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Abstract—In this paper, we conduct a detailed study of the
YouTube CDN with a view to understanding the mechanisms
and policies used to determine which data centers users download
video from. Our analysis is conducted using week-long datasets
simultaneously collected from the edge of five networks - two
university campuses and three ISP networks - located in three
different countries. We employ state-of-the-art delay-based geolo-
cation techniques to find the geographical location of YouTube
servers. A unique aspect of our work is that we perform our
analysis on groups of related YouTube flows. This enables us to
infer key aspects of the system design that would be difficult
to glean by considering individual flows in isolation. Our results
reveal that while the RTT between users and data centers plays a
role in the video server selection process, a variety of other factors
may influence this selection including load-balancing, diurnal
effects, variations across DNS servers within a network, limited
availability of rarely accessed video, and the need to alleviate
hot-spots that may arise due to popular video content.

Keywords-Content distribution networks; Web and internet
services

I. INTRODUCTION

Over the last few years, video traffic has become prominent

on the Internet. A recent report [1] shows that 15 to 25% of all

Inter-Autonomous System traffic today is video. YouTube is

probably the main source of video on the Internet today, with

2 billion videos viewed each day and hundreds of thousands

of new video uploads daily [2]. It is the third most visited

website in the Internet, according to www.alexa.com.

The rapid growth in popularity of YouTube has made it

the subject of several research studies. Much of the research

to date has focused on understanding user behavior, usage

patterns and video popularity [3]–[5], while others [6] have

looked at social networking aspects related to YouTube. Rela-

tively fewer works have looked at the YouTube infrastructure

itself, and large parts of its architecture and design remain

unknown to the research community. A recent notable work [7]

has greatly contributed to the understanding of the YouTube

Content Distribution Network (CDN) through an in-depth

analysis of traffic traces of a tier-1 Internet Service Provider

(ISP). However, much of this analysis has focused on the

architecture prior to the acquisition of YouTube by Google

Inc. It is unclear to what extent these observations continue to

hold today.

In this paper, we aim to obtain a detailed understanding of

the YouTube CDN and to quantify its effectiveness. Specifi-

cally, we are interested in studying how users’ video requests

are mapped to YouTube data centers. We are interested in

exploring the various factors that can influence the decision,

such as user proximity, server load, and popularity of video

content. Such insights can aid ISPs in their capacity planning

decisions given that YouTube is a large and rapidly growing

share of Internet video traffic today. A better understanding

could enable researchers to conduct what-if analysis, and

explore how changes in video popularity distributions, or

changes to the YouTube infrastructure design can impact ISP

traffic patterns, as well as user performance.

Obtaining such understanding is challenging given the pro-

prietary nature of the YouTube system. Even information

such as the location of the data centers that store content is

not publicly known. To tackle these challenges, we conduct

an analysis of traffic from the edge of five networks - two

university campuses and three ISP networks - located in three

different countries and two distinct continents. We consider a

one week-long dataset from each vantage point, all collected

at the same time. This allows us to study the server selection

algorithm under different scenarios, so that different phenom-

ena may appear in some datasets but not in others. While

prior work has analyzed traffic at the edge of a single campus

network (for e.g., [3], [4]), our work goes far beyond in terms

of the number and diversity of vantage points used.

As a first step, we map YouTube server IP addresses

obtained from our datasets to the nearest data centers. Prior

efforts at doing so [7], [8], have either relied on geolocation

databases [9], or on reverse Domain Name System (DNS)

lookup that can provide information regarding the server

location. However, while these techniques worked with the

earlier YouTube architecture, we find they do not apply or

perform poorly in the new design. Consequently, we use

CBG [10], a well known delay-based geolocation algorithm

to learn server locations.

Armed with server location information, we evaluate how

user requests are mapped to YouTube data centers. We show

that there are two mechanisms: The first is based on DNS

resolution which returns the server IP address in a data center;

the second relies on application-layer mechanisms in which

the server initially contacted can redirect the client to another

server in a possibly different data center. Our results indicate

that, given a network, most requests are directed to a preferred

data center. This is in contrast to [7] which indicated that the

earlier YouTube infrastructure would direct requests from a

network to a data center proportional to the data center size.



Further, our results indicate that the RTT between data centers

and clients in a network may play a role in the selection of

the preferred data center.

More surprisingly however, our results also show that there

do exist a significant number of instances where users are

served from a data center that is not the preferred. Our analysis

is informed by techniques we employ to identify groups of

YouTube flows that correspond to a single video request.

A deeper investigation reveals a variety of causes. These

include load balancing across data centers, variations across

DNS servers within a network, alleviation of hotspots due to

popular video content, and accesses of sparse video content

that may not be replicated across all data centers. Overall the

results point to the complexity of server selection algorithms

employed in YouTube, and the myriad factors that must be

considered for the successful design of a large video content

distribution network.

II. YOUTUBE BASICS

YouTube is the most popular video-sharing website on

which users can watch videos on demand. It was bought by

Google Inc. in November 2006 and it is now integrated in

the Google offering. In this section we present a high level

description of the steps to retrieve a video from the YouTube

system as sketched in Figure 1.

When accessing videos from the YouTube site at

www.youtube.com, the user either browses the portal based

system looking for the desired content, or accesses directly the

video web page following a video page URL (step 1). Until the

actual video web page is accessed, mostly static information

and small thumbnails of suggested videos are presented.

Once the actual video has been selected, the front-end

replies with a HTML page in which the video is embedded

using an Adobe Flash Player plugin, that takes care of the

download and playback of the video (step 2). The name of

the server that will provide the video is among the parameters

provided for the plugin and it is encoded using a static URL.

Then, the content server name is resolved to an IP address by

the client via a DNS query to the local DNS server (step 3).

Finally, the client will query the content server via HTTP to

get the actual video data (step 4).

We further elaborate on steps 3 and 4. First, the selection

of the IP address by the local DNS server in step 3 is not

arbitrary. In fact, the DNS resolution is exploited by YouTube

to route clients to appropriate servers according to various

YouTube policies, some of which we will discuss in this paper.

Second, it is possible that the preferred server cannot provide

the content and the client will be “redirected” by this server

to a different one, possibly in a different data center.

III. METHODOLOGY

To understand the internal mechanisms of the YouTube

CDN, we need to analyze the interactions between the user

and the content servers. We introduce our data collection tool

in Section III-A, and describe our datasets in Section III-B.
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Fig. 1. High level sequence of steps to retrieve content.

A. Collection tool

Our traces are collected using Tstat [11], an Open Source

passive sniffer with advanced traffic classification capabilities.

Tstat identifies the application that generates TCP/UDP flows

using a combination of Deep Packet Inspection (DPI) and

statistical classifiers. Tstat was found to perform well in [12].

Tstat has the capability to identify major components of the

current HTTP Web 2.0 traffic, including in particular YouTube

traffic. Classification is achieved by using DPI technology

to inspect the packet payload and then to identify YouTube

service specific strings. In this paper we rely on Tstat’s ability

to identify actual YouTube video traffic, corresponding to the

download of the Flash Video (flv) or H.264 (MP4) video file

to be played back to the user by the Flash plugin. YouTube

video downloads embedded in third party sites such as news

sites or blogs are also correctly classified, since the same

mechanisms are adopted by the Flash plugin. For more details

on the classification algorithm implemented in Tstat, we refer

the reader to the source code available from [13].

To uniquely identify a YouTube video, Tstat records the

video identifier (VideoID), which is a unique 11 characters

long string assigned by YouTube to the video. This is the same

ID that is used when accessing the video web page in the URL.

Furthermore, Tstat also records the actual resolution of the

video being requested. At the end, the VideoID and resolution

identify the actual video stream served to the player.

B. Datasets

Using Tstat, we collected datasets corresponding to

flow-level logs where each line reports a set of statistics

related to each YouTube video flow. Among other metrics,

the source and destination IP addresses, the total number of

bytes, the starting and ending time and both the VideoID and

the resolution of the video requested are available.

We collected datasets from five locations spread across

three countries including Points-of Presence (PoP) in nation-

wide ISPs and University campuses. In all cases, a high-end

PC running Tstat was installed to analyze in real time all

the packets going to and coming from all the hosts in the

monitored PoPs. For all these datasets, we focus on a one

week time period, between September 4th and September 10th,



TABLE I
TRAFFIC SUMMARY FOR THE DATASETS

Dataset YouTube flows Volume [GB] #Servers #Clients

US-Campus 874649 7061.27 1985 20443

EU1-Campus 134789 580.25 1102 1113

EU1-ADSL 877443 3709.98 1977 8348

EU1-FTTH 91955 463.1 1081 997

EU2 513403 2834.99 1637 6552

2010. The collection from all vantage points starts at 12:00am,

local time.

Table I summarizes the characteristics of the datasets,

reporting the name, the total number of YouTube video flows

and corresponding downloaded volume of bytes. Finally, the

number of distinct IP addresses considering both YouTube

servers and clients in the PoP are reported. In total, more than

2.4 millions YouTube videos have been observed by more than

37,000 users in the whole dataset.

We can divide the 5 datasets collected into two categories:

• ISP Networks: The datasets have been collected from

nation-wide ISPs in two different European countries. EU1-

ADSL and EU1-FTTH refer to data collected from two distinct

PoPs within the same ISP. The two PoPs differ in the type of

Internet access technology of their hosted customers. In EU1-

ADSL, all customers are connected through ADSL links and in

EU1-FTTH, all customers are connected through FTTH links.

The EU1 ISP is the second largest provider in its country. The

EU2 dataset has been collected at a PoP of the largest ISP in

a different country.

• Campus Networks: The datasets have been collected using
a methodology similar to the ISP setting. The Tstat PC is

located at the edge of each of the campus networks, and all

incoming and outgoing traffic is exposed to the monitor. We

collected datasets from two University campus networks, one

in the U.S. and one in a European country.

IV. AS LOCATION OF YOUTUBE SERVERS

We start our analysis studying the Autonomous System (AS)

in which YouTube video servers are located. We employ the

whois tool to map the server IP address to the corresponding

AS. Table II presents our findings for each dataset. The second

group of columns shows the percentage of servers and bytes

sent from the Google AS. Not surprisingly, most servers are

hosted in the Google AS (AS 15169). For instance, for the

US-Campus dataset, 82.8% of the servers are located in the

Google Inc. AS, serving 98.66% of all bytes. The third group

of columns shows that a small percentage of servers (and

an even smaller percentage of bytes) are still located in the

YouTube-EU AS (AS 43515). We therefore have an evidence

that since 2009 Google has migrated most content from the

YouTube original infrastructure (that was based on third party

CDNs) to its own CDN. The traffic served from the YouTube

networks is probably because of legacy configurations. This

contrasts with earlier studies such as [7], [8], according to

which the majority of servers were located in the YouTube

AS (AS 36561, now not used anymore).

TABLE II
PERCENTAGE OF SERVERS AND BYTES RECEIVED PER AS

Dataset
AS 15169 AS 43515 Same AS Others
Google Inc. YouTube-EU
servers bytes servers bytes servers bytes servers bytes

US-Campus 82.8 98.96 15.6 1.03 0 0 1.4 0.01

EU1-Campus 72.2 97.8 20.3 1.6 0 0 7.5 0.6

EU1-ADSL 67.7 98.8 28 0.94 0 0 4.3 0.26

EU1-FTTH 70.8 99 24.2 0.83 0 0 5 0.27

EU2 62.9 49.2 28.6 10.4 1.1 38.6 7.4 1.8

The fourth group of columns in Table II shows the percent-

age of servers and bytes received from within the same AS

where the dataset have been collected. Note that the values

are 0 for all datasets except EU2. The EU2 dataset indeed

shows that a YouTube data center is present inside the ISP

network. This data center serves 38.6% of the bytes in the

EU2 dataset. This results in the EU2 dataset having fairly

different performance than other datasets, as our analysis will

reveal later.

Finally, the last groups of columns aggregates the percent-

age of servers and bytes sent from other ASes, among which

CW (AS1273) and GBLX (AS3549) are the most likely one.

This confirms therefore that YouTube servers can be both

present inside an ISP, or in the Google network.

In the rest of this paper, we only focus on accesses to

video servers located in the Google AS. For the EU2 dataset,

we include accesses to the data center located inside the

corresponding ISP.

V. SERVER GEOLOCATION

In this section we present the techniques used to identify

the geographical location of the YouTube servers seen in our

datasets. The goal is to later use this information to analyze

the video server selection policies.

• Limitations of IP-to-location databases: One common

way to find the geographical location of an IP address is

to rely on public databases [8]. While such databases are

fairly accurate for IPs belonging to commercial ISPs, they

are known to be inaccurate for geolocation of internal IPs

of large corporate networks. For example, according to the

Maxmind database [9], all YouTube content servers found in

the datasets should be located in Mountain View, California,

USA. To verify this, we perform RTT measurements from

each of our vantage points to all content servers found in our

datasets. Figure 2 reports the Cumulative Distribution Function

(CDF) of the minimum RTT obtained to each server. We

clearly observe that there is a lot of variation in the mea-

surements, and in particular, many of the RTT measurements

for the European connections are too small to be compatible

with intercontinental propagation time constraints [14]. This

indicates that all servers cannot be located in the same place.

We note that Maxmind was useful in [8], probably because

most YouTube servers in the old infrastructure were reported

as located in San Mateo and Mountain View, California, USA.

Further, a recent work [7] adopts a different approach, where
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Fig. 2. RTT to YouTube content servers from each of our vantage points.

the location of the server is obtained directly from the server

name. However, this approach is not applicable to the new

YouTube infrastructure, where DNS reverse lookup is not

allowed. Therefore we decided to adopt a measurement-based

approach to systematically localize YouTube servers.

• Measurement based geolocation mechanism: CBG [10]

is a well-known geolocation algorithm that is based on simple

triangulation. A set of landmarks is used to measure the RTT

to a target. A simple linear function is then used to estimate

the physical distance between each landmark and the target.

This distance will become the radius of a circle around the

landmark where the target must be located. The intersection

among all circles is the area in which the target can be located.

We obtained the CBG tool from Gueye et al. [10] for our

evaluations. We used 215 PlanetLab nodes as landmarks: 97 in

North America, 82 in Europe, 24 in Asia, 8 in South America,

3 in Oceania and 1 in Africa. Then, we run RTT measurements

from each landmark to each of the YouTube servers that have

been found in our dataset, and identified the area in which

they are placed.

In Figure 3 we evaluate the confidence region of CBG,

i.e. the area inside which the target IP should be located.

The picture shows the CDF of the radius of the confidence

region for all servers found. Separate curves are shown for

IPs in U.S. and Europe. Note that the median for both U.S.

and European servers is 41km, while the 90th percentile is

320km and 200km, respectively. This is in the ballpark of

the PlanetLab experiments presented in [10], where the 90th

percentile for U.S. and Europe was about 400km and 130km.

We can therefore consider the results provided by CBG to be

more than adequate for our analysis.

• Geolocation Results: Table III details the result of using

CBG to identify the location of all the destination IPs found

in the datasets. The table shows the number of servers that

are located in North America, Europe and other continents.

Interestingly in each of the datasets, at least 10% of the

accessed servers are in a different continent.

Finally, since several servers actually fall in a very similar

area, we consider all the YouTube servers found in all the

datasets and aggregate them into the same “data center”. In

particular, servers are grouped into the same data center if they

are located in the same city according to CBG. We note that all

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000

C
D
F
 o
f 
Y
o
u
T
u
b
e 
S
er
v
er
s

Radius [km]

US
Europe

Fig. 3. Radius of the CBG confidence region for the YouTube servers found
in the datasets.

TABLE III
GOOGLE SERVERS PER CONTINENT ON EACH DATASET.

Dataset N. America Europe Others

US-Campus 1464 112 84

EU1-Campus 82 713 1

EU1-ADSL 518 769 51

EU1-FTTH 90 631 44

EU2 233 815 0

servers with IP addresses in the same /24 subnet are always

aggregated to the same data center using this approach. We

found a total of 33 data centers in our datasets, 14 in Europe,

13 in USA and 6 in other places around the world. These

results may not cover the complete set of YouTube servers

since we are only considering those servers that appeared in

our dataset.

VI. EVALUATING YOUTUBE’S SERVER SELECTION

ALGORITHM

In the previous section, we have shown how IP addresses of

YouTube servers may be mapped to the appropriate YouTube

data centers. Armed with such information, we now try to

understand how user video requests are mapped to YouTube

data centers. We are interested in exploring the various factors

that can influence the decision, such as user proximity, server

load, and popularity of content. We begin by discussing the

various types of flows in a YouTube session, and then discuss

how content servers are selected.

A. Video flows and sessions

In conducting our analysis, it is important to note that when

a user attempts to download a video, the overall interaction

may include a group of distinct flows, not all of which involve

transfer of video. In the normal scenario, each YouTube video

request corresponds to a HTTP message exchanged between

the Flash Plugin and a content server. If the request succeeds,

then the content server starts to deliver the video inside the

open connection. It is possible however that the server may

not serve the content. In such a case, it would simply redirect

the user to another content server and close the connection.

There may be other possible responses from the server, for

e.g., a response indicating that change of video resolution is

required. Thus, more generally, according to the reply of the
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content server, we can distinguish between video flows, i.e.,

long connections carrying the requested video, and control

flows, i.e., short connections carrying signaling messages.

Knowledge of control flows associated with a video flow can

help provide important insights for our analysis. For instance,

a video flow from a user to a given server preceded closely (in

time) by a control flow to another server is an indication of

redirection. In contrast, an isolated video flow not preceded

by other control flows is an indication that the request was

directly served by the contacted server. We refer to such a

group of related flows as a video session. Identification of

video sessions aid our analysis as we will see later.

We now discuss how we identify video flows and sessions.

Since Tstat classifies YouTube video flows based on the URL

in the HTTP requests, it is not able to distinguish between

successful video flows and control messages. To overcome

this limitation, we employ a simple heuristic based on the

size of the flows involved. Figure 4 presents a CDF of

YouTube video flow sizes. Log-scale is used on the x-axis.

We notice the distinct kink in the curve, which is due to

the two types of flows. Based on this, we separate flows into

two groups according to their size: flows smaller than 1000

bytes, which correspond to control flows, and the rest of the

flows, which corresponds to video flows. We have conducted

manual experiments which have confirmed that flows smaller

than 1000 bytes are indeed control messages.

A video session aggregates all flows that i) have the same

source IP address and VideoID, and ii) are overlapped in time.

In particular, we consider two flows to overlap in time if the
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end of the first flow and the beginning of the second flow

are separated by less than T seconds. In general, we find that

small values of T will group flows triggered by the system,

while large values of T may also group flows generated by

user interactions with the video player, such as changing the

video resolution and pausing or fast-forwarding a video. Since

we are interested in capturing server redirections, which are

triggered by the system, we want to use a small value of T ,

but that is large enough to avoid artificially separating related

flows. Hence, we perform sensitivity to the value of T in our

traces. We show results for the US-Campus dataset in Figure 5

and note that other traces show similar trends. Results indicate

that values of T equal to 10 seconds or less generate similar

number of sessions. So we pick the smallest value of T in our

evaluations, T = 1 second.

Figure 6 reports the CDF of the number of flows per session

for each dataset, assuming T = 1 second. It shows that

72.5− 80.5% of the sessions consist of a single (long) flow.

Therefore, normally there is no need to iterate over different

servers to download the video data. However, 19.5−27.5% of

the sessions consist of at least 2 flows, showing that the use

of application-layer redirection is not insignificant.

B. Understanding server selection strategy

In Table III we have shown that the users in each dataset

contact content servers all over the world. It is now interesting

to investigate how the volume of traffic downloaded is spread

across the different data centers. Figure 7 reports the fraction

of traffic served by each data center versus the RTT between
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the vantage points and the data centers itself. In particular, we

consider the minimum RTT seen by pinging all servers in each

data center from the probe PC installed in the PoP. We observe

that except for EU2, in each dataset one data center provides

more than 85% of the traffic. We refer to this primary data

center as the preferred data center for that particular trace and

other data centers will be labeled as non-preferred. At EU2,

two data centers provide more than 95% of the data, one of

them located inside the ISP and the other outside in the Google

AS. We label the data center with the smallest RTT in EU2

as the preferred one. We give a closer look to the EU2 case

in section VII-A.

Further, we notice that the data center that provides most

of the traffic is also the data center with the smallest RTT

for each dataset. This suggests that RTT does play a role in

the selection of YouTube servers. However, we have reason to

believe that RTT is not the only criteria and that the preferred

data center may change over time. For example, in a more

recent dataset collected in February 2011, we found that the

majority of US-Campus video requests are directed to a data

center with an RTT of more than 100 ms and not to the closest

data center, which is around 30 ms away.

Figure 8 considers the distance (in kilometers) between

users and the data centers they are mapped to. In most cases,

the data centers with the smallest delay to the customers

are also the physically closest ones. This is not the case for

the US-Campus dataset, where the five closest data centers

provide less than 2% of all the traffic. Coupled with previous

observations about RTT, this is an indication that geographical

proximity is not the primary criterion used in mapping user

requests to data centers.

The final observation we make is that although most traffic

comes from the preferred data center that is typically very

close to the customers, there are some exceptions in all

datasets. For the US-Campus and the EU1 datasets, between

5% and 15% of the traffic comes from the non-preferred data

centers. However, in EU2, more than 55% of the traffic comes

from non-preferred data centers. We now are interested to

see the variation over time of the fraction of traffic coming

from non-preferred data centers. One hour-long time slots are

considered, and the fraction of traffic served by non-preferred

data centers in each of these time slots is determined. Figure 9

plots a CDF of these fractions. The results indicate that the

fraction varies across time for most datasets, the variation

being most prominent for the EU2 dataset. In particular for

this dataset, 50% of the samples have more than 40% of the

accesses directed to the non-preferred data center.

C. Mechanisms resulting in accesses to non-preferred data

centers

We have seen that a non-negligible fraction of video flows

are downloaded from non-preferred data centers. There are at

least two possible causes for this. A first possibility is that the

DNS mechanisms direct a request to the non-preferred data

center. A second possibility is that the request was redirected

to another data center by the preferred data center server.

To disambiguate the two cases, we consider the video ses-

sion associated with each flow, as discussed in Section VI-A.

In the case that DNS mapped a request to a non-preferred data

center, the video session must consist of a single video flow

to a non-preferred data center, or must begin with a control

flow to the non-preferred data center. In the other scenario,

the session must begin with a control flow to the preferred

data center (indicating the DNS mapping was as expected),

but subsequent flows in the session must be to non-preferred

data centers.

To better understand the effectiveness of DNS in mapping

requests to the preferred data center, consider Figure 10(a).

Each bar in the figure shows the fraction of sessions that

involve only one flow. Further, each bar shows a break down

of the requests sent to the preferred and non-preferred data

centers. For instance, for US-Campus, 80% of the sessions

involve a single flow; 75% are then served by the preferred

data center while 5% of sessions are directly going to the non-

preferred data center. Interestingly, about 5% of the single-flow

sessions are directly served by the non-preferred data center

for EU1 datasets too. For EU2 however, over 40% of the single

flow sessions are served by the non-preferred data center.

Overall, these results show that DNS is in general effective

in mapping requests to the preferred data center. Still DNS

mapping mechanisms do account for a significant fraction of

video flow accesses to non-preferred data centers.

We next try to understand the extent to which users down-

loaded video from a non-preferred data center, even though
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Fig. 10. Breakdown of sessions based on whether flows of the session are
sent to preferred data center.

they were directed by DNS to the preferred data center.

Figure 10(b) presents the breakdown of sessions involving 2

flows. These sessions group a control flow followed by a video

flow. Based on whether each flow involves the preferred or

non-preferred data center, we have four possible cases: (i) both

preferred; (ii) both non-preferred; (iii) the first preferred and

the second non-preferred; and (iv) the first non-preferred and

the second preferred. Each bar in Figure 10(b) presents the

breakdown among these patterns. For all the EU1 datasets,

we see a significant fraction of cases where the DNS did

map requests to the preferred data center, but application-layer

redirection mechanisms resulted in the user receiving video

from a server in a non-preferred data center. For the EU2

dataset, we note that a larger fraction of sessions has both flows

going to the non-preferred data center, meaning that the DNS

is still the primary cause for the user downloading videos from

non-preferred data centers. We have also considered sessions

with more than 2 flows. They account for 5.18− 10% of the

total number of sessions, and they show similar trends to 2-

flow sessions. For instance, for all EU1 datasets, a significant

fraction of such sessions involve their first access to the

preferred data center, and subsequent accesses to non-preferred

data centers. We omit further results for lack of space.

VII. CAUSES UNDERLYING NON-PREFERRED DATA

CENTER ACCESSES

In this section, we investigate why accesses to non-preferred

data centers occur.

A. DNS-level load balancing

As shown in the previous section, the EU2 dataset exhibits

very different behavior compared to other datasets. Over 55%

of the video traffic is received from the non-preferred data

center, and a vast majority of accesses to non-preferred data

centers is due to the DNS mapping mechanisms.
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Fig. 11. Fraction of the total YouTube video traffic served by the preferred
data center (top graph) and total number of video flows (bottom graph) as a
function of time for the EU2 dataset.

To understand this better, consider Figure 11. The top graph

presents the evolution over time of the fraction of video flows

served by the preferred data center. One hour time slots are

considered. The bottom graph shows the total number of video

flows seen in the EU2 dataset as a function of time. Note

that time 0 represents 12am on Friday. We can clearly see

that there is a day/night pattern in this set of requests. During

the night, when the total number of accesses from EU2 is

small, the internal data center handles almost 100% of the

video requests. However, during the day, when the number

of requests per hour goes up to around 6000, the fraction of

requests handled by the local data center is always around

30% across the whole week. Results for other datasets are not

shown for the sake of brevity. Still, all datasets exhibit a clear

day/night pattern in the number of requests. However, there is

less variation over time of the fraction of flows served by the

preferred data center, as already seen in Fig.9. Furthermore,

there is much less correlation with the number of requests.

We believe the reason for this is the unique setup in the EU2

network. In this network, the data center inside the network

serves as the preferred data center. While this data center

located inside the ISP is the nearest to the users, it is unable to

handle the entire load generated by users inside the EU2 ISP

during busy periods. There is strong evidence that adaptive

DNS-level load balancing mechanisms are in place, which

results in a significant number of accesses to the non-preferred

data centers during the high load period of traffic.

B. Variations across DNS servers in a network

Our results from the previous section indicate that for the

US-Campus dataset most of the accesses to the non-preferred

data center are caused by DNS. Deeper investigation indicates

that most of these accesses may be attributed to clients from a

specific internal subnet within the US-Campus network. Those

clients indeed request significantly higher fraction of videos

from non-preferred data centers than clients in other subnets.

To see this, consider Figure 12. Each set of bars corresponds to
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Fig. 13. Number of requests for a video to the non-preferred data centers.

an internal subnet at US-Campus. The bars on the left and right

respectively show the fraction of accesses to non-preferred

data centers, and the fraction of all accesses, which may be

attributed to the subnet. Net-3 shows a clear bias: though this

subnet only accounts for around 4% of the total video flows in

the dataset, it accounts for almost 50% of all the flows served

by non-preferred data centers.

Further investigation shows that hosts in the Net-3 subnet

use different DNS servers that map YouTube server names

to a different preferred data center. In other words, when the

authoritative DNS servers for the YouTube domain are queried

by the local DNS servers in Net-3, the mapping provided is to

a different preferred data center than the other subnets on US-

Campus. We believe this behavior is not a misconfiguration

in the YouTube servers or the Net-3 servers, but we rather

hypothesize that this is the result of a DNS-level assignment

policy employed by YouTube, probably for load balancing

purposes, which can vary between DNS servers and thus

subnets that belong to the same campus or ISP network.

C. Investigating redirection at the application layer

We now consider cases where users download video from

non-preferred data centers, even though DNS mapped them to

the preferred data center.

To get more insights into this, consider Figure 13 which

reports the CDF of the number of times a video is down-

loaded from a non-preferred data center. Only videos that are

downloaded at least once from a non-preferred data center

are considered. The results show two trends. First, a large
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Fig. 14. Load related to the top 4 videos with the highest number of accesses
to the non-preferred data centers for the EU1-ADSL dataset.
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Fig. 15. Average and maximum number of requests per server in the preferred
data center of EU1-ADSL dataset.

fraction of videos are downloaded exactly once from the

non-preferred data center. For example, for the EU1-Campus

dataset, around 85% of the videos are downloaded only once

from the non-preferred data center. Second, there is a long tail

in the distributions. In fact, some videos are downloaded more

than 1000 times from non-preferred data centers. We consider

the impact of popular and unpopular videos on server selection

in the next few paragraphs.

• Alleviating hot-spots due to popular videos: Let us

focus first on the tail in Figure 13. Figure 14 considers the

four videos with the highest number of accesses to the non-

preferred data centers for the EU1-ADSL dataset. Each graph

corresponds to one of the videos, and shows (i) the total

number of accesses to that video; and (ii) the number of times

the video is downloaded from the non-preferred data center, as

a function of time. We see that there are spikes indicating that

some videos are more popular during certain limited periods of

time. Most accesses to non-preferred data centers occur during

these periods. In particular, all these videos were played by

default when accessing the www.youtube.com web page for

exactly 24 hours, i.e., they are the “video of the day”.

Those are therefore very popular videos, which possibly

generate a workload that can exceed the preferred data center

capacity. Therefore, application-layer redirection is used to
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Fig. 16. Number of video sessions per hour seen by the server handling
video1 in the preferred data center of the EU1-ADSL dataset. A breakdown
of sessions based on whether flows are directed to preferred data centers is
also shown.

handle the peaks. As further evidence, Figure 15 shows the

average and the maximum number of requests served by each

server (identified by its IP address) in the preferred data center

as a function of time. The figure shows that at several times,

the maximum number of requests a single server has to handle

is by far larger than the average load. For instance at time

115, the average load is about 50 video flows, but there is one

server that answers more than 650 requests. Interestingly, we

note that the servers suffering the peak loads are those serving

the majority of the top videos of Figure 14.

Further investigation reveals that DNS correctly forwards

the request to a server in the preferred data center, but

since its load is too high, the server redirects part of the

requests to another server in a non-preferred data center.

Consider Figure 16, which shows the load in terms of sessions,

handled by the server receiving the requests for video1 for

the EU1-ADSL dataset. Different colors are used to show

the breakdown of the total number of sessions according to

the preferred/non-preferred patterns. For example, we can see

that in the first 6 days, the majority of the sessions involves

only flows served by the preferred data center. On the last

day however, a larger number of requests is received, which

leads to an increase in application-layer redirections to a non-

preferred data center. Overall, these results show that local

and possibly persistent overload situations are handled by the

YouTube CDN via application-layer redirection mechanisms.

• Availability of unpopular videos: Consider again Figure 13.
Let us now focus on the observation that several videos are

downloaded exactly once from the non-preferred data center.

Further analysis indicated that for most datasets, over 99% of

these videos were accessed exactly once in the entire dataset,

with this access being to non-preferred data centers. However,

when the videos were accessed more than once, only the first

access was redirected to a non-preferred data center.

This observation leads us to hypothesize that downloads

from non-preferred data centers can occur because of the

limited popularity of the videos. In particular, videos that are

rarely accessed may be unavailable at the preferred data center,

causing the user requests to be redirected to non-preferred data

centers until the video is found.
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Fig. 17. Variation over time of the RTT between a PlanetLab node and the
content servers for requests of the same test video.
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Since our datasets only contain a limited view of the

accesses seen by a data center, it is difficult to validate this

claim using only our datasets. We therefore conducted con-

trolled active experiments using PlanetLab nodes. In particular,

we uploaded a test video to YouTube. The video was then

downloaded from 45 PlanetLab nodes around the world. Nodes

were carefully selected so that most of them had different

preferred data centers. From each node, we also measured the

RTT to the server being used to download the content. We

repeated this experiment every 30 minutes for 12 hours.

Figure 17 shows an example of the variation of RTT samples

considering a PlanetLab node located in California. Observe

that the very first sample has an RTT of around 200 ms. In

contrast, later samples exhibit RTT of about 20 ms. Further

investigations showed that the first time, the video was served

by a data center in the Netherlands while subsequent requests

were served by a data center in California.

Figure 18 shows the CDF of the ratio of the RTT to the

server that handled the first video request (RTT1) to the RTT

to the server that handled the second video request (RTT2)

for all the PlanetLab nodes. A ratio greater than 1 means that

the video was obtained from a closer data center in the second

attempt than in the first attempt. A ratio with a value close to 1

shows that the first request went to the same server or a server

in the same data center as the second request. For over 40% of

the PlanetLab nodes, the ratio was larger than 1, and in 20% of

the cases the ratio was greater than 10. Interestingly, we have

also found the RTT of subsequent samples is comparable to the



RTT of the second sample. Overall, these results indicate that

the first access to an unpopular video may indeed be directed

to a non-preferred data center, but subsequent accesses are

typically handled from the preferred data center.

VIII. RELATED WORK

The attention of the research community on YouTube has

grown in the last few years. We can coarsely group works in

two categories:

• YouTube Infrastructure Studies: Recently, a few works

analyzed the YouTube video delivery infrastructure ( [7], [8]).

Both works focus on the “old” YouTube infrastructure. In [7],

the authors collected traces at the backbone of a large ISP.

Using DNS name resolution of servers, they discovered eight

data centers around the U.S. that provided most videos to

clients around the world. Further, they found that the YouTube

server selection algorithm does not consider geographical

location of clients and that requests are directed to data centers

proportionally to the data center size. In contrast, our work

focuses on the “new” YouTube infrastructure; we have evi-

dence that requests are now redirected to servers in a preferred

data center particular to each network and that RTT between

data centers and clients plays a role in the server selection

strategy. In [8] the authors perform PlanetLab experiments

to download YouTube videos and measure user performance.

The authors found that most videos are being sent from a

few locations in the U.S. and that YouTube pushes popular

videos to more data centers. In contrast, in our work, we study

traces from several large ISP and campus networks in two

continents, which capture actual user behavior; we found that

most videos are being delivered from a preferred data center,

typically close to the client and that, while popularity of videos

may play a role on the redirection of clients to non-preferred

data centers, it is not a prominent reason for it. Finally, we

also differ from [7], [8] in that we analyze key factors that

affect server selection in the YouTube CDN. More recently,

a concurrent and preliminary work [15] has started analyzing

the new YouTube infrastructure. Our work clearly differs in

various aspects. In particular, we use more systematic state-

of-the-art algorithms for server geolocation; we also rely on a

trace-based analysis instead of active PlanetLab experiments

and finally we dig deeper into identifying the various causes

underlying content server redirection.

• YouTube Videos Characterization: Several works have

focused on characterizing various aspects of videos existing in

YouTube as well as usage patterns. [3] and [4] collected traces

at the edge of a single campus network and characterized

per video statistics such as popularity, duration, file size and

playback bitrate, as well as usage pattern statistics such as

day versus night accesses and volume of traffic seen from

the Campus. [5] and [6] crawled the YouTube site for an

extended period of time and performed video popularity and

user behavior analysis. Further, [5] compares YouTube to

other video providers such as Netflix and [6] investigates

social networking in YouTube videos. We differ from all these

works since we study the video distribution infrastructure. In

particular we focus on understanding the content server selec-

tion mechanisms used by YouTube. In addition, we analyze

datasets from five distinct vantage points ranging from campus

networks to nationwide ISPs.

IX. CONCLUSION

In this paper we have obtained a deeper understanding

into the factors impacting how YouTube video requests are

served by data centers. Our understanding has been based on

week-long datasets collected from the edge of five networks

including two university campuses and two national ISPs,

located in three different countries. Our analysis indicates that

the YouTube infrastructure has been completely redesigned

compared to the one previously analyzed in the literature.

In the new design, most YouTube requests are directed to

a preferred data center and the RTT between users and data

centers plays a role in the video server selection process. More

surprisingly, however, our analysis also indicates a significant

number of instances (at least 10% in all our datasets) where

videos are served from non-preferred data centers. We identi-

fied a variety of causes underlying accesses to non-preferred

data centers including: (i) load balancing; (ii) variations across

DNS servers within a network; (iii) alleviation of load hot

spots due to popular video content; and (iv) availability of

unpopular video content in a given data center. Overall these

results point to the complexity of factors that govern server

selection in the YouTube CDN.
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