
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An application specific instruction set processor based implementation for signal detection in multiple antenna systems /
Tamagnone, Michele; Martina, Maurizio; Masera, Guido. - In: MICROPROCESSORS AND MICROSYSTEMS. - ISSN
0141-9331. - STAMPA. - 36:3(2012), pp. 245-256. [10.1016/j.micpro.2011.11.003]

Original

An application specific instruction set processor based implementation for signal detection in multiple
antenna systems

Publisher:

Published
DOI:10.1016/j.micpro.2011.11.003

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2495594 since:

Elsevier

An Application Specific Instruction Set Processor Based Implementation for
Signal Detection in Multiple Antenna Systems

M. Tamagnonea, M. Martinaa, G. Maseraa

aDipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy

Abstract

In comparison to single antenna systems, a wireless multiple-input multiple-output (MIMO) system provides higher
throughput at no additional cost of bandwidth, but the high complexity of the detection algorithms poses a major chal-
lenge to the hardware implementation. Maximum likelihood (ML) MIMO detection guarantees optimal performance
but implies huge processing complexity, which makes acceptable this approach only when the number of transmitting
antennas is low and the adopted modulation scheme has a small cardinality. Sphere decoding (SD) is an efficient
method that significantly reduces the average processing complexity with no performance penalty.

Most of known sphere decoders have been implemented as application specific integrated circuits (ASICs), but
the need for high degree of flexibility in MIMO detection makes interesting also application specific instruction set
processor (ASIP) implementations. A single programmable ASIP can hardly reach the same processing speed as
a fully dedicated ASIC, thus parallel architectures with multiple concurrent ASIPs must be conceived to guarantee
sufficient data throughput.

The objective of this paper is to present a new ASIP-based implementation for the detection of MIMO signals. The
processor supports multiple lattice modulation schemes (up to 64-QAM) and up to 4 transmitting antennas and it is
able to run both ML and close to ML algorithms. A parallel architecture has been also designed with multiple ASIPs,
which concurrently execute the detection algorithm on received symbols, a central unit acting as task scheduler,
and a buffer for the compensation of non constant throughput. A dedicated bus handles the communication among
allocated units. Each ASIP occupies a silicon area of 0.093 mm2 and runs at 400 MHz when implemented on
a 90 nm CMOS technology. Achievable throughput depends on the adopted MIMO system and on the number of
allocated ASIPs: a detector with 10 ASIPs programmed to run ML detection on a 4 × 4 MIMO system with 64-QAM
modulation offers a throughput of 78 Mbps at signal–to–noise ratio SNR=18 dB.

1. Introduction

Multiple-input multiple-output (MIMO) systems
[1] are digital transmission systems with more than
one transmitting and receiving antenna. Such sys-
tems, in combination with space–time codes, offer
both multiplexing capabilities and transmit diver-
sity, which can be exploited to achieve increased
channel capacity and robustness against multipath
fading channels. On the receiver side each antenna
receives a linear combination of transmitted symbols.
Provided that the receiver is able to reconstruct the orig-
inally sent information from received signals, such sys-
tems have the potential to multiply the achievable data
rate by the number of transmitting antennas at no cost of
additional bandwidth. MIMO systems are also known
to be able to increase the robustness to combat the fad-

ing in wireless channels.

The drawback of MIMO systems is the computa-
tional complexity required to perform the detection of
the originally transmitted symbols, which is the task
implemented by MIMO detectors. In the direct im-
plementation of maximum likelihood (ML) detection,
the computational complexity grows exponentially with
the order of the system, which depends on the size of
the selected constellation and on the number of anten-
nas. Therefore, computationally efficient algorithms
are required to achieve acceptable bit rates in the de-
tection process, especially for high order MIMO sys-
tems. Sphere Decoding (SD) techniques [2] are a class
of efficient detection algorithms that solve the ML prob-
lem with polynomial average complexity in the rate [3].
SD techniques are based on the association of all the
possible transmitted vectors to the leaves of a decision

Preprint submitted to Microprocessors and Microsystems July 15, 2011

tree, but each SD algorithm is different in terms of tree
structure and exploring procedure. Since all modern
high performance receivers include iterative soft–input
soft–output channel decoders, soft–output detection on
MIMO channels is also required [4]. Thus, several SD
algorithms have been extended to provide soft-output
information instead of hard bits.

This paper mainly deals with depth–first algorithms,
both hard-output (HO) and soft-output (SO), as the ones
presented in [5, 6] respectively. The aim of the paper
is to present a new implementation of these algorithms
based on an array of Application Specific Instruction set
Processors (ASIPs) [7]. Each ASIP is optimized to per-
form the SD on a single vector symbol, and the paral-
lelization is required to achieve acceptable throughput
level.

The proposed system also includes a central proces-
sor (CP) that works as scheduler, assigning the received
symbols to the allocated ASIPs and retrieving the results
from them. The scheduling policies employed in the CP
are crucial to find practical solutions to the main prob-
lem of the SD: its non–constant throughput. This paper
covers the ASIP structure and the proposed scheduling
policies as well. Notice that the CP has been imple-
mented only on a behavioral level, while the ASIP has
been fully synthesized for both FPGA and CMOS stan-
dard cell technologies.

The rest of the paper is organized as follows. The
MIMO model and the sphere decoding algorithms are
introduced in Section 2 together with the notation used
in the paper. Section 3 introduces the designed ASIP ar-
chitecture, while the structure of the multi-ASIP system
and the adopted scheduling policies are detailed in Sec-
tion 4. Simulation results are given in Section 5, where
the effects of different architectural choices are evalu-
ated in terms of throughput and BER (Bit Error Rate)
performance. Section 6 provides ASIP synthesis results
as well as comparisons with other SD implementations.
Finally conclusions are drawn in Section 7.

2. Depth First Sphere Decoding

This section briefly introduces HO and SO algorithms
that employ the depth–first sphere decoding. A com-
plete derivation can be found in [5, 6].

2.1. MIMO Link Model
Let us consider a MIMO channel with MT transmit-

ting antennas and MR receiving antennas. The same
carrier signal is used for every transmitting antenna,
each of which transmits synchronously a different dig-
ital symbol belonging to the constellation O . Let s be

the vector of the complex transmitted symbols (one en-
try for each transmitting antenna) and y the vector of the
complex received signals (one entry for each receiving
antenna). Then, the model of the channel is given by:

y = Hs + n with s ∈ OMT (1)

where H is the channel matrix (MR×MT) and n is a vec-
tor of independent complex gaussian random variables
with variance N0/2, which models the noise at the re-
ceiver. The purpose of Sphere Decoding is to find the
most likely vector symbol ŝ, i.e. the one that minimizes
the Euclidean distance from y:

ŝ = arg min
s∈OMT

d(s) = arg min
s∈OMT

‖y −Hs‖2 (2)

2.2. Preprocessing and Decision Trees

A required preliminary step in sphere decoding is QR
decomposition, which is a method to triangularize the
MR × MT matrix H [8]:

H = QR (3)

where R is a MT ×MT upper triangular matrix, while Q
is a MR × MT matrix with orthonormal columns.

Using this decomposition, a squared Euclidean Dis-
tance (ED) d(s) can be associated to each symbol vector
s:

d(s) = c + ‖ŷ − Rs‖2 (4)

where ŷ = QHy = RsZF , the superscript (·)H stands
for the Hermitian transpose, sZF is the zero–forcing
solution [5] and c = ‖y‖2 − ‖ŷ‖2 is a constant with re-
spect to the symbol s. Problem described by (2) is then
equivalently formulated as the problem of finding the s
symbol with the minimum ED. It is worth noticing that
constant c does not influence the metric computation ex-
pressed in (2) and will then be omitted from now on.

We introduce now the partial symbol vector s(i), de-
fined as

s(i) ,
[
si, si+1, . . . , sMT

]′ (5)

where [·]′ indicate a transposed vector. These partial
symbols can be organized in a tree [5], where i = MT is
the level of the tree root, i = 1 is the level of tree leaves,
and each possible value of partial symbol s(i) is associ-
ated to one node at level i. A node at level i inherits
from its parent at the upper level i−1 the corresponding
partial symbol s(i−1) and obtains s(i) by appending one
more vector element, corresponding to a specific choice
for si.

The leaves of the tree are all the possible s ∈ OMT .
Therefore ED values d(s) are associated to tree leaves,

2

while intermediate tree nodes can be associated to Par-
tial Euclidean Distances (PED) Ti(s(i)). PEDs can be
additively updated when moving from the root towards
the leaves of the tree:

TMT +1(·) , 0
Ti(s(i)) , Ti+1(s(i+1)) + |ei(s(i))|2 (6)

with i = MT ,MT − 1, . . . , 1; amounts |ei(s(i))|2 are called
distance increments:

|ei(s(i))|2 =

∣∣∣∣∣∣∣∣ŷi −

MT∑
j=i

Ri js j

∣∣∣∣∣∣∣∣
2

=
∣∣∣ψi+1(s(i+1)) − Riisi

∣∣∣2 (7)

where

ψi+1(s(i+1)) = ŷi −

MT∑
j=i+1

Ri js j (8)

From (6) it is evident that the PED of a node is larger
than the one of its parent node, and this property is ex-
ploited to achieve an efficient tree exploration. For ex-
ample, to explore only leaves such that d(s) < r, with
a certain r (called sphere constraint), we can prune the
tree under an intermediate node whose PED violates the
constraint, so reducing the number of searched nodes,
with no penalty in terms of quality of the found solu-
tion.

2.3. Hard Output SD
By exploring the tree in a depth first way, we can de-

termine the leaf with the smaller ED, which corresponds
to the ML solution. The result is given by the bits asso-
ciated to the found leaf, hence this algorithm provides
output sequences of zeros and ones (hard bits) without
any information on the reliability of the detected bits.

During tree exploration, when a leaf is reached with
ED value smaller than previously calculated, the con-
straint on the sphere radius is updated, so as the search
space is reduced to all tree nodes with PED lower that
the current radius. This allows pruning the tree without
the risk of eliminating the ML solution. In exploring the
sons of a node, the Schnorr-Euchnerr (SE) enumeration
[9] can be used: in this approach, the sons are explored
in ascending order of their PEDs. In the SE enumera-
tion, the first explored node at tree level l corresponds to
the Babai point [10], which can be calculated by means
of a rounded division [11]:⌊

0.5
ψi+1(s(i+1))

Rl,l
+ 1

⌋
(9)

where b0.5x + 1c rounds argument x to the nearest odd
integer value (this is equivalent to select the nearest

point in a PAM constellation). Therefore, if a node vio-
lates the current radius constraint, all succesive siblings
according to the SE enumeration also violate the con-
straints and can be pruned with no further processing.

When all the nodes have been explored or pruned,
the found leaf with the minimum ED corresponds to the
wanted ML solution.

2.4. Soft Output Single Tree Search SD

A larger amount of information can be provided as
detector output by also calculating an estimate of the
reliability of each detected bit. This leads to the concept
of “soft bit”, a numerical value whose sign represents
the decoded bit (minus for “0”, plus for “1”) and whose
magnitude represents the corresponding reliability.

Thanks to the max-log approximation [4], the bth soft
bit of the jth antenna can be expressed by:

L(x j,b) � min
s∈χ(0)

j,b

‖y −Hs‖2 − min
s∈χ(1)

j,b

‖y −Hs‖2 (10)

where χ(x)
j,b is the set of the vector symbols with the bth

bit of the jth antenna equal to x ∈ {0, 1}. Obviously for
each bit (b, j) one of the two terms in (10) is the ED
of the ML solution (λML), while the other is the one of
the so called best counterhypothesis for the same bit,
normally indicated as λML

j,b . More details can be found
in [4].

The Single Tree Search (STS) SD algorithm pre-
sented in [6] can find both the ML solution and the best
counterhypotheses for all the bits in the label associated
to the vector symbol, so that (10) can be used to gener-
ate soft bits. While in other soft–output MIMO detec-
tion algorithms multiple visits of the tree are necessary
to apply (10), the key characteristic of STS SD is that a
single tree search is enough, so as each node is explored
at most once. The pruning criterion has to be modified
in this case to avoid pruning the best counterhypotheses.
In particular the algorithm explores the sons of a node
if:

d(s(i)) < max
al∈A(x(i))

al (11)

where x(i) is the partial bit sequence associated to sym-
bol vector s(i), {al} ∈ A(x(i)) and A(x(i)) is a set includ-
ing all PED values associated to the counter-hypotheses
to be checked:

A(x(i)) =

{
λML

j,b |(j ≥ i, b = 1, . . . ,MC) ∧ (x j,b = xML
j,b)

}
∪

{
λML

j,b | j < i, b = 1, . . .MC

}
(12)

3

If a node violates the constraint

d(s(i)) < max
bl∈B(x(i+1))

bl (13)

where B(x(i)) is defined similarly to (12)

B(x(i+1)) =

{
λML

j,b |(j > i, b = 1, . . . ,MC) ∧ (x j,b = xML
j,b)

}
∪

{
λML

j,b | j ≤ i, b = 1, . . .MC

}
(14)

then also its siblings can be pruned.
Each time a leaf is reached, the list of the λML

j,b is up-
dated according to the algorithm 1 (expressed here in
C-like pseudo code):

Algorithm 1 List administration
1: if PED ≤ λML then
2: λML ← PED
3: for j← 1 to MT do
4: for b← 1 to MC do
5: λML

j,b ← min(λML
j,b , λ

ML + Lmax)
6: if x j,b , xML

j,b then
7: λML

j,b ← λML

8: end if
9: end for

10: end for
11: else if PED ≤ maxA{λML

j,b } then
12: for j← 1 to MT do
13: for b← 1 to MC do
14: if x j,b , xML

j,b then
15: if λML

j,b > PED then
16: λML

j,b ← PED
17: end if
18: end if
19: end for
20: end for
21: end if

It can be seen that the chosen range for soft bit is
[−Lmax, Lmax]. While the value of soft bits is theoreti-
cally unbounded, in several cases introducing a clipping
level has the effect of reducing the number of counter
hypotheses that have to be checked and this results in
an increased data rate [12].

3. The designed ASIP architecture

Most of sphere decoder implementations are based on
dedicated ASICs, that can be optimized both in terms of

area and throughput: some examples of dedicated im-
plementations are found in [5, 6, 13, 14, 15]. Although
many of these implementations are parameterized and
support multiple modulation schemes and antenna num-
bers, they suffer from limited flexibility. The growing
demand for modern wireless systems capable of dynam-
ically adapting to different channel conditions and user
constraints raises the need to also explore flexible im-
plementations, where several system level choices can
be freely and dynamically changed in a wide range to
achieve the wanted performance and quality of service.

High level of flexibility can be obtained resorting
to software implementation on general purpose proces-
sors. However, as pointed out in [16], the requested
level of throughput can be hardly achieved with this
kind of implementation. This is mainly due to the high
number of elementary operations necessary to carry out
the single node exploration. In fact, ASIC based sphere
decoders are generally able to explore a tree node in
a clock cycle (one node per cycle architectures) [5] or
even multiple nodes per cycles [17]. This is obtained
by allocating dedicated hardware resources specifically
optimized with the aim of exploiting all potential paral-
lelism in the operations that have to be performed in the
node visit.

On the other hand, implementations based on general
purpose processors do not include customized hardware
resources and the number of elementary operations they
require to explore a node tends to be very high. This is
particularly true in soft-output SD, where the evaluation
of the two setsA andB defined in (12) and (14) involves
several compare and branch instructions.

In ASIPs, the flexibility coming from the processor
programmability is coupled to customized instruction
set and datapath, where fully dedicated hardware units
can be included to achieve better processing efficiency
on a specific class of applications than general purpose
processors. The novel ASIP architecture described in
this Section has been conceived for depth–first Sphere
Decoding algorithms. The ASIP contains dedicated
hardware resources to perform in a faster way some of
the operations involved in the tree exploration, and these
functionalities can be invoked by means of dedicated in-
structions. The designed ASIP can explore a node in an
average number of cycles equal to 12, when running the
soft–output version of the SD algorithm.

3.1. The Fundamental Structure of the ASIP
Each ASIP is characterized by a plain pipelined archi-

tecture based on four stages: the instruction fetch (IF),
the instruction decode (ID), the execution (EX) and the
write back (WB), as shown in Figure 1. A data memory

4

Figure 1: The fundamental structure of the ASIP

is not allocated, so that the algorithm only works on the
values stored in the registers. This allows the elimina-
tion of a pipeline stage, simplifying the architecture and
reducing the data and branch hazards to be handled.

Moreover IF, EX and WB stages are character-
ized by a very low complexity, with a reduced set
of instructions and addressing modes to be sup-
ported. The key novelty of the proposed proces-
sor comes from the choice of embedding algorithm–
specific hardware units in the register file, where sev-
eral frequently required functions are directly exe-
cuted. This approach is motivated by the intensive
use of registers and allows for a simple datapath. In
other words some registers, in addition to the normal
read and write operations, also support the execution
of specific processing tasks, which are made possible
through additional local hardware resources and without
involving the execution stage. These special functions
can be accessed using dedicated instructions optimized
for the tree exploration.

The size of the register file has an impact on the
detector flexibility in terms of supported signal constel-
lation and number of antenna. The ASIP described in
this paper includes a register file sized to support QAM
constellations up to 64-QAM and 4 antennas at both
transmitting and receiving sides: the overall register
file size is equal to 187 bytes. However the flexibility
of the ASIP could be easily extended to higher order
systems by allocating a larger register file.

All the numerical values are represented using a 16
bit fixed–point format with 6 decimal digits. Two’s
complement is adopted. This choice guarantees al-
most the same performance as the floating point

model [11]. The datapath is designed to handle real
data and hence it requires a real–value decomposition of
the sphere decoding algorithm. While several authors
proved that complex-valued model results in a lower
number of visited nodes with respect to real-valued one
[5], it was shown in [18, 19] that the latter offers two
advantages: (i) it involves a lower global number of ele-
mentary real-valued operations and (ii) it allows for sim-
ple enumeration techniques. Moreover a real–valued
datapath occupies a lower silicon area.

3.2. The ASIP Registers and Special Instructions

Both the code running on the ASIP and the CP can ac-
cess the registers. To this purpose registers are classified
in two types according to the access mode: read-only
registers, whose content can not be modified;read-write
registers whose content can be modified. The access
mode to a register depends on both the selected register
and who is accessing it (the code or the CP). However, it
never happens that a register can be accessed in a read-
write way by both the code and the CP.

Several registers can be written neither by the CP nor
by the write-back phase of a standard instruction. How-
ever their contents can be updated by one or more spe-
cial instructions. Furthermore some configuration reg-
isters can be set by the CP, but the code cannot access
directly to their contents. These registers are initialized
to properly drive the enumeration process according to
the selected modulation and number of antenna.

Finally array of registers are implemented using ded-
icated index registers to select the element inside the
array.

In the following list, the ASIP registers and the
special instructions they support are described.

5

1. LEV register stores the current level in the tree.
It can be incremented or decremented by means
of two special instructions, LEVINC and LEV-
DEC. The end of the decoding is automatically
detected when LEVDEC is performed at the
root node (LEV = 0).

2. SI registers and enumeration: the SI register ar-
ray stores the current partial symbol. The up-
date of SI is handled by the SE real enumerator.
When the INITENUM instruction is executed,
the enumerator is initialized by performing the
rounded division in (9): the resulting value is
stored in the LEV th component of SI, which is
visible from the program. Then, each time the
ENUM instruction is called, the same compo-
nent is set to the following value according to
the SE enumeration order. In case all the values
have been enumerated, a branch is performed.

3. LANDAML, RESULT registers and list admin-
istration: the RESULT register stores several
values used to compute the final soft bits. In
particular it stores the current ML candidate
symbol (gray-encoded), together with accumu-
lated PEDs for ML solutions and best counter-
hypothesis, λML and λML

j,b . The ML value can
be read by means of special instruction LAN-
DAML. Soft bits are sent to the bus and re-
trieved by the CP after the end of the decoding.
A fast procedure is also available in order to re-
trieve hard bits in a lower number of cycles than
required for soft bits. Finally these registers
support the procedure for list administration:
special instructions UPDCHY and UPDML al-
low updating the counter-hypotheses and the
ML candidate respectively.

4. LWBND register initially stores the highest pos-
sible value allowed for the λML

j,b , i.e. the distance
of the counter-hypotheses from the received sig-
nal. When a new ML solution is reached, the
special instruction UPDML is executed on this
register to update the sum of the current λML

and the LLR clipping value.
5. SC, SCPRE registers are used to store and up-

date the maximum elements in both sets A and
B. This is done by means of two dedicated com-
parators.

6. ψ register contains ψ values defined in (8); when
the level in the tree is increased or decreased,
ψ amounts are updated by means of dedicated
multipliers and adders working in parallel. The
same technique is used in several ASIC imple-

mentations [11]. The ψ registers are initialized
by the CP with ŷ (4).

An example of special instruction embedded in the
register file is given in Figure 2, where the update of
ψ registers is detailed. The R matrix is initially writ-
ten by the scheduler entry by entry. The ψ vector
is also initialized to ŷi values, according to (7). The
shown architecture updates in parallel all ψ values:
at each executed LEVINC instruction, the current
symbol si is selected and each ψ is updated by sub-
tracting the right Rsi product. Indicated multipli-
ers are easily implemented by means of add & shift
operations, due to the values assumed by si symbols
[11]. It is worth noticing here that the reported ar-
chitecture is sized for handling r matrices up to 8×8.
However, if larger constellations or numbers of an-
tenna are required, the update of ψ registers can be
accomodate in multiple cycles.

The other special functions are implemented in a
similar way. This embedding approach allows a sim-
plification of the architecture, since it eliminates sev-
eral pipeline registers. It also offers high processing
throughput, as long as the critical path delay across
units that implement special functions is kept lim-
ited.

3.3. Additional registers and execution unit
The standard instructions are implemented in the EX

stage. They include arithmetic operations, immediate
value loading, the NOP (no operation), the RST (reset to
default), the SLEEP (freeze execution) and jump/branch
instructions. The branch instructions perform both the
comparison between two registers and the jump. As the
most important operations are executed in the RF
stage, the arithmetic unit in the EX stage is not a
critical element of the processor and it is not part
of the critical path. For this reason, no specific op-
timization has been necessary for the EX stage. On
the contrary, special instructions associated to previ-
ously described ASIP registers required carefull op-
timization at the RTL level, to reduce critical path
delay.

Additional registers that are not associated to spe-
cial instructions are:

• R0, R1, R2, R3 registers are general purpose
registers, not accessible from the bus and used
to store temporary values produced by the algo-
rithm.

• A0, A1, SO registers are general purpose reg-
isters that can be read by the CP. They can be

6

R R R R R R21 31 41 51 61 71
R R R R R R22 32 42 52 62 72

R R R R43 53 63 73
R R R54 64 74

R R65 75
R 76

R 00 R R R R R R R10 20 30 40 50 60 70

Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7

current symbol, si

R 11

R 33
R 44

R 55
R 66

R 77

Figure 2: Embedding ψ update in the register file

used to make available custom values to the out-
side of the ASIP. The four most significant bits
of the SO (Status in Output) are brought di-
rectly out of the ASIP and are used to imple-
ment interrupts.

• C0, C1 registers are general purpose registers
that can be read and written by the CP, but are
read-only from the point of view of the ASIP.

• TSR (Tree Size Register) is a configuration reg-
ister written from the bus to set the size of the
system (number of transmitting antennas and
signal constellation size). A dedicated register,
LEVMAX, is loaded with the value 2MT − 1,
which is frequently used by the algorithm.

• PED and PEDPRE registers form an array of
registers indexed by LEV. PED registers store
the PED values of nodes explored while de-
scending the tree in the depth–first sequence;
PEDPRE registers contain the PED values for
the parent nodes.

• R registers contain the elements of the R ma-
trix. In a multi–ASIP architecture, these regis-
ters are shared among the ASIPs and duplicated
in order to handle the channel updating phase.
While current elements of R are read, new val-
ues derived from the last channel estimation are
computed and stored. A multiplexer for each
ASIP selects which of the two channel matrices
has to be used. These multiplexers are driven by
a configuration bit in the BUS accessible MUX
register.

• LMAX register stores Lmax, the clipping value
for computed LLR.

3.4. The Soft Output SD Assembly Code

The core assembly code for both hard–output and
soft–output SD algorithms are reported as Listings 1 and
2 respectively.

Listing 1: Example of ASIP programming code: hard–output SD de-
coding

1 start: RST
LDIH 0x7F

3 LDIL LWBND 0xFF
loop: INITENUM

5 nextson: ENUM nomoresons
MUL R1 RDI SI

7 SUB R1 B R1
MUL R1 R1 R1

9 ADD PED PEDPRE R1
BGE PED LANDAML nomoresons

11 BEQ LEV LEVMAX leaf
LEVINC loop

13 leaf: UPDML
nomoresons: LEVDEC nextson

Note that in the arithmetic instructions, the first reg-
ister is the destination, while the following one (ones) is
(are) the source(s).

The initialization phase sets the register LWBND to
the highest possible value, that will be reduced in the
soft bit case each time a new ML candidate is found.

The main loop starts with the INITENUM instruc-
tion, that finds the Babai point and resets the enumera-
tor for the current level. This loop starts whenever the
exploration of the sons of a given node begins.

An inner cycle that starts form the ENUM instruc-
tion enumerates all the sons. For each son, the PED is
computed (instructions from 6 to 9 in both listings), and

7

then the two algorithms becomes different. In the hard-
output case, if the sphere constraint is violated, the code
returns to the parent node level, and selects the follow-
ing node based on the enumeration order. However the
soft output case distinguishes two cases accordingly to
Equations (11) and (13).

Listing 2: Example of ASIP programming code: soft–output SD de-
coding

start: RST
2 LDIH 0x7F

LDIL LWBND 0xFF
4 loop: INITENUM

nextson: ENUM nomoresons
6 MUL R1 RDI SI

SUB R1 B R1
8 MUL R1 R1 R1

ADD PED PEDPRE R1
10 BGE PED SCPRE nomoresons

BGE PED SC nextson
12 cont: BEQ LEV LEVMAX leaf

LEVINC loop
14 leaf: BLT PED LANDAML newML

UPDCHY
16 JMP nextson

newML: ADD LWBND PED LMAX
18 UPDML

JMP nextson
20 nomoresons: LEVDEC nextson

When a leaf is reached, an additional portion of code is
executed. In Listing 1 a check is performed to determine
if the leaf is a new ML candidate, and in that case the
candidate is updated. In Listing 2, also the case of a
new counter-hypothesis is checked, and the code calls
the appropriate special instruction.

4. Multi-ASIP architecture

The depth–first SD detection can be formulated
as an iterative tree search algorithm. However it
is characterized by heavy data dependencies that
leave almost no instruction level parallelism to be
exploited in the processor design. Look-ahead un-
rolling, coupled to a modified search strategy, was
successfully adopted in ASIC implementation to en-
able higher clock frequency with respect to tradi-
tional SD implementations [20]. Such solution pro-
vides better throughput at the cost of additional pro-
cessing complexity, which is not affordable in the
ASIP approach. Therefore, in order to achieve a suf-
ficient throughput, the final detector has to use more
ASIPs working in parallel, whose activity is scheduled
by the CP. Some structures are shared among the ASIPs,
such as the program memory and the R matrix, to reduce
the overall occupied area.

Figure 3 shows the complete system, with particular
attention to the interconnection bus between the CP and
the ASIPs. The CP operates as the master, while ASIPs

Figure 3: The architecture of the proposed system

are slaves. The upper part of the address generated by
the CP is used to select the recipient of the transaction
among the ASIPs (Decoder block in Fig. 3). The lowest
part of the generated adress is sent to each ASIP. How-
ever only the actual recipient uses this part of the ad-
dress to access internal ASIP registers that are mapped
on the bus: this allows for data or command transactions
between CP and the selected slave ASIP. The highest
part of the address is also used by the bus multiplexer to
send the read values returned by the selected ASIP to the
CP. The bus also includes interrupt signals (IRQ) com-
ing from each ASIP to the CP. These signals are used
when the detection of a symbol has been completed by
an ASIP to request the transfer of the achieved result and
the assignment of a new symbol vector to be detected.

4.1. Scheduling Policy

Most of MIMO detection algorithms show a non con-
stant detection time. In particular both hard–output
and soft–output SD algorithms perform tree search vis-
its that require unpredictable amounts of cycles, with a
statistical distribution depending on the signal to noise
ratio. The variable detection time results into a vari-
able throughput. The scheduling policy proposed in this
Section allows to achieve a constant throughput perfor-
mance.

The CP preprocesses the incoming symbols (compu-
tation of ŷ) and then stores them into a circular buffer
that is administered by the CP itself. The symbols in
the buffer are processed in a pipeline fashion, through a
three state FSM (Finite State Machine):

8

1. State 1: The symbol is not yet processed and it is
waiting for ASIP assignment

2. State 2: The symbol is being processed by the as-
signed ASIP

3. State 3: The symbol has been processed and it is
ready to be extracted from the buffer and made
available as an output of the MIMO detector.

When an ASIP completes the detection and becomes
available again for a new symbol vector, the CP chooses
a state 1 symbol from the buffer (giving priority to the
older ones), sends it to the ASIP through the bus and
starts the detection. Hence the state of the symbol be-
comes 2.

At the end of the processing, the ASIP raises its in-
terrupt request (IRQ) and waits for the answer from the
CP. When the CP is available, it retrieves the results us-
ing the bus and stores them in the correspondent buffer
element: therefore the detected symbol enters the state
3. As a consequence of the variable detection time, a
state 3 element cannot be immediately extracted from
the buffer: completion of all previously started symbols
needs to be achieved, in order to preserve the correct or-
der of returned symbols. As a consequence it is possible
that the several ASIPs remain in an inactive condition,
waiting for a single symbol, which requires a long pro-
cessing time.

To prevent this negative effect, the CP monitors the
time elapsed since the assignement of each symbol vec-
tor to an ASIP. If this time exceeds a certain threshold,
the ASIP is stopped (early detection stopping) and the
symbol is retrieved. In this case, only a partial tree
exploration is performed by the SD algorithm and there
is no guarantee that the returned solution is the ML
one. As a consequence the early detection stopping
has an impact on the BER performance. This effect
has to be controlled by carefully selecting the value
of the threshold. In the proposed approach, the time
threshold is dynamically chosen based on the number
of elements currently stored in the buffer: no limit to
the detection time is applied if more than half of the
buffer is empty, while a linearly decreasing threshold
is adopted from increasing percentages of buffer
occupation: the threshold ranges between 10 · Tsa f e and
0.5 ·Tsa f e when 50 % to 90% of the buffer is used. Tsa f e

is defined as the ratio between the number of allocated
ASIPs, NAS IP, and the requested rate of detected
symbols, fsymb: Tsa f e = NAS IP/ fsymb. So it is equal to
the average time that can be allowed to each ASIP to
cope with the symbol rate. Finally the time threshold
is set to 0.5 · Tsa f e if more than 90% of the buffer is
occupied. These choices have been selected by means

of extensive simulations performed under different con-
ditions of requested throughput and signal to noise ratio.

The Lmax clipping level introduced in Section 2.4 can
also be used as a parameter to control the detection time.
Larger values of Lmax provide a wider soft bit range,
while lower values offer a faster execution of the detec-
tion. A method has been developed in the implemented
CP to progressively reduce Lmax value while the num-
ber of state 1 and 2 elements in the buffer increases over
a certain threshold. A large number of symbols stored
in the buffer and waiting for ASIP assignement or com-
pletion of the detection indicates that the detection time
needs to be reduced; in this kind of situation, the current
value of Lmax is decreased by multiplying it by 0.99. On
the contrary, if the number of stored symbols that are
not yet processed is under the threshold, current Lmax is
multiplied by 1.01. The threshold has been chosen as a
fifth of the maximum buffer size.

The presented parameters have been found empiri-
cally, by performing simulations with different values
and policies, in order to optimize BER and throughput
performances.

The effects of the proposed scheduling policy and
Lmax control technique are described in the following
Section.

5. Simulation Results

In this Section, simulation results are reported for
a 4 × 4 MIMO system with 64-QAM modulation.
The complex–valued 64-QAM constellation has been
transformed into a real–valued 8 PAM. As a conse-
quence, the tree has M = 16 levels, with 8 sons per
node. An i.i.d. Rayleigh fading channel is assumed,
with perfect channel knowledge and unsorted QR
decomposition. The signal-to-noise ratio (S NR) is
defined as S NR = MT Es/N0, with Es = E[|s|2], s ∈ O.
In order to evaluate the achievable throughput, it
is assumed that system clock runs at 400 MHz: as
shown in Section 6, this is the best frequency value
resulting from the detector synthesis performed on
a 90 nm CMOS technology.

As a first simulation result, Figure 4 shows the
average throughput achieved while executing the
soft–output algorithm (with clipping level set to
L = 3) on both the designed ASIP and a well–known
general purpose processor, namely the StrongARM
SA-110. The two processors execute the same
version of the detection algorithm and reported
throughput values have been obtained by averaging

9

Figure 4: Througput performances offered by a single ASIP compared
to a general purpose processor (StrongARM SA-1100). Clipping level
is set to L=3.

the processing time taken for the detection of 800
symbols. Berkeley SIMIT 2.1 cycle accurate sim-
ulator [21] was used to evaluate the StrongARM
execution time, assuming the maximum supported
clock frequency (190 MHz).
From the comparison in Figure 4, it can be seen that
obtained results for the two implementations are
separated by more than two orders of magnitute.
Although higher throughput could be obtained
by executing the same application on a different
general purpose processors, maybe clocked at a
higher frequency, the large difference in Figure 4
clearly shows the potential of the ASIP approach,
which enables efficient execution while still offering
software flexibility.

In order to further show the performance provided by
the designed ASIP, two types of simulations have been
performed. In the unconstrained simulations, the early
detection stopping and the Lmax control are disabled:
this means that the ASIP is free to complete the tree
exploration according to the described algorithm and
a constant Lmax value is adopted. Full ML detection
is achieved in this case, but the resulting throughput
is not constant. By using a virtually unlimited buffer,
unconstrained simulations allow measuring the average
throughput of the detector.

In the constrained simulations, both early detection
stopping and Lmax control are enabled: in this case, a
thoughput constraint can be set and the simulation out-
come is the effect of adopted scheduling techniques on
the BER performance.

Figures 5 and 6 show the average throughput achiev-
able with a single ASIP detector, running hard–output

Figure 5: Throughput of a single ASIP with the hard-output algorithm
(unconstrained simulation)

Figure 6: Throughput of a single ASIP with the soft-output algorithm
(unconstrained simulation). Here L represents the selected clipping
level Lmax.

10

Figure 7: Throughput performances vs. the number of ASIPs, uncon-
strained hard-output simulation. Dotted lines indicate the throughput
performance achievable assuming unlimited bandwidth for the bus.

and soft–output algorithms respectively. The through-
put increases with the signal to noise ratio, Eb/N0, in
both cases and it is generally higher with hard–output
detection. The average throughputs obtained with three
different values of Lmax (0.4, 1 and 3) are given in Figure
6: it can be seen that soft–output decoding can approach
hard– output version in terms of throughput if the clip-
ping level is lowered from 3 to 0.4.

Figure 7 reports the average throughput obtained
with unconstrained simulations of several detectors
with different numbers of allocated ASIPs. The Figure
shows the effect of the generated bus traffic on the
throughput performance. As a consequence of the
overhead due to symbol and command transactions,
the total achievable throughput with n allocated ASIPs
(solid lines) is lower than n times the throughput of a
single ASIP detector (dotted lines). This is particularly
evident when the bus is working close to its bandwidth
limit, which is approximately equal to 130 106 soft–bits
per second, for the 4 × 4, 64-QAM MIMO system. The
adopted communication bus between CP and ASIPs
tends to become a performance bottleneck when n
is large. However results reported in Figure 7 show
that the average throughput achieved with n = 10
ASIPs is close to 100 Mbps with signal to noise ratio
of 22 dB and the performance penality introduced
by the bus is still acceptable. More efficent bus
architectures would be required for larger numbers
of allocated ASIPs.

Results obtained from constrained simulations per-
formed on a 10 ASIP detector operating with signal to
noise ratio equal to Eb/N0 = 20 dB are given in Figures
8 to 10. In particular, Figure 8 shows the average value

Figure 8: Average clipping level achieved by the constrained system
vs the requested throughput (10 ASIPs, Eb/N0 = 20dB)

Figure 9: Hard BER achieved by the constrained system vs the re-
quested throughput (10 ASIPs, Eb/N0 = 20 dB)

of the clipping level Lmax for different values of the re-
quested throughput and buffer size. The average clip-
ping level strongly depends on the requested through-
put, while it is almost independent of the number of el-
ements in the buffer. In fact a large buffer effectively
compensates for long detection times, but this does not
result in an increased clipping level.

The size of the buffer also affects the occupied area
and the detection latency. Moreover, due to the de-
scribed scheduling policy, the buffer size has an effect
on the probability of early detection stopping and hence
on the BER performance. Figure 9 reports the BER per-
formance measured at the output of the detector in the
case of unconstrained simulation of hard–output detec-
tion. It can be seen that the BER level grows worse
with requested throughput, especially after 140 Mbit/s,
when the bus traffic comes close to bandwidth limits.
The BER plot also shows that performance can be im-

11

Figure 10: BER achieved at the output of the Viterbi decoder (con-
strained system with 10 ASIPs, Eb/N0 = 20 dB)

proved by increasing the buffer size. However, increas-
ing the buffer size above a certain limit does not provide
additional benefit: in fact, when this saturation limit is
reached, almost all the symbols are detected with no
early detection stopping. For instance, it can be seen
from Figures 8 and 9 that there is little advantage in
choosing size 100 instead of a 75, so a good value for
the buffer size is 75 in the considered case.

Finally Figure 10 gives the BER performance ob-
tained with the 10 ASIP soft–output detector concate-
nated with a Viterbi decoder. In this case, at the
transmitted side, a convolutional encoder (rate 1/2,
constraint length 3, and generator polynomials G1 =

(1, 1, 1) G2 = (1, 0, 1) receives source bits and feeds the
MIMO modulator with generated codewords; at the re-
ceiver side, soft information available at the output of
the MIMO detector is processed by a Viterbi decoder
[22]. Buffer size is here set to 100 and Eb/N0 = 20 dB.
A wide range of trade-offs between requested through-
put and obtained BER performance can be achived with
the described scheduling policy.

6. ASIP synthesis and comparisons

The ASIP unit was modelled using VHDL lan-
guage and synthesized with Synopsys Design Com-
piler using a 90 nm CMOS technology. Achievable
clock frequency is equal to 400 MHz, while obtained
area occupation is 0.093 mm2, corresponding to ap-
proximately 43,000 equivalent gates (GE) 1. Most of

1One GE is the area of a two input NAND gate, equal to 2.15 µm2

on the considered technology

Table 1: Occupied area for ASIP components with 90nm CMOS stan-
dard cell technology

ASIP stage Area (µm2)
IF 2860
RF 85534
EX 4908
whole ASIP 93504

Table 2: Stratix III implementation
Fclk,max 117.52 MHz
Family Stratix III
Device EP3SL50F484C2
Timing model Final
Logic Utilization 19%

Combinational ALUTs 6,189/38000 (16%)
Memory ALUTs 0/19000 (0%)
Dedicated logic registers 1981/38000 (5%)

Total pins 79
DSP block 18-bit elements 2/216 (<1%)

ASIP area is occupied by the RF stage (Table 1). Dis-
sipated power at the clock frequency of 400 MHz and
with Supply voltage of 1 V has also been estimated
after logic synthesis with Synopys Design Compiler
and is equal to 14.1 mW. Critical path delay is lo-
cated in the RF unit and equals to 2.3 ns.

The ASIP was also implemented for FPGA technol-
ogy using the software Quartus II 9.0: synthesis results
are shown in Table 2: achievable clock frequency is 117
MHz and 6,189 ALUTs are used in a Stratix III device.

Comparison to other similar implementations of
MIMO detectors is extremely difficult. Fair compar-
isons imply that the number of antennas, the modulation
method, the channel model, the finite precision arith-
metic and the signal to noise ratio are the same between
considered systems. Moreover only architectures syn-
thetized on the same type of implementation platform
should be compared, as different platforms have drasti-
cally different potentials in terms of cost, power dissipa-
tion and flexibility. As a matter of fact, only few ASIP
architectures are available in the literature for MIMO
detection. The key characteristics of two ASIP based
detectors [23, 16] are reported in Table 3, to enable com-
parison with the implementation described in this paper.
Table 3 also includes a recent ASIC detector [24], in or-
der to evaluate the cost and throughput overhead of the
ASIP approach with respect to a fully dedicated solu-
tion. When programmed to handle the 4 × 4 16-QAM

12

Table 3: Comparison with other works
Reference [23] [24] [16] this work

type ASIP ASIC ASIP ASIP
Antennas 4 × 4 2 × 2 4 × 4 4 × 4 2 × 2

Modulation 16-QAM 64-QAM 64-QAM 64-QAM 16-QAM 64-QAM
Algorithm KB LSD FSD KB LSD SESD STS

BER performance close to ML ML
Technology 130 nm 45 nm 130 nm 90 nm
Area (KGE) 26.6 70 25 43
fCK (MHz) 100 500 280 400
T (Mbps) 1 187 6.8 7.8 12.6 17.4

Cycles per bit 100 2.67 41.18 51.28 31.74 22.99

system, the proposed ASIP achieves better throughput
than the ASIP in [23], at the cost of a larger implemen-
tation complexity. If one wants to evaluate the VLSI
efficiency of an implementation by means of a unique
figure of merit, the throughput to area ratio (TAR) can
be used: for the 4 × 4 16-QAM system with signal–
to–noise ration Eb/N0 = 18 dB, the presented ASIP
achieves a TAR of 293 bps/GE (bit per second over
gate equivalent count), while 37.6 is obtained for the
ASIP in [23]. Lower area complexity (24 kGE) is re-
quired by the ASIP described in [16], which achieves
a throughput of 6.8 Mbps on a 2 × 2 64-QAM system:
these figures correspond to a TAR value of 272 bps/GE,
which is lower than the 404 bps/GE resulting from the
17.4 Mbps and 43 kGE reported in Table 3 for the
ASIP proposed in this paper. Moreover it must be con-
sidered that the processor in [16] only supports 2 × 2
MIMO systems, while the proposed ASIP was sized
to support up to the 4 × 4 64-QAM system.

The average number of cycles required per de-
tected bit is also reported in the last row of the Table.
This value provides a technology independent mea-
sure of the architecture efficiency in terms of pro-
cessing time. The proposed ASIP outperforms the
two previously published implementations; however
a large gap remains with respect to fully dedicated
ASICs, such as the one given in [24].

Current wireless communication standards require
throughput values higher than reported in Table 3 for
ASIP implementations. So multi–processor architec-
tures are necessary to achieve higher data rates. Ta-
ble 4 shows the performance that can be obtained
with four multi-processor architectures: the second col-
umn refers to a GPU–based implementation [25], us-
ing an NVIDIA Tesla C1060 graphic card with 240
stream processors running at 1300MHz. The third

Table 4: Complexity and throughput obtained with multi-processor
architectures

Reference [25] [23] [26] this work
type GPU ASIP GPU ASIP

Antennas 4 × 4 2 × 2 4 × 4
Modulation 64-QAM 16-QAM 64-QAM
Area (KGE) - 170 - 407
fCK (MHz) 1300 100 920 400
T (Mbps) 120 5.3 36 77

column gives results for the 5 interconnected ASIPs in-
troduced in [23]. Column four summarizes results
from a GPU implementation based on an NVIDIA
Quadro FX1700 card [26], with four stream multi–
processors running at 920 MHz. For this implemen-
tation, only performance achieved for a 2 × 2 16-
QAM system are available, while the other results
reported in the Table are related to 4× 4 systems. Fi-
nally complexity and throughput results obtained with
the parallel architecture proposed in this paper, targeted
to 10 interconnected ASIPs are provided in the last col-
umn. The global complexity of this multi–ASIP archi-
tecture is lower than 10 times the complexity of the sin-
gle ASIP solution, as some resources are shared among
the processors, such as the R memory and the CP. It
can be seen from the Table that despite of the huge pro-
cessing power available in the Nvidia cards, the pro-
posed multi–ASIP architecture provides competitive
throughput (77 Mbps, at SNR=18 dB), larger than
shown in [16] and lower than in [25]. Finally, when
compared to the implementation in [23], the proposed
multi–ASIP architecture requires 139% additional re-
sources, but offers a 14.7 times higher throughput.

13

7. Conclusions

A multi–ASIP architecture for MIMO detection is
proposed in this paper. The pipeline structure of the
ASIP is very simple to limit hardware complexity and
special instructions are associated to several internal
registers to achieve efficient computation of key pro-
cessing steps. Dynamic techniques are proposed to
schedule symbols in the multi–ASIP version of the de-
tector and to achieve a constant throughput. The ASIP
architecture can be reconfigured on the fly and offers a
large potential for flexibility. Not only the proposed sys-
tem is able to easily adapt to different system level pa-
rameters, but it can also run different algorithms, such
as hard–output and soft–output SD algorithms. The de-
signed detector proves that the ASIP based approach is a
viable solution to achieve high throughput and flexibil-
ity at the same time, in both hard–output and soft–output
MIMO detectors.

References

[1] A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wire-
less Communications, Cambridge Univ. Press, 2003.

[2] E. Viterbo, J. Boutros, A universal lattice code decoder for fad-
ing channels, Information Theory, IEEE Transactions on 45 (5)
(1999) 1639 –1642. doi:10.1109/18.771234.

[3] B. Hassibi, H. Vikalo, On the expected complexity of integer
least-squares problems, in: Acoustics, Speech, and Signal Pro-
cessing, 1993. ICASSP-93., 1993 IEEE International Confer-
ence on, Vol. 2, 2002, p. II. doi:10.1109/ICASSP.2002.1006038.

[4] B. Hochwald, S. ten Brink, Achieving near-capacity
on a multiple-antenna channel, Communications,
IEEE Transactions on 51 (3) (2003) 389 – 399.
doi:10.1109/TCOMM.2003.809789.

[5] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner,
H. Bolcskei, Vlsi implementation of mimo detection using the
sphere decoding algorithm, Solid-State Circuits, IEEE Journal
of 40 (7) (2005) 1566 – 1577. doi:10.1109/JSSC.2005.847505.

[6] C. Studer, A. Burg, H. Bolcskei, Soft-output sphere decod-
ing: algorithms and VLSI implementation, Selected Areas in
Communications, IEEE Journal on 26 (2) (2008) 290 –300.
doi:10.1109/JSAC.2008.080206.

[7] J. Van Praet, G. Goossens, D. Lanneer, H. De Man, Instruction
set definition and instruction selection for ASIPs, in: High-Level
Synthesis, 1994., Proceedings of the Seventh International Sym-
posium on, 1994, pp. 11 –16. doi:10.1109/ISHLS.1994.302348.

[8] M. Damen, H. El Gamal, G. Caire, On maximum-likelihood
detection and the search for the closest lattice point, Informa-
tion Theory, IEEE Transactions on 49 (10) (2003) 2389 – 2402.
doi:10.1109/TIT.2003.817444.

[9] C. Schnorr, M. Euchner, Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems, Math. Com-
putat. 66 (2) (2004) 181–191.

[10] E. Agrell, T. Eriksson, A. Vardy, K. Zeger, Closest point search
in lattices, Information Theory, IEEE Transactions on 48 (8)
(2002) 2201 – 2214. doi:10.1109/TIT.2002.800499.

[11] B. Cerato, G. Masera, E. Viterbo, Decoding the Golden
Code: A VLSI design, Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on 17 (1) (2009) 156 –160.
doi:10.1109/TVLSI.2008.2003163.

[12] E. Zimmermann, D. Milliner, J. Barry, G. Fettweis, Optimal
llr clipping levels for mixed hard/soft output detection, in:
Global Telecommunications Conference, 2008. IEEE GLOBE-
COM 2008. IEEE, 2008.

[13] J. Lee, S.-C. Park, S. Park, A pipelined VLSI architecture for
a list sphere decoder, in: Circuits and Systems, 2006. ISCAS
2006. Proceedings. 2006 IEEE International Symposium on,
2006.

[14] K. Lee, B. Daneshrad, VLSI implementation of a quasi-ML, en-
ergy efficient fixed complexity sphere decoder for MIMO com-
munication system, in: Circuits and Systems (ISCAS), Proceed-
ings of 2010 IEEE International Symposium on, 2010.

[15] C.-H. Liao, T.-P. Wang, T.-D. Chiueh, A 74.8 mW soft-output
detector IC for 8x8 spatial-multiplexing MIMO communica-
tions, Solid-State Circuits, IEEE Journal of 45 (2) (2010) 411
–421. doi:10.1109/JSSC.2009.2037292.

[16] J. Antikainen, P. Salmela, O. Silveny, M. Juntti, J. Takala,
M. Myllyla, Fine-grained application-specific instruction set
processor design for the k-best list sphere detector algorithm, in:
Embedded Computer Systems: Architectures, Modeling, and
Simulation, 2008. SAMOS 2008. International Conference on,
2008, pp. 108 –115. doi:10.1109/ICSAMOS.2008.4664853.

[17] B. Wu, G. Masera, A novel VLSI architecture of fixed-
complexity sphere decoder, in: Digital System Design: Archi-
tectures, Methods and Tools (DSD), 2010 13th Euromicro Con-
ference on, 2010, pp. 737 –744. doi:10.1109/DSD.2010.10.

[18] S. Lee, J. Lee, S. Seo, S. C. Park, VLSI implementation of area-
efficient list sphere decoder, in: International Symposium on In-
telligent Signal Processing and Communications, ISPACS 2006,
2006, pp. 610 – 613.

[19] M. Myllyla, M. Juntti, J. R. Cavallaro, Implementation aspects
of list sphere detector algorithms, in: Global Telecommuni-
cations Conference, 2007. GLOBECOM ’07. IEEE, 2007, pp.
3915 –3920. doi:10.1109/GLOCOM.2007.744.

[20] M. Troglia Gamba, G. Masera, Look-ahead sphere decoding:
algorithm and VLSI architecture, Communications, IET 5 (9)
(2011) 1275 –1285. doi:10.1049/iet-com.2010.0523.

[21] W. Qin, S. Malik, Simit-ARM: A series of free instruction-set
simulators and microarchitecture simulators.
URL http://embedded.eecs.berkeley.edu/mescal/

forum/2.html

[22] S. Benedetto, E. Biglieri, V. Castellani, Digital Transmission
Theory, Prentice Hall, 1987.

[23] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala,
M. Myllyla, Application-specific instruction set processor im-
plementation of list sphere detector, in: Signals, Systems
and Computers, 2007. ACSSC 2007. Conference Record of
the Forty-First Asilomar Conference on, 2007, pp. 943 –947.
doi:10.1109/ACSSC.2007.4487358.

[24] P. Bhagawat, R. Dash, G. Choi, Systolic like soft-detection ar-
chitecture for 4x4 64-QAM MIMO system, in: Design, Au-
tomation Test in Europe Conference Exhibition, 2009. DATE
’09., 2009, pp. 870 –873.

[25] M. Wu, Y. Sun, S. Gupta, J. Cavallaro, Implementation of a
high throughput soft MIMO detector on GPU, Journal of Signal
Processing Systems 64 (2011) 123–136, 10.1007/s11265-010-
0523-4.
URL http://dx.doi.org/10.1007/s11265-010-0523-4

[26] T. Nylånden, J. Janhunen, O. Silven and, M. Juntti, A GPU im-
plementation for two MIMO-OFDM detectors, in: Embedded
Computer Systems (SAMOS), 2010 International Conference
on, 2010, pp. 293 –300. doi:10.1109/ICSAMOS.2010.5642054.

14

