A Greedy Adaptive Search Procedure
for Multi-Dimensional Multi-Container
Packing Problems

Teodor Gabriel Crainic
Guido Perboli
Roberto Tadei

March 2012

CIRRELT-2012-10

Bureaux de Montréal : Bureaux de Québec :

Université de Montréal Université Laval

C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)

Canada H3C 3J7 Canada G1V 0A6

Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie :418 656-2624

www.cirrelt.ca



A Greedy Adaptive Search Procedure for Multi-Dimensional
Multi-Container Packing Problems

Teodor Gabriel Crainic*®”, Guido Perbolil®, Roberto Tadei®

! Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)

2 Department of Management and Technology, Université du Québec a Montréal, P.O. Box 8888,
Station Centre-Ville, Montréal, Canada H3C 3P8

® Department of Control and Computer Engineering, Politecnicd di Torino, Corso Duca degli
Abruzzi, 24 - 1-10129 Torino, Italy

Abstract. Multi-dimensional multi-container packing problems appear within many
settings of theoretical and practical interest, including Knapsack, Strip Packing, Container
Loading, and Scheduling problems. These various problem settings display different
objective functions and constraints, which may explain the lack of efficient heuristics able
to jointly address them. In this paper we introduce GASP - Greedy Adaptive Search
Procedure, a metaheuristics able to efficiently address two - and three-dimensional multi-
container packing problems. GASP combines the simplicity of greedy algorithms with
learning mechanisms, aiming to guide the overall method towards good solutions.
Extensive experiments indicate that GASP attains near-optimal solutions in very short
computing times. GASP also improves state-of-the-art results, when using the same
computing times.
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A Greedy Adaptive Search Procedure for Multi-Dimensional Multi-Container Packing Problems

1 Introduction

Packing problems have been much studied in the past decades due, in particular, to
their wide range of applications in many settings of theoretical and practical inter-
est, e.g. packing, scheduling, and routing. Packing problems all have an identical
structure, recently summarized in the classification of Wischer et al. (2007). Let
us define two sets of elements in one or more (usually two or three) geometric
dimensions: a set of large items, often called bins, knapsacks or containers, and a
set of small items, usually referred as ifems. The goal is to select all or some of
the items, group them into one or more subsets, and assign each of these subsets
to one of the bins such that the geometric condition holds. This means that the
items of each subset lie entirely within the bin without overlapping.

Multi-dimensional multi-container packing problems play a central role in
planning freight and supply chain systems in order to reduce costs and improve
the use of facilities and equipment. These problems are encountered as support
to operational decisions or as part of more complex tactical decision processes.
Despite its importance, research on multi-dimensional multi-container packing
problems is relatively recent (Martello et al., 2000), and state-of-the-art methods
require high computing times for relatively small instances (Crainic et al., 2009).
Therefore, there is a need for accurate and fast solution methods able to deal with
larger instances. This is the goal of this paper. A related issue concerns the de-
velopment of industrial-strength codes implementing state-of-the-art algorithms.
Actually it is often the case that several methods address the same problem, but
that each performs better on particular problem instances. For example, up to the
work by Crainic et al. (2008), at least four heuristics were competing to solve the
2D and 3D Bin Packing Problem, but none proved to be really dominant. An ad-
ditional difficulty comes from the relatively high number of specific parameters
one must tune for each heuristics targeting a particular packing problem class.

In this paper, we introduce GASP - Greedy Adaptive Search Procedure, a new
framework for multi-dimensional multi-container packing problems. GASP com-
bines the simplicity of greedy algorithms with learning mechanisms which aim to
guide the overall method towards good solutions.

GASP was designed according to the following principles:

e efficiency: achieving near-optimal solutions with limited computing effort.
Indeed, existing methods need minutes or hours to solve instances with hun-
dreds of items (Crainic et al., 2009; Hadjiconstantinou and lori, 2007; Bort-
feldt, 2006), whilst much larger problem instances (e.g., 4000 items) may
be found in actual supply chain and production applications;
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e simplicity: a modular and easy-to-understand algorithmic structure with a

limited set of parameters.

The main idea underlying GASP is to separate the feasibility phase, addressing
the item packing, from the optimality phase. This is accomplished by using a reac-
tive, problem-specific scoring phase to order the items, which are then packed by
an on-line constructive heuristics common to all problem classes considered. The
use of a unique item-placing heuristics handles possible additional packing con-
straints that can arise in practical situations. Moreover, the scoring phase incor-
porates problem-specific knowledge and provides the means to implicitly explore
the solution space without an explicit neighborhood exploration, which could be
computationally expensive due to item accommodation in multi-dimensional bins.

Extensive experiments on 2D and 3D multi-container packing problems indi-
cate that GASP attains near-optimal solutions in very short computing times, and
improves state-of-the-art results, when using the same computing times.

The paper is organized as follows: Section 2 describes in detail Bin Pack-
ing problems (which formulate multi-container problems) in their two and three-
dimensional variants and gives a survey of the related literature. Section 3 in-
troduces GASP, whose computational results are shown in Section 4. Finally, in
Section 5 we summarize our results.

2 Problem statement and literature review

In multi-dimensional multi-container packing problems, given a set of multi-dimensional
items and a set of homogeneous containers, our aim is to load all items into

the minimal number of containers. There are many different practical situations
within this context, where the firm already owns its containers or their acquisition

or leasing costs are already accounted for.

The problem can be formulated as a Multi-Dimensional (in particular, Three-
Dimensional and Two-Dimensional) Bin Packing Problem. Formally, given a set
of box items ¢ € I, with sizes w;, [;, and h;, and an unlimited number of bins of
fixed sizes W, L, and H, the Three-Dimensional orthogonal Bin Packing Problem
(3D-BPP) consists in orthogonally packing items into the minimum number of
bins. According to the typology introduced in Wischer et al. (2007), the problem
is also known as the Three-Dimensional Single Bin-Size Bin Packing Problem
(3D-SBSBPP).

In several freight applications, items cannot be piled. This is the case, for
example, with the transport of furniture. The problem then reduces to the Two-
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Dimensional orthogonal Bin Packing Problem (2D-BPP or 2D-SBSBPP).

The method we propose addresses both problems. In the following we briefly
describe some of the features of the two problems. For a more detailed description,
the reader can refer to the recent survey by Crainic et al. (forthcoming).

2D-BPP was the first Multi-Dimensional Bin Packing variant to be studied.
The literature on this topic is extensive. Thus in the following we recall only the
main results. T'SPACK is the tabu search algorithm for the 2D-BPP developed
by Lodi et al. (1999). This algorithm uses two simple constructive heuristics to
pack items into bins. The tabu search only controls the movement of items be-
tween bins. Two neighborhoods are considered to try to relocate an item from
the weakest bin (i.e., the bin that appears to be the easiest to empty) into another.
Since the constructive heuristics produces guillotine packings, so does the overall
algorithm. The algorithm is presently the best metaheuristics for the 2D-BPP, but
it requires a computing effort in the order of 60 CPU seconds per instance.

The same authors presented a shelf-based heuristics for the 2D-BPP, called
Height first - Area second (HA) (Lodi et al., 2004). The algorithm chooses the
best of two solutions. To obtain the first one, items are partitioned into clusters
according to their height and a series of layers are obtained from each cluster. The
layers are then packed into the bins by using the Branch-and-Bound approach
for the /D-BPP problem by Martello and Toth (1990). The second solution is
obtained by ordering the items by non-increasing area of their base and bulding
new layers. As previously, the layers are packed into the bins by solving a /D-BPP
problem. The method is faster, but less accurate than T'SPACK.

The 3D-BPP was next introduced in the literature. The first exact method
for the 3D-BPP was a two-level Branch-and-Bound proposed by Martello et al.
(2000). The first level assigns items to bins. At each node of the first-level tree,
a second level Branch-and-Bound is used to verify whether the items assigned to
each bin can be packed into it. In the same paper, the authors introduced two con-
structive heuristics. The first, called S-Pack, is based on a layer-building principle
derived from the shelf approach. The second, called MPV-BS, repeatedly fills one
bin after the other by means of the Branch-and-Bound algorithm for the single
container presented by the authors in the same paper. A computing time of 1000
CPU seconds was imposed.

Faroe et al. (2003) presented a Guided Local Search (G LS) algorithm for the
3D-BPP. Starting with an upper bound on the number of bins obtained by a greedy
heuristics, the algorithm iteratively decreases the number of bins, each time using
G LS to search for feasible packing. The process terminates when a given time
limit has been reached or the upper bound matches a precomputed lower bound.
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Computational experiments were reported for 2D and 3D instances with up to 200
items. The results were satisfactory, but required a computing time in the order of
1000 CPU seconds.

Crainic et al. (2008) defined the Extreme Points (£ Ps) rule to identify possi-
ble positions to place items into a given (partially loaded) bin. The £'Ps extend
the Corner Points of Martello et al. (2000) to better exploit the bin volumes. They
are independent of the particular packing problem addressed and can easily han-
dle additional constraints, such as fixing the item position. //Ps were introduced
into the well-known Best First Decreasing (B F' D) heuristics, producing the EP-
BFD heuristics for the /D-BPP. Extending the EP-BFD to the 3D-BPP proved far
from trivial however, as the item ordering in higher dimensions may be affected
by more than one attribute (e.g., volume, side area, width, length, and height of
the items). Several sorting rules were then tested and the best ones were combined
into the C-EPBFD, a composite heuristics based on EP-BFD. Extensive experi-
mental results showed that the C-EPBFD requires a negligible computing effort
and outperforms both current constructive heuristics for the 3D-BPP and more
complex methods, e.g. the truncated Branch-and-Bound by Martello et al. (2000).

Crainic et al. (2009) proposed T'S?PACK, a two-level tabu search meta-
heuristics for the 3D-BPP. The first level is a tabu search method that changes
the assignment of items to bins. For each assignment, the items assigned to a
bin are packed by means of the second-level tabu search, which uses the Interval
Graph representation of the packing by Fekete and Schepers (2004) to reduce the
search space. The accuracy of the metaheuristics is enhanced by the k-chain-move
procedure, which increases the size of the neighborhoods without increasing the
overall complexity of the algorithm. T'S? PACK currently obtains the best so-
lutions for the 3D-BPP. Nevertheless, the method has a rather slow convergence
rate, requiring 300 CPU seconds to find the best solution.

Literature reviews emphasize that the state-of-the-art methods lack in either
accuracy or efficiency (Crainic et al., forthcoming). The method we propose aims
to address this challenge.

3 The GASP framework

The main idea of the method we propose is to separate how items are packed,
the feasibility phase, from the selection of the packing order of the items, the
optimality phase.

We deal with the feasibility phase by means of a greedy procedure. In the
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optimality phase, the order of the items to be packed is determined by scores,
which represent the relative value of an item. We embed these elements into a
metaheuristic framework, which provides a learning mechanism used to update
the scores.

In more detail, we assign a score to each item, thus specifying the order in
which items are to be considered by the accommodation heuristics. The score
computation is problem specific and incorporates knowledge regarding how item
and bin attributes (e.g., dimensions) interact, the problem objectives, etc. For
some packing problems, the particular characteristics of the problem instances
may also influence the desired order. This is reflected in GASP through an update
mechanism, which modifies the scores at each iteration based on the performance
of previous iterations.

Scores are first initialized by the Score Initialization procedure, and then they
are dynamically modified by means of the Score Update and the Long-term Score
Reinitialization procedures. Score Update proceeds through small changes, aim-
ing to adjust the scores used to sort items at iteration k of GASP according to the
quality of the solution built at iteration k — 1. Long-term Score Reinitialization
incorporates long-term decisions, as long-term memory structures, and proceeds
through larger score modifications in order to avoid cycling on the same solutions
and to explore new regions of the solution space.

Score computation and updates depend upon a number of parameters. We aim
to keep this number as small as possible and simplify their adjustment during com-
putation. If needed, GASP provides a problem-specific, dynamically-adjusting
parameter procedure denoted Parameter Update.

The main steps of GASP can be summarized as follows (see Fig. 1):

e Build an initial solution by means of the C-EPBFD and set it as the best

solution BS;

e Scoring Phase:

— Initialize the scores (Score Initialization procedure)
— While Stopping Conditions are not encountered, repeat the following
steps:
* Sort the items by non-increasing score and apply the greedy pro-
cedure (Greedy), obtaining a new current solution C'S
x If a given number of successive non-improving iterations is reached,
reinitialize the scoring using the Long-term Score Reinitialization
procedure; otherwise, update the scores using the Score Update
procedure applied to C'S
x If C'S is better than BS, then set BS to CS

CIRRELT-2012-10 5
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New Solution

Initial Solution
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Greedy Conditions
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Long-term Score
Reinitialization

Parameter

Update

Score Update

Figure 1: General scheme of GASP

We now detail the various steps of GASP.

3.1 Initial Solution

The algorithm is initialized by means of C' — EPFF D by Crainic et al. (2008)
because of its good performance both in 2D and 3D problems.

3.2 Score Initialization

Given the item ordering associated to the initial solution, the initial scores take
values from 7 to 1, where n is the number of items. More precisely, the score of
the first item of the list is set to n, that of the second one to n — 1, and so on.
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3.3 Greedy

The procedure is based on the Best Fit Decreasing (BFD) idea and generalizes the
heuristics presented in Crainic et al. (2008). Following an initial item sorting by
non-increasing volume, the BFD constructive heuristics for 1D Bin Packing prob-
lem tries to load each item into the best bin. This bin is defined as the bin which,
after loading the item, has the maximum free volume, given by the bin volume mi-
nus the total volume of the items it contains. A new bin is created whether the item
cannot be loaded into the existing bins. Despite its simplicity, the BFD heuristics
offers good performances for 1D Bin Packing problems. Similar heuristics exist
for other packing problems, e.g., Knapsack and Strip Packing. Unfortunately, ex-
tending these heuristics to a general constructive heuristics for multi-dimensional
problems is not a trivial task. On the one hand, while in 1D cases the ordering is
done considering a unique attribute characterizing both items and bins (i.e. their
volume or profit), more choices exist in the multi-dimensional context. One may
thus consider sorting items according to their width, height, depth, their volume
or the areas of their different faces. Consequently, the definition of the best bin in
the BFD heuristics is not unique. While the item placement does not need to be
considered in 1D problems, a 2D or 3D packing may vary significantly according
to how items are placed inside the bin, even when the item ordering and the rule
selecting the best bin are not changed. Moreover, according to the packing prob-
lem, the number of available bins may be unlimited or fixed and all items or just
a subset of them must be loaded.

We propose a constructive heuristics based on BFD ideas, denoted Extreme-
Point Best Positioning Heuristics (EP-BFD), which places the items into bins by
using the Extreme Point concept (Crainic et al., 2008). The Extreme Points (EPs)
define the points where one may place an item to be added to an existing packing.
Assume that item & with width, length, and depth wy, [, and hy, respectively, is
already placed in position (xy, yx, z) of a bin. A new item j can then be placed
at specific points (the EPs) which are the orthogonal projections of the points
(g + Wk, Yk, 2k)s (Tk, Yk + Uk, 2), and (g, Y, 2, + hi) on the three axes (see
Figure 2).

The main steps of the EP-BFD (see Algorithm 1) are as follows:

e Order the items by non-increasing score;

e For each item in the resulting sequence, find the best EP of the best available

bin into which the item will be loaded;

e If such a bin exists, load the item into it on the given EP;

e Otherwise either a new bin is created if the total number of bins does not

CIRRELT-2012-10 7
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Figure 2: Definition of Extreme Points in 3D Packing

exceed the given maximum or the item is discarded.

Changing the maximum number of available bins adapts EP-BFD to differ-
ent packing problems. For example, the number of bins is infinite for Bin Pack-
ing problems, while it is equal to 1 for Knapsack, Strip Packing, and Container
Packing problems. Moreover, in specific logistics applications restrictions on the
available bins can be present, as, for example, in the Variable Sized and Cost Bin
Packing problem (Crainic et al., 2011). The behavior of EP-BFD depends on how
the best EPs are selected. Computational experiments have shown that the best
trade-off between accuracy and efficiency is given by the Residual Space (RS)
rule (Crainic et al., 2008). The RS measures the free space available around an
EP. More precisely, when an EP is created, its Residual Space on each axis is set
equal to the distance between its position and the side of the bin along that axis
(Figure 3a). Given item k£ to be loaded, the algorithm puts this item on the EP that
minimizes the difference between its own RS and the item size:

MiNec{EP} = [(RSY —wy) + (RSY — di) + (RS? — hy)] (D

where RSY, RSY, and RS? are the RSs of EP eon X, Y, and Z axes, respectively.
Every time an item is added to the packing, all the EPs and their RSs are updated.
Figure 3b illustrates the concept. For complex packings, the RS gives only an esti-
mate of the effective volume available around an EP and, thus, potential overlaps
with other items have to be checked when packing a new item on a chosen EP
(see Crainic et al. (2008) for further details).

8 CIRRELT-2012-10
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Algorithm 1 Extreme-Point Best Positioning Heuristics
Input whatlsBest : Type of best criterion
Input 7 : List of items to be loaded
Input B,,,, : Maximum number of available bins

canLoad(i,b) : Function that tries to load item 7 into bin b on each possible
extreme point and then it returns the best point found (and its relative merit
value).

Sort items by non-increasing score.

foralli € I do

bool isLoadable = false

int best Result =0

forallb € BINLIST do

if ((merit,resPoint) = canLoad(z, b)) then
if (merit > best Result) then

1sLoadable = true
best Point = resPoint

bestBin=10
best Result = merit
end if
end if
end for

if (isLoadable == true) then
LoadlItPoint(i, best Bin, best Point)
else
if [ BINLIST| < By, then
Create newBin
Loadlt(i, newBin)
BINLIST = BINLIST U {newBin}
else
Discard item ¢
end if
end if
end for

CIRRELT-2012-10 9
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Figure 3: Example of Residual Space

3.4 Long-term Score Reinitialization

Similar to the Score Initialization procedure, but starting from the item list of the
best solution found so far. The first item of the list has its score value s; set to n,
the second one to n — 1, and so on.

3.5 Score Update

Bin Packing constructive heuristics generally yield very good packings for the
first bins and rather poor ones for the last ones. Moreover, “mistakes” in the item
ordering are usually to be found in the central portion of the item list and involve
a relatively small number of items that should be swapped. But, of course, these
items are not known a-priori. The main idea is then to try to force item swaps
between bins that are considered “well-packed” and the others, by modifying the
scores according to the following rule:

)

s-—{ si(1—m) b(i)eB CB
1 si(14+m) otherwise
where m is a positive parameter to be calibrated, b(¢) is the bin where item ¢ is
loaded, and B’ is the subset of the loaded bins B that are considered well-packed.
The rule (2) penalizes the items loaded into the well-packed bins and helps,
by increasing their score, the items loaded into the other ones. Consider the order
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of bins in the set B as defined by the sequence from 1 to |B| generated by the bin
creation (i.e., the first time an item is allocated to a bin). Then, according to our
tests, bins in the first half of this sequence may be considered well-packed, i.e.,

B={1.... 12}

Obviously, the value of m strongly affects the behavior of (2), the score mod-
ification being directly proportional to m. Thus, the larger the value of m, the
higher the number of potential “swaps” and the more potentially diverse a solu-
tion is when compared to that of the previous iteration. This solution-diversifying
behavior may be counter-productive, however, when the goal is to refine the search
around a solution by finding the right sorting of just a few items. A smaller value
of m, intensifying the search by producing smaller changes in the item scores,
would then be appropriate. The goal then is to use different values of m at various
stages of the search, values that may self-adjust according to the instance data and
the search trajectory of the heuristics.

Notice that the amplitude of the score modification (i.e. the value of m) may
be changed either by varying the percentage of modification of the previous score
or by increasing/decreasing the number of possible changes in the item sorting.
We then propose a Score Update mechanism, which proceeds along a two-stage
direction. The first stage starts with the largest value of m and gradually decreases
it by reducing the maximum percentage of score variation. For each maximum
score-variation value, the second stage gradually reduces the number of items that
can be swapped in the list. This is implemented by making m dependent upon
two positive parameters:

e p, which affects the maximum percentage of the score modification. The
value of p is initially set to 1 and is modified following each Long-term
Score Reinitialization. The initial maximum percentage of the score modi-
fication, 5, is experimentally set at 10%;

e k, the number of possible item swaps. The value of k is set initially to 1
(and reset to 1 after each Long-term Score Reinitialization) and is increased
according to the search trajectory (each time the best solution is updated)
by the Parameter Update mechanism. Its maximum value, k.., i experi-
mentally set to 4.

We therefore introduce a parametric definition of m

(kmax - k)a (3)

CIRRELT-2012-10 11
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yielding the following expression for the score updating rule

o (1 2lh 1) 0 € {1, 21}

- ' “4)
s; [1+ i(kmax = k) otherwise

S; —

which provides GASP with the desired capability of making both large diversifi-
cation and more precise intensification score modifications as appropriate.

3.6 Parameter Update

The two parameters are dynamically updated:
e pisincreased by 1 after each Long-term Score Reinitialization
e [ is increased by 1 every time the best solution is updated and set to 1 after
each Long-term Score Reinitialization.

4 COMPUTATIONAL RESULTS

Experiments were carried out on standard benchmark instances. For 2D-BPP,
we considered ten classes of instances from Berkey and Wang (1987) (Classes I-
VI) and Martello and Vigo (1998) (Classes VII-X). For each class, we considered
instances with a number of items equal to 20, 40, 60, 80, and 100. For each class
and instance size, 10 instances were generated (the code of the generator and the
instances are available at http://www.or.deis.unibo.it/research.html).

Martello et al. (2000) proposed seven classes of instances for the 3D-BPP. For
Classes [ to V, the bin size was W = H = D = 100 and the items were of five
types, ranging from small to large-sized items. The five classes mixed the item
types in order to test different usage scenarios. In classes VI to VIII bin and item
dimensions varied according to the following rules:

e Class VI: w;, l;, h; ~ U[1,10] and W = L = H = 10 (where U is the

uniform distribution);

e Class VII: w;, l;, h; ~U[1,35] and W = L = H = 40;

e Class VIII: w;, l;, h; ~U[1,100] and W = L = H = 100.

Following Martello et al. (2000), Faroe et al. (2003), and Crainic et al. (2009),
we did not consider Classes II and III, which displayed properties similar to those
of Class I. For each remaining class, i.e., [ and IV to VIII, we considered instances
with 50, 100, 150, and 200 items. Given a class and an instance size, we generated
10 different problem instances based on different random seeds.

12 CIRRELT-2012-10
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GASP was coded in C++ and runs were performed on a Pentium4 3 GhZ
workstation. Parameter values were determined through a tuning phase performed
on a subset of twenty 2D and 3D instances. The parameter values were set as
follows: The time limit was 3 and 5 seconds for 2D and 3D problems respectively,
5 = 0.1, kper = 4, k = 1, and p = 1. The Long-term Score Reinitialization
procedure was applied every 1000 iterations.

4.1 2D-BPP results

We compare the results of GASP to those of T'SPACK, the tabu search of Lodi
et al. (1999), as well as to the best results from the literature obtained by heuristic
and exact approaches. T'SPACK was coded in C and run on a Silicon Graphics
INDY R10000sc (195 MHz) with a time limit of 60 CPU seconds for each instance
Lodi et al. (1999). A 3-second time limit is given to GASP.

The results are summarized in Table 1. The instance type is given in the first
column, while Columns 2, 3, and 4 present the results of GASP, T'SPACK, and
the best known solution taken from the literature (the optimal value in most cases),
respectively. Notice that the best known solutions have generally been obtained by
means of different exact methods and with a computing effort of several thousands
of seconds. Finally, Columns 5 and 6 give the relative percentage gaps of GASP
with respect to T'SPAC'K and the best known solutions (a negative value means
a better performance of GASP).

GASP achieves better results than 7'SPAC K, while reducing the computing
effort by more than one order of magnitude. Moreover, GASP reaches results that
are lower than 1% of the best known results. We stress that these results are often
the optima obtained by a significant computing effort.

4.2 3D-BPP results

For the 3D case, GASP is compared to GLS (Faroe et al. (2003)), M PV, the
truncated Branch-and-Bound proposed in Martello et al. (2000), and T'S? PACK
(Crainic et al. (2009)).

G LS was coded in C and results were obtained with a time limit of 1000 CPU
seconds for each instance on a Digital workstation with a 500 MHz CPU. Al-
gorithms M PV and T'S? PACK were coded in C and run on a Pentium4 with
2000 MHz CPU. A time limit of 1000 CPU seconds per instance was imposed
to M PV. The limit was 300 CPU seconds for T'S? PACK, equivalent to 1000
CPU seconds for the Digital 500 workstation (according to the SPEC CPU2006

CIRRELT-2012-10 13
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Table 1: 2D-BPP: Comparison of GASP and State-of-the-Art Methods

Class| GASP | TSPACK uB* Gap Gap

3ss 60 ss TSPACK uUB*
I 100.1 101.5 99.7 -1.40% 0.40%
Il 12.9 13 12.4 -0.81% 4.03%
I 70.6 72.3 68.6 -2.48% 2.92%
Y 13 12.6 12.4 3.23% 4.84%
\Y 90.1 91.3 89.1 -1.35% 1.12%
VI 11.8 11.5 11.2 2.68% 5.36%
VI 83.1 84 82.7 -1.09% 0.48%
VIII 83.6 84.4 83 -0.96% 0.72%
IX 213 213.1 213 -0.05% 0.00%
X 51.4 51.8 50.4 -0.79% 1.98%
Total | 729.6 735.5 722.5 -0.82% 0.98%

benchmarks Standard Performance Evaluation Corporation (2006)). A time limit
of 5 CPU seconds per 3D problem is allocated to GASP, to better represent cir-
cumstances when 300 second computing times are not acceptable.

Table 2 displays performance measures comparing GASP to the state-of-the-
art algorithms. Column 1 gives the instance type, bin dimension, and number of
items. Column 2 presents the results of GASP, while Columns 3-6 give the gaps
of the solutions obtained by GASP relative to those of M PV, GLS, TS?PACK,
and L, respectively. The gaps were computed as (meangasp —mean,)/mean,,
where, for a given set of problem instances, meangasp and mean, are the mean
values obtained by GASP and the compared method respectively. A negative value
means that GASP yields a better mean value. The last row displays the total num-
ber of bins used computed as the sum of the values in the column, and the average
of the mean gaps.

The results indicate that GASP performs better than the truncated Branch-and-
Bound and has a gap of only 0.9% with the best algorithm in the literature, with
a negligible computing time: 5 CPU seconds compared to 1000 for GL.S and 300
for TS?PACK.

To further illustrate this efficiency, Table 3 displays the performance of GASP
w.rt. those of GLS and T'S?PACK, in comparable computing times (i.e., 60
CPU seconds for GLS, which runs on a Digital 500 workstation, and 18 seconds
for TS?PAC K, which runs on a Pentium4 2000, Standard Performance Evalu-
ation Corporation (2006)). These results show that GASP actually improves the
solutions of both GLS and T'S? PACK up to 0.6% on average.
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Table 2: 3D-BPP: Comparison of GASP and State-of-the-Art Methods

Class Bins n GASP MPV GLS TS2PACK LB
5ss 1000 sec | 1000 sec | 1000 sec

I 100 50 13.4 -1.47% 0.00% 0.00% 3.88%

100 26.9 -1.47% 0.75% 0.75% 5.08%

150 37 -3.14% 0.00% 0.00% 3.35%

200 51.6 -1.34% 0.78% 0.98% 3.82%

v 100 50 29.4 0.00% 0.00% 0.00% 1.38%

100 59 -0.17% 0.00% 0.17% 0.85%

150 86.8 -0.46% 0.00% 0.00% 0.46%

200] 118.8 -0.59% -0.17% 0.00% 0.42%

\ 100 50 8.4 -8.70% 1.20% 1.20% 10.53%

100 15.1 -13.71% 0.00% -0.66% 7.86%

150 20.6 -14.17% 1.98% 2.49% 9.57%

200 27.7 -12.89% 1.84% 1.09% 6.54%

VI 10 50 9.9 1.02% 1.02% 1.02% 5.32%

100 19.1 -1.55% 0.00% 0.00% 3.80%

150 29.5 -0.34% 0.34% 1.03% 3.51%

200 38 -0.52% 0.80% 0.80% 3.54%

VII 40 50 7.5 -8.54% 1.35% 1.35% 10.29%
100 12.7 -16.99% 3.25% 3.25% 10.43%

150 16.6 -15.74% 5.06% 5.06% 15.28%

200 24.2 -13.88% 2.98% 2.98% 6.61%

Vil 100 50 9.3 -7.92% 1.09% 1.09% 6.90%
100 19 -5.94% 0.53% 1.06% 3.26%

150 24.8 -9.16% 3.77% 3.77% 10.22%

200 31.1 -10.89% 4.01% 3.67% 10.28%

Total 736.4 -4.35% 0.85% 0.90% 3.89%
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Table 3: 3D-BPP: Comparison of GASP and State-of-the-Art Methods when using
the same computing times

Class Bins n GASP GLS TS2PACK LB
5ss 60 ss 18 ss

I 100 50 13.4 0.00% 0.00% 3.88%

100 26.9 0.00% -0.37% 5.08%

150 37 -1.33% -1.86% 3.35%

200 51.6 -2.27% -2.64% 3.82%

Iv. 100 50 29.4 0.00% 0.00% 1.38%

100 59 0.00% -0.34% 0.85%

150 86.8 -0.34% -0.57% 0.46%

200] 118.8 -0.92% -0.34% 0.42%

\Y% 100 50 8.4 1.20% 1.20% 10.53%

100 15.1 0.00% -1.95% 7.86%

150 20.6 -0.48% -1.44% 9.57%

200 27.7 -0.36% -1.07% 6.54%

Vi 10 50 9.9 1.02% 0.00% 5.32%

100 19.1 -1.04% -2.05% 3.80%

150 29.5 0.00% 0.34% 3.51%

200 38 -1.30% -1.81% 3.54%

Wil 40 50 7.5 1.35% 1.35% 10.29%
100 12.7 3.25% 3.25% 10.43%

150 16.6 5.06% 3.75% 15.28%

200 24.2 -0.82% -2.42% 6.61%

Vil 100 50 9.3 1.09% 1.09% 6.90%
100 19 0.53% -1.04% 3.26%

150 24.8 1.22% 0.81% 10.22%

200 31.1 1.63% 0.97% 10.28%

Total 736.4 -0.23% -0.57% 3.89%
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S CONCLUSIONS

In this paper, we introduced GASP, a new framework for multi-dimensional multi-
container packing problems. GASP combines the simplicity of greedy algorithms
with learning mechanisms, aiming to guide the overall method towards good so-
lutions. Extensive computational results both in 2D and 3D bin packing instances
showed that GASP is able to achieve and sometimes improve state-of-the-art re-
sults with a negligible computing effort.
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