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Analysis of Large—Scale SVM Training
Algorithms for Language and Speaker

Recognition

Sandro Cumani and Pietro Laface

Abstract

This paper compares a set of large scale Support Vector Madhaining algorithms for language
and speaker recognition tasks.

We analyze five approaches for training phonetic and aco@®#iM models for language recognition.
We compare the performance of these approaches as a funétiba training time required by each of
them to reach convergence, and we discuss their scalatulitsrds large corpora.

Two of these algorithms can be used in speaker recognitiomain a SVM that classifies pairs of
utterances as either belonging to the same speaker or toiffgcedt speakers.

Our results show that the accuracy of these algorithms imp®tically equivalent, but they have
different behavior with respect to the time required to @rge. Some of these algorithms not only scale
linearly with the training set size, but are also able to dgheir best results after just a few iterations.
State—of-the—art performance has been obtained in thddesubset of the NIST 2010 Speaker Recog-

nition Evaluation extended core test using a single SVMegyst

Index Terms

Support Vector Machines, Language recognition, Spealaagration, Large—scale training.

. INTRODUCTION

Support Vector Machines (SVM) provide successful discritirgamodels in the field of language and

speaker recognition. The main limitation of SVMs comes fromirtllemands in terms of training time

The authors are with the Dipartimento di Automatica e Informatica, Politecdic®orino, 10143 Torino, ltaly (e-mail:
sandro.cumani@polito.it, pietro.laface@polito.it).
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and memory requirements. Fast algorithms for training SVisd&ehbeen proposed, often relying on the
so—called kernel trick [1], where a kernel matrix is compugand loaded in main memory. The kernel
trick not only allows speeding up the computation requiredind the solution of the SVM objective
function but also makes possible nonlinear classificationeiry high dimension spaces.

This approach, however, does not scale well because theredgamnount of memory grows quadrat-
ically with the number of training samples. Since several-wgarld classification tasks, including
speaker and language recognition, are performed on latgseta, the allocation of the kernel matrix in
main memory becomes unfeasible even for large memory cargpWiVe are thus interested in training
approaches with time complexity and memory occupationirsgdinearly with the number of training
patterns.

In this paper we analyze a set of SVM training algorithms $&létdor training large corpora using as
testbeds a language recognition task and a speaker rdoogtask. In particular, we compare the per-
formance of several algorithms in terms of training timeglability towards large corpora and possibility
of multi-threaded implementation.

The algorithms themselves are not strictly novel, and theappsers have performed comparative
analyses on large benchmarks [2], [3]. However, this wof&refseveral original contributions of interest
to the speaker and language recognition community. Inqudati, it is the first report, to our knowledge,
that is devoted to an in-depth evaluation of large-scale Sydihing algorithms both for closed—set
(language) and open-set (speaker) classification taskgy sgndard corpora, state—of-the—art algorithms
and systems, and considering largely different acoustitgimonetic models.

An extension to the Bundle Methods algorithm [3] has beerisgelto provide the dual solution to the
SVM problem, which is needed by the pushed—GMM approach iguage recognition [4].

Finally, the most interesting training algorithms have baeplemented from scratch and compared with
their multi-threaded or multi—process implementatioigtad to the specific task for achieving the fastest
training time.

The paper is organized as follows: Section Il gives a shortvieer of the SVM classifier. Section
Il and IV describe our language and speaker recognition etspdespectively, highlighting the large
dimensions of the features and of the corpora that have bsed. $ection V illustrates five different
approaches suitable to large scale SVM training. The dethillsedr implementation is given in Section
VI. The experimental results are presented and commentedctioBé/I1l, and conclusions are drawn in

Section VIII.
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Il. SUPPORTVECTORMACHINES

A Support Vector Machine [5] is a binary classifier which estiesathe hyperplane that best discrimi-
nates two given classes of patterns according to a maximyaraton margin criterion. The separation

hyperplane is obtained by solving an unconstrairegpllarized risk minimizatiomproblem

1 n
min §HWH2+C'ZZ(WaXiayi) (1)
i=1

wherex; € R? denotes ad-dimensional) training pattern with associated lapek {—1,+1}. This
objective function is the sum of two terms. The second ternmi)riq the empirical risk evaluated on the
training set and weighted by parametér The first term is a regularization contribution, given by the
squaredZL2 norm of the separating hyperplane related to the generalization capability of the model
[5].

The standard loss function for the SVM problem, which givesrttaimum soft—margin classifier, is

the so—called hinge (L1) loss function
Ir1 = max(0, 1 — y;w! x;) (2)

In the following we will focus on L1-SVMs only, however, diffemt classifiers can be obtained by
changing the loss function, for example the squared softgim&VM defined by the squared hinge loss
(L2) function

lro = max (0,1 — yinxi)2 3)

or a classifier based on regularized logistic regressiorracterized by the loss function
liog = log (1 + efyinx”) 4)
From (1) and (2) the standaptimal SVM formulation is

1 n

w* = argmin —wlw+C - E max (0,1 — y;w’ x;) ()
w2 —
1=

While it is possible to solve the SVM optimization problemig primal formulation, many approaches

prefer to solve the dual problem by estimating the Lagrangiéiphiers o* = (o, . .., a;)T that minimize
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the objective function

1
main fla) = §aTHa —ela (6)

subjectto 0 < a; < C Vi=1,...,n

wheren is the number of training patterns,is a vector of ones an#l is the matrix of dot—products
Hij = yiijiij.
Solving the dual problem looking for the Lagrange multipliarsallows the class separation hyperplane

to be expressed in terms of a linear combination of the mgivectors as
n
W= alyixi (7)
=1

This formulation shows that the separation hyperplane isnation of a subset of training patterns,
namely the ones associated with non null Lagrange multipligre so—called Support Vectors.

The classification score of a given pattern is obtained by itsptoduct with the separation hyper-
plane, but it can also be evaluated, as shown in (7), fromadtsptoducts with the set of the support
vectors. Non-linear classification can be performed, teeefthrough linear classification in a higher—
dimensional space described by the mapghg; ), provided that we are able to evaluate the dot—products
®(z;)T®(x;) in the mapped feature space. No explicit expansion of tigipatterns is actually necessary
because the dual problem (6) can be solved by replacing wmtupts =7 z; with kernel evaluations
®(z;)T®(z;). This can be accomplished by replacing the entries of ma#iwith the entries of the
kernel matrixK, with K;; = <I>(:ci)T<I>(xj) = K (z;,z;), multiplied by the corresponding element of the
matrix of labelsY;; = y;y; (i.e. H;; = K;;y;y;). Care has to be taken in the definition of mapping:;)

so that kerneK satisfies Mercer’s condition.

[11. L ANGUAGE RECOGNITION MODELS

In this section we summarize two state—of-the art languagegnition approaches that stem from the
works [6], [7], and [8]. The task is to verify an unknown utteca according to its language given training
utterances for a specified set of possible target languagedels! are estimated for each language, and
a test utterance is scored against each of these models.

State—of-the—art systems rely on two main approaches. Iphbeetic approach, the language models
are estimated collecting statistics of the occurrence gfiseces ofn phones f—grams) obtained by

running one or more phonetic decoders [6], [8], [9]. The atiouspproach relies, instead, on Gaussian



10.1109/TASL.2012.2186290 5

Mixture Models of acoustic features (GMMSs) [7], [10], disninatively trained [11], or used in combi-
nation with SVM classifiers as in [12], [13], [4]. In the lattgp@oach, the models are trained by means
of SVMs estimating, for each language, the hyperplane thadrages the patterns of the target language
from the pooled patterns of all the other (hon—target) laggs.

Training these models requires to deal with large featumad, large—scale datasets as introduced in

the next two subsections and detailed in Section VII.

A. Phonetic models

In the phonetic approach, a phonetic decoder estimates adise likely phone transcription or a lattice
of phone hypotheses, organized in a graph where each hygmtes associated its likelihood and time
boundaries. The decoder language is not necessarily irtclud¢he set of the target languages. The
estimated occurrence of the phonegrams can be obtained from the 1-best transcription or fitten
lattice phone hypotheses. An utterance is representedabiisgy into a vector the estimated frequency
of the differentn—grams appearing in the utterance.

Since linear classification of unnormalizeggram counts does not yield good recognition accuracy, a
suitable linear kernel has to be used for classification. Miiffgrent kernels have been proposed in the
last years, the most popular being the Term Frequency Log biketl Ratio (TFLLR) kernel [14], [4],
which approximates a log—likelihood ratio, computed frorgram statistics, between the target and the

background set. Since TFLLR kernel is linear, it can be expressedr@rmalization ofi—gram features

St 1 ) 1 - )
%=/ fiznkz_lxk (8)

where superscript denotes the—th component of patters.

In the experiments reported in this paper, a single phomietioder has been used, i.e. the Loquendo—
ASR recognizer for Italian language [15], which generateattick of hypotheses. We estimategram
statistics up to the third order from these hypotheses thgatti a 44135—-dimensional feature space. Not
only the patterns have high dimensions, but also the sizénefcbrpora is constantly increasing with
more demanding applications or variety of languages andrdéwy conditions. As detailed in Section

VII, in our experiments we have 20543 utterances for trgjritee phonetic models of 23 languages.

B. Acoustic models

The acoustic models that we have trained combine generatili#®! Godels with SVMs, in the so-

called pushed—GMM approach [13], [4], where the discrinitgaGMM models are derived from the
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generative ones, by exploiting the information providedthg non—null Lagrange multipliers obtained
by training a SVM. In particular, a probabilistic model of fina—level acoustic features is built based on
GMMs. For each utterance, the distribution of acousticuiest is estimated by Maximum A Posteriori
adaptation from a common Universal Background Model (UBBIhg a low relevance factor [7]. Starting
from these generative models, a single vector representédr each utterance is obtained by stacking

the GMM mean vectors into theupervectorg

T
g=[pwius .. py 9)
where u; represents the mean of thiiéh component of the mixture.
A possible linear kernel for GMM supervectors is the KL kdrjis]
m _1 T _1
K(gags) = Y (Vais pa) (VaS; ) (10)

=1
wherec¢; and X; are the weight and the covariance matrix of th¢éh Gaussian. This kernel is derived
from the Kullback—Leibler divergence between two GMMs anémdd in order to satisfy Mercer’s
condition.

While the class separation hyperplane could be used tormpeiassification of unknown utterances as
in the phonetic system approach (GMM-SVM) [12], better rsskihve been obtained by combining the
generative and the discriminative systems [4]. In particuUBVM classification is first performed using
the GMM-SVM approach, then two GMMs are created for each tdeygyuage: one for the language

g™ and the other for the non—target languages (anti—-maglelaccording to

1
g+ = ﬁ 107331 (11)
i\yi>0 Zi‘yi>0
_ 1
g = ﬁ Z o 8j (12)
ilyi<0 ™ 410 <0

whereg; is the GMM of thei—th utterance of the target language. Thus, the target medemieighted
combination of the GMMs belonging to the target language, the weights are the Lagrange multipliers
« obtained from the dual solution of the SVM problem. The targegliage anti-model is a weighted
combination of the GMMs of the non—target languages uttaran

It is worth noting that these weights are needed even if weestiie SVM optimization in its primal
formulation.

In our experiments, detailed in Section VII-A, 2048—-Gaussiaixtures are used for the UBM and
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the language GMMs, while the feature space is 56—dimenisibm¢his configuration a supervector has
114688 components, and the training dataset includes the 28543 utterances provided for training

the phonetic system.

IV. SPEAKER RECOGNITION MODELS

In speaker recognition the task is to verify whether the fitieiof the speaker in a given test utterance

corresponds to a target speaker, given one or more enrdllatemances for the target speaker. Several
successful approaches have been proposed in the last ysad in GMM supervectors [7], [17], [18]. A
discriminative approach using GMM supervectors as feattoetraining SVMs has also been proposed
for this task in [16]. The problem with this paradigm is thaedtimates a speaker model using the few
utterances (often just one) that are usually availableHertarget speaker.
In the following we outline an alternative discriminativepoach that tries to overcome this problem
by changing the recognition paradigm. Rather than modeliegspeaker classes, a binary classifier is
trained to classify a pair of utterances as either belongrthe same speaker or to two different speakers
[19], [20], [21].

This approach has been made feasible by a recently introdcmexgbact representation of spoken

utterances, the i—vectors [22], [23]. An i—vector is a lowrensional (few hundred components) rep-
resentation of a spoken utterance, which can be estimated tiee same techniques introduced for
Joint Factor Analysis [18]. These features, much smallem gwpervectors, have made possible training
Probabilistic Linear Discriminant Analysis (PLDA) generatineodels [24], [25], leading to state—of—
the—art speaker recognition systems. The goal of such sgsteito model the underlying distribution
of the speaker and of the channel components of the i—vetioasBayesian framework. From these
distributions it is possible to evaluate the likelihoodigabetween the “same speaker” hypothesis and
“different speakers” hypothesis for a pair of i—vectors.
The same paradigm can be used to train discriminative systdrase the observation patterns are pairs
of i—vectors. In this approach a non-linear SVM model is bultdiscriminate between "same speaker
pair ("target class) and "different speaker pair* ("namarget” class). The feature expansion is derived
from the PLDA model. The evaluation of log—likelihood ratiostyeeen the same-speakel ) and

different—speaker{,;) hypotheses can be expressed, for Gaussian PLDA models, asleatic form of
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the i—vector pair(¢1, ¢2) as
_ P(¢1, p2|Hs)
Y SOy
= ¢l Ay + ¢3Ad1 + ¢ Th1 + 3 Ty +

(61 + o) e+ k (13)

whereA, T', c andk are directly derived from PLDA model parameters estimated tining set. The
same parameters can be interpreted as the components @&aa figperplane in a higher dimensional

feature space [20], [21], by stacking the PLDA parameters ie@or as

vec(A)

. vec(T) (14)

C

k

wherevec(A) is the operator which stacks the columns of maixnto a column vector. The non-linear

feature mapping of the i—vector pdip;, ¢2) given by

_U€C(¢1¢>2T + ¢>2¢1T)_

T T
(61, o) = | CADO T 0202) (15)
¢1+ @2

1

allows the pair scores(¢1, ¢2) to be computed as a dot—product between the hyperplarend the

expanded patter® (o1, ¢2),
s(p1, 2) = W (1, ¢2) (16)

The pairwise SVM approach estimates the parametén order to minimize the SVM loss function.
In this approach the number of pairs grows quadraticallyhwiite number of the training i—vectors.
This would make unmanageable training a SVM due to memory and tonstraints. Moreover, the
dimensionality of the expanded feature space grows quealigtwith the size of the i-vectors. Thus
the solution cannot rely on the explicit evaluation of thatfee mapping to generate the training dataset
for the SVM, because the database size would grovDés’d?), whered is the i-vector dimension.
Although the i—vector dimension is of the order of hundrdds, total memory required would be really

huge because the number of training i-vectoesasily reaches tens of thousands. Online feature mapping
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would be, instead, computationally expensive becausesittbheébe performed for each iteration of the
training algorithm. In [20] a memory and time efficient appriodo solve this problem has been described,

which allows the SVM loss function and its gradient to be cotagun O(n2d).

In the next section we present several SVM training algoriétor these large—scale language and
speaker recognition tasks, whereas in Sections VI and VIl lenalyze their feasibility, implementation

details, and performance.

V. LARGE-SCALE SUPPORTVECTORMACHINES

The ever—increasing size of the training corpora for realevdassification tasks makes it impractical
to solve the SVM problem resorting to medium—scale techrmigukich assume that the entire dataset
can be stored in main memory. We have shown in the previousosecthat a large number of high
dimensional patterns are needed to train speaker and lgaegaaognition systems. We are thus interested
in SVM training approaches with time complexity scaling hnkg with the number of the training patterns,
and with reasonable memory requirements.

Many algorithms have been proposed to handle SVM optiminafiiw large—scale problems, most of
them are efficient only folinear kernel SVMs. In this section we present five algorithms, fooyon

their complexity and possible speedup by means of threadeteimentations.

A. Dual solvers

We first analyze three dual SVM problem solvers, whereas in @edtB we will describe two
primal solvers and the steps to derive their correspondiral sblutions. In the following(' denotes the
regularization parameter of the SVM aadienotes the optimization accuracy.

1) SVM9"t: A popular “fast” linear—space SVM solver is S\HI" [26]. The performance of the
models trained with this solver are our reference in thiscwBVM-9" decomposes the SVM problem into
a set of subproblems and iteratively optimizes such sulb@ned Its memory occupation scales linearly
with the number of training patterns and of support vect8iace SVM9" solves the dual problem it
provides the Lagrange multipliers needed in language retogrby the pushed—GMM approach.

The main limitation of this algorithm comes from its time cdeypty, which has been empirically
shown to beO(n2d). If memory is not a constraint, a fast implementation of S\#f1 can be obtained
by caching all the kernel evaluations. Of course, the kemmairix has a size, and thus a computational

cost, which still grows quadratically with the training size.
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2) Dual Coordinate DescentThe dual problem is solved in [2] by means of a coordinate ddésce
approach, referred to in the following as Dual Coordinatesd@at Method (DCDM). The multivariate
problem is split into a sequence of univariate optimizatiarich are iteratively solved until convergence
to the optimal multivariate solution is attained. Assumithgit a sub—optimal solutioax of the dual
problem (6) is known, thé—th component of the optimal solution, given all the otheordmnates, can
be evaluated by solving

mhin f(a+ he;) subjecttod < a; +h <C @7
The objective function is quadratic i
1
flo+ he;) = §Hiih2 +Vif(a) + K (18)

for a given constanf{. The minimization of this function leads to the update rulg [27]

; < min [max (ai — vlé(q),()) ,C} (29)
where the gradienV; f(«) is
sz(a) = Z HijOéj -1 (20)
J=1

The computation of the gradient is in general expensive, twutiiear SVMs simplifies as
Vif(a) = yiw'x; — 1 (21)

The cost of evaluatingv given a would be linear with the size of the training set. Howeverkisgping

the previous value ofv it can be updated according to

W+ w+ (a; — afld)yixi (22)

whereagld refers to the value the parameter had before being updated.
Since DCDM solves the dual formulation of the SVM problem, itedily provides the Lagrange
multipliers required by the pushed—-GMM approach.

The time complexity of the algorithm i® (ndlog (1)). DCDM is very fast, however it cannot take
advantage of a distributed environment because the soligiopdated after each pattern is processed.
3) SVM*™: One of the most effective linear-time SVM solver is SYM[28], [29], [30]. Though
the package provides different algorithms for solving theVsyroblem, its main innovation is the

Cutting—Plane Subspace—Pursuit (CPSP) approach [30]. Cuttarge-Blgorithms are based on a different
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formulation of the primal problem (5)
: I p

%1? W W + C¢

subjectto Vyi...y, € {—1,+1}: (23)

I X - .

oV [;(%Xi - yixz’)] > ; A(yi, 9i) — €
whereA(y, 9) is the zero—one loss function, which takes value 1 when gsraents are equal, and value
0 otherwise.
The solution is found by iteratively building a working setaanstraints over which a Quadratic Problem
(QP) is solved. An accuracy ef can be obtained using at mc@t(%) constraints. The CPSP algorithm
modifies the traditional Cutting—Plane algorithm by iteraliyvbuilding a set obasis vectorgby, ... by}
whose span is approximatively the sub—space where the alpsiotution lies. The approximate solution

is thus given by
k
=1

The rationale for the introduction of the basis vectors isaduce the number of kernel evaluations for
non-linear classification. Since basis vectors are assdaidth the Cutting Plane constraints, which are
supposed to be a constant number with respect to the tragghgthe hyperplane can be represented
similarly to (7) but using a much smaller set of patternssitvorth noting that since the basis vectors
do not belong to the training set, it is not possible to explbe possible speedup coming from the
pre-computation of the kernel matrix. Moreover, computthg kernel matrix is unfeasible for large
datasets.

Due to the nature of the algorithm, it can be easily modifiedgt@Xecuted in a distributed environment.

B. Primal solvers

In this section we describe two primal solvers and the stepetive their corresponding dual solutions,
which are necessary for the pushed—GMM approach in langrepgnition.

1) Pegasos:The first solver is based on gradient descent in the primal isaligpace. Standard
gradient descent techniques try to reach the minimum of bjectve function by iteratively moving an

approximate solution along the direction that gives theatg®t decrease of the objective function. For
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the L1-loss function this leads to the update rule

n
Wil =wy—n |[we +C Z Vw max(0,1 — inTXZ')|Wt (25)
i=1

wheren; is the learning rate at iteratioh The selection of the learning rate values is crucial for fast
convergence of the algorithm. Since the L1-loss function tcompletely differentiable but still convex,
a subgradientof the loss function can be computed as

—y; if ywlx; <1

Vwmax(0,1 — y;wlx;) = N (26)
0 otherwise

Stochastic Gradient Descent (SGD) approximates the gradmmputation step by evaluating the
subgradient of the objective function on a pattern (or on alksubset of patterns)

Witl = Wi — ¢ [Wt + nCVWl(Wa Xz‘f,,yz’f,)’wt] (27)

wherei; is chosen randomly for each iteration.
Pegasos [31] combines SGD for the SVM L1-loss function with aegt@n step ensuring faster
convergence to the optimal solution. A set of training page4, is randomly chosen at each iteration.

The subgradient of the objective function is estimated frbie subset as

c
Vi=w; — nT Z YiXi (28)

and the hyperplane is updated by
Wil =W — Vi (29)

The optimal SVM solution is bounded bjw| < v/nC [31]. Thus, the current solution is projected

onto a ball of radius/nC' by scalingw,_,, according to

S¢ = min ¢ 1, _vnC (30)
||Wt+1/2||
Witl = StWiy1/2 (31)

This projection step, combined with a fast—-decaying le@rmate, allows bounding t® (%) the average
number of iterations required to achieweptimization accuracy .

Since Pegasos solves the primal formulation of the SVM probledoés not produce the Lagrange
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multipliers, which are necessary in the pushed—GMM aprobc[31] the authors propose an extension
of their algorithm that allows the hyperplane to be estimais a linear combination of training patterns

w =Y . a;Xx; Where the set ofy's are iteratively obtained as

c .
o TAR I |:Oét — M <Oét + &‘X2> St] (32)
t
with
i 1 if x; € At
Xt = i (33)
0 if Z; §é .At

Since Pegasos is based on stochastic gradient descent, venfoms sequential updates, it cannot take
advantage of a distributed environment.

2) Bundle Methods:Bundle methods approximate a convex function by means oft afseangent
hyperplanes (subgradients) and solve the simpler opttinizgproblem on the approximated function.
The approach is similar to SVR™ where a small and incremental subset of constraints i botil
the solution approximates the optimal solution up to a gieeror. Bundle Methods for Regularized
Risk Minimization (BMRM) [32], [3] offer a general and eagikextensible framework to general risk
regularization problems, of which SVM is an example. In maar, an incremental working set of
approximate solutiongwg, w1, wao, ...} is built by defining, at each iteration, the set of hyperplanes

which are tangent to the objective function in the working @gints (starting fronw, = 0)

ft(w) = lemp(wt) + vzemp(wt) : (W - Wt) (34)

where  lep(w) = Y0, I(w,x5,y;) is the empirical loss. At each iteration, a new working past

selected as the minimizer of the approximated function

1
wii1 = argmin | = |w]|> + C - max (O, max fy (W)>:| (35)
w2 ' <t+1

In [32] it is shown that this problem is equivalent to the dgahdratic problem
min Dy(8) = $8TATAB - BT (36)
subjectto >0, elp<1

where A is the matrix[aias . . . a;] of gradientsa;y; = Viemy(w;) andb is the vector[byby ... ;)" of
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offsetsbiy1 = lemp(We) — atTHwt, and the new solution is obtained as
w1 = —CAB (37)

This quadratic problem is not expensive because its conipldries not increase with the size of the
training dataset, but with the number of iterations only.
The BMRM algorithm does not directly provide the Lagrange ipliérs for the dual SVM problem.
Thus, we devised a method for evaluating an approximatiomet¢ values.
The L1 loss function can be rewritten to make explicit its dejggrty on the dot product between

and a given patter as

(w,x,y) = l(w'x,y) (38)
and its gradient with respect @ as
ol(wTx, y)
Vwl(w,x,y) = “owTx * (39)

U(w”xi,y:)

Defining an arrayi; = [l1ls .. .ZV,L]T, wherel; = 207 x15) | we can express; as
ay = X?it (40)

whereX is the complete set of training patterns represented as axmistiatrix A in (36) can then be

evaluated ast = XA with A = [a,a, ... 4], and (37) can be rewritten as
Wil = —CX.;{B (41)

Settinga. = —CY ~L A3, whereY is the diagonal matrix of the target labals = y;, allows obtaining the
separation hyperplane in terms of a linear combination eftthining patternsv = XYa = ), yix;«;
as in (7).

The BMRM algorithm converges to its optimal solution up to thecuracys in O (%) iterations.
Usually the number of required iterations is small, thusttire required to solve the sub—problems (36)
can be neglected, and the global complexity of the algorithi® (%)

Similarly to SVMP®" BMRM incrementally builds a working set of approximate wimns, thus its

algorithm can be easily modified to run in a distributed envinent.
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VI. SVM ALGORITHMS IMPLEMENTATION

SVM training for language and speaker recognition was peréaor using tailored or new implemen-
tations of the algorithms presented in the previous section
The DCDM, BMRM and Pegasos algorithms have been implementad fcratch using a Python/C
framework, where the modules requiring expensive comjmusitare either written in C language or are
evaluated by means of fast and parallelized NumPy/BLAS fonsti[33]. Due to the overhead that is
introduced by the mixed Python/C framework, training is parfed in “bunch” mode, i.e. by loading
into main memory and processing a fraction of the datasgbahticular, Python prepares and loads the
patterns, while the computation intensive tasks are pedrby fast external libraries (NumPy/BLAS)
and C code. Thus large bunches minimize the communicatiorhead between Python and the library
routines. Memory occupation of our algorithms is essdgtidetermined by the size of the bunches,

which can be limited by the user, possibly to a single patiera different implementation.

A. Algorithms for language recognition

For language recognition, all the algorithms, with the gtice of SVM-9", have been implemented
to jointly train all the language models in parallel in order minimize the disk accesses. SVAIt
has been modified to effectively compute by means of multiaitieel NumPy/BLAS libraries the kernel
matrix, and to cache it in memory. Thus, all the language nsosleare the same kernel matrix computed
just once. This approach is faster than caching kernel catipos on the fly.

DCDM has been implemented as illustrated in [2]. The shrigkiechnique [26] has been exploited

to further speedup the execution time. Shrinking tries taicedthe quadratic problem size by ignoring
a subset of the bounded variables, thus reducing the nunfiteot goroducts that have to be computed,
with no impact on the classification performance.
Since all language models are trained simultaneously, ai+thrkkaded implementation (referred in the
following as MTDCDM) has also been developed, where eachathie devoted to training a single
language model. However, the obtained speedup is not releli@e to the sequential nature of the
algorithm.

The BMRM algorithm has been implemented as described in $e&iB2. The quadratic problem
(36) is solved by means of the CVXOPT Python solver [34]. Then&img technique was not adopted
in the BMRM algorithm, which solves the problem in its prinfatmulation, thus each iteration of the
algorithm performs a full scan of the training dataset. tig needed for the pushed—-GMM approach

have been evaluated as outlined in Section V-B2.
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Since, at each iteration, the gradient computations can Herped in parallel, a distributed version
of BMRM has been implemented (referred to as MPBMRM in thecfeihg) where the dataset is split
among different processes, and each process exploits thietimeading capabilities of the NumPy/BLAS
functions.

Pegasos has been slightly modified with respect to the algoptiesented in Section V-B1. In order to
reduce the number of accesses to secondary memory, tramjgyformed in epochs. At the beginning
of each epoch a block of randomly selected training patterh@aded in memory, and the classification
hyperplane update is performed using only the patternsngéig to this subset. Due to its sequential
update rule we did not implement a multi-threaded versioRerfasos.

Finally, SVMPe" was modified to fit the format of the other implementations anceta the training
patterns on demand rather than loading all the dataset in mamory. A multi-threaded implementation
(referred to as MTSVNE' in the following) was obtained by modifying the original @avith the

OpenMP [35] instructions that allow core computations topheallelized.

B. Algorithms for speaker recognition

The feasibility of training large datasets using the disarative i—vector pairs approach for speaker
recognition described in Section IV requires some additicoasiderations. Since patterns are pairs of
i—vectors, the number of the training trials grows(@:?). The feature mapping described in Section IV
produces mapped features havifgd?) components, thus the global dataset siz€®{2d?). Caching
the complete kernel matrix is impractical even for reldtiv@mall sized datasets because it would require
O(n*) memory.

SVM training of the i—vector pairs by means of SV is not viable because, as shown in Section
V-Al, its time complexity isO(n*d).

In DCDM the hyperplane is updated for each pattern, thusqtires either the complete dataset of
mapped features{(n2d?) memory) or online feature mapping@(n2d?) operations for each iteration).

Since in our experiment$ = 400 andn is approximately 20000, these dual algorithms cannot bd use
to train the models for our discriminative approach.

Training is feasible, instead, by using primal solvers sasBMRM and Pegasos because it is possible
to efficiently evaluate the loss function and its gradienthwigéspect tow over appropriate subsets of
trials. Given a subset! including m training i—vectors, the loss function and its gradient wiéspect

to w over all trials, consisting of pairs of i-vectors i, can be evaluated i®(m?2d + md?) using the
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strategy presented in [20] without the need to compute thpping of the i—vectors. For BMRM, the
set.4 includes all the training i—vectors.

Pegasos has been slightly modified: instead of randomly mickibunch of trials among all possible
trials, at each iteration all the i—vector instances of aoseandom speakers are selected to build the set
A, and the hyperplane is adapted according to the approximafithe gradient evaluated on this set of
trials only. This reduces the risk of random selecting “difet speaker pair” trials only.

Due to the small size of the i—vectors, the dataset of trginitterance can easily be loaded in main
memory. The evaluation of loss functions and gradients isahegorithms requires matrix—by—matrix
multiplications of large matricesu(x n), however it is not necessary to store the complete matiites
main memory because the computations can be performedgthitdock decomposition of the matrices.

As reported in the next section, using this discriminatippraach we reach state—of-the—art results
for the NIST SRE 2010 extended core condition [36].

Finally, SVMPeT complexity theoretically grows linearly with the number mdtterns, and a solution
similar to the BMRM one can be devised for online evaluatibkeynels (dot—products with the mapped
basis vectors). However, we did not implemented a solutioilar to the BMRM one because SV
does not allow us to easily control class balancing with@yicating copies of the i—vectors, which

would further increase the size of the dataset.

VIlI. EXPERIMENTS

In this section we compare the performance of the descrilggmtithms by training language models
for the closed—set NIST Language Recognition Evaluation 208%{09) [37] and for the extended tel-
tel condition (condition 5) of the NIST Speaker Recognition IEaion 2010 (SRE-10) [36] tasks. The

reported results for the speaker recognition task refeheonore difficult subset of the female speakers.

A. Language recognition task

The LRE-09 core condition task consists in the detection ofdhguage of given test segments among
a set of 23 possible target languages including accentepidmes such as American English and Indian
English. Three test conditions have been defined accordingetmdiminal utterance duration (30s, 10s
and 3s). Test data consist of both Conversational Teleplgpezch (CTS) and telephone bandwidth
broadcast radio speech segments. Achieving state—oftheseognition performance would require the
combination of different acoustic and phonetic systemssitdy trained taking into account that the

recordings were collected through two different chann@€$S§ and narrowband broadcast). However,
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since the aim of this work is to compare the relative perfaroesof the SVM classifiers, we have trained
just a single—decoder channel-independent phoneticrsyaiel a single channel-independent acoustic
system.

The training set for the acoustic system consists of 175Xrarttes taken from the Callfriend cor-
pus, the corpora provided by NIST for the 2003, 2005 and 200hLage Recognition Evaluations,
the Russian through switched telephone network, the OQiusprand the Voice of America corpora.
References for these data and the details on the selectimesy for training patterns are given in [38].
In our experiments we use 2048—Gaussians mixtures for thHd bl the language GMMs. The acoustic
features are 7 Mel frequency cepstral coefficients and thel3—7 Shifted Delta (SDC) coefficients
[10], 56 acoustic features in total, compensated for nasarn the feature domain as in [39].

The phonetic system is trained using the same dataset, th2Q@fH LRE utterances were split into
chunks of approximately 30s. This results in 20543 trainittgrances.

The first issue in training SVM classifiers is class balancingait be faced by appropriately filtering
the dataset, or by replicating the patterns of the less pdgdilclasses, or even better, by giving different
weights to the loss function of patterns belonging to dédfdrclasses. The first method is not attractive
because it reduces the amount of training patterns. The dexggproach increases the secondary memory
accesses, and makes difficult jointly training the differamguage models because language dependent
datasets have to be generated from the full dataset. Weettah the SVMs using the third method
of class balancing, except for SV, which does not provide a simple and direct way to apply this
technique.

The second issue is the selection of an appropriate valuehéordgularization parametér. In our
experiments it has been set according to the default valagidad by our reference solver S\,

It is estimated ag” = (% Yoy (XZTXZ')%>_2 and has proven to produce good models and reasonable
results in a large variety of experiments.

System performance is presented in terms of Equal Error Rate (EftRaverage cost(y as defined
by NIST [37]. Scores are normalized by means of a Gaussian badktrained on a held—out set [40].
The performance is given as a function of time by testing nwdéltained after a variable number of
iterations. Timings were evaluated on a HP DS160G5 serveipped with two Xeon X5472 3 GHz
guad-core processors, 32 GB of DDR2-800 RAM and a SATA 7200 RBM disk. All results are given
in terms of wall clock time.

1) Phonetic systemin this section we compare the behavior of the language mddghed by means

of the techniques illustrated in Section V using phonetid¢uiess.
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TABLE I: PHONETIC SYSTEM: ASYMPTOTIC VALUES FOR &4 AND EER

] Algorithm H 30s \ 10s \ 3s \
Synon | 00375 00858 | 02037
3.972% | 8.881%| 20.772%
0.0375 | 0.0860 | 0.2032
BMRM || 394196 | 8.981% | 20.842%
0.0376 | 0.0861 | 0.2031
DCOM || 3 96506 | 8.948% | 20.785%
cynper || 0-0434 | 00944 | 0.2061
4.583% | 9.782% | 21.057%
oovmcos | 0.0392 | 0.0879 | 0.2032
g 4.198% | 9.116% | 20.979%

TABLE Il: PHONETIC SYSTEM: TIME REQUIRED TO ACHIEVE 1% SVM%" C,q ACCURACY
(“-" MEANS NOT REACHED)

| Algorithm [ 30s | 10s | 3s |
SVMUgnt 6991s| 6991s| 6991s
BMRM 6672s| 5563s| 1598s
MPBMRM || 1493s| 1148s| 210s
DCDM 184s | 143s | 96s
MTDCDM 85s 66s 46s
SVMPerf _ _ _
MTSVMPer - - -
Pegasos - - 3364s

0.12

- SVMLight
0.11f +«— Pegasos

+— BMR
0.10f v—v MPBMRM

0.09- o—o SVMFer
o—e MTSVMPer

Time (s)

Fig. 1: Phonetic system: £y as a function of the training time for the 30s condition

SVML9Nt and SYM®T models are tested only after convergence because trainitit'$Vis slow and
we are interested only in its classification accuracy that eresicler our reference. As far as SV is

concerned, it is less attractive for our applications duth&odifficulties in class balancing, which led to
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worse recognition results as reported in the following.

Our first set of results shows the asymptotic classificatiofiopmance of the different algorithms,
i.e. the results obtained using a model estimated after la tignber of iterations. Table | compares the
accuracy of the different phonetic models in the 30, 10, asg@@conditions of the NIST LREOQ9 tests.
Both DCDM and BMRM models converge, in terms of,gand EER, to the results provided by our
baseline SVM9", Models trained with Pegasos give slightly worse perforreaand SVMeT does not
produce models as good as the other approaches due to theflaldss balancing.

Fig. 1 shows, in logarithm scale and for the 30s condition, tthee required by each algorithm to
reach convergence to the referencgyCThe convergence properties of the different technique @n b
appreciated looking at Table I, which reports the time iegfiby each algorithm to estimate a model
that reaches an accuracy within 1.0% of thg,&alue obtained using a model trained by SY. The
conditions which did not reach the desired accuracy at tldeoéitraining are denoted by “-". The same
trend has been obtained for the EER and for all the segmentiahsg30s, 10s and 3s).

Considering the single—threaded implementations, we t@erge that, in the 30s condition, DCDM is
the fastest algorithm: it reaches more than satisfact@ylt®in just 184 seconds, after 5 iterations. The
other solvers are much slower, and BMRM is faster and siigheitter than Pegasos.

The parallel implementation of DCDM and BMRM takes into aaubthe different characteristics of
the two approaches. In particular, 23 threads are used for @M (each thread is devoted to training
the model of one language) whereas MPBMRM computations ateldited among 4 processes, each
one using 8 threads for NumPy/BLAS operations. As expectedpl@@annot take much advantage
of the increased number of cores, being intrinsically satjak whereas BMRM benefits from multiple
processes because training is done in batch mode. It takesadvantage of multi-threading for the
NumPy/BLAS operations. For this dataset, single-thread DQiall faster convergence rate than multi—
process BMRM. Obviously, massive parallelization of BMRbButd easily outperform DCDM for larger
datasets.

2) Pushed-GMM systentthe pushed—GMM models are evaluated by reporting their pagoce as
a function of the training time, with the exception of the dawe SVM-9", Since testing the acoustic
models is expensive, fewer models were trained and testegha@d to the phonetic ones. We recall
again that SVM®™ cannot be used for the pushed—-GMM approach because it @edasis vectors
rather than support vectors. Thus it cannot be used to eealbatrequired models and anti-models.

The results are presented in Table 11, and in Fig. 2 for the 8@slition. The three entries associated to

each algorithm in Table 11l refer to &, EER and time required to achieve 1% SYM C,q, respectively.
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TABLE Ill: PUSHED-GMM: ASYMPTOTIC VALUES FOR Gyg AND EER, AND TIME REQUIRED
TO ACHIEVE 1% SVM-9ht Cavg ACCURACY

[ Algorithm | 30s | 10s | 3s |
Sypua | 00276 | 0.0621 | 01616
3.120% | 6.592% | 16.594%
2871s | 2871s | 2871s
0.0276 | 0.0626 | 0.1618
BMRM || 3 15306 | 6.587%| 16.579%
1194s 723s 311s
0.0276 | 0.0626 | 0.1619
DCDM 1l 3 1579| 6.596% | 16.592%
655s 655s 121s
begasos | 00272 | 0.0617 [ 0.1605
9 3.112% | 6.543% | 16.623%
8433s 1800s 938s
0.034 —r
0.033 = Eﬁé'ggfﬂos

0.032r

0.031f

Cavg

0.030f

0.029r

0.028f

e Ne——— ~—
0.027}
10° 10° 10
Time (s)

Fig. 2: Pushed-GMM: &q as a function of the model training time for the 30s condition

Since a single SVMI" model is trained for the three test conditions, and the misdtdsted only after
convergence has been achieved, the times shown in the firsbfrGhable Ill are the same. It is also
worth noting that the training times are sampled at the entieflgorithm iterations, thus the measured
times are the same when the targe{Gs reached at the end of the same iteration.

Given enough training time, all algorithms, including thenml ones, estimate sets of Lagrange
multipliers « that allow good pushed—-GMM models to be generated.

The DCDM algorithm is the fastest to reach convergence,@tb by the BMRM algorithm. Pegasos
is much slower but its models give slightly better resulimbably due to the fact that its algorithm for

the evaluation of the (approximate) Lagrange multiplieresdnot impose constraints to tihevalues.
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' - - Pegasos 100.0%

Y — Pegasos 10.0%
M — Pegasos 3.0%

13
4
0.8t : \ - - Pegasos 30.0%
H
I‘\ A T Pegasos 1.0%
i

0.5

5000 10000 15000 20000
Time (s)

Fig. 3: SRE-10 DCF of Pegasos models as a function of their tiitiine for different bunch sizes (%
of the training dataset)

BMRM
0.08f — Pegasos 3.0%
— BMRM/OCAS
0.07f
0.06f
P 0.05f
o
—10.04f
0.03f
0.02r
0.01f
e IWIW
0.00 5000 10000 15000 20000
Time (s)

Fig. 4: SRE10 loss function of Pegasos, BMRM, and OCAS models aadidn of their training time

B. Speaker recognition task

In this section we compare the performance of the speakeeimdined according to the pair-wise
discriminative approach presented in Section IV. It is woehballing that training is feasible using two
solvers only: BMRM and Pegasos.

The training set for this task consists of 21663 segments 884 female speakers taken from NIST
2004, 2005, and 2006 Speaker Recognition Evaluations, Swigcdldl Phase 2 and 3 and Switchboard
Cellular Parts 1 and 2 [41].

The i—vectors estimated from 60—dimensional 2048—mixtukMS have 400-dimensions. The UBM

and the i—vector extractor are trained on NIST 2004, 2005,28d SRE corpora, and on Switchboard
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TABLE IV: SPEAKER RECOGNITION TASK: SRE-10 FEMALE TEL-TEL TEST PERFORMANCE

| Algorithm | Model [ EER | DCF08| DCF10 |
BMRM/OCAS | asymptotic|| 2.54% | 0.120 | 0.416
Pegasos asymptotic|| 2.54% | 0.119 0.420
BMRM/OCAS | =~ 7000s 2.32% | 0.110 0.401
Pegasos ~ 7000s 2.62% | 0.121 0.434
BMRM/OCAS best 2.19% | 0.106 0.369

and Fisher data. More details about the i—vector extractimtguure can be found in [42]. System
performance is presented in terms of Equal Error Rate and mmirmDetection Cost Functions defined
by NIST for the 2008 (DCF08) and for the more challenging 201CKMDO) evaluations [36]. The two
functions differ for the relative cost attributed to Falskadns with respect to Miss Classification errors
(much higher for DCF10).

Fig. 3 compares the DCF10 performance of Pegasos for diffen@mthbsize as a function of the
training time. The slowest converging approach is standaiatiént Descent (Pegasos 100%), where
all patterns are considered at each iteration before upgl#itie hyperplane. Stochastic Gradient Descent
applied to bunch of patterns - shown as a fraction of the ttatdset in Fig. 3 - allows faster convergence,
but the bunch size cannot be reduced to small fractions odalteset (less than 3% in these experiments)
without loosing the benefits of the efficient training stratéglyoduced in [20], [21].

In the following, the BMRM models will be compared with theemproduced by using a bunch size
of 3% in Pegasos.

Fig. 4 shows the SVM loss function value with respect to trajrime for the BMRM and Pegasos
approaches. BMRM requires more time to reach convergencgad to Pegasos, moreover, its loss
function is unstable even after several iterations. We ditlitake care of this behavior in the phonetic
system because DCDM was sensibly faster. This is not the oaskd speaker recognition system as can
be seen in Fig. 5 (a) where the BMRM DCF10, plotted as a functfaheotime spent to train its models,
shows large fluctuations. This behavior is not surprising beeat each iteration BMRM finds a cutting
plane which approximates the objective function at theanrsolution. However the objective function
does not necessarily decrease at each iteration. These flangjaf course, reduce toward convergence,
and the algorithm reaches the asymptotic performance ofsBsga
A solution to this problem has been proposed in the Optimigedting Plane Algorithm (OCAS)
approach [43], [3], which improves the BMRM by trying to siltaneously optimize the original and the

approximated objective function and to select cutting etatihat have higher chance to actively contribute
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0.9r BMRM
—— Pegasos 3.0%
— BMRM/OCAS

() 5000 10000 15000 20000

Time (s)
()
BMRM
—— Pegasos 3.0%
0.20p — BMRM/OCAS

5000 10000 15000 20000
Time (s)

(b)

Fig. 5: DCF10 (a) and DCFO08 (b) as a function of the training timerodels produced by BMRM,
Pegasos, and OCAS

to the approximation of the objective function around itsimpm. OCAS choice of the cutting planes
allows reducing the number of iterations needed for corargeg, at the expense of an higher execution
time per iteration. In particular, OCAS complexity 3(n logn), however it can be considered linear,
because usuallyg n < d (this holds also in our experiments), thus the global corigl®f the algorithm

is dominated by the factaD(nd) needed for the computation of dot—products and gradients.

Using BMRM and the OCAS approach for cutting planes selactibows obtaining a loss function,
shown in Fig. 4, with a fast and smooth convergence similahéodne obtained by Pegasos.

As far as the DCF is concerned, the asymptotic performan&MRM/OCAS and Pegasos is similar, as

reported in the first two rows of Table IV. However, the comgani of the DCF10 and DCFO08 in Fig. 5 (a)
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TABLE V: COMPARISON OF THE PROPERTIES OF THE SELECTED SVM ALGORITHMS

. . Provides| PLDA
Algorithm Complexity | Parallel o's SUM
SvMUight O(n?d) Yes Yes No
SvmPer o) Yes No Yes
DCDM O(ndlog 1) No Yes No
Pegasos O(£)* No Yes Yes
BMRM/OCAS o(™1) Yes Yes Yes

*Reaches accuracy with probabilityl — §

and (b), respectively, shows that Pegasos reaches slovagyitaptotic performance confirming the results
obtained in the language recognition experiments. BMRM laage fluctuations, thus finding an early
stopping criterion is difficult. However, BMRM has also thetgrtial to give much better generalization
results on the evaluation data if its models are trained withduced number of iterations. BMRM/OCAS
allows to fit the best performance of BMRM using models obtadibg stopping the iterations when the
loss function decrease is less than 3%. This condition, widchsually achieved after a few tens of
iterations, avoids over-fitting that manifests itself in th&ymptotic convergence region. The stopping
criterion value was estimated using the NIST-SRE 2008 evaluatata as held—out development set. In
these experiments the stopping criterion has been reant&literations corresponding to approximately
7000 seconds of training time. Table IV compares the resilthe models trained by BMRM/OCAS
and by Pegasos in this same amount of time, showing that tfierpence of Pegasos is worse compared
not only to BMRM/OCAS, but also to its asymptotic results. Lasw of the table shows, for reference,

the results of the best model.

VIIl. CONCLUSIONS

An analysis of five large—scale SVM training algorithms hasrbpresented. With the exception of the
pushed-GMM approach, which requires a relatively expensikelihood scoring, an accurate analysis
was possible for the other test experiments because SVMngciwiextremely fast, which makes viable
testing thousands of different models.

A comparison of the properties of the SVM algorithms that wealgzred is given in Table V. The

algorithms scale linearly with the training set size, andche approximately the same classification
performance given enough training time, but they have wiffe characteristics with respect to their
speed of convergence and scalability. Moreover, the getedf the best algorithm for a task depends

also on the two paradigms we have presented: the standarthanhbuilds a model for each class, and
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the pair-wise discriminative approach of Section IV, whichirates a single discriminative model.

A. Classical SVM

SVMPe s fast to reach convergence, behind DCDM only, and can ballpbzed, but it has shown
two drawbacks for our applications: classes cannot beyelagiinced and there are no means to estimate
Lagrange multipliers for the pushed-GMM approach.

Pegasos is not attractive because it is slower than the atipdementations even though it can be easily
extended to different loss functions.

BMRM is faster than Pegasos and even faster with a multi-tle@amplementation.

DCDM is the preferred solution for training these classifiérds the fastest to converge on a single

processor and it allows a multi-threaded implementatidrere a set of threads can be devoted to training
in parallel the models of different classes, even thoughctire utilization is not optimal. However, it

cannot exploit distributed architectures and is much lesgbfle than Pegasos and BMRM.

B. Pair-wise SVM

As remarked in Section VI-B only primal solvers, such as BMRI@ZAS and Pegasos, are good
candidates for pair-wise SVM training. Using these algonsh the training complexity is reduced from
O(n?d?) to O(n%d), wheren? is the number of the training patterns.

BMRM/OCAS is the preferred choice for fast training of a paise discriminative model because
Pegasos reaches its asymptotic performance slowly, thppistpits iterations before convergence does

not produce models as good as the BMRM/OCAS models obtaiftedacomparable time.
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