
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Hose rate control for P2P-TV streaming systems / Birke, ROBERT RENE' MARIA; C., Kiraly; Leonardi, Emilio; Mellia,
Marco; Meo, Michela; Traverso, Stefano. - STAMPA. - (2011), pp. 202-205. (Intervento presentato al  convegno IEEE
P2P tenutosi a Kyoto, Japan nel August 2011) [10.1109/P2P.2011.6038736].

Original

Hose rate control for P2P-TV streaming systems

Publisher:

Published
DOI:10.1109/P2P.2011.6038736

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2495552 since:

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855 USA



1

Hose Rate Control for P2P-TV Streaming Systems
R. Birke1, C. Kiraly2, E. Leonardi3, M. Mellia3, M. Meo3, S. Traverso3
2IBM Zurich Research Lab., Switzerland – email: bir@zurich.ibm.com

2University of Trento, Italy – email: kiraly@disi.unitn.it
3Politecnico di Torino, Italy – email:{firstname.lastname}@polito.it

Abstract—In this paper we consider mesh based P2P streaming
systems focusing on the problem of regulating peer upload rate to
match the system demand while not overloading each peer upload
link capacity. We propose Hose Rate Control (HRC), a novel
scheme to control the speed at which peers offer chunks to other
peers, ultimately controlling peer uplink capacity utilization. This
is of critical importance for heterogeneous scenarios like the one
faced in the Internet, where peer upload capacity is unknown
and varies widely.

HRC nicely adapts to the actual peer available upload band-
width and system demand, so that users’ Quality of Experience
is greatly enhanced. Both simulations and actual experiments
involving up to 1000 peers are presented to assess performance in
real scenarios. Results show that HRC consistently outperforms
the Quality of Experience achieved by non-adaptive schemes.

I. I NTRODUCTION

In mesh based Peer-to-Peer streaming (P2P-TV) systems,
the real-time encoded video is sliced in small pieces called
chunks, which are distributed over an overlay topology ex-
ploiting a fully distributed epidemic approach. Chunks have to
be received by peers within a deadline of few seconds in order
to guarantee real-time constraints. In these systems, download
rate is dictated by video rate, which is limited by definition;
the source peer emits chunks in real time at “constant” rate
and all peers must trade them minimizing delays and losses
to guarantee the best Quality of Experience (QoE) to users.

Peers are usually organized into a generic overlay topology,
and neighboring peers exchange chunks periodically. To avoid
chunk duplications at the receiver, a preliminary trading phase
is required between neighbor pairs to agree on the chunks to
be sent. The trading phase requires the exchange of messages:
an offer message sent by the sendera to the neighborb
containing the list of the chunksa can offer (those within
the deadline it possesses), and a reply message (called select)
containing the list of chunks which have been selected by
b. A careful design of the trading scheme is needed to avoid
that the additional signalling delay translates into an excessive
delay. This paper focuses on the design of the trading scheme,
proposing a simple algorithm to control the rate at which
chunks are offered by peers to neighbors.

To transmit chunks, UDP is typically preferred by actual
P2P-TV application [1] to avoid both the burden of handling
TCP and the unnecessary delay due to retransmissions and
congestion control. However, this poses the problem of how
to handle the congestion control and, in particular, how to limit
the amount of information a peer transmits, being download
rate limited by video-rate. Controlling therefore the uplink

bandwidth utilization is a key problem, which has been so far
marginally considered by the research community. The design
of trading mechanisms requires that a number of parameters is
finely tuned to achieve optimal results, and the optimal setup,
in its turn, depends on the specific scenario, which is typically
unpredictable due to the variability of network conditionsand
to peer heterogeneity.

Considering the trading scheme, the most critical parameter
is the number of “offers” (messages advertising the list of
possessed chunks) a peer should send in parallel, i.e., the
number of activesignalling threads. If this number is too
small, the delivery rate of chunks is small, thus upload
bandwidth is under-utilized. Conversely, if this number istoo
large, the committed workload would overflow transmission
resources, impairing perceived quality of the video stream.

In this paper, we propose a scheme, calledHose Rate
Control, HRC, to automatically adapt the number of signalling
threads to the current network scenario. By doing so, the
scheme implements a peer aggregate transmission rate control
that aims at jointly exploiting the peer upload capacity and
improving QoE of users reducing as much as possible chunk
delivery delays. In other words, the scheme controls the
bandwidth allocation on the peer uplink channel.

The HRC objective is to exploit the upload bandwidth of
peers while not increasing queuing delay, therefore targeting
a less-than-best-effort policy being less aggressive thanthe
TCP congestion control. This is an explicit design choice that
aims at tightly controlling chunk delivery delay and chunk
delivery probability, i.e., minimizing packet loss and lengthly
retransmissions.

We implemented HRC in “WineStreamer”, the new P2P-TV
application of EU-FP7 NAPA-WINE STREP project Napa-
Wine Project [2]. This allows us to provide experimental
results on swarms of up to 1000 peers in a controlled envi-
ronment. Simulation and experimental results show that, with
respect to non adaptive mechanisms, HRC optimizes resource
utilization, consistently improving system performance and
QoE that we evaluate on real video sequences by computing
the SSIM (Structural Similarity Index) [3].

II. SYSTEM DESCRIPTION

We consider a system in which a source segments the video
stream into chunks and injects them in the overlay network.
Let N be the number of peers composing the overlay. The
system must deliver every generated chunk within a deadline
called playout delay, Dmax. If the chunk age is greater than
Dmax, the chunk is useless and is not traded anymore.
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Figure 1: Schematic representation of the peer chunk trading
mechanism.

Chunks are transmitted by peers to their neighbors in a
swarm-like fashion; the overlay topology is defined by the set
of peers and virtual links connecting them. Since the actual
design of the overlay topology is out of the scope of this
paper, we consider the simplest case in which the overlay
network is built on a random basis, a common assumption
in the literature [4], [5].

Since video chunks are transmitted over the network, the
intuition suggests to keep them small, e.g., few IP packets,to
minimize the packetization delay at the source, the store-and-
forward delay at the peers and the chunk corruption probability
due to packet loss. In what follows, we therefore choose that
1 chunk contains exactly 1 video frame, e.g., average chunk
size is 5kB for a 1Mb/s encoding rate of a25 fps video.
This mapping scheme minimizes the chunk size, thus allowing
a stricter real-time streaming. Furthermore, the roundingat
frame boundaries minimizes the impact of losses, avoiding
that a loss of a chunk affects several frames due to partial
delivery of information, e.g, missing headers.

A. Chunk Trading Mechanisms

The signalling mechanism used to exchange chunks is a
trading scheme similar to the one used in other mesh-based
P2P-TV systems [6], [7]. A chunk is sent from a peer to one of
its neighbors after a trading phase. Peera maintains a number
of trading threads, Na.

Each signalling thread evolves as follows: peera chooses
one of its neighborsb and sends it anoffer message that
contains the set of chunks younger thanDmax that a pos-
sesses. Upon receiving the offer message,b replies with a
select message to request one desired chunk that the receiver
marks aspending until it is correctly received; a pending chunk
cannot be requested and cannot be published. When the select
message is received bya:

• if no chunk was selectednegative select, a new offer message
can be sent.

• if a chunk was requested in the select message (positive
select), a inserts it in its transmission queue that is served
in a FIFO order.
Onceb has completely received the previously selected chunk,
it sends anACK message toa. So that whena receives an ACK
message, a new offer message can be sent.

Peera is committed to send all the chunks requested in all
the received positive selects. Fig. 1 represents the signalling
messages and chunks exchanged by peera with its neighbors
over time. The numberNa of signaling threads limits the
number of chunks the peer can offer, and thus control the
upload capacity utilization of the peer. The key parameter to
set in this mechanism isNa, which is the equivalent of the
window size in a window protocol.

For thepeer selection and thechunk selection policies we
make the simplest possible choices: peera chooses the peer
to contact at random within the set of its neighbors, and the
neighbors choose the chunks to select at random among the
ones they need. This policy is also known in the literature as
“Random Peer - Random Useful Chunk selection” [8].

B. The core of Hose Rate Control

The basic idea is to control the rate at which chunks are
sent by peera by adjusting the number of active threadsNa

(equivalent to the window size in a window protocol), so that
the queuing delay at the transmission queue is at a given
(small) target.Na controls the queue at peera: if it is too
large, delay increases, deteriorating performance; if it is too
small, peer available upload bandwidth is not well exploited.
Then, if the queuing delay is large,Na is decreased, and
vice-versa. More in detail, letWa be the real internal control
variable such thatNa = ⌊Wa⌋. For every neighborb, peer
a maintains an estimate of the minimum Round Trip Time
RTTab that can be computed/updated every timea receives
a select message. Whena receives an acknowledge fromb,
it estimates the queuing delay incurred by the chunk in the
transmission queue, aŝD = t

(a)

rx,ack− t
(a)

tx,select− RTTab,
i.e., subtracting aRTTab from the difference between the
time at which the acknowledge was received and the time
at which the chunk was enqueued.D̂ is then compared with a
prefixed target value,D0, andWa is updated according to the
following rule: Wa(n)←Wa(n− 1)− (D̂−D0). Na is then
increased/decreased by∆Na = ⌊Wa(n)⌋−⌊Wa(n−1)⌋. Then,
if ∆Na = 0, the number of active threads is not changed, and
peera is allowed to send a new offer to one of its neighbors. If
∆Na > 0, the number of active threads is increased, and peer
a is allowed to send two or more offers to its neighbors. At
last, if ∆Na < 0, the number of active threads is decreased,
and current thread is stopped (no new offer is sent).

III. E VALUATION BY SIMULATION

A. Simulation scenario and assumptions

All simulation results shown in this paper have been ob-
tained withP2PTV-sim an open source event driven simulator
available from [2]. In our scenario, peers are partitioned in
four classes based on their upload capacity: 15% of peers
are in Class 1 with upload bandwidth equal to 5Mb/s±
20%, 35% in Class 2 with 1.6Mb/s± 20%, 35% in Class
3 with 0.64Mb/s± 20%, 15% in Class 4 with negligible
upload bandwidth. The video source belongs to Class 1. The
average bandwidth per peer isE[Ba] = 1.25Mb/s. In each
simulation Dmax is set to6s and we considerN = 2000
peers. According to the assumption that the bottleneck is at
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Figure 2: Queuing delay (left),Na (center) and throughput (right) vs. time for flash crowd.

the peer upload link, the model of the network end-to-end
path is almost transparent: it is simply modeled by a delay
lab that is added to the transmission time of all the packets
flowing from a to b. End-to-end latencies are taken from the
experimental dataset of the Meridian project [9]; the overall
mean latency isE[lab] = 39ms.

The well-known Pink of the Aerosmith video sequence
(352x240p resolution, 25fps, H.264/AVC Codec) is considered
as benchmark. A hierarchical type-B frames prediction scheme
has been used, obtaining 4 different kinds of frames that, in
order of importance, are: IDR, P, B and b (GOP structure has
been set to IDR x 8{P,B,b,b}). The video consists of 3000
frames, which correspond to about 120s of visualization. The
nominal video rate of the encoderrs is a free parameter that
we vary to enforce different values of the system load defined
as ρ = rs/E[Ba]. The source node generates a new chunk
at regular time, i.e., every new frame. 40B long signalling
messages are considered.

The overlay topology is randomly generated at the begin-
ning of a simulation by letting each peer randomly select30
other peers as its neighbors. Since connections are bidirec-
tional, the average number of neighbors for a peer is equal to
60. As we simulate a couple of minutes of the system behavior,
we neglect the effect of churning so that the topology is static
for the whole simulation run. Curves represented in Fig. 3 are
obtained averaging the results of four random topologies.

Chunk loss probability and delivery delay are the perfor-
mance indexes typically adopted by the networking com-
munity, but they provide only a partial view of the actual
performance of a P2P-TV system, the user perceived quality.
In multimedia and signal processing communities, instead,
the evaluation of the perceived quality is considered manda-
tory [10], [11]. To this extent, performance is expressed in
terms of average Structural Similarity Index (SSIM) [3] which
has been designed to improve on traditional methods like
Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error
(MSE), which have proved to be inconsistent with human eye
perception. It is a highly non linear metric in decimal values
between -1 and 1. Values above 0.95 are typically considered
of good quality. In our simulation scenario, SSIM has been
computed considering video frames received by 100 peers (25
for each class), and then averaging among all of them. The
initial and final 10s of video have been discarded to focus on
steady state performance.

B. Transient analysis

We consider a scenario whereD0 is set to 100ms and
in which the system operating point is abruptly modified at

t = 30s: a sudden ingress of 400 new peers with negligible
upload-bandwidth and a contemporary reduction by50% of
the available upload bandwidth of all peers belonging to Class
3 happens. Given video raters = 1Mb/s, this causes the
system loadρ to shift from 0.8 to 1.1. Even if this scenario is
rather artificial, it has been selected because it maximizesthe
stress on the control scheme. Fig. 2 reports the evolution ofNa

(center) and throughput (right) for three sample peers,a, b and
c, with upload bandwidth of4, 2 and1Mb/s, respectively. The
evolution of peera queue delayD̂(t) is also reported (left).
When ρ = 0.8, Na, Nb and Nc adapt to different values,
reflecting each peer’s ability to contribute to chunk diffusion.
Since ρ < 1, not all system capacity is required, andNa

rapidly grows to its maximum valueNa = Wmax = 53, i.e.,
the number ofa’s neighbors. Att = 30s, the HRC system
reacts to the sudden system condition variations. In particular,
for the high bandwidth peera, Na initially increases, since
the number of its neighbors increases and its capacity was
not fully exploited (its queuing delay still being smaller than
D0). Then, the increased system load boosts the percentage of
offers that are positively selected, causing additional queuing
delay, so thatNa decreases. After a quick transient, upload
rate matches each peer upload capacity, and queuing delay
reaches the targetD0.

C. Steady-state analysis

In this section, we focus on the steady-state performance of
HRC and we compare it with non-adaptive schemes that use a
fixed value ofNa. Fig. 3 compares the HRC system forD0 =
150ms and200ms and the non-adaptive schemes in whichNa

is fixed. The video raters is increased (reported on bottom x-
axis) to observe the performance of the system of increasingρ
(reported on top x-axis). Whenρ < 1, the SSIM increases for
increasingrs thanks to the higher quality of the encoded video
(Encoded Video Quality, EVQ, curve in the plot). As soon
as the system is overloaded, the SSIM rapidly drops due to
missing chunks which impair the quality of the received video.
In all scenarios, HRC outperforms the non-adaptive scheme,
for any values ofNa. Schemes with too small values ofNa

do not fully exploit the system bandwidth, e.g.,Na = 10;
schemes with too large values ofNa tend to overload the peer
transmission queue leading to an unnecessary increase of the
chunk delivery delay, e.g.,Na = 40. Even if performance of
the scheme withNa = 20 are comparable with that of HRC,
setting the value ofNa is very critical, since the optimal value
depends on other system parameters, such as the peers upload
bandwidth distribution, that, besides being difficult to know,
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Figure 3: Average SSIM of HRC and non-adaptive schemes
versus the system load. Simulation results, 2000 peers.

are variable in time due to interfering traffic, as seen in Fig.
2. We have performed a more extensive set of simulations to
assess the benefits of HRC. Due to lack of space we do not
report them here, but we prefer to present some experimental
results we collected from real implementation of HRC.

IV. EVALUATION BY EXPERIMENT

The HRC controller has been implemented into
“WineStreamer” P2P-TV application and we present
results collected by running the application in a controlled
test-bed composed of 200 PCs. Each PC runs 5 copies of
the application simultaneously, creating a swarm of 1000
peers. Each peer upload capacity has been artificially limited
using a packet level rate limiter embedded in our P2P-TV
application: 10% of peers have 5Mb/s, 35% have 1.6Mb/s,
35% have 0.64Mb/s and 20% have 0.20Mb/s, corresponding
to an average per peer capacity of 1.32Mb/s. Latencies among
peers randomly varies between 10ms and 20ms (so that the
RTT varies in[20, 40]ms). Againt thePink of the Aerosmith
video has been encoded at different rates and “streamed”
over the swarm looping the video 5 times. After discarding
the initial 12min of video, each peers saves 100s of the
received frames on disk. SSIM is then computed against the
original YUV video for all video traces; then average SSIM
is computed over all peers. Simple random overlay topology
and random peer/random chunks selection are adopted. The
playout delayDmax is set to 6s, the HRC queuing targetD0

is set to 200ms, and the maximum number of offer threads
Wmax is set to twice the number of current neighbors.

Focusing on the Quality of Experience, again expressed
with SSIM index1, Fig. 4 compares HRC behavior against non
adaptive schemes in whichNa = 10, 30, 20, 40 respectively.
Results are similar to the one of Fig. 3: all schemes perform
similarly when the system is under-loaded, e.g,rs = 400kb/s,
but as soon asrs increases, HRC dramatically outperforms
any fixed schemes. Indeed, the correct choice ofNa is critical:
it must be small to prevent from overloading low bandwidth
peers, while it must be large to avoid under-utilizing high
bandwidth peers. Any fixed values would cause a mismatch,
impairing the overall system performance.

1SSIM is smaller than 1 since we are considering the encoding loss too
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V. CONCLUSIONS

In this paper we focused on the trading phase of mesh-
based P2P-TV systems. We proposed Hose Rate Control, an
algorithm to tune the number of chunks a peer offers to
its neighbors. HRC aims at efficiently exploiting the peer
upload bandwidth by controlling the queuing delay suffered
by transmitted chunks in the peer uplink, which is today the
typical bottleneck for P2P-TV systems. We implemented the
proposed mechanism in a real client, coping with the actual
implementation issues and presenting actual experimentalre-
sults considering swarms up to 1000 peers. Our results show
that HRC reduces chunks delivery delay and loss probability,
providing much better Quality of Experience for users even
when the system load is close to 1.

REFERENCES

[1] D. Ciullo, M. A. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi,
M. Telek, and P. Veglia, “Network awareness of P2P live streaming
applications: a measurement study,”IEEE Transanctions on Multimedia,
vol. 12, no. 1, pp. 54–63, January 2010.

[2] NAPA-WINE, http://www.napa-wine.eu.
[3] Z. Wang, A. C. Bovik2, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April
2004.
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