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ON THE COVERING DIMENSION OF THE SET
OF SOLUTIONS OF SOME NONLINEAR EQUATIONS

P. M. FITZPATRICK, I. MASSABÓ AND J. PEJSACHOWICZ

ABSTRACT. We prove an abstract theorem whose sole hypothesis is that

the degree of a certain map is nonzero and whose conclusions imply sharp,

multidimensional continuation results. Applications are given to nonlinear

partial differential equations.

1. Introduction and statements of the main results. Let X be a Banach

space, m be a positive integer, and 0 be an open subset of Rm x X. Suppose that

/: 0 —► X is continuous. It is our objective here to present rather precise results on

the connectivity and the covering dimension of certain subsets of the set of solutions

of the equation

(1.1) /(v)=0, vG~ö.

Since equation (1.1) is underdetermined, at least in principle, it seems natural

that under not overly restrictive assumptions one should be able to not only guar-

antee the existence of a solution of equation (1.1), but one should also be able to

describe the size of the set of solutions in terms of the integer m. We specifically

remark that we make no assertion concerning the existence of some distinguished

set of trivial solutions of equation (1.1), so this is not a bifurcation problem.

For a general topological space, V, there is the classical notion of covering dimen-

sion, dim(V), and, speaking generally, our conclusions are of the type where we give

lower bounds on the covering dimension at each point of certain connected subsets

of {v G ~ö]f(v) — 0}. In the case when / is a C1 mapping, of which 0 is a regular

value, it is known that one can give a rather precise description of the local struc-

ture of the solutions of equation (1.1). In contradistinction, both our assumptions

and conclusions are global and do not involve smoothness assumptions.

Certain classes of linear elliptic partial differential operators may be expressed

as operators £.: Z —► Y', where Z and Y are Banach spaces, and t is an operator

which is Fredholm of index m, where m is a positive integer. If F: Z —► Y is a

nonlinear compact operator and one considers the equation

(1.2) £(z) + F(z) = 0,        zgTJ,

where U is an open subset of Z, then equation (1.2) may be reformulated in the

form of equation (1.1).

Moreover, it is clear that many problems explicitly depending on an m-dimen-

sional parameter can be written in the form (1.1).
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To state our results we need to introduce the idea of a complementing mapping.

Suppose that f(X,x) = x - C(X,x) for A G Rm and x G X with (X,x) G ~ö,

where C is a compact mapping in the sense that C is continuous and C(D) has

compact closure when D Ç ~0~ is bounded. We will say that a bounded, continuous

mapping g: ~d~ —► Rm is a complement for /: 0~ —> X provided that the mapping

h:0~ CRmxX ^RmxX, defined by h(X,x) = (g(X,x),f(X,x)) for (A,x) G 0~,
has nonzero Leray-Schauder degree. Recall that a map is called bounded when it

maps bounded sets into bounded sets. Observe that h is a compact perturbation

of the identity. Also, since we have not assumed 0 to be bounded, our hypothesis

that the Leray-Schauder degree of h on cT is nonzero means that /i-1(0) fl 0~ is a

compact subset of 0 and deg(h, U, 0) ^ 0, when U is any bounded neighborhood

of/i-^O).

In the case when / is linear it can be complemented precisely when it is sur-

jective and has an m-dimensional kernel. More generally, when / is differentiable,

f(Xo, xo) — 0 and df(Xo, xo)/dx is a bijection on X, the usual proof of the implicit

function theorem uses the idea of a complementing map to reduce the proof to an

application of the inverse function theorem.

There are two quite general situations under which / can be complemented.

First, if (Ao,xo) e 0, 0\0 = {x G X ] (Ao,x) G 0}, and /Ao is the restriction of /

to {Ao} x 0\0, then / is complemented by g, where g(X, x) — X - Ao, provided that

deg(/Ao, 0\0,0) t¿ 0. Secondly, assuming X — Rk, 0 is bounded, dû is smooth, /

is smooth, and 0 is a regular value both of /: 0 —► Rfc and of /: ¿50 -* Rfc, then

/ can be complemented if and only if /_1(0) fl 30 j= 0. The former result is a

useful way of obtaining a complement. The latter result essentially states that if

the linearization of / can be complemented at each point (i.e., 0 is a regular value),

then / itself can be complemented under the necessary and sufficient condition that

/_1(0) n ¿50 # 0. These results are proven in §2.

Recall that if V is any topological space and n is a nonnegative integer, then the

covering dimension of V, dim(V), equals n provided that n is the smallest integer

with the property that whenever 7 is an open cover of V there is a refinement of

7, 7', such that 7' also covers V and no more than any n + 1 member of 7' have

nonempty intersection. In this paper, V is always a separable metric space, so that

the above definition of dimension coincides with the notion of inductive dimension

(see [10]). If vo G V, we will say that dim(V) > j at vo if each neighborhood of vo

has dimension at least j.

Our two basic results are the following.

THEOREM 1.1. Let X be a Banach space, m be a positive integer and 0 Ç

Rm x X be open. Assume f:~ö —► X is complemented by the mapping g:15 —> Rm.

Then there is a connected subset, C, o//_1(0) whose dimension at each point in

CCiO is at least m, which intersects cy_1(0), and, moreover, has at least one of the

following two properties:

(i) C is unbounded.

(ii) dim(C fl ¿50) > m - 1 and g:Cf] ¿50 —► Rm - {0} is essential; in particular,

when m = 1, C f) dû has at least two points.

Recall that if A is a locally compact topological space, then a proper mapping

h: A —y Rm is called essential among proper mappings provided that the natural
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continuous extension of h from the one-point compactification of A to Sm is not

homotopic to a constant map.

THEOREM 1.2. Suppose that the assumptions of Theorem 1.1 hold. In addition,

suppose that dim(/_1(0) fl ¿50) < m - 1 and that g: /_1(0) —> Rm is proper. Then

there exists a connected component, C, o//_1(0), whose dimension at each point

is at least m and such that g:C —> Rm is essential among proper mappings. In

particular, g(C) = Rm.

In the literature, the antecedents of these precise dimension conclusions on the set

of solutions of a nonlinear equation are quite few. In [20], Rabinowitz considered an

equation of the form (1.2), and under the assumption that F is odd and U = B(0, r)

he gave a lower bound on the genus of {z G Z \ \\z\\ = r, Z(z) + F(z) = 0}. Using

the relation between genus and dimension for symmetric subsets of ¿5.8(0, R), the

conclusion of [20] amounts to the assertion that dim{2|z G dU, £(z) + F(z) = 0} >

m — 1. The methods of [20] are firmly rooted in the oddness assumption on F.

On the other hand, we have not been able to deduce the most general form of the

results of [20] from those presented here.

In [16], the second and third named authors obtained the following corollary of

Theorem 1.2 under the additional assumption that /-1(0) fl ¿50 = 0.

COROLLARY 1.1. Let X be a Banach space, m be a positive integer and 0 Q

Rm x X be open. Let C:0~ —* X be compact and define f:0^>Xby f(X,x) —

x - C(X,x) for (X,x) G Ü. Suppose Ao G Rm is such that deg(f\0, 0ao,0) ^ 0.
Finally assume dim(/_1(0) D ¿50) < m — 1 and that whenever {Xn} Ç Rm is

bounded and {(A„,x„)} Ç ~0~ is such that {/(An,xn)} is bounded, then {xn} is

bounded.  Then the conclusion of Theorem 1.2 follows.

While the literature on results yielding assertions on the covering dimension of

subsets of the set of solutions of equation (1.1) is somewhat sparce, there is an

ample literature yielding connectivity properties of such subsets. The basic such

result is the following: Let U be an open bounded subset of a Banach space X,

and let H: [0,1] x U —► X be a compact perturbation of the projection onto X;

if H(t,x) ¿ 0 when t G [0,1], x G dU, and deg(H(0,-),U,0) ¿ 0, then there is

a connected subset of [0,1] x U on which H vanishes and which intersects both

{0} x U and {1} x U. The origin of this type of result may be found in [15], while

the first precise formulation may be found in [5]. The connectivity assertion of

Corollary 1.1 may be regarded as an extension of this result. We would like to

emphasize that unlike various connectivity results where one assumes /~x(0) does

not intersect certain subsets of the domain of /, we impose a restriction on the size

of /-1(0) fl ¿50. As far as we know, even connectivity results under such a weak

assumption are new.

Actually, we are able to prove somewhat stronger results than we have stated

above. When X and Y are Banach spaces with certain approximation properties,

there is a wide class of mappings, h:~ö Ç X —► Y, the approximation-proper map-

pings, for which Browder and Petryshyn [8] have defined a topological degree. When

X = Y, and X has a Schauder basis, this class includes compact perturbations of

the identity. Our results hold in the context of approximation-proper mappings. §3

is devoted to a precise formulation of these more general results. While the proofs
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of the theorems for this class of mappings require little extra work, the more general

formulation allows applications to broader classes of differential equations.

§4 is devoted to the proofs of our main results. In barest outline, our assumptions

in terms of topological degree are translated into a statement of the action of a

mapping in homology; this, in turn, yields a conclusion in cohomology; finally, we

use the cohomological characterisation of dimension to obtain our conclusions. The

crucial part of the proof is the case when X — Rk, while the general case follows by

approximation. We note that in [2] Alexander and Yorke used global cohomological

methods to obtain a generalization of the implicit function theorem.

In §5 we consider two examples of the types of partial differential equations

whose sets of solutions may be described by Theorems 1.1 and 1.2. The first is a

nonlinear eigenvalue problem

J2(-l)lalDa(Aa(x,Uu)(x)))

\a\<k

(1-3) ^
=    J2   (-l)WD?(Bß(X,x,tk-i(u)(x))),        xGÜ.

\ß\<k-i

Here fl is a bounded open subset of Rn, £a(u) denotes the s-jet of u for u G

W2k'p(Cl), X G Rm, and Aa and Bß are nonlinear functions of their appropriate

arguments. Letting V be a closed subspace of W2k'p(Q) which contains Wq 'p(f2),

we seek variational solutions of (1.3) which lie in V. By imposing the Leray-Lions

growth and sign conditions on the Aa's (see [14]) and quite general growth con-

ditions on the Bß's, we are able to use an argument of Browder [7] to formulate

equation (1.3) as an m-parameter approximation-proper mapping. Under addi-

tional mild assumptions on the Bß's we can conclude that there exists a connected

subset, C, in Rm x V. of variational solutions of equation (1.3), whose dimension

is at least m at each point, and whose projection onto Rm covers Rm. The second

problem which we consider in §5 is

(1.4)

£ aa(x)Da(u)(x) = f(x, £2k(u)(x)),        xGQ,

\a\<2k

Bi(u)(x) = 0,        x G ¿5fi, 1 < i < k - 1.

The linear operator on the left-hand side is assumed to be uniformly elliptic, and

we also assume that the boundary operators cover this elliptic operator [1]. In

this case the left-hand side gives rise to a linear Fredholm operator, acting between

suitable Sobolev spaces. We suppose the index of this operator is equal to m >

0. Under the assumption that / has sublinear growth and satisfies asymptotic

conditions at oo similar to those imposed for the well-investigated case when m = 0,

we are again able to give a precise dimensional and connectivity description of

solutions of equation (1.4). Our results include those of [3 and 16], in the sense

that our hypotheses are weaker and, in the case of [3], the conclusions are sharper.

We observe that certain connectivity conclusions, without assertions concerning

dimension, have recently been obtained for equation (1.4) in [18].

When the right-hand side of (1.4) depends on 2A;th derivatives of u we need to

use the generalized version of the theorems described in §3: when the dependence

is on lower order derivatives we can apply the results stated in the introduction.
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We wish to mention that connectivity result, but not dimension results, for

certain classes of nonlinear equations have recently been obtained by Furi and Pera

[12], where these authors adjoin a mapping to their original mapping and impose

the assumption that the product of these two mappings be o-regular.

ACKNOWLEDGEMENTS. This work was completed under the auspices of the

C.N.R. The first named author was also partially supported by an N.S.F. Grant.

2. In this section we will prove some results on the notion of complementing

mapping. We refer the reader to Dold [9] for the definition and development of

certain results on fundamental classes which we will need in this and the succeeding

sections.

Recall that when M is an oriented fc-manifold without boundary and <p: M —► Rfc

is continuous and such that £>-1(0) is compact, then the degree of <p on M with

respect to 0, which we denote by deg(^>, M, 0), is defined by the formula

iP.(£Vi(0)) = deg(<p, M,0) • Oo-

Here tp*:Hk(M,M — <p~1(Q)) —> Hk(Rk,Rk — 0) is the mapping induced by <p in

homology, 0^-1(0) is the fundamental class of M around £>-1(0), and Oo is the

fundamental class of Rfe around {0} (see [9, Chapter 8]). The above definition

yields a degree which has all of the useful properties associated with the case when

M is an open subset of Rfc, namely, the classical Brouwer degree.

Recall, also, that if M is a differentiable fc-manifold and ip: M —► RJ is differen-

tiable, then 0 is called a regular value of <p provided that d<p(x) has maximal rank

when x G M with <p(x) = 0. In this case <p_1(0) is a fc — j dimensional oriented

manifold.

PROPOSITION 2.1. Suppose 0 Ç Rn+m is open and /: 2~ -> R" is continuous.

Let g: 0 —> Rm be smooth with 0 a regular value for g:0 —> Rm. Moreover, suppose

{x]x G ~ö; f(x) = 0, g(x) = 0} is a compact subset of 0. Then, if F-.'ö -* R"+m

is defined by F = (g x f) o A, where A is the diagonal mapping, it follows that

deg(F,O,0)=deg(f,M,0),

where M = {x]x G 0, g(x) = 0} is oriented with the orientation induced by g.

PROOF. By invoking the tubular neighborhood theorem, we may choose a neigh-

borhood, VF, of M in 0, and a neighborhood, W', of {0} x M in Rm x M, together

with a diffeomorphism <j>: W —> W' such that the following diagram commutes:

If we equip M with the orientation induced by g, then <j> becomes orientation

preserving, so that from the composition property of degree,

deg(F, 0,0) = deg(F o cT1, W', 0).

Let us define H: [0,1] x W' -> Rm x Rn by H(t, (x,y)) = (x, (f o ¿-^íte, j/)).

The commutativity of the above diagram implies {(x,y)\H(t, (x,y)) = 0 for some

t G [0,1], (x,y) G W'} C {0} x M.   Hence the homotopy is admissible, so that
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deg(#(0, ■), W',0) = deg(H(l, ■), W',0). The above diagram also implies H(l, ■) =

F ocf)-1. On the other hand, H(0,(x,y)) = (x, (f o çA"1)^)) = (x,f(y)). Thus
from the product property of degree

deg(F,O,0) = deg(/,M,0). D

COROLLARY 2.1. Let f and g be as in Proposition 2.1. Then f is complemented

by g if and only ifdeg(f, M, 0) ^ 0.

Now the simplest mapping which has 0 as a regular value is a projection mapping.

Hence we obtain the following.

COROLLARY 2.2. Let 0 Ç R™+" be open, and let f:~ö -f R" be continuous.

Let yo G Rm, and let Oyo = {x G Rn[(x,yo) G 0}. Letting fyo be the restriction of

f to 0yo, assume deg(/yo, 0yo, 0) ^ 0. Then f is complemented by ■k — yo, where it

is the projection of Rn+m onto Rm.

REMARK 2.1. An examination of the proof of Proposition 2.1 in the case when

c;(A, x) = X - Ao for (A, x) G 0 Q Rm x Rn reveals that in this case the proof also

carries over to the case when f: 0 G Rm x X —> X, X being a Banach space, and

f(X,x) — x — C(X,x), where C is compact. Thus such an / can be complemented

by g(X, x) — X — Ao precisely when deg(/Ao, 0\0,0) ^ 0, where now deg denotes the

Leray-Schauder degree.

REMARK 2.2. Whenever f:~ö —► Rn can be complemented, it can be comple-

mented by a g satisfying the assumptions of Proposition 2.1. This follows immedi-

ately from Sard's Theorem and the invariance of degree under small perturbations.

It is clear that a linear map of Rn+m to R" can be complemented precisely

when it is surjective, so that if M is an (n + m)-manifold and /: M —► Rn then

to say df(x) can be complemented when x G f~l(0) is simply the assumption that

0 is a regular value for /. We will now give a necessary and sufficient condition

for / to have a complement, under the assumption that its linearization can be

complemented. To this end we first recall some useful concepts.

Closely allied to the above definition of degree is the concept of winding number.

Namely, if M is a compact, orientable, (fc — l)-dimensional manifold, and <p: M —►

Rfc — 0, the winding number of <p on M, denoted by w(ip, M), is defined by

<P*(0M) =v/(<p,M)e,

where Om is the fundamental class of M and e is the image of Oo under the

boundary map d: Hk(Rk, Rk - 0) -» Hk-1(Rk - 0).

From this definition, together with the definition of degree and some well-known

relations between orientation of a manifold with boundary and the orientation of

the boundary, one readily obtains the following result. (See the argument used

in the proof of Proposition 4.9 of Dold [9, Chapter 8], and also, using somewhat

different notation, that of Lemma 7 of Spanier [22, §3, Chapter 6].

PROPOSITION 2.2. Let M be an oriented, compact, k-manifold with boundary.

Let f: M -> Rk be continuous with f(dM) C Rfc - 0. Then, if M= M\dM

deg(/,M,0)=w(/,¿5M).
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PROPOSITION 2.3. If M is a compact, oriented (k — l)-manifold, then there

exists g: M —> Rk - 0 such that w(g, M) ^ 0.

This is a direct consequence of the Hopf Classification Theorem, [22], since the

winding number of g on M is the sum of the winding numbers of g on each connected

component of M.

THEOREM 2.1. Let 0 Ç Rn+m be open and bounded. Suppose 30 is a smooth

(n + m — \)-manifold and f: CT —► Rn is such that 0 is a regular value both of

f:0 -» Rn and of f:80 -+ R". Moreover, assume /-1(0) n ¿50 ¿ 0. Then

f: 0 —► Rn can be complemented.

PROOF. Let M = }~l(tí). Then ¿5M = MC\dO and ¿5M is a compact, oriented,

(m — l)-manifold. By virtue of Proposition 2.3 we may choose g: dM —* Sm_1 Ç

Rm such that vr{g, dM) ^ 0 in #m_,(Rm - 0). Extend g to all of 0.
o

From Proposition 2.2 we know deg(<j, M, 0) ^ 0. On the other hand if we invoke

Proposition 2.1 with the roles of / and g interchanged we obtain

deg(F,O,0) = deg(g,M,0),

where F = (g x f) o A.

Thus deg(F, 0,0) ^ 0; so g complements /.    D

REMARK 2.3. In order for / to have a complement it is also necessary that

/_1(0) D ¿50 t¿ 0; this is an immediate consequence of Theorem 1.1. Moreover,

simple examples show that in the above theorem one cannot drop the assumption

that ¿50 is smooth.

REMARK 2.4. A satisfactory extension of Theorem 2.1 to an infinite-dimensional

setting requires that one leave the context of the degree theories considered in this

paper and instead consider the degree defined for nonlinear Fredholm mappings.

We consider this question in [11].

3. Our purpose here is to describe a generalization of Theorems 1.1 and 1.2 to

a situation when / has compatible Galerkin approximations.

DEFINITION 3.1. Let E and W be Banach spaces. A triple of sequences T —

({En}, {Wn}, {Qn}) will be called an approximation scheme for mappings from E to

W provided that {En} and {Wn} are sequences of finite-dimensional subspaces of E

and W, respectively, U^Li En is dense in E, and for each n, Qn is a projection of W

onto Wn. If D Ç E, then a mapping h: D —> E will be called approximation-proper

with respect to T provided that

(i) h~l(Q) is locally compact; and

(ii) for each n, hn = Qnh]onE„ is continuous, and whenever {nk} is an increasing

sequence of integers with {znk} Ç D bounded, znk G D H Enk for each fc, and

{hnk(znk)} —> 0, then {znk} has a subsequence which converges to z G D and

h(z) = 0.
REMARK 3.1. The above definition is a very slight variant of the customary

definition of approximation-properness, abbreviated as A-properness (see Petryshyn

[19]); in [19] condition (i) is not prescribed, condition (ii) holds where h is replaced

by h — y for each y G Y, and the approximation scheme is somewhat different.

When E = W, En = Wn for each n, and {Qn(w)} —► w for each w G W, then

h = I — C: D —> W is A-proper with respect to T if C is compact and D is closed.
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Thus if W is a Banach space with a Schauder basis, compact perturbations of the

identity, defined on closed sets, are A-proper [19]. However, A-proper mappings

form a much wider class than this particular subclass (see [19] and also our present

§5).
In the case when T has the property that dimEn — dimWn for each n, 0 Ç E

is bounded, and h:~ö —» W is A-proper with respect to T with 0 ^ h(30), there

is defined by Browder and Petryshyn [8] the notion of topological degree of h

over 0 at 0. The definition is as follows. Letting Z denote the integers, and

Z+ = Z U {±co}, deg(h,0,0) is a subset of Z+ defined as follows: If fc G Z,

then fc G deg(h, 0,0) provided that deg(hn,En fl 0,0) = fc for infinitely many n;

+oo (-oo) G deg(h, 0,0) provided that there is an increasing sequence of integers

(n/t) such that {deg(hnk,Enk (1 0,0)} is unbounded above (below). In the above,

each En and Wn is given an orientation, and then deg(hn,EnC\0,0) is the Brouwer

degree with respect to this orientation provided that 0 ^ hn(d(0 D En)). When

0 Ç E is unbounded but h_1(0) is bounded, one lets deg(h, 0,0) = deg(h, 11,0),

where U is any bounded neighborhood of /i-1(0) in 0.

Now let X and Y be Banach spaces with {(Xn), (Yn), {Qn}} an approximation

scheme for maps from X to Y such that dim Xn — dim Yn for each n. Let D Ç Rm x

X and f:D—>Xbe A-proper with respect to the scheme ({Rm xXn}, {Yn}, {Qn})-

Then it is clear that if g: D —> Rm is continuous and bounded, the mapping

(g x f) o A: D -> Rm x Y is A-proper with respect to the scheme ({Rm xXn}, {Rm x

Yn},{Qn}), where Qn(X,y) = (X,Qn(y)) for A G Rm, y G Y and n G N. (Recall

that A is the diagonal map.)

When 0 Ç Rm x X is open and /: 0 —> Y is A-proper with respect to ({Rm x

Xn}, {Yn}, {Qn}}, a continuous mapping g:~ö —► Rm is called a complement for /

on 0 provided that deg((c/ x /) o A, 0,0) ^ {0}, where here we use the A-proper

degree defined above.

Theorems 1.1 and 1.2 are valid with the definition of complement introduced

above. The proofs of these theorems proceed in exactly the same way for both

definitions (see §4). Moreover, the framework of this present section allows broader

applications (see §5).

We will need the following variant of Remark 2.1.

PROPOSITION 3.1. Let X and Y be Banach spaces with {(Xn), (Yn), (Qn}} an

approximation scheme for mappings from X to Y such that dim Xn — dim Yn for

each n. Suppose 0 Ç Rm x X is open and f:~ö —► Y is A-proper with respect to

({Rm xXn}, {Yn}, {Qn}}- Let (A0,xo) eRmxI, with Oxo = {xG X[(Xo,x) G 0}

and fXo = /|{a0}xOx0 ■ If deg(/A0, 0\0,0) ^ {0}, then f is complemented on 0 by

g: 0~ —► Rm defined by g(X, x) — X — Xo-

PROOF. First of all observe that /Ao: 0\0 Ç X —> Y is A-proper with respect

to ({Xn},{Yn},{Qn})- Since deg(/Ao, Oa0,0) + {0}, we may select an increasing

sequence of integers, (rife), such that deg(/™k, 0™fc, 0) ^ 0, for each fc, where 0™ofc =

0ao n Xnk and /"fc is the restriction of Qnkf\0 to 0™fc for each fc. Let gnk be the

restriction of g to 0 fl Xnk.

It follows from Corollary 2.2 that gnk is a complement for fnk on 0„t, where

0n», = 0 fl (Rm x Xnk) and fnk and gnk are the restrictions of Qnkf and Qnkg,
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respectively, to 0nk- Thus

àeg(((g x /) o A)nfc, 0„fc, 0) ^ 0    for each fc.

From the definition of the A-proper degree it follows that

deg((ffo/)oA,0,0)^{0}. D

REMARK 3.2. In the definition of A-properness one does not need the assumption

that h~l(0) is locally compact in order for the degree to be well defined. Moreover

when the restriction of h to each closed bounded set is proper, as follows from

condition (ii) in Definition 3.1 if h is continuous and T satisfies further conditions

(see [19]), then /i_1(0) is locally compact. The class of maps described in Definition

3.1 is what is needed for our present purposes. To prove a particular mapping

is A-proper with respect to a scheme T requires information about / which is

independent of F together with further assumptions on T.

4. We will now prove Theorems 1.1 and 1.2. First we introduce some notation.

For any pair of topological spaces (V, W) with W C V and positive integer m,

Hm(V, W) (Hm(V, W)) will denote the mth singular cohomology (homology) groups

with integral coefficients. When, in addition, V and W are normal, Ëm(V, W)

will denote the mth Cech cohomology group. Finally, when V and W are locally

compact, H™(V, W) will denote the mth Cech cohomology group with compact

supports.

We will use various properties of fundamental class, the Kronecker product and

the cup product; these may be found in Dold [9].

Since our primary goal is to obtain information on the dimension of the set of

zeros of a nonlinear operator, let us record explicitly the basic connection between

cohomology and dimension through which our results will be obtained. A proof of

the following proposition may be found in [10].

PROPOSITION 4.1.   Let A be a normal topological space:

(i) Ifdim(A) < m, then for each closed subspace C of A, Hm(A,C) = 0.

(ii) If A is locally compact and dim(A) < m, then H™(U) = 0 for every open

subset U of A.

We wish to prove Theorems 1.1 and 1.2 as stated in the introduction and their

counterparts for approximation-proper mappings. For brevity, we do so simulta-

neously. Hence, when we write that /: 0 Ç Rm x X —> Y is complemented by

ç/: Ü —> Rm we mean either that X = Y and / is a compact perturbation of the

projection onto X or that there is a suitable projection scheme with respect to

which / is approximation-proper.

PROPOSITION 4.2. Let X and Y be Banach spaces, 0 C Rm x X be open

and bounded, and /: 0" —>Y be complemented by g:~ö —> Rm. Then the homomor-

phism induced in Cech cohomology by g: (f~x(0), /-1(0) fl¿50) —► (Rm,Rm - 0) is

nontrivial.

PROOF. We first of all consider the case when X = Y = Rn. Then RmxX =

Rn+m. Let S = {x G 0~|/(x) = 0} and S = S n ¿50. Let V Ç ~ö be an open

neighborhood (relative to ~ö) of S, and let W C V be any neighborhood of S such
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that <7-1(0) D W = 0. We will first show that the homomorphism induced in the

singular cohomology by g: (V, W) —► (Rm, Rm - 0) is nontrivial.

We denote by efc a generator of Hk(Rk, Rk - 0).

Note that if we let Z = V - S, then /: (V, Z) -> (Rn, R" - 0) induces

/*: Hn(Rn, Rn - 0) -> Hn(V, Z),

so it will suffice to show that the cup product f*(en) U g*(em) is nontrivial in
Hn+m(V,W U Z).

Observe that

(4.1)        n = g*(en) U /*(em) = A*(«7*(en) x /*(em)) = [(g x f) o A]*(e„+m),

where A: (V, W U Z) -* (V x V,(W x V) U (V x Z)) is the diagonal (see Dold [7,

Chapter 7, §8]).

Let K = V - (W U Z) and V = V n 0. Then ii is compact, V" is an open

subset of R"+m, and K Ç S — S C V. Hence, we have the inclusion of pairs

i: (V, V'-K)^ (V, W U Z). If we let

G=(gxf)oA: (V', V - K) -» (Rn+m, Rn+m - 0),

from (4.1) we see that i*(n) = G*(en+m).

On the other hand, since G_1(0) C K, if 0K 6 tf„+m(V',V' - Ä") is the

fundamental class around K and On+m denotes the fundamental class around {0}

in Rn+m, then

G.(0K) = deg(G,V',0) ■ On+m   in Hn+m{Rn+m,Rn+m - 0)

(see Proposition 5.5 of [9]).

By taking the Kronecker product of i*(r)) with Ok we get

(i*(v),0K} = {G*(en+m),0K) = (en+m,G.(OK))=deg(G,V,0),

since (en+m, On+m} = L Thus n ^ 0.

Now suppose 0 is an E.N.R. It is well known that the Cech cohomology of the

compact pair (S, S) can be evaluated as lim H* (V, W), where (V, W) ranges over all

neighborhood pairs of (S,S) (see [9]). However the family of neighborhood pairs

(V, W) with 0-1(O) n W = 0 is cofinal, and since

limHm(V,W)     X-     limi/m(Rm,Rm-0)

| s ja

Èm(S,S)        *—        #m(Rm,Rm-0)
9"

is commutative, it follows that g*(em) G Hm(S, S) is nonzero. If 0 is any open and

bounded subset of Rm x Rn, the assertion follows from the above by considering 0"

as an intersection of a nested sequence of E.N.R.'s, and then invoking the continuity

of Cech cohomology.
We now consider the infinite-dimensional case. As before, let (V, W) be any

neighborhood pair of (S,S) such that g~1(0)nW = 0.

First consider the case when X = Y and /(A,x) = x — C(X,x) for (A,x) G Ü,

where C(ö) has compact closure.
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We claim that we can find a finite-dimensional subspace H of X and a continuous

mapping fcîn (Rm x H) -+ H such that h'^O) H^h Ç V, /i_1(0) n dOH Q W
and g\ç complements h if Oh = 0 H (Rm x iï). Assume, for the moment, that

this claim is justified.

Letting S h = fo-1(0) n 0/f and S h = S h n ¿50#, we see from the finite-

dimensional case just proven that g: (Sh, S¡j) —► (Rm, Rm - 0) induces a nontrivial

homomorphism in cohomology. Moreover, the following diagram is commutative:

Èm(V,W)

V*
i-l #m(Rm,Rm-0).

/ g'
ñm(s„,sH)

Consequently, g: (V, W) —> (Rm, Rm — 0) induces a nontrivial element in coho-

mology.  But, by tautness (see [22, §6, Chapter 6]), Hm(S,S) = hmËm(V,W),

where (V, W) ranges over neighborhood pairs of (S, S). Since those pairs with the

additional property that ¡7_1(0) fl W — 0 are cofinal, it follows that g: (S,S) —*

(Rm,Rm - 0) induces a nontrivial homomorphism in cohomology.

It remains to verify the approximation claim. Since 0 is bounded and C is

compact, there is an e > 0 such that ]](g(X,x),f(X,x))\[ > e if (X,x) G ¿50, and

||/(A,x)|| > e if x G ~ö - V or x G dû - W. On the other hand, by the basic

approximation property for compact mappings we may find a finite-dimensional

space, H, and ip:0~ —> H such that \\ip(X, x) — C(X, x)\\ < e for all (A, x) G 0~. From

the definition of the Leray-Schauder degree it follows that if h(X,x) = x — ip(X,x)

for (A, x) G 15h, then h is complemented by g\-Q . It is also clear, by our choice of

e, that A-1(0) Ç V and h'^O) n ¿50h Q W.
Now consider the situation described in the previous section. Let X and Y be

Banach spaces with T = ({RmxXn}, {Yn}, {Qn}) a projection scheme for mappings

from Rm x X to Y with respect to which / is A-proper and complemented by g.

By an argument exactly the same as in the first case, to conclude the proof in

this case it will suffice to find some fco G N such that, if fk = Qkf\on(Rmxxk),

then f^1 (0)CV, 4"1 (0) n dû ç W, and deg((/fco, g), 0 n (Rm x Xko ), 0) ± 0.
Using the definition of the A-proper degree, we may, by taking subsequences if

necessary, assume that deg((/fc, g), 0 fl (Rm x Xk), 0) ^ 0 for all fc.

Let Sk = fk 1 (0). We claim we can choose fc1 such that Sk Q V if fc > fcx. Indeed,
if this is not the case, then we can choose an increasing sequence of integers, {nfc},

and xnk G Snk — V for each fc. From the definition of A-properness it follows that

there is a subsequence of {xnk} which converges toiGÜ and f(x) = 0. But x £ S

since V is a neighborhood of S. This contradiction shows that a fc1 with the above

property may be chosen. The same argument allows us to choose fco > fc1 with

Sk fl ¿50 Ç W for all fc > fco. This fk0 suffices for our approximation, and so the

second case is proven.    D

Given Ç G H™(A) and DCA with D closed, by £\D we denote i*(Ç), where

i: D —> A is the inclusion. We now wish to prove that if £ G È™(A), £ ^ 0, then £

is supported by a particular minimal subset of A (see also [4, Chapter 2, Corollary

10.6]).
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PROPOSITION 4.3. Let A be a locally compact topological space. Suppose £ 6

H™(A) is nontrivial. Then there exists a closed, connected subset C of A which

has dimension at each point at least m, is such that £|c ^ 0, and whenever C' is a

proper and closed subset of C, £|c = 0.

PROOF. Let A+ denote the one-point compactification of A obtained by adjoin-

ing oo. There is a natural isomorphism n:ñ™(A) —> Ëm(A+, {oo}). Since n(£)

is nontrivial, by Proposition 2.2 of [16] we may choose a connected subset C" of

A+ such that n(£)|c is nontrivial in Ñm(C', {oo}) and such that whenever C" is

a proper closed subset of C", then n(£)|c = 0.

If we let C = C - {oo}, then again using Proposition 2.2 of [16], C is connected

and from the naturality of n, £\c ^ 0. Moreover, C is minimal because C' is.

To prove the dimension conclusion, we let p G C and let W be any open neigh-

borhood of p in C.

Consider the exact sequence Ü™(W) -> #cm(C) £ Ë™(C - W). From the

minimality of C it follows that ¿*(£|c) = 0, and from the exactness of the sequence

it follows that £|c must be the image of some nontrivial element of H™(W). From

Proposition 4.1(h) we conclude that dim(VK) > m.    D

PROOF  OF  THEOREM 1.1.   Recall that H™(S,S) = limHm(S,T), where T

ranges over all cobounded neighborhoods of S (cf. [22]). Let To = S - g_1(0),

and let jTo-Hm(S,T0) -» H™(S,S) be the natural map into the direct limit. We

wish to show that jT0(c/*(em)) r^ 0, and to do so it will suffice to verify that for

each cobounded neighborhood T of S with T C Tb we have that g*(em)\(s,T) =

(g\(S,T))*(em) is nontrivial.

Let T be such a neighborhood of S. We may choose an open ball B in X

containing S — T. Let U = 0 fl B. By the excision property for topological

degree, deg(F, 0,0) = deg(F,U,0). Hence, by Proposition 4.2, we conclude that

g:(Snll,Sn dli) —* (Rm, Rm — 0) induces a nontrivial map in cohomology. But

(S n JI, S n dli) Ç (S, T), so that the commutativity of

#m(Rm,Rm-0) -^Hm(S,T)

9' ~^~^Hm(snli,sndU)

implies that g: (S,T) —> (Rm,Rm - 0) induces a nontrivial homomorphism in co-

homology. Let £ denote jT0(a*(em))\ then £ ^ 0 in H™(S, S).

The isomorphism y. H™(S, S) —> H™(S - S) yields a nontrivial element -y(£) in

H™(S - S). Hence, by Proposition 4.3 there is a connected subset Co of S - S,

whose dimension at each point is at least m and such that 7(£)lc0 is nontrivial.

Let C be the closure of Co in S.

Clearly C is a connected subset of S such that at each point p G C — S it has

dimension at least m. It remains to prove the global properties of C.
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Consider the following commutative diagram, where A is any cobounded subset

of C, containing C, with ADg~l(0)- 0:

Hm(Rm,Rm-0)^>     Hm(S,T0)     ^     H™(S,S)     -3     H? (S - 8)

g'\ U' I** I**
Hm(C,A)     -»     H™(C,C)     -+       H™(C0)

JA 1

From inspection of this diagram and the construction of C it follows that g: (C, A) —►

(Rm,Rm - 0) induces a nontrivial homomorphism in cohomology.

In particular, C fl £/_1(0) ^ 0, since otherwise g(C) C Rm - 0, in which case

g: (C, A) —> (Rm,Rm — 0) induces the trivial homomorphism for any A as above.

If C is unbounded, the proof is complete. So assume that C is bounded. In this

case C is compact and C = C D ¿50 is a cobounded subset of C, and so from the

above g*:Ëm(Rm, Rm - 0) -» Ëm(C, C) is nontrivial.

First consider the case when m = 1. We claim g: C fl dli —> R — 0 is essential;

i.e., it assumes both positive and negative values. Indeed, if this were not so then

g: (C, C) —> (R, R - 0) could be deformed, as a map of pairs, via a linear homotopy

to a constant map in contradiction to the nontriviality of g*(ex).

Finally, consider m > 1. We have the following commutative diagram, with the

bottom row being exact:

_»Äm-i((7) -+Hm(C,C)

u- w
0     ->#m-1(Rm -0)     -^#m(Rm,Rm-0) ->0

Consequently, Èm~1(C) is nontrivial, and so C has dimension at least (m-1), and

g:C —> Rm - 0 is essential.    D

PROOF OF THEOREM 1.2. Since g\s is proper, and g: (S,S) -* (Rm,Rm - 0),

it induces

g*-.Hm(Rm,Rm-0) Sí #cm(Rm,Rm - 0) -» Äcm(5,5).

From the argument at the beginning of the proof of Theorem 1.1, and since we

now have assumed g\g is proper, it follows that the element £ defined in that proof

coincides with g*(em) G H™(S, S).

Once more invoking the cohomological characterization of dimension and using

the assumption that the covering dimension of S is less than m — 1, we conclude

that H™'1^) = 0. Thus, from the exactness of the sequence of the pair (5, S), it

follows that Ë™(S, S) -» #cm(S) is injective.

Consider the following commutative diagram:

Êm(S,S) inJ-^Íve      H™(S)

9-  Î 9' Î
iïm(Rm,Rm-0)       -^>       H™(Rm)

lie G H™(Rm) is the image of em under the lower map, then £' = g*(e) G H™(S)

is nontrivial. Using Proposition 4.2 we may choose a connected subset C of S whose

dimension at each point is at least m and £'|c is nontrivial; £'|c is the image of em

under the homomorphism induced by g: C —► Rm. Consequently, when considered

among proper mappings, g is essential. In particular, g(C) — Rm.    D
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5. Here we wish to indicate the applicability of our previous results to some

existence problems for partial differential equations. Two examples are considered.

The first is an eigenvalue problem for a partial differential equation in generalized

divergence form whose higher-order part satisfies the Leray-Lions conditions (see

[14]). The second is an existence problem for a partial differential equation which is

in the form of a nonlinear perturbation of a linear elliptic differential operator which

generates, when acting between prescribed Sobolev spaces, a Fredholm operator of

positive index. Let us first establish our notation.

Let fi Ç R" be a bounded domain. For an n-tuple of nonnegative integers

a = (ai,... ,an), we let Da = \~\^=x(d/dxj)ai, with the order of Da being written

as |a| = J2^=i aj- When fc is a positive integer, and 1 < p < oo, the Sobolev

space Wk'p(Q) consists of those functions in Lp(fi) whose distributional derivatives

up to order fc lie in Lp(fi). Then, if 1 < p < oo, Wk'p(Q), with norm ||u||p =

5Ziai<fc II-^q(u)IIl¡>> is a separable reflexive Banach space. We assume throughout

that fi is such that the Rellich compactness theorem and the Sobolev embedding
0

theorems hold. By Wk'p(Q) we will denote the closure in Wk'p(Q) of the infinitely

differentiable, compactly supported functions on fi.

Now, for j a nonnegative integer, let Sj be the number of n-tuples of nonnegative

integers whose order does not exceed j. Then for u G W^P(U) we define

£,(«): fi-+Rs''

by (íj(u)(x))a = Dau(x) for a = (ai,... ,an), \a\ <j,xG fi.

The 2fcth order quasilinear eigenvalue problem, in generalized divergence form

depending on a parameter A G Rm, which we wish to consider is

(5.1) £(-l)HD°(Aa(x, &(«)(*)))

\a\<k

=    £   (-l)^D^(B0(X,x,Ck-i(u)(x))),        xefi,

\ß\<k-i

and we specify the boundary conditions by insisting that u G V, where V is a
o

prescribed subspace of Wk'p(Q) which contains Wk'p(Q).

We shall look for a variational solution of (5.1). That is, we seek u G V such

that

(5.2) J2  f K(x,Uu)(x))Da(p)dx
M<fc

=    Yl    B0(X,x,t:k-i(u)(x))D0(ip)(x)dx   for all <p GV.
\ß\<k-i

We now need to make the analytical assumptions on the Aa's and Bß's in order

to formulate (5.2) in our abstract setting. Roughly speaking, if the Aa's and Bß's

have polynomial growth, then we can formulate the problem in a suitable V Ç Wk'p,

p being determined by the growth. The right-hand side of (5.2) will correspond to

a completely continuous operator. If the left-hand side corresponds to a linear

bijection, the problem can be formulated in the Leray-Schauder context. However,

very general left-hand sides can be formulated within the A-proper context. To do
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so, we impose the following conditions, where 1 < p < oo:

(5.3) Aa:üxRSk -»R, ß/3:RmxfixRafc-1 -♦ R, for |a| <k,\ß\ < fc-1,

are such that (1) Aa(x, £) is measurable in x for fixed £ G RSk and

continuous in £ for fixed x in fi, (2) Bß is measurable in x for fixed

A G Rm, £ 6 R8*-1, and continuous in A and £ for fixed x in fi.

(5.4) There exist functions <p, ib G L°°(fi) such that |AQ(x, £)| < <p(x) +

i>(xMp-\ x G fi, £ G R°k, |^(A,x,OI < <p(x) + V(x)ieip-1_e,
x G fi, £ G R"kl, where e > 0.

(5.5) If £ = (n, v) denotes the division of £ G RSk into fcth-order compo-

nents, represented by v, and lower-order components, represented

by n, and if va is the ath component of v for |a| = fc, then

Y, \Aa(x,n,v) - Aa(x,n,v)][va -Va] > 0,

\a\=k

whenever (n, v), (n,v) G RSk and v ^ V.

(5.6) There exist constants Co > 0 and C\ such that for all x 6 fi,

Ç6R",

X; ̂ (^or^coicr-d.
|a|<fc

Now assumptions (5.3) and (5.4) guarantee that for each |a| < fc, |/3| < fc - 1,

and u G Wk'p(Q), Aa(-,&(«)) and B^O, îfc_i(u)) are in L«(fi), p"1 + q~l = 1.

Thus, letting V* denote the dual of V, and letting ( , ) denote the pairing between

V* and V, we may define A(u) G V*, Ö(A, u) e V*, for u G V, A G Rm, by

(5.7) (A(ti), V>)=Y,[ Aa(x, Zk(u)(x))Da<p(x) dx   for <p G V,
\a\<kJn

(5.8) (B(X,u),<p)=    X    f Bß(X,x,ik-i(u)(x))D<3p(x)dx   for p e K

Then it is clear that equation (5.2) is equivalent to

(5.9) A(u) = B(X, u),        u G V, X G Rm.

From (5.3), (5.4), and standard properties of the Nemytsky operator it follows

that A: V —> V* and B: Rm x V —> V* are continuous and map bounded sets

into bounded sets. Moreover, by the Rellich compactness theorem, B maps weakly

convergent sequences into strongly convergent sequences.

The crucial consequence of the Leray-Lions assumptions (5.5) and (5.6), which

we will need in order to show that A — B is an A-proper mapping, are stated in the

following proposition. For a detailed proof see the appendix of §1 of [6], and also

[141.
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PROPOSITION 5.1. Assume that the Aa's of equation (5.1) satisfy (5.3)-(5.6).
Let A: V —> V* be defined by (5.7). Then, if {v3} Ç V converges weakly to v in V

and \imj^00(A(vj) — A(v), Vj —v)=0, it follows that {vj} converges strongly to v.

The property enjoyed by the operator in the above proposition is called property

(S) in Browder [7], where its relevance to the convergence of certain generalized

Galerkin methods is made clear. The basic idea of the following result may be

found in [7]. Since our definitions are slightly different, and the proof is so short,

we include a proof here.

PROPOSITION 5.2. Assume the Aa's and Bß's of equation (5.1) satisfy (5.3)-

(5.6). Let A and B be as defined by (5.7) and (5.8). Choose {Vj} to be any
increasing sequence of finite-dimensional subspaces ofV whose union is dense, and

for each j let Pj be a linear projection ofV onto Vj. Then A—B: Rm x V —► V* is A-

proper with respect to the approximation scheme F = ({Rm x Vj}, {P*(Vj)}, {Pf}}-

PROOF. Since V is a closed subspace of Lp(fi), 1 < p < oo, such a sequence

{Vj} may be chosen.

Suppose {nfc} is an increasing sequence of positive integers, with {vnk} bounded,

vnk G Vnk for each fc, {A„fc} C Rm is bounded, and {P*kA(vnk) - P*kB(Xnk,vnk)}

—> 0. Now V is reflexive, and hence has weakly sequentially compact closed balls.

Thus, without loss of generality, we may assume {vnk} converges weakly to v G V,

and {Xnk} —> A G Rm. By the Rellich compactness theorem

{6c-iKJ}^6c-i(w).

Consequently, {B(Xnk,vnk)} —> B(X,v).  From our choice of {V„} we may select

wnk G Vnk for each fc, and {wUk} —► v.

Now, for each fc,

(A(vnk) - A(v),Vnk -v)

= (A(Vnk),Vnk -Wnk) + (A(Vnk),Wnk  - v) - (A(v),Vnk ~ v)

= (P*kA(vnk) - P*kB(Xnk,Vnk),Vnk ~ Wn J + (B(Xnk , Vn J, Vnk  ~ Wn J

+ (A(vnk),wnk - v) - (A(v),vnk -v).

Since {vnk} and {wnk} converge weakly (respectively, strongly) to v and {A(vnk)}

is bounded, each of the four sequences defined above converges to 0.

Hence, from Proposition 5.1, it follows that {vnk} —> v. Also, A—B is continuous,

and so A(v) - B(X,v) = limfc_00[i4(i;nJ - B(Xnk,vnie)].

We claim A(v) - B(X,v) = 0. Indeed, let u G V and choose {unk} —» u with

unk G Vnk for each fc. Then

0 = lim(P*t A(vnk ) - P¿kB(Xnk, Vnk ), tin»)

= \im(A(vnk) - B(Xnk,Vnk),Unk) = (A(v) - B(X,v),u).

Thus, A(v)-B(X,v) = 0.

Finally, from the reflexivity of V and Proposition 5.1 it follows that the restriction

of A - B to any closed, bounded, subset of Rm x V is proper. Thus (A - B)~l(0)

is locally compact.    D
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We need one final assumption

(5.10) Either (5.4) holds with e > 0 or

J2    Bß(X,x,£)t:ß <0    for £GRSk-\ XGRm, xGfl.

\ß\<k-i

THEOREM 5.1. Suppose the Aa's and Bß's of equation (5.1) satisfy assump-

tions (5.3)-(5.6) and (5.10). Then there exists a connected subset C in Rm x V

of variational solutions of equation (5.1) which intersects {0} x V, has dimension

at each point at least m and whose projection onto Rm is essential among proper

maps.

PROOF. Proposition 5 2 guarantees that A-B: Rm xV —>V* is A-proper with

respect to ({Vj},{P*(Vj)},{P*}}. Let it be the projection of Rm x V onto Rm.

We claim that 7r complements A — B on all of Rm x V.

Indeed, assumption (5.6) implies that

(5.11) (A(v),v)>Co]\v\]p -d    foralUeV.

On the other hand, assumption (5.4) implies that when e > 0

(5.12) \\B(X,v)]\<^-\\v]]p-1+C(e)    for all v G V,

where C(e) is independent of v.

If the assertion of (5.4) holds with e > 0, then

(A(v) - B(X,v),v) > ^-\\v\\p - C(s)]]v\\ - d    for all v G V,
m

so that we may choose R > 0 such that (A(v) — B(X,v),v) > 0 when ]]v]] > R.

In particular, (Pj^(A(v) - B(X,v)),v) > 0, when ||î;|| > R, v G Vk, and fc is any

positive integer. Thus, the A-proper degree of A — B(0, ■) is {1} on all of V; i.e., 7r

complements A — B on Rm x V.

If the second assertion of (5.10) holds, then

(A(u) - B(X,u),u) > CQ\]u\[p - Cx    for all u,

and we also obtain the same conclusion.

To apply Theorem 1.2 it remains to verify that 7r is proper on {(X,v)]A(v) —

B(X,v) = 0}. But if {(Xk,Vk)} is such that {A*:} is bounded, and A(vk) — B(Xk,Uk)
= 0 for all fc, then from the above coerciveness conclusions it follows that {vk} is

bounded. Then again using the reflexivity of V, Proposition 5.1, and the Rellich

theorem, we can extract a subsequence of {(Xk,Vk)} which converges strongly to

(A, v) with A(v) - B(X, v)=0.    D

REMARK 5.1. By taking fuller advantage of the embedding theorems one can

relax the growth conditions in (5.4) somewhat.

REMARK 5.2. Assumption (5.5) is a monotonicity assumption only on the

highest-order derivatives. Under monotonicity assumptions involving all of the

terms one can ensure that A:V —> V* is strongly monotone. In this case the

assertion of Proposition 5.1 is immediate and our development is completely self-

contained.

REMARK 5.3. In the proof of Theorem 5.1 we invoked Theorem 1.2. One can also

apply Theorem 1.2 to obtain conclusions on the solution set of (5.1) in 0 Ç RmxV,

where 0 is open and 0 fl ({0} xV) Z} {0} x B(0, R), where R is sufficiently large.
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The second problem we wish to consider is the following:

X Aa(x)Da(u)(x) = f(x, t2k(u)(x)),        x 6 fi,

(5.13) <   |a|<2fe

[ Bi(u)(x) = 0,        x G dû, 1 < i < k - 1.

We assume that the coefficients Aa are smooth and such that

L(u)(x)=   X  Aa(x)Da(u)(x)

\a\<2k

defines a uniformly elliptic operator. Moreover, assume that the boundary opera-

tors {Bi | 1 < i< fc — 1} cover L in the sense of [1].

Under these assumptions there exists a closed subspace V of W2k'2(Q) such

that L together with the boundary operators are realized by a bounded linear

operator £,: V —> L2(fi). The ellipticity assumption guarantees that the null space

of t, N(Z), is of finite dimension, and that the range of £, R(£), is closed. The

smoothness of the Aa's guarantees that the codimension of R(C) is also finite. Thus

£,:V —> L2(fi) is Fredholm, and we will apply our previous results when

(5.14) ind(£) = dim N(Z) - codim R(Z) = m>0.

A basic assumption of / is that it has sublinear growth:

(5.15) /:fi x RS2fc —> R satisfies the Carathéodory conditions and there

exist a, b G L2(fi) and cr G [0,1) such that |/(x, £)| < a(x)+&(x)|£|CT

for x G fi, £ G R5".

As in the first problem we allow the nonlinearity to depend on derivatives of order

2fc. Whereas in the first problem we imposed a monotonicity condition on those

variables of / which interact with the highest-order derivatives, we here impose a

Lipschitzian condition:

(5.16) if £ = (n,v) denotes the division of £ G RS2k into its 2fcth order

components, represented by v, and its lower-order components,

represented by n, then there exists a ß > 0 such that ]f(x,n,v) —

f(x,n,P)\ < ß]v -V] for x G fi, (r/,i/) and (n,V) in RS2k, and

ß < inf{||£(t;)|Ua | v G (iV(£))\ ]]v\[w^ = 1}.

We finally impose the assumptions on the asymptotic interaction between £ and

/:

(5.17) letting cr be as in (5.15) we assume that f(x, £) = g(x, £) + h(x, £)

for x G fi, £ G Ra", where

(i) \ima^±0O(g(x,s,n)/\s\'T) = g ± (x), the limit being uniform

inn eR'"-';
(ii) there exist c, d G L2(ü) and e > 0 such that ]h(x, £)| <

c(x) + d(x)|£|'T-£ for x G fi, £ G Ra";

there exists a subspace Z of N(£) and a linear bijection T: Z —► (R(C))'L such that

(5.18) (i) T(w) = 0 a.e. on {x | x G fi, w(x) = 0}, when w G Z.

(ii) Jw>0g+\w\-T(w)dx + jw<0g_\w]"T(w)dx > 0 if w G Z-{0}.
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THEOREM 5.2. Suppose that £. and f satisfy assumptions (5.14)-(5.18). Let W

denote the orthogonal complement in N(C) of the subspace Z of assumption (5.18).

Then there exists a connected subset C in V of solutions of equation (5.13) whose

dimension at each point is at least m, and such that the V-orthogonal projection of

V onto W maps C onto W.

PROOF. We begin by rewriting equation (5.13). Let Q be the L2-orthogonal

projection of L2 onto R(C), and let P be the V-orthogonal projection of V onto

N(C). Let S:N(I - Q) —> Z be any linear bijection. Then, clearly, if we let
K:R(Z) -► N(I - P) be the inverse of L:N(I - P) -+ R(C), it follows that
KoQ + So(I — Q): L2 —» V is injective. Consequently, equation (5.13) is equivalent

to

(5.19) H(u) = [KoQ + So(I-Q)][ß + F](u)=Q,        uGV,

where F is the Nemytsky operator generated by /.

Then, letting W be the orthogonal complement in N(jß) of Z, it follows that

H:W (&W1- —> W1-. We wish to show that H is A-proper with respect to a suitable

projection scheme.

Since W1- is a separable Hubert space we may choose an increasing sequence

{Xn} of finite-dimensional subspaces of W1- with the property that if Pn: W1- —> Xn

is the V-orthogonal projection of W1- onto Xn for each n, then {Pn(u)} —► u for

each ugrr'1. Let V be the approximation scheme for mappings of W © W1- into

Wx defined by Y = ({W © Xn}, {Xn}, {Pn}}- We claim that H is A-proper with

respect to T.

Thus, let V„ = W © Xn, and Tn:V —> Vn be the V-orthogonal projection of V

onto Vn for each n. Observe that PnH = TnH for each n, so that H: W&W1- -> WL

is A-proper with respect to T precisely when H: V —> V is A-proper with respect

tor' = ({vn},{vn},{rn}>.
Since f is an approximation scheme which has the property that {Tn(h)} —> h

for each h G V, it is easy to see that A-properness with respect to T' is a property

which remains invariant under compact perturbations (see [19]). On the other

hand,

H (v.) = u + KQF(u) + [5 o (/ - Q)(£ + F) - P(u)]    for uGH,

so that since F maps bounded sets of V to bounded sets of L2 and S and P are

both finite-dimensional operators, it will suffice to prove that / + M: V —> V is

A-proper with respect to V, where M(u) = KQF(u) for u G V.

Using obvious notation we define E: V x V —» L2 by

(E(v, u))(x) = f(x, e»-i(t»)(x), L»2*(u)(x))

for u,veF and x G fi.

From the continuity and boundedness of F: V —» L2 together with the Rellich

compactness theorem it follows that if u G V and {vn} Q V converges weakly to

v gV, then {E(vn,u)} converges strongly in L2 to E(v,u).

Now assumption (5.16) implies that ]]E(v,ui) - E(v,u)]]l7 < ß\]u\ - u2]]v-

Thus, since Q is an orthogonal projection it follows that

]]KQE(v,ux) - KQE(v,u2)]]v < ß\\K\\ ||Vl - va||y    for tti,V3,v,€ V.

We have shown that KQE: V x V —> V is completely continuous with respect

to its first variable and, since ß\]K\\ < 1, a contraction with respect to its second

variable. It follows that the mapping M: V —> V is condensing with respect to the
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ball-measure of noncompactness (see Webb [24]). Consequently, since ||Tn|| < 1 for

each n, I + M: V —> V is A-proper with respect to V (see Webb [23] and Nussbaum

[17]). Thus H: W © WL ->• WL is A-proper with respect to Y.

We now claim that if P denotes the orthogonal projection of V onto W, then P

is a complement for H on all of V. To verify this claim it suffices, by Proposition

3.1, to prove that deg(H]w±,W±,0) ¿ (o}.
We define a homotopy $: [0,1] x W1- —► W1- by

$(£, u) = [K o Q + S o (I - Q)][Z(u) + tTo P(u) + (1 - t)F(u)].

By the same argument used above, $(i, •): W± —> W1- is A-proper for each î G [0,1],

it is continuous, and the continuity is uniform on bounded subsets of [0,1] x WL.

Thus it follows from the homotopy invariance of the A-proper degree (see [8]) that

if we can find an a priori bound for solutions of

(5.20) 4(t,u)=0,        0<i < 1, uGW^,

it will follow thatdeg($(0, ■), W\0) = deg($(l, ■),W±,0),

or

deg(H,Wx,0) = deg(^(0,),W±,0).

Since $(0, •) is linear and invertible, deg($(0, ■),W±,0) ^ {0}.

To obtain the a priori bound for solutions for equation (5.20), we assume the

contrary. Suppose that there exist {un} Ç W1- and {tn} Ç [0,1] with {||itn||} —*

+00 and (tn,un) a solution of equation (5.20) for each n. (Here ||u|| denotes the

norm in W2k.)

Hence,

(5.21) Z(un) + tToP(un) + (l-t)F(un) =0    for each n.

We write un — wn + zn, where wn G N(P) and zn G Z, for each n.

By composing equation (5.21) with Q we see that Z(wn) + (1 — tn)QF(un) = 0

for each n, and since

lim   '^,^=0

and there is a constant c > 0 such that ||iun||v < cll^i^nilU2 f°r each n, it

follows that {iün/||un||} —>• 0. Since Z is finite dimensional, we may suppose that

{2„/||un||} —> z* G Z. Hence {iin/||un||} —> z* and z* ^ 0. Also, we may assume

that {un/||un||} converges pointwise a.e. to z* on fi.

Now for each x G fi and u G N with un(x) ^ 0, we have

F(un)(x)      g(x,un(x),tl2k(un)(x)) un(x) h(x,t¡2k(un)(x))

llWnll'7 Wn(x)]a

From (5.17) we see that without loss of generality we may assume that

h(x,£2k(un)(x)) \
-n—n-t —* 0    a.e. on 12

and also that F(un)(x)/||wn||<T —♦ I(z*)(x) a.e. on {x|^*(x) ^ 0}, where I(z*)(x) =

g+(x)]z*(x)]'T if z*(x) > 0 and I(z*)(x) = g-(x)]z*(x)]a when z*(x) < 0. More-

over, from assumption (5.15) we may, without loss of generality, suppose that

{F(u„)/||m„||<t} converges weakly in L2(fi) to w*. Then, clearly, w* — I(z*) a.e.

on {x|z*(x) ^0}.
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Using (5.18)(i) it follows that

Um     f  F(un)(x) T{z,){x)dx=   f I{z*){x)T{z*){x)dX}
n^°°Jr¡    \\Un\r Jn

and by (5.18)(ii) this limit is positive.

Finally, for each n, compose equation (5.21) with (I - Q) and take the L2-linear

product with T(z*). Then

tnlKII I T^$-T(z*)(x)dx
JCI \\Un\\

+ (1 - ín)||un|r / F\!in)¿)T(z*)(x)dx = 0    for each n.
Jn     \\Un\\

Since the sequence {/n(T(zn)(x)/||un||)T(z*)(x)dx} converges to ||T(z*)||22 >

0, we clearly have a contradiction.

Thus the a priori bound holds and P complements H on all of V.

To apply Theorem 1.2 it remains to verify the properness assumption of the

complementing map on the solution set.

This is equivalent to proving that if {vn} Q V is such that L(un) + F(un) = 0

for each n, and {P(vn)} is bounded, then {vn} has a convergent sequence. But

an argument almost identical with the last completion argument guarantees that

such a sequence {vn} must be bounded in V. Since ii is a condensing perturbation

of the identity, its restriction to closed bounded sets is proper. It follows that a

subsequence of {vn} converges to V and £.(u) + F(u) — 0.

We can now apply the general version Theorem 1.2 to obtain our desired con-

clusion.    D

REMARK 5.4. In the case when o = 0, the nonlinearity does not depend on

derivatives of u, and lims_±00 f(x, s) — f ± (x), the limit being uniform in x G fi

(the conclusion of Theorem 5.2 was obtained in [16]). Under the same hypotheses

as in [3], the existence of a set of solutions of equation (5.13) whose projection onto

W covers W was proven when dim(W) = 1, and for general W when / is assumed

to be Lipschitz with respect to u. No connectedness or dimension assertions were

considered in the latter. In [18] conclusions are obtained for equations like (5.13)

which are similar to those of Theorem 5.2, but without assertions concerning the

dimension of C and under different asymptotic conditions.

REMARK 5.5. In the case when £: V —> L2 is Fredholm of index 0, the proof we

have used for Theorem 5.2 yields the existence of at least one solution of t(u) +

F(u) = 0; instead of quoting Theorem 1.2 one just uses the existence property

of topological degree. The existence result so obtained strengthens the existence

results of [13] and of [21], in that the condition corresponding to (5.18) is stronger

in both these papers (for instance, in these papers £, is assumed to satisfy a unique

continuation condition), and the growth condition corresponding to (5.17) is more

restrictive in [21]. The proof that we give above is considerably simpler than those

of [13 and 21].

REMARK 5.6. Inequalities of the type (5.18) (ii) are an outgrowth of the Landes-

man-Lazer conditions when (R(£,))± = N(Z), T = I, and when a = 0. In case

(Ä(£))x t¿ N(Z), cr = 0, and index(£) = 0, inequalities of type (5.18)(ii) were first

introduced in [21], in conjunction with a more restrictive vanishing condition than
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(5.18)(i). Observe that (5.18)(i) is always satisfied when L has either the unique

continuation property or when (R(ß))1- Ç N(£) and one takes T = I.
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