} {(service, CALL)} ⇒
{(place, office)} means that
the CALL service is requested in
the office.

SPa Given a service (or a class
of services), which param-
eters are requested?

{service} ⇒ {params} {(service, CALL)} ⇒
{(param, OUT )} means that
the CALL service is requested for
outgoing calls.

to (i) select the first service (default service) to be suggested to connected
user, (ii) automatically complete service parameters, (iii) plan future pro-
motions, (iv) suggest the appropriate service type in a given context, and
(v) automatically invoke a specific service when the user is in a given con-
text. The proposed user rule classification is an effective tool to highlight
hidden knowledge which may be relevant to this purpose. In Section 4.3.4
these templates are exploited for the analysis of real context datasets and
the concrete usage of extracted rules is also discussed.

Service rules Service rules describe service characteristics, at any hier-
archical level, regardless of the requesting users. These rules allow service
providers to shape service provisioning to the current context. In service
rules the attribute “service” always appears either in the body or in the head
of the rule.

Similarly to user rules, service rules have been partitioned in more specific
categories to support rule analysis. For each category, a set of interesting
rule templates has been defined. Two significant subsets of rule templates
for service rules of length 2 and 3 are summarized in Tables 4.4 and 4.5. They
always include the service attribute in the body of the rule. Since interesting
knowledge on service exploitation typically concerns its usage context (e.g.,
time or location), or the service parameters the user requires, four service
templates of length 2 have been defined in Table 4.4. For a given service,
the ST template defines the usage time, SD identifies the yearly period
during which it is used, SP defines the usage location, while SPa identifies
the service parameters. Table 4.5 reports a subset of the specializations of
the rule templates in Table 4.4. For example, the specialized rule template
{service} ⇒ {place, time} adds either the place attribute to the ST rule
template, or the time attribute to the SP rule template. Hence, it specializes
the context, defined in terms of both place and time, in which a given service
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Table 4.5: CAS-Mine: length-3 service rule classes
Class Question Rule template Example
SPPa Given a service (or a class

of services), where is it
requested and with which
parameters?

{service} ⇒ {place, param} {(service, WEATHER)}
⇒ {(place, home), (param,
TODAY FORECAST )} means
that daily weather forecasts are
requested at home.

SPT Given a service (or a class
of services), where is it re-
quested and in which time
period?

{service} ⇒ {place, time} {(service, WEATHER)} ⇒
{(place, home), (time, evening)}
means that weather forecasts are
requested at home in the evening.

SPD Given a service (or a class
of services), where is it re-
quested and in which pe-
riod of the year?

{service} ⇒ {place, date} {(service, WEATHER)} ⇒
{(place, home), (date, summer)}
means that weather forecasts are
requested at home in summer.

SPaD Given a service (or a class
of services), in what period
of the year is it requested
and with which parame-
ters?

{service} ⇒ {param, date} {(service, CALL)} ⇒
{(param, OUT ), (date, week −
end)} means that outgoing calls
are requested during the week-end.

SPaT Given a service (or a class
of services), in what time
period is it requested and
with which parameters?

{service} ⇒ {param, time} {(service, CALL)}
⇒ {(param, OUT ),
(time, afternoon)} means that
outgoing calls are requested during
the afternoon.

STD Given a service (or a class
of services), in what time
and year periods is it re-
quested?

{service} ⇒ {date, time} {(service, CALL)}
⇒ {(date, winter),
(time, afternoon)} means that
calls are requested in winter during
the afternoon.

is frequently requested.

Service rules support service providers in shaping the offered services
to the user needs. The extracted knowledge can be exploited by service
providers to (i) size system resources and (ii) define a default profile for
new users. The exploitation of service rule templates to effectively support
these activities is discussed in Section 4.3.4, which reports several service rule
examples discovered in real context datasets and discusses their usage.

4.3.4 Experimental evaluation of the CAS-Mine frame-
work

The CAS-Mine framework has been evaluated by means of a large set of ex-
periments addressing the following issues: (i) the characteristics of the mined
knowledge (Section 4.3.4), (ii) the quality of the mined rules (Section 4.3.4),
and (iii) the rule extraction performance (Section 4.5) in terms of execution
time and number of mined rules.

All the experiments were performed on a 3.2 GHz Pentium IV system
with 2 GB RAM, running Ubuntu 8.04. The CAS-Mine framework was
implemented in the Python programming language [95].
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Real context datasets

Three real context datasets, called mDesktop, Recs, and TeamLife were pro-
vided by Telecom Italia Lab. Regarding privacy concerns related to real
context data usage, please notice that (i) experimental data were collected
from voluntary users that provide their whole informed consent on personal
data treatment for this research project and (ii) real user names were hidden
throughout the paper to preserve identities.

mDesktop dataset. The Telecom Italia mobile desktop application pro-
vides different services to users (e.g., weather forecast) through mobile de-
vices. The mDesktop application provides 26 different services. The mDesk-
top dataset contains 4487 records providing information on requested services
and context (e.g., time and location, when available) of the logged users. The
analyzed dataset includes the requests of 20 different (trial) users over a time
period of one year.

To perform generalized rules mining, a taxonomy including the following
generalization hierachies has been defined.

• date → month → trimester → year

• time stamp → hour → timeslot (two hours timeslots)→ day period
(AM/PM)

• service → class of service

• latitude:longitude → city → country

• phone number → call type (PERSONAL/BUSINESS)

We also considered different generalization hierarchies for the time stamp
attribute. In particular, we considered different time slots (e.g., four hours
time slots and eight hours time slots), which provided similar analysis results.

Recs dataset. The Recs system provides recommendations to users
on restaurants, museums, movies, and other entertainment activities. Each
user can request a recommendation, enter a score, or update a score for an
entertainment center. The Recs system provides these three services to the
end users. The analyzed dataset was obtained by logging the requests of 20
users and their locations over a time period of three months. The dataset
contains 5814 records. For the Recs dataset, the following generalization
hierarchies have been considered:
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• date → month → trimester → year

• time stamp → hour → timeslot (two hours timeslots)→ day period
(AM/PM)

• latitude:longitude → city → country

TeamLife dataset. The TeamLife dataset was generated by logging the
activities of the users of the TeamLife system. The users of TeamLife can
upload files, photos, or videos and share them with the other users. Four
services are offered and the logged users of the TeamLife system are 20. Also
this dataset includes context information, in particular time and location
of the users. The dataset includes 1197 user requests collected over a time
period of three months. For the TeamLife dataset the same taxonomy of the
Recs dataset has been exploited.

Characteristics of the rules mined by CAS-Mine

To characterize the rules discovered by CAS-Mine, we analyze the following
issues: (i) The effect of the support threshold on the number of extracted
patterns (Section 4.3.4), (ii) the impact of the generalization process (Sec-
tion 4.3.4), and (iii) the rule distribution among templates (Section 4.3.4).

Effect of the support threshold Since the minimum support threshold
enforced during the mining step significantly affects the number of extracted
rules, in Figure 4.8 we report both (i) the number of user and service rules
and (ii) the number of user and service rules selected by CAS-Mine (i.e.,
the rules belonging to the classes defined in Section 4.3.3). The analysis was
performed without enforcing any minimum confidence threshold. Since the
obtained results are comparable for all the three datasets, Recs is discussed
as representative one (see Figure 4.8).

The number of mined rules significantly increases for minimum support
values lower than 1% (see Figure 4.8(a)). Hence, it becomes difficult to ex-
ploit the extracted knowledge to create user and service profiles, since too
many rules are available for each user and service. However, many rules ei-
ther represent irrelevant information from an applicative point of view, or
are (longer) specializations of other rules. By exploiting the user and ser-
vice templates presented in Section 4.3.3, the number of selected rules (see
Figure 4.8(b)) significantly decreases and becomes manageable. The number
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Figure 4.8: CAS-Mine: number of user and service rules by varying the
minimum support threshold. Minconf = 0%

of selected rules is up to three orders of magnitude smaller than the total
number of extracted user and service rules for the Recs dataset (see Fig-
ure 4.8(b)). For the TeamLife and mDesktop datasets (detailed charts are
not reported for lack of space) the number of selected rules is on average at
least an order of magnitude smaller than the total number of extracted user
and service rules, independently of the value of the minimum support thresh-
old. Hence, CAS-Mine templates allow selecting a smaller set of rules that
are interesting also from an applicative point of view. In particular, discarded
rules are, for a large majority, specializations of other rules. A reduced num-
ber of rules include attribute combinations deemed as not relevant by the
analysis of a domain expert. Some interesting applications of the selected
rules are discussed in Section 4.3.4.

Impact of generalization Figure 4.9 shows, for different settings of min-
imum support and for all datasets, the percentage of rules including at least
one generalized item on the set of rules extracted by CAS-Mine. For all
datasets, the percentage of rules containing generalized items is at least equal
to 70%.

Since in the CAS-Mine framework infrequent items are aggregated dur-
ing the extraction process, the percentage of generalized rules increases when
the support threshold is increased. When very high support thresholds (e.g.,
10%) are enforced, most extracted rules include generalized items belonging
to the top levels of the taxonomies (e.g., location: ITALY ⇒ date: 2008).
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Figure 4.9: CAS-Mine: percentage of selected rules with generalized items
by varying the minimum support threshold. Minconf = 0%

These rules are usually too general to provide interesting knowledge. Differ-
ently, when lower support thresholds are enforced (e.g., in the range 1%-4%),
the extracted generalized rule set includes also non-top level elements of the
taxonomy and more interesting knowledge is mined.

The extraction of generalized rules allows highlighting correlations that
traditional association rules would hide because of their low support. The
CAS-Mine approach allows a small set of low support association rules to be
lazily aggregated into a higher support generalized association rule satisfying
the support threshold.

Rule distribution among rule templates Extracted rules are analyzed
by investigating how rules are spread among the classes defined in Sec-
tion 4.3.3. Figure 4.10 shows, for all datasets, the number of extracted rules
in each class with a minimum support threshold equal to 1%. Results for user
rules are reported in Figure 4.10(a), while the ones obtained for service rules
are reported in Figure 4.10(b). For the Recs and TeamLife datasets at least
one rule is extracted for each class of user rules (see Figure 4.10(a)). Differ-
ently, for the mDesktop dataset some classes are empty. Since a very large
number of user requests in the log file of the mDesktop application does not
report the user location, the top level items in the place hierarchy are char-
acterized by a support lower than 1%. Hence, rule templates characterized
by the place attribute in the head are not populated.

For user rules (see Figure 4.10(a)), the class with the largest number
of rules is AU-DT, characterized by template {user} ⇒ {date, time}. The
cardinality of AU-DT is larger than that of its shorter versions AU-D and
AU-T. This effect is due to the peculiar characteristics of the date and time
attributes. In particular, both the date and time attributes (i) are always
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Figure 4.10: CAS-Mine: number of selected rules for each subclass of inter-
est. Minsup=1%

specified together in the time stamp of the logged event, (ii) are characterized
by a number of distinct values larger than the number of distinct values of
the other attributes, and (iii) are characterized by hierarchies with four lev-
els. Thus, the generalization process generates many relevant combinations
of these attribute values, which yield the described behavior. In general,
any attribute characterized by a large number of distinct values and a deep
hierarchy (tree) may generate a large set of rules.

The number of extracted service rules for each dataset and class is re-
ported in Figure 4.10(b). Similarly to user rules, also for service rules the
templates including the date and time attributes are the most populated. In
particular, the time and date combination (template STD) and the combi-
nations with the param attribute (templates SPaD and SPaT ) generate on
average many rules.

Quality of the mined generalized rules The rule quality analysis is
focused on defining interestingness measures able to represent both the sig-
nificance and utility of the extracted knowledge. Different objective mea-
sures [107] (e.g., lift, Pearson correlation coefficient, Jaccard measure, Mu-
tual information) can be exploited to rank the extracted patterns according
to their degree of interest. Then, only high ranked rules are presented to
the analyst. In CAS-Mine the lift measure is used to highlight the most
interesting rules and is discussed in Section 4.3.4. The validation of the
extracted knowledge, performed by domain experts, i.e., employees of Tele-
com Italia, is discussed in Section 4.3.4. The domain experts that manage
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Figure 4.11: CAS-Mine: number of selected rules by varying the lift value.
mDesktop dataset. Minsup = 1%, Minconf = 0%

the analyzed services acknowledged that the rules discovered by CAS-Mine
represent valuable knowledge for both user and service profiling.

Ranking interesting rules by means of the lift measure As discussed
in Section 4.3.3, the lift measure is used by CAS-Mine to rank mined rules
and to highlight the most interesting ones. The distribution of lift values
on rules extracted on mDesktop dataset is analyzed as a representative ex-
ample. Figure 4.11 shows (i) the histogram of the number of mined user
rules (Figure 4.11(a)) and (ii) the histogram of the number of mined service
rules (Figure 4.11(b)) depending on their lift value. Rules were extracted by
setting the minimum support threshold to 1% and without enforcing any con-
fidence threshold (i.e., Minconf = 0%). Rule numbers for lift values greater
than 30 are not reported to enhance readability of the plot. The numbers of
user and service rules with lift greater than 30 are 43 and 40, respectively.

Figure 4.11 shows that the majority of the mined rules is positively corre-
lated (i.e., lift value greater than 1) in both charts. Lift values greater than
10 highlight a reduced set of rules worth a careful inspection. Some of them
will be discussed in Section 4.3.4. A limited percentage of extracted rules is
negatively correlated (i.e., 7.9% of user rules and 4.6% of service rules). Also
in this case, lift values below 0.5 highlight a small set of negatively correlated
rules. Some of them are discussed in Section 4.3.4.
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Domain expert validation

The extracted rules have been analyzed by domain experts to assess the ef-
fectiveness of the CAS-Mine framework in discovering interesting and use-
ful knowledge. The domain experts suggested possible usage scenarios for
context-aware user and service profiling.

Habits of specific users (or user categories). The habits of users may
be characterized by some kind of recurrence. For example, the following rules
allow to discover valuable knowledge about a generic user of the mDesktop
application, named Rossi 2. They have been mined by enforcing a support
threshold equal to 1% (i.e., absolute threshold=45).

1. Class RS

(a) user: Rossi ⇒ service: CALL (sup = 1.3%, conf = 53%, lift =
41.5)

(b) user: Rossi ⇒ service: SMS (sup = 1.1%, conf = 47%, lift =
41.5)

2. Class AU − T

(a) user: Rossi ⇒ hour: PM (sup = 2.3%, conf = 94%, lift = 25.4)

The first two above rules belong to the RS rule template. They highlight
that user Rossi is interested in two specific services, CALL and SMS, with
rule confidence close to 50%. They provide relevant knowledge on this user
attitudes. If a larger support threshold is enforced, for instance 2% (absolute
threshold = 90), the following rule is extracted.

• user: Rossi⇒ service: Communication (sup = 2.4%, conf = 100%, lift =
22.8)

This rule, with confidence 100%, is a high level grouping of the two former
rules. It shows that Rossi is exclusively interested in the Communication
service superset, which groups the CALL and SMS services.

Rule templates, described in Section 4.3.3, also allow characterizing differ-
ent user habits. They entail (i) The service type users are mainly interested

2Due to privacy concerns actual individual names are not provided.
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in, (ii) the context in which requests are commonly submitted, and (iii) the
parameters that are frequently used. For instance, rule 2(a) highlights an in-
tensive system usage by user Rossi during the afternoon/evening (confidence
94%).

Profiling user habits by exploiting negative correlation. The fol-
lowing rule, discovered in the TeamLife dataset, belongs to class RS, but,
differently from previous rules, it is characterized by negative correlation (lift
lower than 1).

• user: Verdi ⇒ service: PHOTO (sup = 1.3%, conf = 12%, lift =
0.16)

This rule shows that the user Verdi frequently uses the PHOTO service (the
support of the rule is 1.3%). However, since the lift value is close to 0, it
means that Verdi uses the PHOTO service less than expected. A user specific
marketing action may target Verdi to promote the PHOTO service.

This information can also be exploited for cross selling purposes. Given
a frequently used service, e.g., the FILE service in the positively correlated
rule below

• user: Verdi ⇒ service: FILE (sup = 9.94%, conf = 86.9%, lift =
6.30)

a cross selling marketing action could consider several services belonging to
the same aggregate group and select, as a service to be promoted, a negatively
correlated service in the same group. Advanced knowledge on user habits can
thus be exploited to generate promotions of (similar) rarely requested services
(e.g., the PHOTO service for user Verdi).

Profiling services. Service rules highlight frequently used services and fre-
quently asked parameters for each service, independently of the specific user
who submits the requests. In the mDesktop dataset, by enforcing a mini-
mum support threshold equal to 1% (absolute threshold = 45), the following
generalized rules are extracted.

1. class SD
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• service: TWITTER ⇒ month: February (sup = 2.9%, conf =
31%, lift = 1.9)

2. class SPa

• service: CALL⇒ inout: OUT (sup = 1.1%, conf = 89%, lift =
48.9)

3. class SP

• service: TLWIDGET ⇒ location: Turin (sup = 1.2%, conf =
50%, lift = 5.0)

The first rule, belonging to the SD class, describes the period of usage of a
specific service. Similar rules can be exploited to suggest default services,
which could be temporally updated during the year depending on the ser-
vices expected to be interesting in the considered period. The second rule,
belonging to the SPa class, highlights the correlation between a service type
and its parameters. In this case, call services are mainly exploited to perform
outgoing calls. Finally, the last rule, belonging to class SP, describes the lo-
cation in which a specific remote service is commonly used. This information
could be useful both to size the provider system and to promote services in
particular cities or regions.

4.4 A social application: the TweCoM Frame-

work

The TweCoM (Tweet Context Miner) framework is a data mining envi-
ronment, based on the GenIO algorithm, that addresses data mining and
knowledge discovery from Twitter user-generated content and the relative
context effectively. The main architectural blocks of the TweCoM frame-
work are shown in Figure 4.12. A brief description of each block follows.

Representation of user-generated content. The most relevant Twitter
posts (i.e., tweets) are retrieved by means of an ad-hoc crawler. Each tweet
is represented as a record (i.e., set of items) which describes both content
features (e.g., the most relevant keywords) and contextual features (e.g., the
geographical location).

Taxonomy generation. This block addresses the automatic generation of
taxonomies over content and contextual data items. Depending on the kind of



52CHAPTER 4. THE GENERALIZED ITEMSET DISCOVERER ALGORITHM

Figure 4.12: The TweCoM framework architecture

information, different approaches are exploited for the taxonomy generation.
Taxonomies provide a high level abstraction of the mined knowledge which
allows representing tweet features at different levels of abstraction.

Generalized association rule mining. Generalized association rule min-
ing discovers relevant high level recurrences hidden in the tweet collection.
The generalization process is driven by the previously generated taxonomies.
The extraction of generalized association rules is performed by means of a
two-step process: (i) frequent generalized itemset extraction and (ii) rule
generation from the extracted frequent itemsets. The first mining step is
based on the GenIO algorithm (see Chapter 4).

Querying rules. The extracted rules are queried, based on either their con-
tent or their schema, to more efficiently retrieve the information of interest.
The resulting rules are ranked based on their confidence and support values
to better support in-depth analysis.

A more detailed description of each block and its functionalities is pre-
sented in the following sections.

4.4.1 Representation of user-generated content

Twitter (http://twitter.com) is one of the most popular microblogging and
social networking service. The Web service is mainly based on the messages,
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2 - UserA: {results: [{profile_image_url:..., created_at: Sun, 10 Oct 2010

12:43:31 +0000, from_user:.., metadata: {result_type:recent}, to_user_id: X,

text: This is a text message, id: Y, from_user_id: X, to_user: UserB,

geo:{coordinates:+X -Y id: Z, place: New York City, place_type: city

Country: NY-United States of America}, iso_language_code: en, source..

2 - UserB: {results: [{profile_image_url:..., created_at: Wed, 20 Oct 2010

13:30:12 +0000, from_user:.., metadata:{result_type: recent}, to_user_id: X,

text: This is another message, id: X, from_user_id: X, to_user: User2,

geo:{coordinates: +X -Y id: Z, place: Los Angeles, place_type: city

Country: California-United States of America}, iso_language_code:en, source..

Figure 4.13: A simplified example of tweets in the JSON data format

named tweets, posted by users. Tweets are posts, of at most 140 characters,
that are publicly visible by default. The user-generated content (i.e., tweets)
can be accessed by means of Search Application Programming Interfaces
(APIs) provided by the social network site. Data returned by Twitter APIs
is stored in the JSON format (Java Script Object Notation), which is an
XML-based standard for client-server data exchange. A simplified example
of two tweets tailored to the JSON format is reported in Figure 4.13.

As shown in Figure 4.13, tweets are characterized by a short text mes-
sage enriched with several context pieces of information (e.g., source location
coordinates, city, date, hour). Some contextual features are peculiar charac-
teristics of the context in which tweets are posted by users (e.g., the source
location coordinates), while others are just high level aggregations of the
previous ones (e.g., the city). Consider the text message and low level con-
textual features first. Couples (attribute, value), where attribute is the text
message or the description of the context feature (e.g., the date) and value
is the collected information (e.g., “This is a text message”, 2010− 10− 10),
are denoted as items in the following. In the case of continuous attributes,
the value range is discretized into intervals and the intervals are mapped to
consecutive positive integers.

Since data retrieved by Twitter is not compliant with a relational struc-
tured dataset, a preprocessing phase is needed. During the joining process,
data are tailored to a common relational data format by means of a data
cleaning process. Data cleaning also discards useless and redundant infor-
mation and correctly manages missing values.

For each tweet, the following information are extracted:

• geographical information

• tweet publication date and time stamp
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TWEETS
((Tweet ID, 1), (Propagation level,2), (Username, UserA), (Place,
New York City), (Date, 2010-10-10), (Time, 12:43:31 +000), (Text,
key1a key1b))
((Tweet ID, 2), (Propagation level,2), (Username, UserB), (Place,
Los Angeles), (Date, 2010-10-20), (Time, 13:30:12 +000), (Text,

key2a key2b))

Figure 4.14: A simplified structured dataset generated from tweets

• response/citation level of propagation

• tweet keywords

While the first two tweet features can be directly extracted from the
JSON data format, the tweet propagation level and keywords are usually not
defined. Therefore, we record the tweet response/citation propagation level
during data crawling and process the collection to select the of most represen-
tative words within each tweet content. Tweet contents are represented by
means of the bag-of-word (BOW) representation in which stopwords, num-
bers, and website URLs are removed to avoid noisy information and on which
the Porter stemming algorithm [93] is applied. The BOW representation is
associated with the statistical measure of the term frequency-inverse docu-
ment frequency (tf-idf) that evaluates the relevance of a word in the whole
collection. The representative tweet keywords are thus defined as the top-k
words with highest tf-idf values.

After preprocessing, the collected information can be modeled as a struc-
tured dataset, where records represent Twitter messages (i.e., tweets) by
means of (i) their most representative tweet keywords, and (ii) their related
contextual features. This representation will be exploited to effectively ad-
dress generalized association rule mining from tweet collections. An example
of structured context dataset record obtained by including the content of
a portion of two Twitter messages, presented in Figure 4.13, is reported in
Figure 4.14. The primary key (Tweet ID attribute) is in boldface.

Tweet crawler

Twitter APIs are general-purpose libraries that allow the efficient retrieval
of tweets from the Web. However, a procedure to extract a collection of
tweets and their corresponding relationships (e.g citations or responses) is
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Algorithm 2 Tweet crawler
Input: k /*number of top tweets*/, keys /*set of keywords*/, d /*search maximum depth*/
Output: T /*collection of tweets*/
1: T = ∅, i = 0
2: // initialization of the source set
3: if keys = ∅ then

4: S = set of top-k toptweets
5: else

6: S = set of top-k tweets retrieved by means of keyword search using keys
7: end if

8: repeat

9: C = ∅ // candidate set initialization
10: for all s in S do

11: C = C ∪ {ci tweets directly linked to s|c 6∈ {S ∪ T}}
12: end for

13: T = T ∪ S // update of tweet collection
14: S = C // update of source set
15: i = i + 1
16: until i 6= d
17: T = T ∪ S // it includes the tweets in S in the final collection set T
18: return T

not provided yet. Thus, a tweet crawler to effectively query Twitter Web
service and retrieve a collection of linked tweets is needed. To this aim, the
following two sets of tweets are defined: (i) the source S and (ii) the collection
T sets. The following parameters are provided to the crawler: (i) the number
of top-k tweets that will be retrieved during the first step of the procedure,
and (ii) an optional set of keywords keys. If the keys set is empty the source
set is initialized with the tweets belonging to the toptweet category, else with
the top-k results retrieved by means of a keyword search (lines 3-7). For each
tweet belonging to the source set S, all the tweets that are directly linked
to the original post (i.e., answers and/or citations) and are not just visited
by the procedure are inserted in a candidate set C (lines 10-12). Then,
the original posts in the source set S are moved into the collection set T
(line 13), while the candidate set becomes the new source set (line 14). This
step is recursively repeated for each tweet belonging to the source set until a
termination condition is satisfied. When the stop condition is reached, all the
tweets belonging to the source set are moved into the collection set. Different
termination conditions can be employed. To investigate tweet propagation,
we defined a maximum depth level d of responses/citations as crawler stop
condition (see line 16). Since Twitter system enforces some upper bound
constraints for tweet download by means of APIs, an approach, similar to
TPC congestion control, is adopted to query the Twitter APIs efficiently.
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4.4.2 Taxonomy generation

A taxonomy is a hierarchical knowledge representation that defines is-a rela-
tionships between concepts and their instances (i.e., the items). Taxonomies
are used to classify objects, define semantic relationships between concepts
and provide additional information on data. Most of the previously pro-
posed generalized rule mining approaches (e.g., [52, 103]) commonly rely on
user-provided taxonomies. Moreover, these taxonomies are usually general-
purpose, thus they may not reflect the real meaning of the information stored
in the data collection. The automatic extraction of taxonomies from data
items in a relational dataset is definitely a challenging task. Since Twitter
APIs provide contextual knowledge as “flat” attributes (i.e., relationships
among data objects are not provided yet), this block automatically gener-
ates a taxonomy over a selection of tweet record attributes.

Context taxonomy generation

Taxonomies over contextual features (e.g, spatial and temporal information)
can be derived by means of aggregation functions based on a hierarchical
model. The hierarchical model represents the relationships between different
levels of aggregation. Similarly to what usually done in data warehousing,
these pieces of information are extracted by means of Extraction, Transfor-
mation and Load (ETL) processes, named here aggregation functions, defined
by the user. For example, in the relational tweet representation, aggregations
functions may define either associations among different context attributes
(e.g., City ⇒ State) or aggregations over a singular context attributes (e.g.,
Date ⇒ Semester) which could be derived by simply parsing the corre-
sponding attribute domain values.

Given a set of aggregation functions among UGC features, the taxon-
omy generation block allows automatically building a taxonomy. It asso-
ciates with each item the corresponding set of generalizations organized in
a hierarchical fashion. For instance, consider a temporal context feature
included in the UGC (e.g., Month) that represents high level knowledge ab-
straction of another context feature (e.g., Date). A conceptual hierarchy
of aggregations may be devised by mapping the two attribute domains by
means of the corresponding aggregation function (e.g., Date ⇒ Month).
Consider again the Date attribute and its high level aggregation Semester.
Although the corresponding higher level attribute does not exist yet, the cor-
responding mapping may be simply derived by parsing the lower level Date
domain values (e.g., 2010 − 10 − 10) and generating upper level concepts
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Figure 4.15: A portion of the generalization hierarchy for the date attribute

(e.g., 2nd Semester 2010) according to the corresponding aggregation func-
tion (i.e., Date ⇒ Semester). An example of taxonomy built over the date
attribute is reported in Figure 4.15.

In Table 4.6 the aggregation functions exploited for the automatic gener-
ation of the taxonomy over temporal and spatial data features are resumed.
However, the framework allows the usage of different aggregation functions
as well.

Keyword taxonomy generation

In literature several hierarchical organizations of concepts have been proposed
in textual data analysis (e.g., [11, 69]). This block focuses on combining
both content and contextual high level data features to generate a taxonomy
over tweet content keywords as well. The generation of a taxonomy directly
from the user-generated content (UGC) collection may provide additional
knowledge about the content and the relationships between words/concepts
that are of major interest for the social community. In the following, this
issue is addressed by adopting a clustering-based approach.

As discussed in Section 4.4.1, a tweet content collection can be represented
by means of a tf-idf matrix. For each tweet content, both the Porter stemming
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Data fea-
ture

Aggregation function

Temporal Date⇒ WeekDay
Date⇒Month
Month⇒ Y ear
T ime⇒ Hour
Hour ⇒ T imeSlot

Spatial GPSCoordinates⇒ Id
Id⇒ Place
P lace⇒ Region
Region⇒ State

Table 4.6: TweCoM: examples of spatial and temporal aggregation functions

algorithm [93], which reduces words belonging to the collection to their base
or root form, and a filter on stopwords, numbers, and webpage URLs, to
remove redundant and noisy information, are applied.

The tweet content collection can be represented in a matricial form TC
in which each row represents a stemmed word (i.e., a term) of the collection
while each column corresponds to the content of a tweet. Each element of
the matrix TC is denoted as the tf-idf (Term Frequency - Inverse Document
Frequency) value for a term. It is computed as follows:

tcij =
nij

∑

k∈{q : tq∈twj}
nkj

· log |TW |
|{tw ∈ TW : ti ∈ tw}| (4.2)

where nij is the number of occurrences of i-th term ti in the j-th tweet
content twj, TW is the collection of tweet contents,

∑

k∈{q : tq∈twj}
nkj is the

sum of the number of occurrences of all terms in the j-th tweet content
twj, and log |TW |

|{tw∈TW : ti∈tw}|
represents the inverse document frequency of

the i-th term ti (i.e., the logarithm of the ratio between the tweet collection
cardinality and the number of tweets whose content includes term ti).

Since a taxonomy has a hierarchical structure, a hierarchical clustering
approach is applied to the tf-idf matricial representation of the tweet content
collection. The hierarchical clustering approaches build a tree-based struc-
ture, called dendrogram, that represents how the tweet contents are grouped
together at different levels of aggregation. Despite the algorithm may sup-
port different approaches and similarity measures to build the dendrogram
structure, a centroid linkage approach based on the cosine similarity mea-
sure is adopted. Cosine similarity measure is one the mostly used measures
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Figure 4.16: An example of dendrogram cut for keyword taxonomy genera-
tion

to compute similarity between documents in the BOW representation. The
similarity between two tweet contents/clusters, represented by means of their
corresponding tf-idf vectors A and B, is computed as the dot product be-
tween the two vectors normalized by the product of their magnitude. The
employed clustering approach assigns a vector to each cluster which repre-
sents the cluster itself. It is computed as the average between all the tweets
belonging to the cluster. Thus, the centroid provides the set of the the most
representative (i.e., highest tf-idf values) keywords of the tweet group.

The adopted approach exploits the dendrogram structure and the centroid
representation to automatically generate a taxonomy over the tweet text
content. The method cuts the hierarchical clustering scheme at different
levels l according to the analyst request. For each cluster Cl at level l, the
representative keywords of the tweets are the top-t terms with the highest
tf-idf values. Since a cluster at level l+1 is composed of two or more clusters
belonging to the level l, keyword aggregation functions, formally defined
in Definition 18, is exploited to construct a taxonomy over tweet content
keywords.

Definition 18 Keyword aggregation function. Let tl and tl+1 be the
sets of keywords representing two clusters Cl and Cl+1 obtained by two dif-
ferent cuts of dendrogram (i.e., two different levels). If Cl is a subset of Cl+1

(i.e., Ci ⊆ Cj), the aggregation function between two keywords keyl ∈ tl and
keyl+1 ∈ tl+1 is: keyl ⇒ keyl+1.

In the following an example of the taxonomy generation process over
the tweet content keywords is reported. Consider the dendrogram shown
in Figure 4.16. Suppose that the analyst decides to cut the dendrogram
between the levels 1 and 2. At level 1, clusters A and B are characterized by
the keywords “Obama” and “Bush” respectively. At level 2 the two clusters
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are merged in cluster X that is represented by keyword “President”, i.e.,
the term with highest tf-idf value among all tweet contents belonging to
X. Thus, the taxonomy generation process, according to the Definition 18,
exploits the following keyword aggregation functions: Obama ⇒ President
and Bush⇒ President.

4.4.3 Generalized association rule mining

Correlations hidden in a dataset D may be effectively represented by means
of association rules [2].

The generalized rule mining block takes in input the structured dataset
built over tweets, the generated taxonomies, and, possibly, some mining con-
straints (e.g,, minimum support and confidence thresholds). It discovers all
the generalized association rules that satisfy the enforced constraints.

The mining task follows the usual two-step approach [103]: (i) extraction
of the frequent generalized itemsets, and (ii) generation of the corresponding
generalized rules. Since the first step is considered the most computationally
intensive step [2], plenty of algorithms (e.g., Cumulate [103], GenIO [16],
ML T2LA-C [52]) have been proposed to efficiently perform this task. To
perform the generalized itemset extraction task effectively, the GenIO algo-
rithm [16] is exploited, while the generalized rule generation is performed by
exploiting our implementation of the Apriori rule mining algorithm [103].

4.4.4 Querying rules

The block entails the selection and ranking of most valuable rules for bet-
ter supporting in-depth analysis. Rule selection is constrained by either (i)
the rule schema (i.e., the attributes that have to appear in the rule body
or head), or (i) some specific rule items of interest. An example of schema
constraint may be: (Keyword, ∗) → (Place, ∗). It selects all 2-length rules
that include, respectively, an item characterized by attribute Keyword in the
rule body and attribute Place in the rule head. For instance, the general-
ized rule (Keyword, Sport)→ (Place, U.S.)) satisfies the above schema con-
straint. Differently, an example of item constraint is: {∗} → {(Place, U.S.).
It selects all rules that contain item (Place, U.S) as rule consequent. Rule
(Keyword, Sport) → (Place, U.S.)) also satisfies the proposed item con-
straint.
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Results of rule querying are sorted by confidence and support quality in-
dexes to better support in-depth analysis. Although confidence and support
are the most popular rule quality indexes [2], the TweCoM framework allows
to easily integrate different quality indexes as well (e.g., lift [107]).

4.4.5 Experimental evaluation of the TweCoM frame-
work

The efficiency and the effectiveness of the proposed framework have been
evaluated by addressing the following issues: (i) the efficiency of the tweet
crawler, (ii) the effectiveness of the adopted taxonomy inference procedure,
and (ii) the propagation analysis of tweet answers and/or citations by means
of generalized rule mining.

Data retrieval

The TweCoM framework exploits a crawler to effectively retrieve tweets from
the Web. The retrieval procedure, described in Section 4.4.1, is exploited to
follow the sequence of responses/citations to the top-k results of a keyword
search until a maximum search depth is reached. A campaign of keyword
searches is performed starting from a set of commonly used American terms
and famous names (e.g., Soccer, Obama, Society). Searches are performed
with the aim of discovering most significant trends in UGC generation and
propagation. Examples of use-cases for the proposed TweCoM framework
that concern the collected tweets are deeply discussed in the following. The
impact of the following parameters on both the number of extracted tweets
and the time spent in tweet retrieval is investigated: (i) the number of top
results of the keyword search k, and (ii) the maximum search depth d. In Ta-
ble 4.7 the number of tweets retrieved for the most relevant keyword searches
is reported as well as the corresponding time elapsed in tweet crawling by
setting the maximum search depth D=4 and by varying the the number of
retrieved top results from 4 to 20. Both the elapsed time and the cardinality
of the tweet set scale roughly linearly with the number of top results as long
as the cardinality of different chains of answers/citations related to different
top results are similar.



62CHAPTER 4. THE GENERALIZED ITEMSET DISCOVERER ALGORITHM

Keyword k = 4 k = 10 k = 15 k = 20
Num. Time Tweets Time Num. Time Num. Time
tweets (s) tweets (s) tweets (s) tweets (s)

Obama 19,242 15.2 25,342 20.0 27,291 24.2 34,321 28.4
Clinton 16,543 13.3 18,765 15.3 21,454 18.2 24,652 22.9
Society 14,532 12.7 16,119 14.1 19,665 16.8 23,552 20.0
Health 11,683 10.7 12,753 12.1 14,664 15.7 18,421 18.1
War 9,332 8.6 11,356 10.2 13,568 12.7 16,742 15.9
Sport 12,687 12.3 14,331 15.1 17,876 17.1 19,864 19.5
Soccer 18,238 15.1 19,594 17.0 21,303 18.9 23,643 20.0

Los Angeles Galaxy 12,687 11.3 14,223 13.2 17,352 15.8 18,992 18.0
Stadium 9,623 9.8 11,200 11.1 12,782 12.9 14,782 14.8

Table 4.7: TweCoM: tweet set cardinality and elapsed time in tweet crawling
by varying the number of retrieved top results. d = 4

Keyword d = 3 d = 4 d = 5 d = 6
Num. Time Tweets Time Num. Time Num. Time
tweets (s) tweets (s) tweets (s) tweets (s)

Obama 21,112 16.1 25,342 20.0 29,345 28.6 65,345 47.7
Clinton 16,543 13.3 18,765 15.3 25,876 25.1 56,323 42.2
Society 14,112 11.2 16,119 14.1 23,453 23.1 49,075 36.0
Health 10,301 10.9 12,753 12.1 26,360 25.9 68,102 45.1
War 9,993 7.2 11,356 10.2 19,342 18.4 34,795 39.1
Sport 11,633 11.5 14,331 15.1 22,098 26.2 50,061 40.0
Soccer 15,114 15.1 19,594 17.0 28,026 27.0 52,037 44.5

Los Angeles Galaxy 12,996 11.4 14,223 13.2 21,753 19.1 42,664 39.0
Stadium 9,453 9.1 11,200 11.1 18,553 17.9 44,118 39.3

Table 4.8: TweCoM: tweet set cardinality and elapsed time in tweet crawling
by varying the number of top results. k = 10

In Table 4.8 the number of tweets retrieved for the most relevant keyword
searches is reported as well as the corresponding time elapsed in tweet crawl-
ing by setting the number of top results k = 10 and by varying the maximum
search depth from 3 to 6. Both the elapsed time and the cardinality of the
gathered tweet set scale more than linearly with the maximum depth search
because of the combinatorial growth of the number of considered answers/c-
itations. We denoted the setting k = 10 and d = 4 as standard configuration
in the rest of the experimental section.

Taxonomy inference

Depending on the kind of processed information, the taxonomy generation
procedure exploits either semantic relationships among tweet contextual fea-
tures, or hierarchical clustering over Twitter textual message content. The
analysis of the tweets retrieved by means of the tweet crawler is performed
by setting its standard configuration (see Section 4.4.5). By exploiting the
aggregation relationships reported in Table 4.6 over geographical and tem-
poral tweet contextual features, a set of generalization hierarchies is built. A
portion of the inferred taxonomy is reported in Figure 4.17.

The hierarchical clustering has been exploited to generate a taxonomy
over tweet content keywords. For each cluster the keyword characterized
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(a) Date attribute.

(b) Place attribute.

Figure 4.17: A portion of the generalization hierarchies for the date and place
attributes
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Figure 4.18: A portion of the generalization hierarchy for the tweet content
keywords

by the highest tf-idf value is selected as representative (i.e., t = 1). To
capture soccer teams, their names in the BOW representation is introduced.
A portion of the resulting taxonomy built over tweet content keywords is
reported in Figure 4.18. The devised aggregations are deemed relevant by
domain experts. Thus, they are employed in the generalized rule mining
process. The selected aggregation relationships between tweet contextual
features (e.g., between Los Angeles, California, and U.S.A.) and content
keywords (e.g., between Soccer and Los Angeles Galaxy) will be exploited
in Section 4.4.5 to effectively characterize tweet propagation.

The distribution of the tf-idf weight among tweet contents is also ad-
dressed. In particular, in Figure 4.19 the tf-idf distribution of tweet col-
lection concerning Obama is reported. Since tweets are characterized by a
few number of words due to the post length limitation imposed by Twitter
(i.e., at most 140 characters), the inverse document frequency impact be-
comes dominant. In fact, term frequencies are usually close to one and their
distributions follow a power law. The inverse document frequency allows
normalizing this distribution by assigning a score to the most relevant words
in the tweet collection.

The performance of the hierarchical clustering algorithm employed in our
approach is compared with the ones of the traditional k-means algorithm [83].
The cosine distance was used as similarity measure for both algorithms. The
overall average silhouette achieved by the previously described tweet collec-
tions is measured. In the reported experiments, the dendrogram is cut at
the levels at which the overall average silhouette is still higher than 0.8. In
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Figure 4.19: TweCoM: tf-idf distribution in the Obama tweet collection

Figure 4.20, the variation of the silhouette coefficient values yielded by the
two algorithms in terms of the number of generated clusters is reported for
one tweet representative collection. Similar results were obtained for the
others. The hierarchical algorithm outperformed k-means for any number of
generated clusters. Moreover, the silhouette for the hierarchical algorithm
was averagely equal 0.77, while for the k-means was −0.08. Thus, the hierar-
chical approach could more efficiently identify well-formed clusters than the
k-means approach.

Propagation analysis of tweet content

In this section, the effectiveness of the TweCoM framework in discovering
valuable correlations from Twitter user-generated content is investigated.
To address this issue, three different examples of use-cases for TweCoM are
analyzed separately.

Use-case 1: Spatial propagation analysis of tweet content. This
application scenario drives the analyst to retrieve and select the most rel-
evant rules involving spatial information. To achieve this goal, the an-
alyst performed the following steps: (i) post retrieval and categorization
based on their propagation level (in the chain of answers/citations), (ii) gen-
eralized rule mining from each generated tweet set, and (iii) rule query-
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Figure 4.20: TweCoM: silhouette coefficient trend in a tweet collection

ing based on user-specified constraints involving spatial information (e.g.,
(Keyword, ∗) → (Location, ∗)). The generalized rule mining process is per-
formed by exploiting both (i) the tweets retrieved by the tweet crawler with
the standard configuration, and (ii) the taxonomy reported in Section 4.4.5.
During the generalized rule mining, the analyst enforced a minimum sup-
port threshold equal to 0.5% and a minimum confidence threshold equal
to 50%. The analyst sorted rules according to, respectively, their confi-
dence and support values to select the strongest and most recurrent pat-
terns. The selection task is first performed by enforcing the schema con-
straint (Keyword, ∗) → (Location, ∗) over the set of mined patterns. From
the set of tweets characterized by propagation level 1 (i.e., direct answers/c-
itations of the top-k tweets), the following rules have been extracted:

Propagation Level = 1

(i) (Keyword, Los Angeles Galaxy)→ (Location, Los Angeles) (sup = 1.0%,
conf=87%)

(ii) (Keyword, Los Angeles Galaxy) → (Location, San Francisco) (sup =
0.7%, conf=74%)

They state that the American soccer team name Los Angeles Galaxy fre-
quently occurs in the content of tweets posted from Los Angeles and San
Francisco. The analysis of the next propagation level (2) highlighted the
following generalized rule:
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Propagation Level = 2

(iii) (Keyword, Soccer) → (Location, Los Angeles) (sup = 1.5%, conf =
87%)

The above rule is a generalization of the former ones. It states that a
significant part of tweets whose content includes keyword Soccer have been
posted from Los Angeles, where one of the most famous American soccer
teams (i.e., the Los Angeles Galaxy) plays. At this level, patterns that involve
singular teams became infrequent and, thus, they have not been extracted.
However, due to the support-driven generalization process exploited by Ge-
nIO [16], their generalization is triggered over the taxonomy (see Figure 4.18).
Indeed, singular soccer team names are generalized in their upper level aggre-
gation Soccer. Among the all possible generalizations, one of them (i.e., rule
(iii)) becomes frequent with respect to the minimum support threshold. The
discovered knowledge prompted the analyst to deepen the investigation into
some selected keywords (e.g., Soccer). Spatial propagation of tweets whose
content includes keyword Soccer has been investigated by enforcing the fol-
lowing item and schema constraint (Keyword, Soccer) → (Location, ∗) on
the set of mined rules. Most of the answer/citation authors were located
nearby at submission time, as shown by the following rules extracted from
tweets characterized, respectively, by propagation level 3 and 4.

Propagation Level = 3

(iv) (Keyword, Soccer)→ (Location, California) (sup = 0.9%, conf = 71%)

Propagation Level = 4

(v) (Keyword, Soccer) → (Location, California) (sup = 0.6%, conf = 76%)

Twitter users that were interested in citing these kind of tweets are mainly
located close to the city in which their favorite soccer team plays.

Use-case 2: Temporal propagation analysis of tweet content. This
application scenario drives the analyst to retrieve and select most relevant
rules involving temporal recurrences in tweet content posting. The TweCoM
framework steps of usage are similar to the ones adopted in the previ-
ous use-case. A temporal propagation analysis of tweets whose content
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includes keyword Obama has been performed by enforcing the constraint
(Keyword,Obama)→ {(Date, ∗), (T ime, ∗)} on the set of mined rules. The
selected rules, among which the two reported below have been selected, high-
light a typical propagation trend.

Propagation Level = 1

(vi) (Keyword, Obama)→ {(Date, November 2010), (Time, from 5 p.m. to
8 p.m.} (sup = 0.9%, conf = 83%)

Propagation Level = 3

(vii) (Keyword, Obama)→ {(Date, November 2010), (Time, p.m.)} (sup =
0.7%, conf = 62%)

When a significant amount of toptweets about Obama are posted in a
limited time period, i.e., when a newsworthy political event happens, the
answers/citations up to propagation level 3 are posted within the following
4-8 hours. This information may be deemed relevant for bandwidth shaping
and service monitoring.

Use-case 3: Combined spatial and temporal propagation analysis

of the tweet content. The last usage scenario introduces the analysis of
the temporal propagation of tweet content, in conjunction with the spatial di-
mension. By following the same approach presented in the previous use-cases,
the analyst enforces the constraint {(Keyword, Soccer), (Location, ∗)} →
{(Date, ∗), (T ime, ∗)} on the set of mined rules. He discovered, amongst
others, the following rules:

Propagation Level = 2

(viii) {(Keyword, Soccer), (Location, Los Angeles)} → {(Date, November
2010), (Time, from 7 p.m. to 8 p.m.)} (sup = 0.6%, conf = 72%)

Propagation Level = 3

(ix) {(Keyword, Soccer), (Location, California)} → {(Date, October 2010),
(Time, p.m.)} (sup = 0.9%, conf = 85%)
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Figure 4.21: GenIO: scalability on TPC-H datasets

The above rules highlight temporal daily recurrences holding in a specific
month (November 2010). Discovered rules are supported by the fact that
Los Angels Galaxy team won 5 games out of 7 from October to November
2010.

To consider also spatial and temporal propagation at the same time of
tweets whose content includes keyword Obama the analyst enforced the con-
straint {(Keyword,Obama), (Location, ∗) → {(Date, ∗), (T ime, ∗)} on the
set of mined rules.

Propagation Level = 1

(vi) {(Keyword, Obama), (Location, Paris)} → {(Date, November 2010),
(Time, p.m.)} (sup = 0.6%, conf = 62%)

The above rule may suggest that a number of European newsworthy
events have engaged president Obama in November 2010. This information
may be worth mentioning, for instance, for news recommendation.

4.5 Scalability of the GenIO algorithm

In this section the scalability of the GenIO algorithm with the number of
dataset records is evaluated on synthetic datasets generated by means of the
TPC-H generator [111]. By varying the scale factor parameter, tables with
different cardinalities are generated. Datasets of size ranging from 30,000 to
210,000 records with 12 categorical attributes are generated The extraction
of the generalized itemsets from the lineitem table exploits the part, nation,
and region tables to define taxonomies on line items.
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Figure 4.21, which plots the extraction time for various supports, shows
that the proposed algorithm scales well also for large datasets. Since the
number of extracted itemsets grows for low supports (e.g., 1%), the process
becomes computationally more expensive. However, the overall CPU time
is still low, less than 7600 s for the lowest considered support and largest
dataset.



Chapter 5

Generalized association rule
mining with constraints

This chapter addresses the enforcement of mining constraints to improve the
efficiency and the effectiveness of the generalized association rule mining pro-
cess. In particular, it focuses on (i) preventing the generation of redundant
or less interesting patterns by pushing ad-hoc constraints into the mining
process and (ii) selecting patterns valuable for analyst’s purposes by means
of a postprocessing step.

This chapter is organized as follows. Section 5.1 formally states the prob-
lem of generalized association rule mining with constraints and introduces
two types of constraints, i.e., the schema constraints and generalized rule
confidence constraints to push, respectively, into the itemset and rule mining
steps. Section 5.2 presents a data mining system that is based on the dis-
covery of generalized association rules driven by the previously introduced
constraints.

5.1 Problem statement

In this section the problem of generalized association rule mining with con-
straints is formalized.

To further generalize the problem of extracting itemsets and rules in the
presence of taxonomies, presented in Chapter 3, the concept of multiple-
taxonomy is first introduced to allow the use of different generalization hier-
archies over the same attribute.

71
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Figure 5.1: An example of multiple-taxonomy built over the example dataset

Definition 19 Multiple-taxonomy. Let T ={t1, . . . , tn} be a set of at-
tributes. A multiple-taxonomy Θ = {⋃k AT1k, . . . ,

⋃

j ATnj} is a forest of
aggregation hierarchies, where

⋃

j ATij is the set of generalization hierarchies
defined on attribute ti.

The taxonomy reported in Figure 5.1 is an example of multiple-taxonomy
as the date attribute is associated with two different generalization hierar-
chies.

The multiple-taxonomy is exploited to aggregate items during the itemset
mining process.

Definition 20 Constraint. A mining constraint is a predicate that states
the characteristics of the patterns (e.g., itemsets or rules) to select during
the mining process.

For instance, the mining support and confidence thresholds are examples
of constraints commonly used to reduce the amount of extracted patterns
and to make the extraction and selection tasks manageable.
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The generalized itemset mining process with constraints is the task of ex-
tracting all itemsets that satisfy a given set of mining constraints. Similarly,
the generalized association rule mining process with constraints is the task of
extracting all association rules that satisfy a given set of mining constraints.

In the following, two types of constraints are presented: (i) the schema
constraints and (ii) the generalized rule confidence constraint. Their formal
definitions follow.

5.1.1 The schema constraint

A schema constraint restricts the set of attributes that may appear in an
itemset.

Definition 21 Schema constraint. Let T ={t1, . . . , tn} be a set of at-
tributes. A schema constraint Sc ⊆ T of length k is a set of k distinct
attributes. A generalized itemset X satisfies constraint Sc iff attr(X) ⊆ Sc,
where attr(X) is the set of attributes in X.

An example of a schema constraint coming from the context-aware ap-
plication domain is {user, service}. The example schema constraint speci-
fies that the only itemsets of interest are those of length 2 of type {(user,
valueuser), (service, valueservice)} or those of length 1 whose schema includes
one of the two attributes of interest ({(user, valueuser)} and {(service, valueservice)}).

Definition 22 Schema constraint satisfaction. Let X be a generalized
itemset, attr(X) the set of attributes in X, and S={Sc1, . . . , Scn} 6= ∅ a set
of schema constraints. X satisfies constraints in S iff attr(X) ⊆ Sci for at
least an i ∈ [1, n].

When S = ∅ no schema constraint is enforced. From the above definition,
it trivially follows that if itemset X satisfies a constraint Sc, then any itemset
Y ⊆ X also satisfies Sc. This property can be profitably exploited to apply
schema constraints during the itemset mining step.

For example the schema constraint {user, service} is satisfied by the item-
set {(user,Paolo), (service,SMS)} and also by the itemsets {(user,Paolo)} and
{(service,SMS)}.
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5.1.2 The generalized rule confidence constraint

The generalized rule confidence constraint is exploited to prune a set of gen-
eralized rules that are considered useless. The generalized rule confidence
constraint is based on the confidence measure and compares each general-
ized rule r with a subset R(r)desc of its descendants. R(r)desc includes all the
descendant rules of r such that the body is the same body of r while the
head is a descendant of the head of r. Given a minimum confidence thresh-
old value, a generalized rule r is deemed useful if it satisfies the enforced
minimum confidence threshold while none of the rules in R(r)desc satisfy it.

Definition 23 Generalized rule confidence constraint. Given a mini-
mum confidence threshold minconf , an arbitrary generalized rule r : X ⇒ Y
satisfies the generalized rule confidence constraint iff (i) conf(r) ≥ minconf
and (ii) @ rd : X ⇒ Z, with Z ∈ Desc[Y ], such that conf(rd) ≥ minconf .

Given a structured dataset D, a multiple-taxonomy Θ, a set of schema
constraints S, a minimum support threshold min sup, a minimum confidence
threshold min conf , and the corresponding generalized rule confidence con-
straint, the generalized association rule mining with constraints addresses
the discovery of all generalized association rules satisfying all the enforced
constraints.

In the following section, an example of data mining application based on
the generalized rule mining process with schema and confidence constraints
is presented.

5.2 The CoGAR Framework

The CoGAR (Constrained Generalized Association Rules) framework mines
generalized rules satisfying a user-provided set of schema constraints and the
generalized rule confidence constraint. It has been exploited to extract valu-
able knowledge in different application domains (e.g., network traffic analysis,
mobile service analysis).

Figure 5.2 shows the building blocks of the CoGAR framework, which
mainly performs three activities. In the following each activity is briefly
described. (i) Data integration and pre-processing. Data to be analyzed is
usually provided by different and heterogeneous sources. Before perform-
ing the knowledge discovery process, data is cleaned by removing irrelevant
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Figure 5.2: The CoGAR Framework Architecture

and redundant information and integrated into a common data structure.
(ii) Generalized association rule mining with constraints. The mining block
is the core of CoGAR. It exploits a (user-provided) multiple-taxonomy to
drive the mining of generalized association rules. To tailor the mining pro-
cess to specific user targets, a set of schema constraints is enforced during
the itemset mining step. Moreover, the generalized rule confidence constraint
is enforced to prune generalized association rules that do not provide new
interesting knowledge with respect to similar rules at lower abstraction lev-
els. (iii) Rule querying and selection. To allow end-users to easily exploit
the mined knowledge, both the set of generalized rules and the multiple-
taxonomy are stored in an XML data repository, which can be queried by
means of the XQuery language [118]. A more detailed description of the
functionalities of each CoGAR architectural block follows.

5.2.1 Data integration and preprocessing

This block collects data coming from different sources, integrates them, and
applies preprocessing tasks (e.g., data discretization) to transform data into
a common data structure. During the preprocessing phase, data cleaning and
redundant data pruning may be performed. Finally, preprocessed data are
stored in a common data repository. Independently of the domain, the data
integration step is based on a global as view (GAV) approach. A relation
global view is defined over the available sources by means of a set of semantic
mappings between the schemata of the sources and the schema of the global
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view. The global view provides an integrated view that is exploited by the
mining block. The defined semantic mappings depend on the application
domain. Hence, for each application domain, an expert of the domain must
define the proper mappings, for example by means of SQL queries.

Consider a typical context-aware mobile application. In the considered
application two data sources are available. The first source stores the posi-
tions of the users, while the second source stores user requests. In the first
data source the position of users can be a GPS coordinate or a mobile phone
cell, depending on the used device (e.g., laptops, mobile phones). A proper
data transformation is needed to obtain the same value when the position
of the user is semantically the same, independently of the original format
(GPS coordinate or mobile phone cell). To obtain a uniform representation,
each position can be, for example, mapped to the corresponding city. This
semantic mapping allows obtaining a uniform representation of user loca-
tions in the global view defined over the original data sources. To obtain a
global view integrating user positions and service invocations, the two data
sources must be joined by exploiting the time information available in both
sources. However, even in this case a proper mapping must be defined to
obtain a uniform representation of the time information since the considered
data sources may use different formats.

5.2.2 Constrained generalized rule miner

Given the common data repository generated by the first block of CoGAR,
a multiple-taxonomy, and a set of schema constraints, this block performs
the extraction of frequent generalized association rules satisfying the given
schema constraints and the generalized rule confidence constraint. The ex-
tracted rules are stored in an XML repository. The mining task follows the
usual two-step approach [3].

To improve the efficiency of the mining task, schema constraints should
be enforced as soon as possible. An efficient itemset mining algorithm that
directly mines generalized itemsets by pushing schema constraints into the
itemset mining step is adopted. Generalized association rules satisfying the
same schema constraints may be mined by applying any traditional rule
mining algorithm on the extracted itemsets. An implementation of the tra-
ditional rule mining procedure proposed in [3] is adopted. Finally, a post-
processing step is applied to enforce the generalized rule confidence con-
straint.

Section 5.2.4 reports detailed information about the used mining algo-
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<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT ruleSet (rule*)>

<!ELEMENT rule (measure+, body, head)>

<!ELEMENT measure (#PCDATA)>

<!ATTLIST measure name CDATA #REQUIRED>

<!ELEMENT body (item+)>

<!ATTLIST body length CDATA #REQUIRED>

<!ELEMENT head (item+)>

<!ATTLIST head length CDATA #REQUIRED>

<!ELEMENT item EMPTY>

<!ATTLIST item attributeName CDATA #REQUIRED attributeValue CDATA #REQUIRED>

Figure 5.3: DTD of the XML document for association rule representation

rithms.

5.2.3 Rule querying and selection

The mining block exclusively extracts rules satisfying the enforced constraints.
Further exploration may allow end-users to focus their attention on specific
subsets of rules depending on their goals. The rule querying and selection
block of CoGAR allows end-users to retrieve subsets of rules, or ranking
them, according to their actual analysis target. XML is used to store both
the extracted rules and the exploited multiple-taxonomy, while XQuery [118]
is adopted to query and retrieve the rules of interest.

The DTD reported in Figure 5.3 describes the schema of the XML doc-
uments used to represent the mined rule sets. The rule element is used
to represent rules, while the body and the head elements respectively repre-
sent the antecedent and the consequent of the rules. To store the value of
the measures of interest the measure element is used. An XML document
representing a rule set including two simple rules is reported in Figure 5.4.

The proposed XML rule representation is easily and efficiently queryable
by means of the XQuery language. Figure 5.5 reports an example query,
which retrieves all the rules that include the item (user, Paolo) in their body
and sorts them by descending confidence. Depending on the type of rules of
interest, similar queries may be easily written by the end-users of CoGAR.

Also the exploited taxonomy is represented by means of XML files. Fig-
ure 5.6 represents the DTD associated with the XML files used to store
taxonomies and Figure 5.7 an XML file representing a part of a taxonomy.
For each generalized item the listOfChildren element is used to represent
its children. Each child item can be either a generalized or a not generalized
item.
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<ruleSet>

<rule>

<measure name="support">5.8</measure> <measure name="confidence">50.5</measure>

<body length="1">

<item attributeName="user">Paolo</item>

</body>

<head length="2">

<item attributeName="date">2008-12-24</item>

<item attributeName="hour">13:24</item>

</head>

</rule>

<rule>

<measure name="support">7.5</measure> <measure name="confidence">30.0</measure>

<body length="2">

<item attributeName="user">Tania</item>

<item attributeName="date">2008-11-02</item>

</body>

<head length="1">

<item attributeName="service">Chat</attribute>

</head>

</rule>

</ruleSet>

Figure 5.4: An example XML document representing a rule set including two
rules

<resultSet> { for $rule in doc("MinedRuleSet.xml")/ruleSet/rule

where exists($rule/body/item[@attributeName="user" and @attributeValue="Paolo"])

order by $rule/measure[@name="confidence"] descending

return $rule) } </resultSet>

Figure 5.5: Selection of the rules including the item (user, Paolo) in the rule
body in order of decreasing confidence

Figure 5.7 reports part of a taxonomy composed of two generalization
hierarchies. The first part of Figure 5.7 reports an generalization hierarchy
defined on the date attribute (dates are aggregated in months, semesters, and
years) while the second part defines aggregations over the service attribute.

The XML representation of the used taxonomy allows performing more
complex queries by considering contemporaneously the XML file representing
the mined rules and the one representing the taxonomy. For example, by
using the two XML files, it is possible to select all the rules containing in

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT taxonomy (item+)>

<!ELEMENT item (listOfChildren*)>

<!ATTLIST item attributeName CDATA #REQUIRED attributeValue CDATA #REQUIRED>

<!ELEMENT listOfChildren (item+)>

Figure 5.6: DTD of the XML document for taxonomy representation
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<taxonomy>

<item attributeName="date" attributeValue="Year2010">

<listOfChildren>

<item attributeName="date" attributeValue="FirstSemester2010">

<listOfChildren>

<item attributeName="date" attributeValue="January2010"/>

<item attributeName="date" attributeValue="February2010"/>

.....

</listOfChildren>

</item>

<item attributeName="date" attributeValue="SecondSemester2010">

<listOfChildren>

<item attributeName="date" attributeValue="July2010"/>

.....

</listOfChildren>

</item>

<listOfChildren>

</item> .....

<item attributeName="service" attributeValue="Communication">

<listOfChildren>

<item attributeName="service" attributeValue="PhoneCall"/>

<item attributeName="service" attributeValue="SMS"/>

<listOfChildren>

</item> .....

</taxonomy>

Figure 5.7: An example XML document representing a taxonomy

the consequent of the rule a descendant of the generalized item (service,
Communication) (see Figure 5.8).

5.2.4 Mining algorithms

The mining block of CoGAR is based on three components: (i) a schema
constrained itemset mining algorithm (CI-Miner) that integrates schema con-
straints into the GenIO algorithm, (ii) a rule mining algorithm, and (iii) a
post-processing filtering algorithm (CR-Filter). These three components are
sequentially invoked.

<resultSet> {
for $rule in doc("MinedRuleSet.xml")/ruleSet/rule

where $rule/head/@length="1"

and exists(for $item in doc("Taxonomy.xml")//item[@attributeName="service" and

@attributeValue="Communication"]//item

where $item/@attributeName=$rule/head/item/@attributeName

and $item/@attributeValue=$rule/head/item/@attributeValue

return $item)

return $rule } </resultSet>

Figure 5.8: Selection of the rules including a descendant of the item (service,
Communication) in the rule head
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The first applied algorithm is CI-Miner. Given a structured dataset D, a
multiple-taxonomy Θ, a minimum support threshold min sup, and a set of
schema constraints S, the CI-Miner algorithm extracts frequent generalized
itemsets satisfying constraints in S by means of an opportunistic approach,
first presented in [16]. The opportunistic approach generalizes an itemset
only if it is infrequent with respect to the minimum support threshold. It
exploits a lazy taxonomy evaluation, which is triggered by infrequent itemsets
only. Hence, an arbitrary frequent generalized itemset Y is extracted by CI-
Miner iff (i) there exists at least a constraint Sc ∈ S such that attr(Y ) ⊆ Sc
and (ii) Y has at least an infrequent descendant.

CI-Miner iteratively generates generalized itemsets by means of a level-
wise approach (i.e., it is an Apriori-like approach). In an arbitrary iteration k,
CI-Miner performs two steps: (i) support counting and selection of frequent
itemsets with length equal to k and (ii) generation of candidate itemsets of
length k+1 by joining k-itemsets. However, differently from traditional algo-
rithms, at each iteration CI-Miner enforces the set of schema constraints S to
prune the set of candidate itemsets. Only the candidate itemsets satisfying
at least one of the enforced schema constraints are considered in the following
iterations. This allows pruning useless candidates. CI-Miner also exploits the
maximum schema constraint length to break earlier the Apriori-like mining
process. In particular, itemsets longer than the maximum enforced constraint
length are not extracted since they will not satisfy any constraint in S.

The set of generalized itemsets mined by CI-Miner is exploited by our im-
plementation of the traditional rule mining procedure proposed in [3]. Given
the set of frequent generalized itemsets and a minimum confidence threshold
(min conf), the rule mining procedure generates the set of generalized asso-
ciation rules with a confidence at least equal to min conf . The set of mined
generalized rules is denoted as R in the following of this section.

Finally, the generalized rule confidence constraint is enforced on R by a
post-processing algorithm, called CR-Filter. Algorithm 3 reports the pseudo-
code of CR-Filter. To check if an arbitrary rule r satisfies the generalized rule
confidence constraint, r must be exclusively compared with the set of rules
with the same antecedent of r. This property is exploited by CR-Filter to
enforce the generalized rule confidence constraint. Hence, rules are initially
partitioned by considering their antecedent (lines 1-3). Then, the algorithm
considers one rule set RX at a time (lines 4-9) and checks which rules in
RX satisfy the generalized rule confidence constraint (lines 5-7). The initial
partitioning of the rule set significantly reduces the number of comparisons.
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Algorithm 3 CR-Filter: Constrained Rule Filtering
Input: set of rules R,multiple-taxonomy Θ
Output: Rselected, set of generalized rules satisfying the generalized rule confidence constraint

/*Rule partitioning by considering their antecedent*/
1: for all itemset X in {X|r : X ⇒ Y ∈ R} do

2: RX = {r|r ∈ R and r.antecedent = X} /*RX is the set of rules with the itemset X as antecedent*/
3: end for

/*Enforcement of the generalized rule confidence constraint*/
4: for all rule set RX do

5: for all rule r in RX do

6: delete r from RX if ∃ rl ∈ RX such that rl.consequent is a descendant of r.consequent
7: end for

8: Rselected=Rselected ∪RX

9: end for

10: return Rselected

5.3 CoGAR application to context-aware data

Evaluation experiments of the CoGAR framework in the context-aware do-
main were performed both on two datasets obtained from a real context-
aware application for mobile service provisioning domain. In Section 5.3.1
the main characteristics of these datasets and the set of enforced schema
constraints are reported, while, in Section 5.3.2, the effectiveness of the pre-
sented system in supporting knowledge discovery from context-aware data
has been validated by a domain expert.

All the experiments were performed on a 2.66 GHz Pentium IV system
with 8 GB RAM, running Ubuntu Release 9.10. The CoGAR framework
was implemented in the Python programming language [95].

5.3.1 Context-aware data and constraints

Telecom Italia Lab1 provided us the Recs dataset containing a set of requests
submitted to a real context-aware service provider system (the Recs system).
The Recs system provides recommendations to mobile device users on restau-
rants, museums, movies, and other entertainment activities. Each user can
request a recommendation (GET REC service), enter a score (VOTE ser-
vice), or update a score (UPDATE VOTE service) for an entertainment ac-
tivity. The analyzed dataset was obtained by logging the requests of 20 users
and their locations over a time period of three months. The dataset contains
5814 records (i.e., requests). Each record is characterized by the request
type, the parameters of the request, the user and its context information

1TILab is the Telecom Italia Group research hub
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Table 5.1: CoGAR: example schema constraints on the Recs dataset
Constraint Rule Example

{user, date, time} {(user, John)} ⇒ {(date, June), (time, morning)}
{user, time, place} {(user, John)} ⇒ {(time, morning), (place, office)}
{user, time, param} {(user, John), (time, morning)} ⇒ {(param, OUT )}
{user, date, param} {(user, John), (date, winter)} ⇒ {(param, OUT )}
{user, date, place} {(user, John)} ⇒ {(date, winter), (place, office)}
{user, place, param} {(user, John), (place, office)} ⇒ {(param, OUT )}
{user, service, time} {(user, John), (service, CALL)} ⇒ {(time, 2− 6p.m.)}
{user, service, date} {(user, John), (service, CALL)} ⇒ {(date, December)}
{user, service, place} {(user, John), (service, CALL)} ⇒ {(place, office)}
{user, service, param} {(user, John), (service, CALL)} ⇒ {(param, OUT )}
{service, date, time} {(service, CALL), (date, winter), (time, afternoon)}
{service, place, time} {(service, WEATHER)} ⇒ {(place, home), (time, evening)}
{service, place, date} {(service, WEATHER), (place, home)} ⇒ {(date, summer)}
{service, param, date} {(service, CALL)} ⇒ {(param, OUT ), (date, week − end)}
{service, param, time} {(service, CALL)} ⇒ {(param, OUT ), (time, afternoon)}
{service, place, param} {(service, WEATHER), (place, home)} ⇒ {(param, TODAY )}

(user location, date, and time). To perform generalized rules mining, a single
taxonomy including the following generalization hierarchies has been initially
defined. The usage of a multiple-taxonomy is discussed in Section 5.3.2.

• date → month → trimester → year

• time stamp → hour → timeslot (two hours timeslots)→ day period
(AM/PM)

• latitude:longitude → city → country

Enforced schema constraints A domain expert in charge of service pro-
visioning provided us the schema constraints reported in Table 5.1, together
with examples of compliant rules. He was very interested in profiling users
and services. Thus, constraints include the user and/or the service attribute.
The user attribute is exploited to characterize the user behavior, while the
service attribute is exploited to profile service usage. Additional informa-
tion deemed relevant was the user/service context information (e.g., service
invocation date and time, user location).

5.3.2 Knowledge discovery from context-aware data

The habits of specific users (or user categories) may be characterized by some
kind of recurrence. By selecting from Table 5.1 only the schema constraints
involving the user attribute (i.e., the first ten schema constraints), gener-
alized rule mining is tailored to user profiling. For example, the following
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generalized rule allows the discovery of valuable knowledge about a generic
user of the Recs application, named Rossi 2. It has been mined by enforcing a
support threshold equal to 1% (i.e., absolute threshold=58) and by exploiting
the user-provided taxonomy proposed in Section 5.3.1.

{ (user, Rossi)} ⇒ { (date, II Trimester 2009) (service, GET REC)

} (sup = 9.8%, conf = 95%)

This rule highlights that user Rossi is interested in getting recommendations
in a specific time period, with rule confidence 95%. Thus, it provides relevant
knowledge on this user attitudes. In particular, for specific users (user cate-
gories), rules satisfying the above constraints may highlight the service type
users are mainly interested in, the context in which requests are commonly
submitted, and the parameters which are frequently used.

Consider now the following rule:

{ (user, Rossi)} ⇒ { (date, Year 2009) (service, GET REC) } (sup =
10.4%, conf = 98%)

It highlights a higher level recurrence that does not provide additional
knowledge with respect to the former one, as the confidence increase from
the former to the latter one is exclusively due to the rule head generalization
on the date attribute (i.e., from trimester to year). The generalized rule
confidence constraint enforcement allows sharply pruning this kind of rules
that may be considered redundant and, thus, not useful for analyst decision
making.

By enforcing all the constraints reported in Table 5.1, the following gen-
eralized rule may also be extracted.

{ (location, Italy) (date, II Trimester 2009)}⇒ {(service, GET REC)}
(sup = 17%, conf = 97%)

This rule shows a different application-oriented recurrence. In particular,
it emphasizes that the GET REC service is frequently requested when the
location is Italy and the date is in the second semester of year 2009.

2Actual individual names are not provided for privacy reasons.
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Multiple-taxonomy evaluation to enhance the knowledge discovery

For several application domains the investigation on different facets of the
same feature may be desirable. Multiple-taxonomy evaluation provides the
capability to explore at the same time different generalization hierarchies on
the same attribute. For example, suppose to enrich the taxonomy proposed
in Section 5.3.1 by extending the date attribute taxonomy with the week day,
week, and two-month time period information as follows.

• date → month → trimester → year

• date → two-month time period

• date → week day → week

• time stamp → hour → timeslot (two hours timeslots)→ day period
(AM/PM)

• latitude:longitude → city → country

The usage of different generalization hierarchies for the date attribute
could be semantically interpreted as a faceted knowledge classification, in
which facets are different axes along which items are aggregated.

By enforcing a minimum support threshold equal to 2% and the same
constraints proposed in Section 5.3.1, the following generalized association
rules are mined (among others).

{ (user, Rossi) } ⇒ { (date, Tuesday), (service, GET REC) } (sup =
3.4%, conf = 33%)
{ (user, Rossi) } ⇒ { (date, May-June 2009), (service, GET REC) }
(sup = 7.5%, conf = 73%)

These rules provide a more detailed knowledge on user Rossi habits. They
emphasize a different facet of the date attribute (i.e., the day of the week) that
may better support domain experts in user profiling (e.g., to personalize daily
promotions depending upon the yearly time period). They also allow the
specialization of previously mined knowledge by highlighting a smaller time
slice (i.e., May-June vs. May-July). When a single generalization hierarchy
per attribute is allowed, multiple extractions are needed to obtain the same
information.
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5.4 CoGAR application to network traffic data

Evaluation experiments of the CoGAR framework in the context of network
traffic analysis were performed both on real network traffic captures. In
Section 5.4.1 the main characteristics of these datasets and the set of enforced
schema constraints are reported, while, in Section 5.4.2, the effectiveness of
the presented system in supporting knowledge discovery from network traffic
data has been validated by a domain expert.

All the experiments were performed on a 2.66 GHz Pentium IV system
with 8 GB RAM, running Ubuntu Release 9.10. The CoGAR framework
was implemented in the Python programming language [95].

5.4.1 Network traffic data and constraints

NetCapture is a network traffic dataset obtained by performing different cap-
ture sessions with the open-source Network Analyzer tool [87] on a backbone
link of a campus network. Captured traffic has been aggregated in traffic
flows (i.e., records summarizing a group of similar and temporally contigu-
ous packets). Each flow is characterized by six attributes: Source IP address,
destination IP address, source port, destination port, flow size (i.e., the size
of the flow expressed in byte), and number of IP packets aggregated in that
flow. The NetCapture dataset is characterized by 16, 783 records.

The taxonomy used in the experiments aggregates infrequent items ac-
cording to the following generalization hierarchies. (1) Source and destina-
tion ports are aggregated by exploiting the generalization hierarchy shown
in Figure 5.9(a), which introduces three aggregation values (i.e., well known,
registered, dynamic). (2) Source and destination IP addresses are aggregated
by exploiting the aggregation tree shown in Figure 4.13. IP addresses are ag-
gregated in subnet if they are local to the campus network. IP addresses not
belonging to the campus network are aggregated in a more general external
address node. Furthermore, both the flow size (bytes) and the number of
IP packets attributes are uniformly discretized in 4 bins, whose intervals are
[1,1000), [1000, 2000), [2000, 3000), and equal or greater than 3000.

Enforced schema constraints A network analyst was interested in iden-
tifying pairs of network devices (each device is identified by its IP) that
frequently communicated together and the characteristics of the generated

3For privacy reasons, the first 16 bits of the IP addresses are hidden.
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(a) Generalization hi-
erarchy ATport for the
source and destination
port attributes

(b) Generalization hierarchy
ATIP−address for the source and
destination IP address attributes

Figure 5.9: Generalization hierarchies for the port and IP attributes

Table 5.2: CoGAR: schema constraints on the NetCapture dataset
Constraint Rule example

{IPsource, IPdest, Portsource} {(IPsource, X.Y/16), (Portsource, 184)} ⇒ {(IPdest, Extern)}
{IPsource, IPdest, Portdest} {(IPsource, X.Y/16)} ⇒ {(IPdest, Extern), (Portdest, 184)}

{IPsource, Portsource, F lowsize} {(IPsource, X.Y/16), (Portsource, 50)} ⇒ {(Flowsize, 10)}
{IPdest, Portdest, F lowsize} {(IPdest, X.Y/16), (Portdest, 50)} ⇒ {(Flowsize, 10)}

{IPsource, Portsource, PacketsNr} {IPsource, X.Y/16), (Portsource, 50)} ⇒ {(PacketsNr, 10)}
{IPdest, Portdest, PacketsNr} {(IPdest, X.Y/16), (Portdest, 50)} ⇒ {(PacketsNr, 10)}
{IPsource, IPdest, PacketsNr} {(IPsource, X.Y/16), (IPdest, Extern)} ⇒ {(PacketsNr, 10)}
{IPsource, IPdest, F lowSize} {(IPsource, X.Y/16), (IPdest, Extern)} ⇒ {(Flowsize, 10)}

{Portsource, Portdest, F lowSize} {(Portsource, 1024), (Portdest, 184)} ⇒ {(Flowsize, 10)}
{Portsource, Portdest, PacketsNr} {(Portsource, 1024), (Portdest, 184)} ⇒ {(PacketsNr, 10)}

traffic (e.g., used ports, number of transmitted packets). He was also in-
terested in identifying single network devices (IPs) with a huge amount of
incoming/outgoing data on specific ports. He provided us the schema con-
straints reported in Table 5.2.

5.4.2 Knowledge discovery from network traffic traces

Consider a network traffic capture performed by an analyst for monitoring
incoming traffic flows by means of generalized association rule extraction.
To discover interesting correlations hidden in the network traffic trace, the
itemset mining process might be initially driven by the whole schema con-
straint set reported in Table 5.2 and by a minimum support threshold equal
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to min sup=1.5%, while the rule generation should be driven by a minimum
confidence threshold min conf=10% and the generalized rule confidence con-
straint. Among others, the following generalized rule is extracted.

(i) { (IP source, Extern), (Flow Size, > 3000)}⇒ {(IP destination,

X.Y.85/24) } (sup = 1.7%, conf = 15%)

The above rule highlights significant incoming external traffic flows to subnet
X.Y.85/24. Indeed, the network domain expert should consider to monitor
the most significant incoming flows involving subnetX.Y.85/24 to understand
problems coming from network traffic overloading.

Beyond the former rule, a traditional generalized rule miner, driven by
support and confidence constraints only, would extract the following higher
level rule as well:

(ii) { (IP source, Extern), (Flow Size, > 3000)}⇒ {(IP destination,

X.Y/16) } (sup = 2.8%, conf = 32%)

Its extraction may mislead the expert in decision making, as it could lead him
to carry out a monitoring campaign on a larger set of IP addresses (X.Y/16)
even if the contemporaneous extraction of (i) suggests to restrict the monitor-
ing space to the 24-bit subnet X.Y.85/24. The enforcement of the generalized
rule confidence allows avoiding redundant and possibly misleading knowledge
extraction, thus, easing the knowledge discovery process.

A more insightful analysis tailored to traffic volume monitoring may focus
on how hosts belonging to subnet X.Y.85/24 are contacted on specific well-
known ports (e.g., port 1000). By focusing on recurrences involving couples
source/destination IP addresses and ports only (i.e., enforcing just the first
two mining constraints in Table 5.2) and by lowering the support thresholds
(min sup=0.1%), the following rule is mined.

(iii) { (IP destination, X.Y.85.189) } ⇒ {(Destination Port, 1000)}
(sup = 1.2%, conf = 88.8%)

It highlights relevant incoming connections through well-known port 1000 of
internal IP addresses both belonging to subnet X.Y.85/24. The analyst may
deem this knowledge relevant as he monitors service usage on specific ports
to prevent and manage network overloading situations.
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5.5 CoGAR performance analysis

The value of the minimum support and confidence thresholds significantly
affect the number of extracted itemsets and, consequently, the number of
mined rules. To avoid the extraction of uninteresting correlations, two types
of constraints, i.e., the analyst-provided schema constraints and the gener-
alized rule confidence constraint, have been introduced. In this section, the
effect of the enforced constraints in terms of the number of extracted general-
ized rules is discussed separately (see Sections 5.5.1 and 5.5.2). Furthermore,
the scalability of the CI-Miner algorithm on synthetic data is also analyzed
(see Section 5.5.3).

5.5.1 Effect of the schema constraints

The CoGAR framework exploits the CI-Miner algorithm to perform gen-
eralized itemset mining. Then, as discussed in Section 4.1, a traditional
rule mining procedure is used to generate the rule set. Itemset mining is
commonly constrained by a minimum support constraint. The CI-Miner al-
gorithm also enforces a schema constraint to further reduce the amount of
uninteresting extracted itemsets and, consequently, the number of rules. Fig-
ures 5.10(a) and 5.11(a) report for the Recs and Netcapture datasets (i) the
number of mined rules and (ii) the corresponding extraction time when vary-
ing the minimum support threshold and enforcing no confidence threshold
(i.e., min conf=0). We compared the number of rules mined by the mining
block based on CI-Miner (i.e., the rules satisfying the enforced constraints
and the minimum thresholds) with the number of rules mined by exploit-
ing both Apriori-All [103] and GenIO [16] in the initial itemset set mining
phase. Unlike CI-Miner, Apriori-All and GenIO do not enforce any schema
constraints, indeed a post-processing step is required to extract the same
knowledge of interest. To perform a fair comparison between the three ex-
traction processes, we limited the maximum length of the mined itemsets
(and rules) to the maximum constraint length (i.e., max len=3 for schema
constraints in Tables 5.1 and 5.2) also when the Apriori-All and GenIO algo-
rithms are executed. The enforcement of schema constraints into the mining
process significantly reduces the amount of extracted irrelevant knowledge,
thus improving the efficiency of the knowledge discovery process.

GenIO slightly outperforms Apriori-All, at small and medium support
thresholds (e.g., min sup=1%), in terms rule pruning selectivity due to the
support-driven approach to pattern generalization [16]. For the Recs dataset
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Figure 5.10: CoGAR: effect of the minimum support threshold on the num-
ber of mined rules and corresponding execution time. Recs dataset

(see Figures 5.10(a)) and 5.10(b)), schema constraint enforcement yields a
reduction larger than 90% of the rule cardinality for low support thresholds
(e.g., min sup=0.3%) with respect to both Apriori-All and GenIO. The
corresponding time reduction is significant also for medium support thresh-
olds, while it becomes more and more relevant when further decreasing the
minimum support threshold.

Similar considerations hold for theNetCapture dataset (see Figure 5.11(a))
and 5.11(b)). Mined rule set cardinality reduction and time reduction are
less significant for the NetCapture dataset, with respect to the ones obtained
on Recs, because NetCapture is characterized by fewer attributes than Recs.
Thus, the number of extracted rules is lower and the corresponding time
reduction is less significant.

5.5.2 Effect of the generalized rule confidence constraint

To perform rule generation from the set of extracted frequent itemsets, the
CoGAR framework exploits an our efficient implementation of the tradi-
tional rule mining procedure proposed by [3] followed by the CR-Filter post-
pruning algorithm. The traditional rule mining step [3] is constrained by
a minimum confidence threshold. Besides, we enforced the generalized rule
confidence constraint to further prune the set of extracted generalized rules.

Figure 5.12(a) reports the impact of the support and confidence thresh-
olds on the number of rules mined from the Recs dataset when the generalized
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Figure 5.11: CoGAR: effect of the minimum support threshold on the num-
ber of mined rules and corresponding execution time. NetCapture dataset

rule confidence constraint is enforced.

As expected, the pruning selectivity is more relevant when higher support
and confidence thresholds are enforced. The generalized rule confidence con-
straint enforcement focuses on further prune a subset of the mined rule set
that (i) includes at least a generalized item in the rule consequent, and (ii)
may be considered as redundant (Cf. Definition 23). To evaluate the prun-
ing selectivity of the new constraint, Figure 5.12(b) reports, for the Recs
dataset, the number of rules pruned by enforcing the generalized rule confi-
dence constraint and by varying the support and confidence thresholds. A
significant pruning effectiveness (i.e., a pruning rate in the range [6%-12%] for
every combination of support and confidence values) clearly comes out when
a high number of (possibly redundant) generalized rules is extracted. This
is the case of the Recs dataset, for which around 65%-80% of the extracted
rules (with any support and confidence thresholds) contain at least a gener-
alized item in the rule head. On the contrary, for the Netcapture dataset,
such a percentage is rather limited (e.g., even less than 10% for some support
and confidence combinations). Indeed, the generalized rule confidence con-
straint enforcement becomes no more interesting and, thus, the corresponding
graphs have been omitted. The balancing between the confidence threshold
and the new generalized rule confidence constraint could be highlighted by
comparing the curves reported in Figure 5.12(b). When no minimum con-
fidence is enforced (i.e., minconf=0), the generation of a (lower level) rule,
satisfying the minimum support threshold, prevents the generation of all the
frequent rules characterized by (i) the same body, and (ii) an ancestor (i.e.,
higher level itemset) of its rule head. Indeed, the generalized rule confidence
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constraint pruning effectiveness is maximum. When, instead, the confidence
threshold increases, some of the lower level rules are discarded due to the
confidence constraint and, thus, the pruning effectiveness of the generalized
rule confidence constraint decreases.

We also analyzed the execution time of the two steps of the mining ac-
tivity separately (i.e., itemset mining constrained by the minimum support
threshold and schema constraints and rule mining constrained by both con-
fidence threshold and the new generalized rule confidence constraint). On
average, the execution time of the itemset mining step typically accounts
for more than 90% of the total execution time, while the remaining time is
devoted to the rule mining and post-processing step. Indeed, the rule extrac-
tion process, also including the post-processing phase needed for generalized
rule confidence constraint enforcement, still remains the less computationally
intensive mining step.

5.5.3 Scalability of the mining process

This section analyzes the scalability of the rule mining process in terms of
(i) the number of dataset records, and (ii) the taxonomy height. To perform
the scalability analysis a synthetic data generator based on the IBM data
generator [63] is exploited.

To allow generating taxonomies of different heights, the original code of
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the synthetic generator is properly extended. The taxonomy is generated by
means of the following procedure. For each attribute, all its dataset values
are considered as leaves (i.e., level 1) of the corresponding generalization
hierarchy. Next, attribute values are sorted in a lexicographical order and
grouped together based on a constant aggregation factor f . Finally, each
group of items is collapsed in a newly generated upper level item. The above
procedure is iterated until a unique root is available. For all attributes, we

set the factor f to d (h - 1)√ne, where n is attribute domain cardinality. This
leads to the creation of a generalization hierarchy, composed of h aggregation
levels, such that the ratio between the number of items at level l and the
number of items at level l − 1 keeps constant.

Since some attributes are continuous, we performed a discretization step
based on an equi-width technique by setting the number of bins to 10.

Scalability with respect to the cardinality of the dataset

To analyze the scalability of our approach with respect to the cardinality of
the dataset, datasets of size ranging from 5,000 to 210,000 records with 12
categorical attributes and corresponding taxonomies having height equal to 5
are generated. A minimum support threshold equal to 1% was enforced dur-
ing the itemset mining step, while the generalized rule confidence constraint
and no minimum confidence threshold (i.e., min conf=0) were enforced dur-
ing the rule generation step. Three different schema constraint configurations
are evaluated: (i) All the possible combinations of the first three attributes,
(ii) all the possible combinations of the first eight attributes, and (iii) no
schema constraints.

Figure 5.13(a) plots the extraction time (i.e., comprehensive of itemset
and rule mining time and rule post-processing time) for the different con-
straint settings by varying the number of records. It shows that the proposed
algorithm scales almost linearly with respect to the number of records. The
overall CPU time is still acceptable also when dealing with larger datasets,
and even when no constraint is enforced. Obviously, the number and type of
schema constraints significantly impact on the execution time.

Scalability with respect to the taxonomy height

To evaluate the impact of the taxonomy height, different taxonomies with
height ranging from 1 to 5 are generated. For each attribute, a 5-level gen-
eralization hierarchy is synthetically generated by means of the procedure
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described in Section 5.5.3. Next, the top level is pruned and a 4-level gen-
eralization hierarchy is generated. By iteratively applying this procedure on
each generalization hierarchy, the taxonomy height is reduced by one at each
iteration. At the end of the generation process, five different taxonomies of
decreasing height are available for testing.

The number of records is set to 70, 000. A minimum support threshold
equal to 1% and the new generalized rule confidence constraint are enforced,
respectively, during the itemset and rule mining steps, while no minimum
confidence threshold is enforced. Two different schema schema constraint
configurations have been evaluated: (i) All the combinations of the first
eight attributes, and (ii) no schema constraint. Figure 5.13(b) plots the
extraction time by varying the taxonomy height. Since each increase of the
taxonomy height corresponds to an increase of the total number of items,
when increasing the taxonomy height also the number of extracted rules and
the execution time increase. However, the increase does not scale linearly
with respect to the taxonomy height. The difference between the number
of items of the l -th taxonomy level and the number of items of the (l-1 )-
th taxonomy level depends on the value of l. According to the taxonomy
generation process, the higher is the value of l, the lower is the difference
between the number of items of the two considered taxonomies. As expected,
the execution time increase is higher when moving from height 1 to 2, while
it is lower for higher height values.

The taxonomy height also affects the computational cost of the post-
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processing steps. The time spent in rule post-processing scales roughly lin-
early with the taxonomy height. However, as already discussed, its impact
on the overall execution time is negligible.



Chapter 6

Change mining by means of
generalized patterns

This chapter addresses the task of change mining in the context of gener-
alized itemsets. The problem of discovering relevant data recurrences and
their most significant temporal trends is becoming an increasingly appealing
research topic. The application of frequent itemset mining and association
rule extraction algorithms [2] to discover valuable correlations among data
has been thoroughly investigated in a number of different application con-
texts (e.g., market basket analysis [2], medical image processing [7]). In the
last years, the steady growth of business-oriented applications tailored to the
extracted knowledge has prompted the need of analyzing the evolution of the
discovered patterns. Since, in many business environments, companies are
expected to reactively suit product and service provision to customer needs,
the investigation of the most notable changes between the set of frequent
itemsets or association rules mined from different time periods has become
an appealing research topic [6, 35, 44, 80, 98, 114].

Frequent itemset mining activity is constrained by a minimum support
threshold to discover patterns whose observed frequency in the source data
(i.e., the support) is equal to or exceeds a given threshold [2]. However, the
enforcement of low support thresholds may entail generating a very large
amount of patterns which may become hard to look into. On the other
hand, higher support threshold enforcement may also prune relevant but not
enough frequent recurrences. To overcome these issues, generalized itemset
extraction could be exploited. Generalized itemsets, which have been first
introduced in [103] in the context of market basket analysis, are itemsets
that provide a high level abstraction of the mined knowledge. By exploiting

95
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a taxonomy (i.e., a is-a hierarchy) over data items, items are aggregated into
higher level (generalized) ones.

Change mining in the context of frequent itemsets may exploit generalized
itemsets to represent patterns that become rare with respect to the support
threshold, and thus are no longer extracted, at a certain point. Previous
approaches allow both keeping track of the evolution of the most signifi-
cant pattern quality indexes (e.g., [6, 21, 26]) and discovering their most
fundamental changes (e.g., [10, 44, 80]). Itemset generalization may allow
preventing infrequent knowledge discarding. At the same time, experts may
look into the information provided by the sequence of generalizations or spe-
cializations of the same pattern in consecutive time periods.

This chapter presents a kind of dynamic pattern, namely the HiGens
(History Generalized Pattern) based on generalized patterns [31]. A Hi-
Gen compactly represents the minimum sequence of generalizations needed
to keep knowledge provided by a not generalized itemset frequent, with re-
spect to the minimum support threshold, in each time period. If an itemset is
frequent in each time period, the corresponding HiGen just reports its sup-
port variations. Otherwise, when the itemset becomes infrequent at a certain
point, the HiGen reports the minimum number of generalizations (and the
corresponding generalized itemsets) needed to make its covered knowledge
frequent at a higher level of abstraction.

In case an infrequent not generalized itemset has multiple generalizations
belonging to the same minimal aggregation level, many HiGens associated
with the same itemset are generated. To focus the attention of the analysts
on the frequent generalizations of a rare itemset covering the same knowl-
edge with a minimal amount of redundancy and, thus, reduce the number
of the generated patterns, a more selective type of HiGen, i.e., the Non-
redundant HiGen, is presented as well [31]. Non-redundant HiGens
are HiGens that include, for each time period, the frequent generalizations
of the reference itemset of minimal generalization level characterized by min-
imal support.

This chapter is organized as follows. Section 6.1 introduces preliminary
notions and formally states the HiGen mining problem. Section 6.2 de-
scribes the HiGen Miner algorithm, Section 6.3 analyzes the performance
of the HiGen Miner algorithm on synthetic data, Section 6.4 evaluates the
efficiency and the effectiveness of the proposed approach in the context-aware
domain, while Section 4.4 presents a framework that exploits HiGen mining
in social network analysis.
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6.1 Problem statement

This section introduces main notions concerning dynamic generalized itemset
mining from structured data and formally states the HiGen mining problem.

A structured dataset is a collection of records, where each record is a set of
pairs (attribute, value) (e.g., (date, 5:05 p.m.)), called items, which identify
specific data features (e.g., the time) and their values in the corresponding
domains (e.g., 5:05 p.m.). Dynamic data mining considers datasets associ-
ated with different time periods. In the following, the notion of timestamped
structured dataset is introduced.

Definition 24 Timestamped structured dataset. Let T ={t1, t2, . . . , tn}
be a set of data features and Ω={Ω1,Ω2, . . . ,Ωn} its corresponding domains.
ti may be either a categorical or a numeric discrete data feature. Let W =
[wstart, wend] be a time interval. A timestamped structured dataset D is a col-
lection of records, where (i) each record r is a set of pairs (ti, valuei) where
ti ∈ T and valuei ∈ Ωi, (ii) each ti ∈ T , also called attribute, may occur at
most once in any record, and (iii) each record has a time stamp rts ∈ W .

In the case of datasets with continuous attributes, the value range should
be discretized into intervals, and the intervals mapped into consecutive pos-
itive integers. Consider again the example datasets D1 and D2 reported
in Tables 6.1(a) and 6.1(b). They are examples of timestamped structured
datasets composed of 4 attributes (i.e., date, time, location, and product de-
scription), among which the date attribute is selected as time stamp. Dataset
D1 includes product sales (i.e., records) whose time stamp ranges from 2009-
01-01 to 2009-01-31 (see Table 6.1(a)), while D2 includes product sales whose
time stamp ranges from 2009-02-01 to 2009-02-28 (see Table 6.1(b)).

Generalized itemset mining exploits a set of generalization hierarchies,
i.e., a taxonomy, built over data items to generalize at higher levels of ab-
straction items represented in a timestamped structured dataset. A taxon-
omy is a is-a hierarchy built over data item values composed of generalization
hierarchies defined on each data attribute.

Taxonomies may be either analyst-provided or inferred by means of ad-
hoc algorithms (e.g., [36, 49]). Figure 6.1 reports three examples of gener-
alization hierarchies constructed over the attributes of the example times-
tamped datasets reported in Tables 6.1(a) and 6.1(b), exception for the time
stamp attribute (i.e., the date) which, by construction, is not considered.
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According to Definition 3, the set of all the generalization hierarchies in
Figure 6.1 is a taxonomy.

Date Time Location Product description

2009-01-02 11:00 p.m. Turin T-shirt
2009-01-03 11:10 p.m. Rome T-shirt
2009-01-05 8:40 a.m. Paris Jacket
2009-01-30 5:05 p.m. Paris Jacket
2009-01-31 8:40 a.m. Cannes Jacket

(a) Dataset D1. Product sales in January 2009

Date Time Location Product description

2009-02-02 11:10 p.m. Turin T-shirt
2009-02-02 10:27 p.m. Turin T-shirt
2009-02-05 8:50 a.m. Paris Jacket
2009-02-05 5:00 p.m. Cannes Jacket
2009-02-28 5:00 p.m. Rome Jacket

(b) Dataset D2. Product sales in February 2009

Table 6.1: Examples of timestamped structured datasets

The frequent (generalized) itemset mining problem [103] focuses on dis-
covering, from the analyzed data, generalized and not generalized itemsets
(Cf. Definition 6) whose support value is equal to or exceeds a minimum
support threshold. Given an ordered sequence of timestamped structured
datasets (Cf. Definition 24) relative to different time periods, a taxonomy
(Cf. Definition 3), and a minimum support threshold, dynamic change min-
ing [6], in the context of frequent itemsets, investigates the changes and the
evolution of the extracted itemsets, in terms of their main quality indexes
(e.g., the support), from one time period to another. The dynamic change
mining problem, in the context of frequent itemsets, may be extended by
exploiting frequent generalized itemsets to represent knowledge associated
with infrequent patterns. In the following, the concepts of HiGen and Non-
redundant HiGen are introduced.
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(a) Time - Generalization Hierarchy GHtime

(b) Location - Generalization Hierarchy GHlocation (c) Product descrip-
tion - Generalization
Hierarchy GHproduct

Figure 6.1: Taxonomy over data items in the example datasets D1 and D2

6.1.1 The HiGen

A HiGen, associated with both a not generalized itemset it and an ordered
sequence of timestamped datasets D = {D1, D2, . . ., Dn}, is a ordered se-
quence of generalized itemsets g1, g2, . . . , gn that represents the evolution of
the knowledge covered by it in D. Each gi is a frequent (generalized) itemset
extracted from Di. gi may be either (i) it, in case it is frequent in Di with
respect to the minimum support threshold, or (ii) one of the frequent general-
izations of it in Di characterized by minimum generalization level otherwise.
A more formal definition of HiGen follows.
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Definition 25 HiGen. Let D={D1, D2, . . ., Dn} be an ordered sequence of
timestamped structured datasets and Γ a taxonomy built over data items in
Di ∈ D ∀ i. Let it be a not generalized itemset and min sup be a minimum
support threshold. A HiGen HGit, associated with it, is an ordered sequence
of itemsets or generalized itemsets g1, g2, . . . , gn such that:

• if sup(it,Di) ≥ min sup then gi= it

• else gi= git, where git is an ancestor of it, with respect to Γ, frequent
in Di and characterized by a minimum generalization level among the
set of frequent ancestors of it, i.e., git ∈ Anc[it,Γ] ∧ sup(git,Di) ≥
min sup and @ git2 ∈ Anc[it,Γ] such that L[git,Γ] > L[git2,Γ] and
sup(git2, Di) ≥ min sup

A HiGen HGit may be represented as a sequence

g1 R1 g2 R2 . . . gn−1 Rn−1 gn

where Ri is a relationship holding between (generalized) itemsets gi and gi+1

and may be represented as ↗ if gi is a descendant of gi+1, ↘ if gi is an
ancestor of gi+1 or ; if L[gi,Γ] = L[gi+1,Γ].

Table 6.2(b) reports the set of HiGens mined from the timestamped
datasets D1 and D2 (See Tables 6.1(a) and 6.1(b)) by enforcing an abso-
lute minimum support threshold equal to 2 and by exploiting the taxon-
omy reported in Figure 6.1. For instance, {(location, Paris)} ↗ {(location,
France)} is a HiGen associated with itemset {(location, Paris)} given that
{(location, Paris)} is a descendant of {(location, France)} and it is frequent
in D1 but infrequent in D2. Consider now the time attribute in D1 and D2

(See Tables 6.1(a) and 6.1(b)) and the corresponding generalization hierar-
chy (see Figure 6.1(a)). {(time, from 5 p.m. to 6 p.m.)} ↘ {(time, 5 p.m.)}
is a HiGen associated with itemset {(time, 5 p.m.)} while {(time, p.m.)}
↘ {(time, 5 p.m.)} does not as it exists an ancestor of {(time, 5 p.m.)},
i.e., {(time, from 5 p.m. to 6 p.m.)}, that is frequent in D1 and such that
L[{(time, from 5 p.m. to 6 p.m.)}, Γ] < L[{(time, p.m.)}, Γ].

6.1.2 The Non-redundant HiGen

Since a not generalized itemset it may have several ancestors characterized
by the same generalization level, it trivially follows that an itemset may have
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many associated HiGens. However, analysts may prefer to look into a more
concise set of temporal change patterns instead of the whole HiGen set. The
redundancy of an ancestor with respect to one of its descendants is defined
in terms of their respective coverage sets. In the following, the concept of
redundancy of an ancestor is formally stated.

Theorem 1 The ancestors of a reference (generalized) itemset with minimal
redundancy are the ones with minimal support.

Proof 1 Suppose that X1,X2 ∈ Anc[Y,Γ] and red(X1, Y ) > red(X2, Y ).
Since |cov(X1, D)| > |cov(X2, D)| it follows that sup(X1, D) > sup(X2, D).

Among the possible generalizations of an infrequent itemset belonging to
the minimal abstraction level, the ones with minimal support are the gener-
alizations that cover its knowledge with the minimal amount of redundancy
(Cf. Theorem 1).

To reduce the number of considered patterns, the notion of Non-redundant
HiGen is introduced. Among the set of HiGens relative to the same general-
ized itemset it, the Non-redundant HiGens are the HiGens that include
generalized itemsets with minimal redundancy, i.e., the ones with minimal
support, in case the reference itemset becomes infrequent in a certain time
period.

Definition 26 Non-redundant HiGen. Let D be an ordered sequence
of timestamped structured datasets and Γ a taxonomy built over data items
in Di ∈ D ∀ i. A Non-redundant HiGen SHGit, associated with it, is
a HiGen composed of an ordered sequence of itemsets or generalized item-
sets g1, g2, . . . , gn such that for each generalized itemset gi in SHGit its re-
dundancy with respect to it is minimal, i.e., it does not exist any frequent
ancestor g∗i of it such that sup(g

∗
i , Di) < sup(gi, Di).

From the above definition, it trivially follows that the number of Non-
redundant HiGens associated with each not generalized itemset it is lower
than the number of the corresponding HiGens. Consider, for instance, an
item (time, 5:35 p.m.) and two of its possible generalizations (time, from
5 p.m. to 6 p.m.) and (time, from 5:30 p.m. to 6:30 p.m.) belonging to
the same generalization level. Suppose that (time, 5:35 p.m.) ↗ (time,
from 5 p.m. to 6 p.m.) and (time, 5:35 p.m.) ↗ (time, from 5:30 p.m.
to 6:30 p.m.) are both HiGens, according to Definition 25. Among them,
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the analyst may prefer the one that covers the same knowledge supported
by the item (time, 5:35 p.m.) with a minimal amount of redundancy. If,
for instance, the support of (time, from 5 p.m. to 6 p.m.) is strictly lower
than the support of (time, from 5:30 p.m. to 6:30 p.m.) in the second time
period the former HiGen is selected as Non-redundant HiGen.

Problem statement Given an ordered set of timestamped structured
datasets, a taxonomy Γ, and a minimum support threshold min sup, this
paper addresses the problem of mining all HiGens, according to Defini-
tions 25.

To efficiently accomplish the HiGen extraction task, in the next section
the HiGen Miner (History Generalized Pattern Miner) is presented. The
main HiGen Miner algorithm modifications needed to address the Non-
redundant HiGen extraction (Cf. Definition 26) are discussed as well.

6.2 The HiGen Miner Algorithm

The HiGen Miner (History Generalized Pattern Miner) algorithm ad-
dresses the extraction of the HiGens, according to Definition 25.

HiGen mining may be addressed by means of a postprocessing step after
performing the traditional generalized itemset mining step [103], constrained
by the minimum support threshold and driven by the input taxonomy, from
each timestamped dataset. However, this approach may become compu-
tationally expensive, especially at lower support thresholds, as it requires
(i) generating all the possible item combinations by exhaustively evaluating
the taxonomy, (ii) performing multiple taxonomy evaluations over the same
pattern mined several times from different time periods, and (iii) selecting
HiGens by means of a, possibly time-consuming, postprocessing step.

To address the above issues, a more efficient algorithm, called HiGen
Miner, is proposed. It introduces the following expedients: (i) to avoid gen-
erating all the possible combinations, it adopts, similarly to GenIO [16], an
Apriori-based support-driven generalized itemset mining approach, in which
the generalization procedure is triggered on infrequent itemsets only. Un-
like GenIO [16], the generalization process does not generate all possible
ancestors of an infrequent itemset at any abstraction level, but it stops at
the generalization level in which at least a frequent ancestor occurs, (ii) to
prevent multiple taxonomy evaluations over the same pattern, the general-
ization process of each itemset is postponed after its support evaluation in



6.2. THE HIGEN MINER ALGORITHM 103

all timestamped datasets and iteratively applied on infrequent generalized
itemsets of increasing generalization level, and (iii) to reduce the extrac-
tion time, HiGen generation is performed on-the-fly, without the need of an
ad-hoc postprocessing step. Furthermore, a slightly modified version of the
HiGen Miner algorithm is proposed to address Non-redundant HiGen
extraction. A description of the main algorithm modifications is given in
Section 6.2.2.

As a drawback, the HiGen Miner algorithm automatically selects the
subset of generalized itemsets of interest at the cost of a higher number of
dataset scans with respect to a traditional Apriori-based miner. Consider a
timestamped datasets of n attributes and a taxonomy of height Hmax, the
HiGen Miner algorithm requires up to Hmax ·n dataset scans, while a tradi-
tional Apriori-like miner requires up to n dataset scans. However, traditional
mining approaches still require a postprocessing step to select the HiGens
of interest (Cf. Definition 25). The experimental evaluation, reported in
Section 6.3, shows that the HiGen Miner algorithm yields good perfor-
mance, in terms of both pattern pruning selectivity, with respect to previous
generalized itemset mining approaches (i.e., [16, 103]), and execution time.
In Section 6.2.1, a pseudo-code of the HiGen Miner is reported and thor-
oughly described while, in Section 6.2.2, the selection and categorization of
the discovered HiGens is addressed.

6.2.1 The HiGen Miner algorithm pseudo-code

Algorithm 4 reports the pseudo-code of the HiGen Miner. The Hi-
Gen Miner algorithm iteratively extracts frequent generalized itemsets of
increasing length from each timestamped dataset by following an Apriori-
based level-wise approach and directly includes them into the HiGen set.
At an arbitrary iteration k, HiGen Miner performs the following three
steps: (i) k-itemset generation from each timestamped dataset in D (line
3), (ii) support counting and generalization of infrequent (generalized) k-
itemsets of increasing generalization level (lines 6-37), (iii) generation of can-
didate itemsets of length k+1 by joining k-itemsets and infrequent candidate
pruning (line 39). Since HiGen Miner discovers HiGens from relational
datasets it adopts the well-known strategy to consider the structure of the
input datasets to avoid generating combinations that do not comply with the
relational data format. After being generated, frequent itemsets of length k
are added to the corresponding HiGens in the HG set (line 9), while infre-
quent ones are generalized by means of the taxonomy evaluation procedure
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(line 17). Given an infrequent itemset c of level l and a taxonomy Γ, the tax-
onomy evaluation procedure generates a set of generalized itemsets of level
l + 1 by applying, on each item (tj, valuej) of c, the corresponding gener-
alization hierarchy GHj ∈ Γ (see Definition 3). All the itemsets obtained
by replacing one or more items in c with their generalized versions of level
l+1 are generated and included into the Gen set (line 21). Finally, general-
ized itemset supports are computed by performing a dataset scan (line 26).
Frequent generalizations of an infrequent candidate c, characterized by level
l + 1, are first added to the corresponding HiGen set and then removed
from the Gen set when their lower level infrequent descendants in each time
period have been fully covered (lines 27- 32). In such a way, their further
generalizations at higher abstraction levels are prevented. Notice that the
taxonomy evaluation over an arbitrary candidate of length k is postponed
when the support of all candidates of length k and generalization level l in
each timestamped dataset is available. This approach allows triggering the
generalization on distinct candidates of level l that are infrequent in at least
one timestamped dataset in D. The sequence of support values of an itemset
that is infrequent in a given time period is store and reported provided that
(i) it has at least a frequent generalization in the same time period, and (ii)
it is frequent in at least one of the remaining time periods. The general-
ization procedure stops, at a certain level, when the Gen set is empty, i.e.,
when either the taxonomy evaluation procedure does not generate any new
generalization or all the considered generalizations are frequent in each time
period and, thus, have been pruned (line 30) to prevent further knowledge
aggregations.

The HiGen Miner algorithm ends the mining loop when the set of
candidate itemsets is empty (line 40).

6.2.2 HiGen categorization and selection

Domain experts are commonly in charge of looking into the discovered tem-
poral change patterns to highlight most notable trends. To ease the domain
expert validation task, a preliminary analysis of the set of extracted HiGens
may (i) categorize them based on their time-related trends, or (ii) prune them
to select a subset of interest, i.e., the Non-redundant HiGens.

HiGen categorization: To better highlight HiGen significance, HiGens
are categorized, based on their time-related trend, in: (i) Stable HiGens,
i.e., HiGens that include generalized itemsets belonging to the same gen-
eralization level, (ii) monotonous HiGens, i.e., HiGens that include a se-
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quence of generalized itemsets whose generalization level shows a monotonous
trend, and (iii) oscillatory HiGens, i.e., HiGens that include a sequence of
generalized itemsets whose generalization level shows a variable and non-
monotonous trend. Since, according to Definition 9, a generalized itemset of
level l may have several generalizations of level l + 1 and taxonomies may
have unbalanced data item distributions, stable HiGens may be further par-
titioned in: (i) Strongly stable HiGens, i.e., stable HiGens, in which items,
appearing in its generalized itemsets and belonging to same data attribute,
are characterized by the same generalization level, and (ii) Weakly stable
HiGens, i.e., stable HiGens in which items, appearing in its generalized
itemsets and belonging to the same attribute, may be characterized by dif-
ferent generalization levels. Examples of HiGens, extracted from a real-life
context dataset, belonging to each category are reported in Section 6.4.

Non-redundant HiGen selection: To reduce the amount of gener-
ated patterns, analysts may focus on the set of Non-redundant HiGens
(Cf. Definition 26). Since they represent the subset of HiGens whose gen-
eralizations cover the same knowledge covered by the reference infrequent
itemset with minimal redundancy, they may be deemed relevant by domain
experts. Notice that the extraction of the Non-redundant HiGens may
be accomplished by slightly modifying the HiGen Miner algorithm (see
Algorithm 4). A sketch of the main algorithm modifications follows. At each
algorithm iteration, once the the list of Gen set is populated, the set of in-
frequent descendants of patterns in Gen is visited. A nested loop iterates on
Gen in order of increasing support and selects its generalizations with mini-
mal support. Finally, the set HG of discovered temporal change patterns is
updated accordingly.

6.3 HiGen Miner performance analysis

This section evaluates the HiGen Miner (History Generalized Pattern
Miner) algorithm by means of a large set of experiments addressing the
following issues: (i) the pruning selectivity, in terms of the number of gen-
eralized itemsets extracted by HiGen Miner with respect to previous gen-
eralized itemset mining algorithms, i.e., [16, 103] (Section 6.3.2), (ii) the
performance, in terms of the number of extracted temporal patterns, of the
HiGen Miner algorithm (Section 6.3.3), and (iv) the scalability, in terms
of execution time, of the proposed approach (Section 6.3.4).

All the experiments were performed on a 3.2 GHz Pentium IV system
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with 2 GB RAM, running Ubuntu 8.04. The HiGen Miner algorithm was
implemented in the Python programming language [95].

The evaluation of the pruning selectivity of the HiGen Miner generaliza-
tion procedure is performed on synthetic datasets. It compares the number of
frequent itemset and generalized itemsets mined from each generated times-
tamped dataset with that extracted by the following generalized frequent
itemset mining algorithms: (i) a traditional algorithm, i.e., Cumulate [103],
which performs an exhaustive taxonomy evaluation by generating all possi-
ble frequent combinations of generalized and not generalized itemsets, and
(ii) a recently proposed support-driven approach to itemset generalization,
i.e., GenIO [16], which generates a generalized itemset only if it has at least
an infrequent descendant. The set of experiments was performed on syn-
thetic datasets generated by means of the TPC-H generator [111], whose
main configuration settings follow.

6.3.1 Synthetic datasets

The TPC-H data generator [111] consists of a suite of business-oriented ad-
hoc database queries. By varying the scale factor parameter, files with dif-
ferent size could be generated. Generalized itemsets have been mined from
a dataset generated from the lineitem table by setting a scale factor equal
to 0.075 (i.e., around 450,000 records). Hierarchies on line item categorical
attributes have been generated by using the part, nation, and region tables.
To generate generalization hierarchies over the continuous attributes, sev-
eral data equi-depth discretization steps of finer granularities are applied.
The finest discretized values are considered as data item values and, thus,
become the taxonomy leaves, while the coarser discretization procedures are
exploited to aggregate the corresponding lower level values. More specifically,
pairs of consecutive discretized values are aggregated in higher level items.
To partition the whole dataset in three distinct time-related data collections
the source data is queried by enforcing different constraints on the shipping
date value (attribute ShipDate). More specifically, line items shipped in the
three following time periods are partitioned: [1992-01-01, 1994-02-31], [1994-
03-01, 1996-05-31] [1996-06-01, 1998-12-01]. For the sake of brevity, they will
denote the corresponding datasets as data-1, data-2, and data-3 in the rest
of this section.
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(c) HiGen Miner

Figure 6.2: HiGen Miner: generalized and not generalized itemsets ex-
tracted from data-1
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Figure 6.3: HiGen Miner: generalized and not generalized itemsets ex-
tracted from data-2

6.3.2 Performance comparison

Since the enforcement of the minimum support threshold during the itemset
mining step significantly affects the number of extracted itemsets, I per-
formed different mining sessions, for all combinations of algorithms and
datasets, by varying the minimum support threshold value. In Figures 6.2, 6.3,
and 6.4 is plotted the number of itemsets mined, respectively, from data-1,
data-2, and data-3. To test the HiGen Miner algorithm, the generated
datasets are considered in order of increasing shipment date interval. To
better highlight the pruning selectivity on the cardinality of the mined gen-
eralized itemsets, it distinguished between generalized itemsets and not.

For all the tested algorithms and datasets and for most of the settings
of minimum support value, the percentage of extracted frequent itemsets in-
cluding at least one generalized item is significant (i.e., higher than 60%).
For both Cumulate and GenIO, the number of mined (generalized) item-
sets significantly increases when lower minimum support values are enforced
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Figure 6.4: HiGen Miner: generalized and not generalized itemsets ex-
tracted from data-3

(e.g., 1%). Thus, the analysis of the temporal evolution of the extracted
itemsets may require a computationally expensive postpruning step. In Ge-
nIO, infrequent items are aggregated during the extraction process and all
frequent ancestors of an infrequent itemset are extracted. However, most
of the extracted generalization seem redundant as they represent the same
infrequent knowledge at increasing abstraction levels. The less redundant
generalizations could be selected as the less redundant frequent representa-
tives. By following this approach, the HiGen Miner algorithm selects just
the frequent ancestors with minimal generalization level (i.e., with minimal
redundancy). The pruning selectivity, in terms of the number of extracted
generalized itemsets, achieved by HiGen Miner within each time period
appears more evident when lower support thresholds (e.g., 2%) are enforced
(see Figures 6.2(c), 6.3(c), and 6.4(c)). In fact, when high support thresholds
(e.g., 7%) are enforced, most of the frequent generalizations have already a
high generalization level and, thus, the pruning effectiveness is less evident.
Oppositely, when lower support thresholds are enforced (e.g., 2%), the ex-
traction of a significant amount of redundant generalized itemsets, generated
by both Cumulate and GenIO, is prevented. The pruning rate on the num-
ber of mined higher level (generalized) itemsets is between 5% and 15% with
respect to GenIO for any support threshold value.

6.3.3 HiGen Miner parameter analysis

This section analyzed the performance of the HiGen Miner algorithm, in
terms of the number extracted HiGens and Non-redundant HiGens, by
analyzing the impact of the following factors: (i) minimum support threshold,
(ii) number of time periods, and (iii) taxonomy characteristics. A set of
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experiments was performed on synthetic datasets generated by means of the
TPC-H generator [111]. The baseline configuration used for data generation
is similar to that described in Section 6.3.1.

Impact of the support threshold The impact of the minimum support
threshold on the number of discovered HiGens and Non-redundant Hi-
Gens is analyzed on synthetic datasets. In Figure 6.5(a) is reported the
number of HiGens mined from data-1, data-2, and data-3 by varying the
minimum support threshold. To test the HiGen Miner algorithm, datasets
are considered in order of increasing shipment date interval. To better high-
light the pruning selectivity yielded by mining Non-redundant HiGens,
it distinguished between Non-redundant HiGens and not.

As expected, the number of generated HiGens increases more than linearly
when the minimum support threshold decreases. The selection of the Non-
redundant HiGens significantly reduces the number of generated temporal
change patterns. In fact, the number of possible generalizations with min-
imal generalization level of each infrequent itemset significantly affects the
cardinality of the set of mined HiGens. Let min sup be a minimum support
threshold. Let n be the number of considered time periods (i.e., the number
of timestamped datasets) and let |{pi}| be the average number of not gener-
alized patterns pi that are frequent, with respect to min sup, in an arbitrary
time period at any abstraction level. Let avg level sharing be the average
number of frequent generalizations, with minimum generalization level, of
an infrequent pattern. An estimation of the number of HiGens (|HiGen|),
mined by enforcing a support threshold min sup, is:

|HiGen| ≈ avg level sharing · (n− 1) · |{pi}| (6.1)

By setting n = 3 and by approximating the {pi} set cardinality in For-
mula 6.1 as the greatest common divisor of the number of generalized item-
sets extracted from data-1, data-2, and data-3, for each support threshold
(see Figures 6.2(c), 6.3(c), and 6.4(c)), The approximated value achieved by
avg level sharing could be computed, for any support threshold, starting
from the results reported in Figure 6.5(a). The average number avg level sharing
of frequent generalizations, with minimal generalization level, of each infre-
quent itemset turns out to range from 2 to 4 for any support threshold.
The achieved results are close to the expectations. By selecting the Non-
redundant HiGens, the reduction, in terms of the number of HiGens, is
greater than 35% for any support threshold. The obtained results depend on
the considered data item distribution.
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Figure 6.5: HiGen Miner: number of mined HiGens and Non-
redundant HiGens.

Impact of the number of time periods The impact of the number of
considered time periods on the cardinality of the extracted patterns is also
analyzed. To this aim, the ShipDate attribute domain of the lineitem table
is partitioned in an increasing number of intervals. Figure 6.5(b) reports the
number of mined HiGens and Non-redundant HiGens. The cardinality
of the discovered HiGens grows when the number of time periods increases
due to both the presence of new reference itemsets that are frequent, at any
abstraction level, in at least one time period and the generation of multiple
combinations of least generalized itemsets. As expected, the increase is less
relevant when considering just Non-redundant HiGens.
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Impact of the taxonomy characteristics The impact of the main taxon-
omy characteristics on the number of extracted HiGens and Non-redundant
HiGens is analyzed on synthetic datasets as well. To evaluate the impact
of the taxonomy height, ad-hoc taxonomies of increasing height are gener-
ated by varying the number of discretization steps adopted for aggregating
continuous data attribute values. To also evaluate the impact of different
multiple-level data item distributions, Figures 6.5(c) and 6.5(d) report the
number of extracted temporal patterns, when varying the taxonomy height,
by applying two representative discretization procedures, i.e., an equi-depth
procedure [107] and an entropy-based one [48], on numeric data attributes.
A similar trend is shown by both the tested item distributions. By using
a taxonomy composed of only 2 levels many generalizations are still infre-
quent in some time periods and, thus, the corresponding HiGens are not
extracted. When the taxonomy height increases from 2 to 4 a significant
number of reference infrequent itemsets becomes frequent at a higher gen-
eralization level and, thus, the number of extracted combinations relevantly
grows. Further taxonomy height increments do not produce any significant
increase of the HiGen cardinality. Since the data distribution generated by
the entropy-based discretization is sparser than that generated by the equi-
depth procedure, it produces a smaller number of temporal correlations.

6.3.4 HiGen Miner scalability

The scalability of the HiGen Miner algorithm, in terms of the execution
time is evaluated on synthetic datasets. To analyze the scalability with the
number of dataset records, the TPC-H data generator [111] is exploited by
varying the scale factor to generate datasets of increasing size, ranging from
150, 000 to 900, 000 records. To test the HiGen Miner, the same configu-
rations for the data generator already described in Section 6.3.1 is exploited.
Figure 6.6 plots the time spent in HiGen mining for different support val-
ues. The computational complexity significantly increases for lower minimum
support threshold values (e.g., 1%) due to the higher number of extracted
itemsets. However, the execution time scales roughly linearly with the num-
ber of dataset records for any support threshold.

The scalability of the HiGen Miner with both the taxonomy height
and the number of time periods is also analyzed. Results show that HiGen
Miner averagely scales more than linearly with both taxonomy height and
number of time periods due to the non-linear growth of the number of con-
sidered (potentially relevant) combinations. However, the HiGen Miner
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Figure 6.6: HiGen Miner algorithm scalability. Time periods = 3. Taxon-
omy height = 3

execution time is still acceptable even when coping with quite complex tax-
onomies evaluated over a number of time periods (e.g., around 20, 000 sec-
onds with min sup=1%, time periods = 6, taxonomy height = 5, number of
records = 300, 000).

6.4 HiGen Miner application to context-aware

data

To validate the significance of the results achieved by means of the HiGen
Miner (History Generalized Pattern Miner) algorithm, a campaign of ex-
periments has been conducted on a real-life dataset coming from a context-
aware mobile system. The extracted HiGens have been first processed, based
on the procedure described in Section 6.2.2. Next, they have been analyzed
by a domain expert to assess their usefulness in the context of mobile user
and service profiling.

This Section is organized as follows. Section 6.4 provides a brief descrip-
tion of the adopted dataset. Section 6.4 reports a selection of the discovered
HiGens while Section 6.4 describes the characteristics of the discovered Hi-
Gens based on the proposed categorization.

Real context dataset

A real dataset, called mDesktop, is provided by a research hub, namely the
Telecom Italia Lab. It collects contextual information about user applica-
tion requests submitted, through mobile devices, over the time period of three
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months (i.e., from August to October). From the whole context data collec-
tion, I generated 3 different timestamped datasets, each one corresponding
to a 1-month time period. Regarding privacy concerns related to real con-
text data usage, please notice that (i) experimental data were collected from
voluntary users that provide their whole informed consent on personal data
treatment for this research project, and (ii) real user names were hidden
throughout the paper to preserve identities. A more detailed description of
the adopted data collection follows.

mDesktop dataset. The Telecom Italia mobile desktop application
provides a wide range of services to users through mobile devices. Some of
them provide recommendations to users on restaurants, museums, movies,
and other entertainment activities. For instance, they allow end users to
request for a recommendation (GET REC service), enter a score (V OTE
service), or update a score for an entertainment center (UPDATE service).
Other services allow users to upload files, photos, or videos and share them
with the other users. The dataset includes 1,197 user requests concerning
file sharing and uploading, 5814 records concerning user recommendations,
and 4487 records regarding other kinds of services (e.g., weather forecasts,
SMS, and call requests). To perform HiGen mining, a taxonomy including
the following generalization hierarchies has been defined.

• time stamp → hour → time slot (two-hour time slots) → time slot
(six-hour time slots) → day period (AM/PM)

• service → service category

• latitude:longitude → city → country

• phone number → call type (PERSONAL/BUSINESS)

In particular, service characterization is performed by exploiting the gener-
alization hierarchy over the Service attribute domain reported in Figure 6.7.

The experimental campaign also considered (i) different time periods,
and (ii) different generalization hierarchies for the time stamp attribute. In
particular, it also considered 1-week time periods and 4-hour and 8-hour
time slots. Some remarkable examples of HiGens mined by using these
configurations are reported in Section 6.4.
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Figure 6.7: Generalization hierarchy for the Service attribute of the context
dataset

Discovered pattern analysis

In the following, a selection of the discovered HiGens is reported. Further-
more, possible scenarios of usage for the selected patterns suggested by the
expert are discussed. The reported HiGens are classified based on the cat-
egorization presented in Section 6.2.2. Note that all the reported HiGens,
selected by the expert as most notable patterns, are also Non-redundant
HiGens. Indeed, the pruning of the not Non-redundant HiGens did not
relevantly affect the effectiveness of the knowledge discovery process.

Examples of stable HiGens Stable HiGens are HiGens whose general-
ized itemsets have the generalization level in common. Table 6.3 reports two
examples of extracted strongly stable HiGens, namely the HiGens 1 and 2,
and one example of weakly stable HiGen, namely the HiGen 3, generated
by enforcing a minimum support threshold min sup = 0.001%.
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Both the reported strongly stable HiGens concern the usage time of ser-
vice Twitter, which provides mobile access to a famous online community.
Since in HiGens 1 and 2 all the items belonging to attribute Service are
characterized by generalization level 1, while the ones belonging to attribute
Time belong, respectively, to levels 2 and 3, the considered HiGens are cat-
egorized as strongly stable HiGens. The first strongly stable HiGen states
that requests for Twitter are frequently submitted between 9 p.m. and 10
p.m. within each considered month. The second one states a similar recur-
rence at a higher temporal abstraction level, i.e., between 7 p.m. and 13
p.m.. Their joint extraction implies that service Twitter is frequently re-
quested from 9 p.m. to 10 p.m. within each month, but exists at least one
hourly time slot between 7 p.m. and 13 p.m., different from [9 p.m., 10 p.m.],
such that is infrequent within each considered month. I also analyzed the
recurrences in service Twitter usage mined from shorter time periods. Even
by considering weekly time periods, analogous trends are shown. Differently,
the third stable HiGen concerns the usage time of the whole application
service by a user called John. Although, according to Definition 9, all its
generalized itemsets have the same generalization level (i.e., 3), it is catego-
rized as weakly stable HiGen provided that the level of the items belonging
to attribute User changes from month to month. This means that the infor-
mation stored in the generalized itemsets changes its abstraction level, with
respect to the input taxonomy, for a certain extent. However, since the over-
all itemset generalization level is affected by the mostly generalized attribute
values (i.e., values associated with attribute Time), whose level does not vary
over time, it still retains a certain degree of stability.

The information provided by stable HiGens may be deemed relevant for
service provisioning. For instance, the analyst may profitably exploit this
knowledge for suiting bandwidth shaping to the actual user needs. In par-
ticular, he may either allocate dedicated bandwidth to frequently requested
services at specific time slots or use free bandwidth at less congested time
slots for network monitoring purposes.

Examples of monotonous HiGens Monotonous HiGen s are HiGens
whose sequence of generalized itemsets is characterized by generalization lev-
els with monotonous trend due to a steadfast and significant decrease/in-
crease of the itemset support values, with respect to the support threshold,
in consecutive time periods. Consider the monotonous HiGens reported
in Table 6.3, which have been generated by enforcing a minimum support
threshold min sup = 0.001%.
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Consider service Home W belonging to category Home Services, which is
targeted to provide facilities to users who are at home. The first monotonous
HiGen (i.e., HiGen 4) shows a recurrence in user John mDesktop applica-
tion service usage. Requests for service Home W are frequently submitted
in August, while become infrequent in both September (sup = 0.0001%)
and October (sup = 0.0008%). Nevertheless, the corresponding category
Home Services remains frequent in all the considered months. Readers can
notice that weak monotonicity holds as the corresponding itemset generaliza-
tion level increases from August to September while remains constant from
September to October. It is worth mentioning that, by considering weekly
time periods separately within each month, the reference itemset {(Service,
Home W), (User, John)} generates a strongly stable HiGen over August,
while it generates oscillatory HiGens in the next months. Differently, the
monotonous HiGen 5 highlights an opposite trend. It regards service Trains,
which belongs to service category Travels and provides information on rail
transports. User John appears less interested in service Trains in August
(sup = 0.0002%), possibly due to holiday vacations, while the service in-
creases its attractiveness in the following months.

The above information is deemed relevant by domain expert for both
user and service profiling. The analyst could (i) shape service bandwidth
depending on the time period, (ii) personalize user John service promotions,
and (iii) plan long-term promotions to counteract service usage decrease at
certain times of the year. The extracted information may be also used for
cross-selling purposes, i.e., by suggesting others services belonging to cate-
gory Home Services (e.g., serviceWeather) to either increase user interest in
the service category or counteract user migration from occasional use services
(i.e., classes of services, such as Travels, on which users focus their interest
for short time periods) to commonly used services (e.g., service Home W ).

Examples of oscillatory HiGens Oscillatory HiGens are HiGens whose
sequence of generalized itemsets is characterized by generalization levels with
variable and non-monotonous trend. Consider, for instance, the oscillatory
HiGens, reported in Table 6.3, mined by enforcing a minimum support
threshold equal to 0.01%.

The first oscillatory HiGen (i.e., HiGen 6) concerns service category
Travels, which provides to users information about travels, and its service
Maps, which allows browsing of geographical maps. User Terry seems inter-
ested in services belonging to category Travels in each considered month.
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Nevertheless, in September, he focused his interest in service Maps, possibly
due to work travels. Differently, the second oscillatory HiGen (i.e., HiGen
7) provides information about the usage time of service MMS. In August and
October, the service MMS is frequently requested between 13 p.m. and 14
p.m., while in September user interest in service MMS in the same time slot
decreases but still holds between 13 p.m. and 15 p.m. Notice that, by using
a different 2-hour time stamp (between 12 p.m. and 14 p.m.) the temporal
correlation does not hold anymore. By looking into the discovered oscillatory
HiGens, analysts may, for instance, investigate the provision of occasional
use services (e.g., service Maps) and perform the following actions: (i) sug-
gest complementary services (e.g., service Flightstats), (ii) plan promotions
targeted to specific user profiles, and (iii) discover mostly used service param-
eters to automatically suggest (e.g., frequently requested GPS coordinates for
service Maps).

Characteristics of the discovered HiGens

The expert also analyzes the frequency of stable, monotonous, and oscil-
latory HiGens inherent in a certain service category. To address this is-
sue, he adopts the following three-step approach: (i) HiGen mining from
mDesktop by means of the HiGen Miner algorithm, by enforcing a min-
imum support threshold min sup = 0.001%, (ii) selection of the HiGens
whose generalized itemsets include items belonging to the Service attribute
(i.e., service description), and (iii) HiGen categorization based on the ser-
vice categories reported in Figure 6.7. For instance, the monotonous Hi-
Gen {(Service, SMS)} ↗ {(Service, Communication)} would be associ-
ated with category Communication. Table 6.4 reports the distribution of
the HiGens within the service categories.

Categories that include commonly used services (e.g., category Communication)
are mainly represented by stable HiGens (e.g., 52% of the HiGens belong-
ing to Communication are stable against 22% of monotonous HiGens and
26% of oscillatory HiGens), while categories that group occasional use ser-
vices are mostly covered by monotonous or oscillatory HiGens. A significant
percentage of strongly stable HiGens characterizes service categories with
a great regularity in their context of use (e.g., category Home Services).
For these services, analysts may design long-term resource and promotion
plans. Service categories with a significant percentage of weakly stable or
monotonous HiGens (e.g., Entertainment and Friends) are usually suitable
for medium-term plans, as they show periodical (e.g., seasonal) variations of
their context of usage. Finally, oscillatory HiGens are often characterized
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by non-deterministic behaviors. For instance, notice that service category
Travels includes a significant percentage of oscillatory HiGens as its usage
changes significantly and unexpectedly from month to month.

6.5 HiGen Miner application to social data:

the DyCoM Framework

This section presents the DyCoM (Dynamic Context Miner) data mining
system. It focuses on discovering and representing dynamic higher level cor-
relations among data posted by users on the Twitter microblogging Web
site in the form of dynamic association rules. Their extraction is based on
the HiGen Miner algorithm. By exploiting the Twitter Application Pro-
gramming Interface (API), DyCoM retrieves both the tweet content (i.e.,
the textual messages) and their contextual features (e.g., publication date,
time, place). Based on the values of one of the most peculiar tweet contex-
tual features (e.g., the publication date), tweets are first partitioned in an
ordered sequence of tweet collections. The textual content is tailored to a
relational data schema [108] to enable the association rule mining process.
Next, a taxonomy over contextual data features is semi-automatically built,
by means of Extraction, Transformation, and Loading (ETL) processes, and
exploited to drive the rule mining process from the sequence of tweet collec-
tions. Generalized association rules are extracted by aggregating, according
to the taxonomy, lower level data items into higher level ones. The discovered
correlations provide a higher level view of the analyzed data since they also
include feature values (e.g., places, time stamps) at different levels of abstrac-
tion (e.g., regions or nations, time intervals or days). DyCoM integrates the
discovery of generalized association rules in the context of dynamic rule min-
ing. The discovered patterns compactly represent higher level correlations
and their temporal evolution across a sequence of tweet collections.

Finally, the DyCoM framework allows effectively querying the extracted
patterns, based on either their schema or content, to discover recurrences
hidden in Web user behaviors and topic trends. For instance, significant
correlations regarding specific topics may be pointed out in consecutive days
at different geographical granularity levels, e.g., within a certain city or its
corresponding region or nation.

This section is organized as follows. A more though description of the
adopted framework is reported in Section 6.5.1, while, in Section 6.5.2, two
examples of real-life use-cases for the DyCoM system are presented.
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6.5.1 Characteristics of the DyCoM Framework

Figure 6.8: The DyCoM framework

DyCoM (Dynamic Context Miner) is a data mining framework focused
on supporting the discovery of relevant correlations among the textual con-
tent and the publication context of messages posted on Twitter. To address
this issue, it investigates the evolution of most significant patterns hidden in
a sequence of tweet collections. Figure 6.8 reports the DyCoM framework
architecture. In the following, its main blocks and functionalities are briefly
described.

User-generated content and context data retrieval. This block en-
tails the retrieval, preprocessing, and categorization of messages (tweets)
posted by Web users on Twitter. The retrieved data is tailored to a rela-
tional data schema that includes both content features (i.e., the most relevant
keywords) and contextual features (e.g., the geographical location). Further-
more, tweets are partitioned into a sequence of subsets based on the value its
most peculiar features (e.g., tweet collections posted in consecutive days).

Taxonomy generation over contextual data. Taxonomies over the tweet
contextual features are semi-automatically generated. More specifically, Ex-
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traction, Loading, and Transformation (ETL) processes are exploited to ag-
gregate values of lower level contextual features (e.g., the GPS coordinate)
into their higher level aggregations (e.g., the city and the region).

Dynamic rule extractor. This block aims at discovering the evolution of
the significant higher level correlations hidden in the sequence of tweet col-
lections. It discovers dynamic patterns, in the form of dynamic generalized
association rules, whose main quality indexes (i.e., support and confidence)
exceed a given threshold and possibly vary from one interval to another.
The generalization is performed by evaluating the previously generated tax-
onomies. Their extraction is addressed by means the commonly used two-step
process: (i) dynamic itemset mining, driven by the support threshold and
(ii) dynamic association rule generation, driven by the confidence constraint.
The first mining step is based on the HiGen Miner algorithm.

Rule querying. The extracted dynamic rules are queried to efficiently
retrieve the information of interest based on either their content or schema.
To ease the domain expert analysis’ task, the resulting dynamic rules are
ranked based on the value of their main quality indexes (e.g., support and
confidence) in the user-provided tweet collections of increasing level.

6.5.2 Examples of DyCoM use-cases

In this section, two real use-cases for the DyCoM system that are focused on
user behavior and topic trend analysis are presented. For each use-case, some
examples of discovered dynamic generalized association rules are reported as
well.

Use-case 1: Topic trend analysis

This application scenario enables analysts to look into newsworthy topic
trends by analyzing the temporal evolution of correlations hidden in the
tweet collections. To this aim, analysts may follow this steps: (i) crawling
collections of tweets posted at consecutive time periods, (ii) dynamic gener-
alized association rule mining from tweet collections in order of increasing
time periods, and (iii) rule querying based on user-specified constraints.

Tweet contextual features include the time stamp at which messages are
posted. This information is exploited to partition tweets into disjoint collec-
tions associated with different time periods (e.g., 1-day time period). The
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dynamic mining algorithm allows discovering high level recurrences in the
form of generalized association rules. They may represent unexpected trends
in the evolution of relevant tweet topics. For instance, analysts may won-
der how breaking news are matter of contention on Twitter. To delve into
the impact of breaking news coming from the United States Capitol, tweets
whose submission time is uniformly distributed in the range [2011/03/22,
2011/03/24] are first collected. Then, they are categorized based on their
submission date. For example, the following dynamic generalized rules are
extracted by enforcing a minimum support threshold equal to 1%.

1. {(Keyword, Obama),(Keyword2, Libya)} → {(Place, Washington,
D.C.)} (sup=[1.3%, 0.3%, 0.3%], , conf=[100%, 83%, 85%])

2. {(Keyword, Obama),(Keyword2, Libya)} → {(Place, Washington,
D.C.)} (sup=[2.3%, 2.5%, 1.3%], , conf=[100%, 91%, 91%])

The U.S. congress meeting, that held on March 22nd in Washington D.C.,
was focused on the conflict in Libya. Keywords Obama and Libya, which
have been frequently posted on March, 22nd in Washington, D.C., becomes
infrequent in the same location the day after. However, the extraction of the
higher level correlation (B) allows figuring out that the same topic remains
of interest in the U.S.A. yet.

Use-case 2: Context-based user behavior analysis

This application scenario investigates the attitudes of Twitter users in post-
ing, citing, and answering Twitter messages concerning newsworthy topics in
different spatial contexts. To achieve this goal, analysts should perform the
following steps: (i) crawling tweet collections posted from regions or states
of interest within a given time period, (ii) dynamic generalized association
rule mining from tweet collections by following a user-provided significance
order, and (iii) dynamic rule querying based on user-specified constraints.

The previously collected tweets, posted during the time period [2011/03/22,
2011/03/24], are considered and reorganized, based on their submission place,
in: (i) a collection of tweets posted within a 2, 500 km radius far from New
York (i.e., lands along Eastern American coastline) and (ii) a collection of
tweets posted within a 2, 500 km radius far from London (i.e., North-West of
Europe). A dynamic generalized association rule mining session is performed
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by enforcing a minimum support threshold equal to 1% and a minimum con-
fidence threshold equal to 80% and by considering the American tweet col-
lection first. Following the chain of spatial tweet message propagation set
the analyst may discover valuable knowledge about user attitudes in Twitter
service usage by looking into the history of the discovered patterns across a
sequence of places of interest. For instance, the following dynamic rules are
extracted:

1. {(Keyword, Obama), (Place, Washington, D.C.)} → {(Date,
2011/03/22)} (sup=[3.6%, 2.1%, 0.5%], conf=[100%, 100%, 91%])

2. {(Keyword, Obama), (Place, United Kingdom)} → {(Date,
2011/03/22)} (sup=[1.1%, 2.3%, 1.2%], [conf=100%, 95%, 95%])

The dynamic generalized association rules (A) is discovered from the collec-
tion of American tweets, while rule (B) is mined from the European tweet col-
lection. American Twitter users paid particular attention to the foreign pol-
icy undertaken by president Obama and the American Congress, which had
been topic of discussion in the past meeting held in the United States Capitol
Washington, D.C. (USA) on March, 22nd 2011. Furthermore, users coming
from Europe are also interested in posting messages related to the same topic
as the U.S. Government decisions bias the European state economies.
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Not generalized itemset
Sup Sup
D1 D2

{Turin} 1 (Inf.) 2
{Paris} 2 1 (Inf.)

{T-shirt} 2 2
{Jacket} 3 3

{T-shirt, Turin} 1 (Inf.) 2
{Jacket, Paris} 2 1 (Inf.)

Generalized itemset
Sup Sup
D1 D2

{Italy} 2 3
{France} 3 2

{T-shirt, Italy} 2 2
{Jacket, France} 3 2

(a) Generalized and not generalized itemsets
mined from D1 and D2.

HiGens from D1 to D2

{T-shirt} [sup = 2] ; {T-shirt} [sup = 2]
{Jacket} [sup = 3] ; {Jacket} [sup = 3]
{Paris} [sup = 2] ↗ {France} [sup = 2]

{T-shirt, Italy} [sup = 2] ↘ {T-shirt, Turin} [sup = 2]
{Jacket, Paris} [sup = 2] ↗ {Jacket, France} [sup = 2]

{Italy} [sup = 3] ↘ {Turin} [sup = 2]

(b) Extracted HiGens.

Table 6.2: HiGen Miner: Extracted patterns. min sup = 2.
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Algorithm 4 HiGen Miner: History Generalized Pattern Miner
Input: ordered set of timestamped structured datasets D={D1, D2, . . ., Dn}, minimum support

threshold min sup, taxonomy Γ
Output: set of HiGens HG
1: k = 1 // Candidate length
2: HG = ∅
3: Ck = set of distinct k-itemsets in D
4: repeat

5: for all c ∈ Ck do

6: scan Di and count the support sup(c,Di) ∀ Di ∈ D
7: end for

8: Li
k
= {itemsets c ∈ Ck| sup(c,Di) ≥ min sup for some Di ∈ D}

9: HG = update HiGen set(Li
k
, HG)

10: l = 1 // Candidate generalization level
11: Gen = ∅ // generalized itemset container
12: repeat

13: for all c in Ck of level l do

14: Dinfc = {Di ∈ D | sup(c,Di) < min sup} // datasets for which c is infrequent
15: if Dinfc 6= ∅ then

16: gen(c) = set of new generalizations of itemset c of level l + 1
17: gen(c) = taxonomy evaluation(Θ, c)
18: for all gen ∈ gen(c) do

19: gen.Desc = c // Generalized itemset descendant
20: end for

21: Gen = Gen ∪ gen(c)
22: end if

23: end for

24: if Gen 6= ∅ then

25: for all gen ∈ Gen do

26: scan Di and count the support of gen ∀ Di ∈ Dinfgen.Desc

27: for all gen| sup(gen,Di) ≥ min sup for some Di ∈ Dinfgen.Desc do

28: HG = update HiGen set(gen, HG)
29: if sup(gen,Di) ≥ min sup for all Di ∈ Dinfgen.Desc then

30: remove gen from Gen
31: end if

32: end for

33: end for

34: Ck = Ck ∪Gen
35: end if

36: l = l + 1
37: until Gen = ∅
38: k = k + 1
39: Ck+1 = candidate generation(

⋃

i Ci
k
)

40: until Ck = ∅
41: return HG
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HiGens mined between August and October

Time period Generalized itemset Support (%) Gen. level Relationship

Strongly Stable HiGen 1
August {(Service, Twitter), (time, from 9 p.m. to 10 p.m.)} 0.051 2 ;

September {(Service, Twitter), (time, from 9 p.m. to 10 p.m.)} 0.020 2 ;

October {(Service, Twitter), (time, from 9 p.m. to 10 p.m.)} 0.022 2 -
Strongly Stable HiGen 2

August {(Service, Twitter), (time, from 7 p.m. to 13 p.m.)} 0.071 3 ;

September {(Service, Twitter), (time, from 7 p.m. to 13 p.m.)} 0.031 3 ;

October {(Service, Twitter), (time, from 7 p.m. to 13 p.m.)} 0.044 3 -
Weakly Stable HiGen 3

August {(User, Employee), (time, from 7 p.m. to 13 p.m.)} 0.051 3 ;

September {(User, Employee), (time, from 7 p.m. to 13 p.m.)} 0.062 3 ;

October {(User, John), (time, from 7 p.m. to 13 p.m.)} 0.024 3 -

Monotonous HiGen 4
August {(Service, Home W), (User, John)} 0.005 1 ↗

September {(Service, Home Services), (User, John)} 0.017 2 ;

October {(Service, Home Services), (User, John)} 0.021 2 -
Monotonous HiGen 5

August {(Service, Travels), (User, John)} 0.009 2 ↘
September {(Service, Trains), (User, John)} 0.008 1 ;

October {(Service, Trains), (User, John)} 0.007 1 -

Oscillatory HiGen 6
August {(Service, Travels), (User, Terry)} 0.015 2 ↘

September {(Service, Maps), (User, Terry)} 0.053 1 ↗
October {(Service, Travels), (User, Terry)} 0.017 2 -

Oscillatory HiGen 7
August {(Service, MMS), (Time, from 13 p.m. to 14 p.m.)} 0.004 2 ↗

September {(Service, MMS), (Time, from 13 p.m. to 15 p.m.)} 0.005 3 ↘
October {(Service, MMS), (Time, from 13 p.m. to 14 p.m.)} 0.002 2 -

Table 6.3: Examples of HiGens. mDesktop dataset. min sup = 0.001%

Service category Number of Number of Number of
stable monotonous oscillatory

HiGens (%) HiGens (%) HiGens (%)
Weak Strong Total

Travels 18 9 27 32 41
Communication 19 33 52 22 26
Entertainment 20 7 27 34 39

Friends 14 12 26 44 30
Home Services 17 28 45 32 23

Recs 15 14 29 36 35
Teamlife 14 22 36 27 37

Table 6.4: HiGen distribution. mDesktop dataset. min sup = 0.001%
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Chapter 7

Semi-automatic construction of
semantic models

The outstanding growth of both context-aware environments and user-generated
content coming from social network communities prompted the investigation
of new ways to represent domain knowledge and its relationships. Semantic
Web tools provide the instruments to significantly enrich the knowledge rep-
resentation through a wide range of semantics-based models. These models
support users in understanding the meaning of a resource and the related do-
main. Ontologies are examples of fully comprehensive models for describing
domain-specific knowledge. Knowledge representation by means of ontology-
based models, entails (i) shared agreement of meaning, (ii) term disambigua-
tion, and (iii) domain description through concepts and relationships. The
contribution of both advanced data mining algorithms and semantics-based
knowledge representation may enhance the knowledge discovery process in a
broad range of application contexts, such as social behavior analysis, knowl-
edge discovery from user-generated content, and Web service personalization.

Useful ontologies for a given application domain can be either provided
by domain experts or (semi-)automatically inferred from the data of interest.
Although the Semantic Web already provides a full technological stack to
access semantics-based resources, most of the existing approaches, such as
the creation of ontologies in a Web Ontology Language like the OWL [115],
still heavily rely on the human intervention. Hence, the machine-driven
construction of meaningful ontologies is becoming an increasingly appealing
target in several research fields, including information retrieval, data mining,
and data summarization. For example, the exponential growth of social
medias like blogs and social network services has significantly increased the

127
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need of useful ontologies to efficiently support the analysis of large data
volumes [51]. Thus, novel and more efficient approaches to automatically
construct useful ontologies tailored to the analyzed data are desirable.

This chapter presents a effective semi-automatic approach to construct
ontologies tailored to structured data [32]. Structured datasets are data col-
lections whose content is organized by means of a schema that describes the
relevant data features of interest. For instance, a relational dataset schema
is characterized by a set of attributes which describes the main data fea-
tures. Similarly, an XML dataset is characterized by a set of tags (elements).
For the sake of simplicity, we will denote the data features belonging to the
dataset schema as attributes in the rest of this paper for both relational and
XML data. Ontology construction commonly entails a two-level analysis:
(i) an intensional data analysis, to represent shared data concepts and their
relationships, and (ii) an extensional data analysis, to represent instances of
concepts (i.e., the individuals) and their associations. Different approaches
can be used to model and represent ontologies. For instance, Description
Logic (DL) [13] can be profitably used to represent ontologies. Ontology
representation based on Description Logic relies on two main components:
(i) the Tbox component, which includes intensional statements about gen-
eral concepts, and (ii) the Abox component, which includes both extensional
statements about the individuals of those concepts and membership state-
ments, which bind instances with their concepts.

To support domain experts in constructing meaningful ontologies, ex-
pressed by using the Description Logic and tailored to the input structured
data, the DOnG (Dependency-driven Ontology Generator) framework has
been presented. It exploits two well-founded database and data mining tech-
niques, i.e., functional dependency discovery and association rule mining.
These technique provide valuable correlations hidden in both the data schema
and content. Although these correlations have not the semantic expressive-
ness of formal ontological statements, they may be used, in conjunction with
a formal knowledge base representation, i.e., the Description Logic), to effec-
tively support experts in ontology construction. Given a structured dataset,
DOnG infers a Schema Ontology Graph, denoted as SOnG, through the
discovery of functional dependencies holding in the schema of the analyzed
data. The SOnG provides a graph-based representation of some of the hid-
den correlations among the attributes of the schema. Attributes are con-
sidered as the main concepts at the intensional level over which experts
may assert meaningful Tbox ontological statements concerning the analyzed
data [13]. Since functional dependencies [90] represent tight correlations
among sets of attributes, we exploit them to represent conceptual relation-
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ships among attributes (i.e., concepts). A functional dependency, written as
S1 ⇒ S2, states that if, in a structured dataset characterized by a set of
attributes T ={t1, . . . , tn}, two data instances agree on the value of a set of
attributes S1 ⊆ T , then they must agree on the value of a set of attributes
S2 ⊆ T . We argue that a functional dependency models a conceptual re-
lationship that is worth considering during the Tbox statement assertion.
Next, driven by the analyst-validated dependencies, the DOnG framework
analyzes the data content to discover the Schema Ontology Instance Graphs,
denoted as SOnIG. A SOnIG is a graph composed of data item, i.e., pairs
(attribute,value), linked by association rules. Association rules represent rel-
evant but hidden correlations among data at the instance level. Among the
set of discovered rules, the analyst may select and exploit most valuable ones
to assert Abox ontological statements, i.e., assertions about individuals and
their relationships. Individuals are represented by data items and rules sug-
gest possibly relevant relations. Furthermore, the recurrent data items, i.e.,
the pairs (attribute, value), may suggest to the expert significant membership
assertion (e.g., an individual is an instance of a given concept). The pushing
of functional dependency constraints into the rule mining step enables the
efficient inference of an ontology instance graph at the data item granularity
as well as eases domain expert validation by focusing the investigation on
the most relevant item recurrences.

The chapter is organized as follows. Section 7.1 formalizes the problem
addressed in this paper, Section 7.2 presents the DOnG framework and
describes the main features of its building blocks, while Section 7.2.4 presents,
as application scenario, the usage of the inferred semantic models to drive
the generalized pattern mining process.

7.1 Problem statement

In a given domain, an ontology is a formal knowledge representation that
highlights the main concepts and the relationships among those concepts. In
this paper, we focus on ontology construction from structured data.

A structured dataset is characterized by a schema (i.e., a set of conceptual
features, also called attributes in the following) and a content (i.e., a set of
instances). Let T ={t1, . . . , tn} be a set of attributes and Ω={Ω1, . . . ,Ωn} be
the corresponding attribute domains. An item is a pair (ti, valuei) which as-
signs value valuei ∈ Ωi to attribute ti. A structured dataset D is a collection
of instances, where each instance is a set of items.
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The process of ontology construction may be effectively supported by two
database and data mining techniques, i.e., functional dependency discovery
and association rule mining.

Itemsets and association rules describe the co-occurrence of data items
in large data collections [2]. Association rules [2] are usually represented
as implications X → Y 1, where X and Y are arbitrary itemsets such that
X ∩ Y = ∅.

Different relationships may hold among data attributes. Functional de-
pendencies, formally stated in the following definition, are a notable and
largely established kind of attribute relationships.

Definition 27 Functional dependency. Let D be a structured dataset and
T ={t1, t2, . . ., tn} its attributes. Let S1 ⊆ T and S1 ⊆ T be two subsets
of attributes. D satisfies the functional dependency S1 ⇒ S2 if the following
condition holds for every pair of instances r1 and r2 in R:

• If r1.S1 = r2.S1, then r1.S2 = r2.S2

where ri.Sj is the set of values assumed by the attributes in Sj for the record
ri.

For example, consider a zoological dataset for biological classification stor-
ing all the information (e.g., the class, the discovery date) about all the
species belonging to the animal kingdom discovered in the last five centuries.
A functional dependency may hold from the specie (e.g., lions) to class (e.g.,
mammals) attributes as it holds a is-a relationship among these concepts.
In [70], approximate functional dependencies have been also proposed. They
represent functional dependencies that almost hold. Their definition is based
on the minimum number of records that needs to be removed from the rela-
tion D for the dependency S1 ⇒ S2 to hold in D. The number of records that
needs to be removed is represented by the error measure (or by the opposite
measure, called strength). The error ε(S1 ⇒ S2) [62] should be defined as in
Definition 28.

Definition 28 Dependency error. Let D be a structured dataset and T ={t1,
. . ., tn} be its attributes. Let S1 ⊆ T and S1 ⊆ T be two subsets of attributes

1We denote as · → · an association rule and as · ⇒ · a functional dependency throughout
the paper.
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in D. The dependency error ε(S1 ⇒ S2) of the dependency S1 ⇒ S2, is
defined as:

ε(S1 ⇒ S2)=
min{|R| | R⊆D ∧ S1⇒S2 holds in D\R}

|D|

Corollary 2 Dependency strength. Let D be a structured dataset and let
S1 ⊆ T and S1 ⊆ T two sets of attributes in D. The dependency strength
st(S1 ⇒ S2) of a dependency S1 ⇒ S2 is defined as:

st(S1 ⇒ S2)= 1- ε(S1 ⇒ S2)

The dependency error ε(S1 ⇒ S2) has a natural interpretation as the frac-
tion of records with exceptions affecting dependency S1 ⇒ S2. The strength
measure represents the opposite information with respect to dependency er-
ror. When the strength measure is equal to 100% the dependency holds on
the whole dataset, i.e., a functional dependency holds.

The definition of approximate functional dependency [62, 70] follows:

Definition 29 Approximate functional dependency. Let D be a structured
dataset and T ={t1, t2, . . . , tn} be its attributes. Let S1 ⊆ T and S2 ⊆ T
be two sets of attributes in D. An approximate functional dependency is an
implication in the form S1 Ã S2, such that

1. S1 ⊆ T and S2 ⊆ T

2. S1 ∩ S2 = ∅

3. st(S1 ⇒ S2) < 1

An approximate dependency satisfies a minimum strength thresholdmin st
if its strength is higher than min st. Usually, only functional dependencies
and approximate functional dependencies satisfying min st are considered.
The dependencies characterized by a dependency strength lower than the
threshold are usually not of interest as they do not represent schema corre-
lations holding for the majority of the data.

Dependencies and association rules can be exploited to provide to analysts
information useful for semi-automatic ontology construction. Two graph-
based representations of the most significant correlations holding among the
schema and the content of the analyzed data, i.e., the schema ontology graph
and the schema ontology instance graph, are proposed and exploited to sup-
port the expert in ontology construction. Their definitions follows.
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7.1.1 Schema Ontology Graph

A schema ontology O is a graph-based representation of the (approximate)
dependencies holding in a structured dataset and their strengths. Its defini-
tion follows.

Definition 30 Schema Ontology Graph (SOnG). Let D be a structured
dataset and T ={t1, t2, . . . , tn} be its attributes. Let min st be a minimum
dependency strength threshold. A SOnG O is an oriented graph Γ=〈T , E∗〉,
whose nodes are ti ∈ T . An oriented edges eik = (ti, tk) ∈ E∗ represents
a functional dependency or an approximate functional dependency satisfying
min st that holds from ti to tk and is labeled with a weight wik=st(ti ⇒ tk).

Graph nodes are attributes while edges represent dependencies, eventu-
ally approximate, holding among couples of attributes. Edge weights take
values in the range (0,1] and represent the attribute dependency strength,
i.e., the fraction of instances for which each dependency holds. Figure 7.1
shows an example of a simplified SOnG obtained by enforcing a minimum
dependency strength equal to 95%, i.e., only the edges that correspond to
dependencies characterized by a dependency strength higher than 95% are
included in the SOnG reported in Figure 7.1. It concerns a portion of the
(simplified) DBLP XML dataset [75], which collects information about con-
ference proceedings. For instance, the concept Author name may be mean-
ingfully associated with the author Affiliation (each authors is related to an
affiliation, or a set of affiliations in some cases).

Figure 7.1: A simplified SOnG built over the example DBLP XML at-
tributes.
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7.1.2 Schema Ontology Instance Graph

Given a SOnG built over the data schema, the corresponding graph at the
data item level could be defined. A graph-based representation, namely
the SOnIG (Schema Ontology Instance Graph), of the correlations holding
among couples of items, belonging to the structured dataset D, such that
their corresponding attributes are (approximately) functionally dependent
in D is proposed in the following.

Definition 31 Schema Ontology Instance Graph (SOnIG). Let T ={t1,
t2, . . ., tn} be the attributes which describe a structured dataset D and let I be
the set of all data items in D. Let O=〈T , E∗〉 be a SOnG built over D. Let
Φ : E∗ → R be an application that maps each oriented edge eik = (ti, tj) ∈ E∗

to the set Rij of 2-length association rules (ti,valuei) → (tj,valuej) holding
from items belonging to attribute ti to items belonging to attribute tj. The
schema ontology instance graph is an oriented graph Θ=〈I, Φ(E∗)〉 whose
nodes are distinct data items in D and the oriented edges represent asso-
ciation rules holding between couples of items. An oriented edge from item
(ti,valuei) to item (tj,valuej) is weighted by the confidence of the correspond-
ing association rule (ti,valuei) → (tj,valuej).

Starting from the structured dataset D and a SOnG Γ (Cf. Defini-
tion 30), the SOnIG is constructed by representing data items in D and
the association rules involving couples of items belonging to (approximately)
functionally dependent attributes. The SOnIG edge weight, i.e., the rule
confidence, represents the strength of the correlations among data items. To
extract the SOnIG we exploit the association rule mining process [2] without
enforcing any mining constraint (i.e., absolute minimum support threshold
= 1 and minimum confidence = 0%). Since it is focused on association rules
between couples of items we only mine 2-length rules.

Figure 7.2 shows a portion of SOnIG built over the example DBLP XML
dataset (see Figure 7.4). The edge between {(Author name, Rossi)} and
{(Affiliation, Politecnico di Torino)} is weighted by 78% because the con-
fidence of the rule {(Author name, Rossi)} → {(Affiliation, Politecnico di
Torino)} is 78%. Notice that, according to Definition 31, an oriented edge
between two data items is omitted if the attributes of the corresponding items
are not dependent, e.g., the edge directed from {(Author name, Rossi)} to
(Title, A performance evaluation for ...).

In this following section, a framework, called DOnG, that extracts both
SOnGs (Cf. Definition 30) and SOnIGs (Cf. Definition 31) from structured
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Figure 7.2: An example of the SOnIG over some DBLP XML records en-
riched with confidence values.

datasets to support analysts in the construction of meaningful ontologies is
presented.

7.2 The dependency-driven ontology genera-

tor

This section describes the DOnG (Dependency-driven Ontology Generator)
framework, which entails ontology construction from structured data sup-
ported by a two-step mining process, which entails: (i) approximate func-
tional dependency discovery, and (ii) association rule mining.

Figure 7.3 shows the building blocks of the DOnG framework, which ad-
dresses the semi-automatic construction of a meaningful ontology, expressed
by the Description Logic, tailored to the input data. Description Logics [13]
formalize the ontology representation in terms of a set of shared concepts and
their relationships. It includes two distinct parts: (i) the Tbox, which in-
cludes a finite set of assertions about shared primitive concepts, inferred from
the data of interest, and the binary relations among them, and (ii) the Abox,
which includes membership assertions (e.g., an individual is an instance of a
given concept) as well as extensional statements about the concept instances
(belonging to the analyzed data) and their relationships.

In DOnG, the Tbox and Abox statement assertion steps are fully sup-
ported by an ad-hoc mining process. The mining process makes use of a
two-step analysis: (i) functional dependency discovery from the data schema
(i.e., the attribute level), and (ii) association rule mining from the data in-
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Figure 7.3: The DOnG framework architecture.

stances (i.e., the item level). The first step of the mining process supports
the construction of the Tbox part of the ontology representation, while the
second one supports the Abox construction step. Functional dependencies
and approximate functional dependencies are discovered and represented in a
graph-based model, i.e., the SOnG (Cf. Definition 30). The generated model
is validated by the analyst and it is used to semi-automatically generate the
Tbox component of the description logic based ontology representation. In
particular, the analyst selects the dependencies that are worth considering
in the Tbox construction phase. Validated dependencies are then used to
drive the rule mining process at the item level. This enables the generation
of a reduced amount of relevant rules, thus, easing the analyst validation
of the extracted recurrences. Association rules and the related data items
are represented in a graph-based model, i.e., SOnIGs (Cf. Definition 31),
that effectively support the analysts during the Abox generation phase. In
particular, each rule is a potential statement in the defined Abox.
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7.2.1 Data preprocessing

The DOnG addresses ontology construction from structured data. A struc-
tured dataset is a dataset characterized by a schema, which describes its main
data features. Most common examples of structured data are the relational
and the XML data. A relational dataset is described by a set of attributes,
while an XML dataset is organized by a set of tags. To enable both func-
tional dependency discovery and association rule mining from generic struc-
tured data, the DOnG framework requires a preprocessing step to make data
suitable for the mining process. Since the application of the aforementioned
data mining techniques to relational data is straightforward [2, 62], in this
section we mainly focus on describing how to make XML data suitable for
both functional dependency and association rule discovery.

Most of the well-founded models proposed in the past (see, for example,
OEM [91], UnQL [29], and GraphLog [38]) lend themselves to represent XML
data by graphs whose nodes denote either objects (i.e., abstract entities) or
values (i.e., primitive values), while edges represent relationships between
them. According to [40], we represent an XML document as a labeled tree2,
as stated in Definition 32:

Definition 32 An XML document is a labeled tree 〈N,E, r〉, such that:

• N is the set of nodes;

• r ∈ N is the root of the tree (i.e., the root of the XML document);

• E is the set of undirected edges;

Figure 7.4 reports a portion of the DBLP XML document represented
as a tree-based structure (with the considered labels for nodes and edges).
It will be used as running example in the rest of the paper. The XML
document reports information about a number of conference proceedings.
Each article is characterized by its code, title, authors’ name and affiliation,
acceptance date, conference name, and location. Attributes and elements are
characterized by empty circles, whereas the textual content of the elements
and the attribute values are reported as black-filled circles. The node labeled

2Note that XML documents are here tree-like structures (and not generic graphs)
because, following the so-called literal semantics, we do not interpret referencing attributes
as pointers.
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as {} is the root of the XML document. The labeled tree rooted in the Article
node is an example of conference proceeding. In general, the elements may
be connected to either their sub-elements, attributes, or leaf node, while
the attribute nodes may be connected to leaf nodes that represent their
corresponding attribute values.

Moreover, the following two properties regarding graph nodes and edges
hold: (1) Each node ni has a tuple of labelsNLi = 〈Ntagi, Ntypei, Ncontenti〉.
The label type Ntypei indicates whether the node is a root, an element, a
text, or an attribute, whereas the label Ncontenti can take as value a PC-
DATA 3 or ⊥ (undefined, for nonterminals).

Figure 7.4: A simplified labeled tree of a portion of the example DBLP XML
document

Since the focus is to find correlations among elementary values of the
XML documents, and such values may occur as either textual content of leaf
elements or attribute values, I only consider a single node type and I do not
specify any type label. In the following, the notion of item in the XML data
format is defined.

Definition 33 XML document item. Let 〈N,E, r〉 be an XML document
and rr ∈ N be the root of the corresponding document. An item is a couple

3PCDATA is a reserved keyword used in the DTD XML Document Type Definition
(DTD) which stands for Parsed Character Data and indicates a generic plain text.
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(attribute, value) that could be represented in the XML document 〈N,E, r〉
as a path connecting a direct descendant ndr ∈ N of the root rr to a leaf, i.e.,
a terminal node nn ∈ N . The path corresponds to an item such that:

1. attribute is the label of the element with a content rooted in ndr and
defined as a sub-path from ndr to the element.

2. value is the content of the considered element.

Consider again the example DBLP XML dataset reported in Figure 7.4.
Suppose to set the node labeled as Articles as root of the dataset instances.
An example of item is the couple (Article Title, A performance evaluation
of ...) that identifies a sub-path connecting node labeled as Article to the
element node labeled as Title.

XML documents can be analyzed by different data mining techniques,
such as association rule extraction [28], taxonomy inference [36], and data
summarization [20], to discover interesting recurrences among data items.
To exploit well-known techniques proposed for relational datasets, the XML
document is usually transformed in a relational dataset as stated by the
following definition.

Definition 34 XML in the relation data format. Let 〈N,E, r〉 be an XML
document and rr ∈ N be a root of the corresponding document. Let T
={t1, t2, · · · , tn} be the set of attributes. A relational dataset is a collection of
instances, where each instance r is a set of items {(t1, value1), · · · , (tn, valuen)}
in 〈N,E, r〉.

To transform an XML document into the corresponding relational format,
an approach similar to that proposed in [20] is adopted. However, a relational
representation is generated, while the authors of [20] transform each XML
document into a transactional dataset. This generation is described in the
following. It first selects as instance root ndr the appropriate node in the la-
beled tree representing the XML document. Items are couples of (ti, valuei),
where the attribute ti is the label of an element with a content rooted in
the instance root and defined as a complete sub-path from the root to the
element, while valuei is the content of the considered element. Each subtree,
rooted in ndr, defines an instance in the XML dataset.

Consider again the example DBLP XML dataset. The corresponding re-
lational dataset is a set of per-author article records, each one composed of



7.2. THE DEPENDENCY-DRIVEN ONTOLOGY GENERATOR 139

a set of items describing, for a specific author, a published proceeding. The
corresponding relation achieved by tailoring the XML data to the relational
data format is the following

DBLP(Article code,Author name, Title, Conference name, Conference
location, Author affiliation)

in which the pair (Article code,Author name) represents the primary key of
the relation.

The (ti, valuei) representation for data items yields a single item when
the XML element contains a single data value and when it has a textual
content. Even in the case in which the textual content can be considered as a
multiple value element (e.g., the article author may assume multiple values),
data preprocessing yields a single data value to preserve the relational data
schema (Cf. Definition 34). The presence of multiple value elements may
produce a set of records each one involving distinct single item values.

To reduce side effects due to multiple values and textual data noise, tex-
tual elements may be preprocessed by performing stopword elimination (i.e.,
elimination of very frequent and noisy words such as articles) and stemming
(i.e., reduction of words to their semantic stem) [92, 93]. Both operations
are commonly performed in textual data management.

7.2.2 Schema Ontology Graph generation

The aim of this block is to build a SOnG based on the schema of the input
structured dataset to effectively support the analyst in the Tbox ontolog-
ical statement assertion. Since the challenge is to figure out shared data
concepts and their relationships data attributes belonging to the schema as
potentially relevant concepts and the notion of approximate functional depen-
dencies [90] (Cf. Definition 29) are exploited to highlight tight correlations
among attributes.

The SOnG generation block of the DOnG framework takes in input both
the preprocessed structured dataset and a minimum dependency strength
(Cf. Definition 2), and generates a schema ontology graph (Cf. Definition 30)
built over the schema of the analyzed data. To this aim, three main steps
are performed:

• Functional dependency and approximate functional dependency discov-
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ery. To discover functional and approximate functional dependencies
it exploits the traditional TANE algorithm [62], which is a level-wise
algorithm in which, at the k-th iteration, dependencies involving at-
tribute sets of size at most equal to k are considered. A brief overview
of the adopted approach [62] is reported in the following. Neverthe-
less, the proposed DOnG framework enables users to easily integrate
diverse algorithms as well.

• Analyst validation. The analyst validates the inferred dependencies
and selects the most relevant ones for the ontology Tbox construction
process. The domain expert is in charge of discriminating among rele-
vant data attributes and functional dependencies holding among them
and, eventually, pruning uninteresting ones.

• SOnG building. This step generates a SOnG (Schema Ontology
Graph) according to Definition 30. It includes each validated de-
pendency as an edge connecting two data attributes (i.e., the SOnG
nodes). Nodes are the selected attributes while the oriented edges rep-
resent dependencies among schema concepts that are worth consider-
ing from the analyst’s point of view. An edge connecting two arbitrary
nodes is weighted by the strength of the approximate functional depen-
dency between the corresponding nodes. The higher is the dependency
strength (Cf. Definition 2) the higher is the correlation strength in the
source dataset.

Consider again the previous example, and suppose that, by enforcing a
minimum dependency strength threshold equal to 80%, the set of approx-
imate dependencies reported in Table 7.1 is discovered from the example
dataset. Notice that a dependency strength equal to 100% implies that the
approximate dependencies always holds in the source dataset (i.e., it is a
functional dependency).

Table 7.1: Discovered dependencies from a portion of DBLP XML dataset.
Num Dependency strength (%)
1 Article codeÃ Title 100
2 Article codeÃ Conference name 100
3 Article codeÃ Author name 100
4 Author nameÃ Author affiliation 99
5 TitleÃ Conference name 99
6 TitleÃ Author affiliation 90

Consider now the last approximate dependency Title Ã Author affiliation
with strength equal to 90% reported in Table 7.1. It highlights a correlation
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that might be of minor interest from the domain expert point of view. Expert
pruning may discard the uninteresting dependency Title Ã Author affiliation
discovered from D. Since an early dependency filtering based on minimum
dependency strength threshold min st has been enforced, the analyst may
also vary the mining constraint (e.g., by setting a higher minimum strength
threshold) to tailor the discovered dependency set to her/his actual needs. An
experimental analysis on the impact of the maximum dependency strength
threshold is reported in Section Experimental results.

The schema ontology graph obtained after the expert validation of the
approximate dependencies in Table 7.1 is reported in Figure 7.1.

The TANE algorithm [62], whose pseudo code is reported in Algorithm 5,
searches for approximate dependencies that (i) satisfy the minimum strength
threshold min st, and (ii) are minimal (i.e., the right-hand side attribute set
is not functional dependent with any subset of the left-hand side set). TANE
is a level-wise algorithm in which, at the k-th iteration, dependencies having
the left-hand size in Lk−1 are computed (line 6). A level Lk is a collection
of attribute sets of size k. Then, the minimality property and the minimum
strength threshold are exploited to prune Lk−1 and, thus, avoid exhaustive
lattice exploring. Finally, level Lk is generated starting from Lk−1 (line 8).

To discover functional dependencies that involve just single attributes at
both the left-hand and the right-hand dependency side, the iterative proce-
dure described above is stopped when iteration k = 2 is completed. Thus,
the redundant knowledge extraction is prevented.

Algorithm 5 The TANE algorithm.
Input: relation D over schema R, minimum strength threshold min st
Output: minimum not trivial approximate functional dependencies that hold in D
1: L0= ∅
2: C+(∅) = D
3: L1 = {{A}|A ∈ R}
4: k = 1
5: while Lk 6= ∅ do

6: compute Dependencies(Lk)
7: prune(Lk, min st)
8: Lk+1= generate Next Level(Lk)
9: k = k + 1
10: end while
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Algorithm 6 Schema Ontology Instance Graph extraction.
Input: SOnG Γ, structured dataset D
Output: SOnIG Θ
1: L1 = set of items in D
2: L2 = itemset generation(L1, Γ) /*/* 2-itemsets generation */ */
3: scan D and count support for each c ∈ L2
4: Rules = rule generation( L1 , L2 )
5: for all r in Rules do

6: if expertvalidation(r) = ’discard rule’ then

7: remove r from Rules
8: end if

9: end for

10: Θ = buildSchemaOntologyInstanceGraph(Rules, Γ)
11: return L

7.2.3 Schema Ontology Instance Graph generation

The last step of the DOnG framework entails the generation of the SOnIG
(Schema Ontology Instance Graph) built over the analyzed data (Cf. Defi-
nition 31), which might be profitably exploited to drive the generalized pat-
tern mining and knowledge discovery process (see Section 7.2.4). To this
aim, it takes in input the preprocessed structured dataset D, and the SOnG
(Schema Ontology Graph) Γ. It produces a SOnIG (Cf. Definition 31)
by performing 2-length association rule mining driven by the previously ex-
tracted and validated schema dependencies.

Algorithm 6 reports the pseudo-code of the SOnIG mining step of the
DOnG framework. It adopts an Apriori-like approach to frequent itemset
mining [2]. The traditional Apriori-like miner iteratively generates frequent
itemsets by following a level-wise approach. First, it extracts itemsets of
length k and then itemsets of length k+1 by combining frequent k-itemsets.
Finally, association rules are mined from the set of frequent itemsets.

Since exclusively the rules that involve couples of items are needed to
generate the SOnIG, and in particular only those rules that are instances
of the SOnG (Cf. Definition 31), Algorithm 6 extracts only items (line 1)
and 2-itemsets (lines 2-3). Hence, differently from traditional Apriori-like
algorithms [2], a constraint on the maximum length of the mined itemsets is
enforced. By exploiting 1-itemsets and 2-itemsets, only those 2-length rules
that are instances of SOnG are mined (line 4).

To check their semantic soundness, the analyst may look into the content
of the extracted rules and, possibly, discard uninteresting ones (lines 5-9).

For instance, suppose now that both rules X={(Article code, 10012)} →
{(Title, A performance evaluation for ...)} and Z={(Author name, Rossi)}
→ {(Author affiliation, Politecnico di Torino)} are frequent and their cor-
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responding dependencies have been validated by the analyst. Since they
are both instances of the SOnG (see Figure 7.1), they are extracted and
validated by the analyst.

After the expert validation step, only validated rules are included into
Rules. Selected rules are exploited to represent the output SOnIG Θ re-
lated to SOnG Γ and the source dataset D. The SOnIG building phase
(line 10) generates a valid SOnIG, according to Definition 31. It includes
each validated rule as an instance of a relationship (i.e., an oriented edge)
among data items belonging to the rules (i.e., SOnG nodes). Consider again
rule X={(Article code, 10012)} → {(Title, A performance evaluation for
...)}. By looking into the SOnG reported in Figure 7.1, the attribute node
Article code is connected to node Title through an oriented edge. Thus, the
corresponding edge is included into the SOnIG as reported in Figure 7.2,
and represents the rule X.

The generated SOnIG is used by the expert during the Abox ontology
construction. More specifically, data items belonging to the SOnIG may sug-
gest to the expert possibly relevant membership statements (e.g., 10012 is an
instance of the article code) while validated association rules may prompt the
assertion of extensional statements (e.g., the article code 10012 is associated
with the article title A performance evaluation for ...).

7.2.4 Application scenario: generalized pattern min-
ing

An ontology is a knowledge representation that models the main concepts
and their relationships.

In the following, we propose an application scenario in which the DOnG
framework may be profitably exploited in a business-oriented environment.
A data mining algorithm [16] that heavily relies on a user-provided domain
knowledge representation has been presented in Chapter 4. It addresses gen-
eralized itemset mining [104], which extends the traditional frequent itemset
mining proposed in [2] by exploiting a high level abstraction of the mined
patterns to prevent relevant knowledge pruning. By evaluating a hierarchical
set of aggregations built over data items (i.e., a tree-based schema ontology
instance graph), they can be aggregated based on different granularity con-
cepts (generalized items). Each generalized itemset, which is a high level
representation of a set of lower level itemsets, can be used both to (i) give a
higher level view of patterns hidden in the analyzed data and (ii) represent



144CHAPTER 7. SEMI-AUTOMATIC CONSTRUCTION OF SEMANTIC MODELS

knowledge pruned by discarding infrequent lower level itemsets.

However, domain experts are typically asked to develop reliable hierarchi-
cal Schema Ontology Instance Graphs over data items from scratch. Man-
ual generation of ad-hoc aggregation hierarchies is often subject to errors
and inconsistencies due to (i) data sparsity, (ii) limited analyst experience,
or (iii) limited time available for context learning and data processing. In-
deed, a machine-driven generation of meaningful hierarchies of data item
aggregations is desirable.

A tree-based organization of Schema Ontology Instances extracted by the
DOnG framework could be effectively exploited to drive the generalization
process over data items. Consider the following 3-itemset extracted from the
TPC-H Part XML dataset [111]:

X={(Brand, 13), (Container, SM PKG), (Size, 1)} (sup=0.03%)

It provides relevant business-oriented information concerning transport
of products of a specific brand. However, mining such pattern may require
enforcing a very low support threshold. This task may become unfeasible
or could lead to the extraction of an unmanageable amount of patterns.
Suppose to enforce a minimum support threshold min sup=0.05%. Since
the above pattern is infrequent, it is not extracted. By considering the exact
functional dependency BrandÃManufacturer extracted from the TPC-H
Part dataset [111] the DOnG framework may generate the corresponding
schema ontology instance graph over data items, which, in turn, can be
exploited to drive the generalization process over item (Brand, 13). The
soundness of generated SOnIG is validated by a domain expert during the
validation step. The generalization process over itemset X produces the
following generalized patterns Y :

Y={(ManufacturerID, 1), (Container, SM PKG), (Size, 1)}
(sup=0.08%)

The brand is generalized as its corresponding manufacturer. Since the pat-
tern is a higher level aggregation of knowledge represented in itemset X,
it is characterized by an higher support. Note that the generalized itemset
becomes frequent with respect to the minimum support threshold.

The machine-driven generation of a tree-based SOnIG may effectively
drive generalized itemset mining. The DOnG framework may produce a
semantics-based data representation suitable for driving the knowledge dis-
covery process in different application contexts.



Chapter 8

Conclusions

The effectiveness of the data mining and knowledge discovery (KDD) process
strictly depends on the granularity level of the analyzed data. The availability
of semantic models built over the source data, which represent the most
notable aggregations and relationships, may significantly enhance both the
performance of the mining phase and the usefulness of the generated pattern-
based models to drive the knowledge discovery process.

This work thoroughly described the process of itemset and association
rule mining in the presence of taxonomies, which entails the discovery of the
most significant correlations hidden in the analyzed data at different abstrac-
tion levels. It presented an algorithm, namely GenIO (Generalized Itemset
DiscOverer) that performs an opportunistic aggregation of the knowledge
occurring in the source data to prevent the extraction of redundant higher
level correlations. The effectiveness of the presented algorithm in support-
ing knowledge discovery in real application contexts, i.e., context-aware user
and service profiling, network traffic analysis, and social network analysis,
has been also analyzed and validated by domain experts.

The suitability of the extracted correlations for being used in the decision
making process also depends on their cardinality and characteristics of the
mined patterns. This work has analyzed the use of constraints to drive
the generalized pattern mining process as well. Constraints, enforced both
during the mining phase and as a postprocessing step, allow early pruning
not interesting higher level correlations and making the generated pattern
sets manageable by domain experts.

Pattern evolution over time may reflect most significant temporal recur-
rences. The analysis of the evolution of the patterns discovered in consecutive
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time periods in the presence of taxonomies has been also addressed by this
work. In particular, pattern generalization is profitably exploited to keep
track of the most significant variations of the analyzed knowledge without
discarding rare but possibly relevant patterns.

Finally, the problem of semi-automatically discovering semantic models
used to drive the generalized pattern mining process has been addressed by
exploiting both dependency discovery techniques and association rule mining
algorithms. The presented techniques are shown to be suitable for driving
the construction of either simple hierarchical models, e.g., taxonomies, or
even more complex domain knowledge representations, e.g., the ontologies.

Currently, a significant research effort has been devoted to combining
the efficiency and the effectiveness of pattern discovery techniques with the
usefulness of semantic model inference and analysis. In the next years, the
increasing availability of semantic data will even more focus the attention of
the Data Mining and the Semantic Web research communities on the use of
semantics-based models to drive the data mining and knowledge discovery
process. In this reasearch context, the discovery and application of general-
ized patterns represent a promising research direction.
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