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Abstract—Nowadays two main approaches are being pursued
to reduce energy consumption of network devices: the use of
sleep modes in which devices can be put in low-power state,
and the adoption of energy proportional approaches where the
device architecture is designed to make energy consumption
proportional to the actual load. In this paper, we formulate a
theoretical model based on random graph theory to estimate the
potential gains that can be achieved by adopting sleep modes
in networks where energy proportional devices are deployed.
Is sleep mode still a winning approach in these scenarios? We
consider a simple model of the energy consumption of network
devices: a fixed cost represents the static consumption and a
variable cost describes the linear proportionality to the traffic
load. Our results show that sleep modes are effective also in
presence of load proportional solutions, even if traffic has to
be routed on longer paths, unless the static power consumption
component is of the same order of magnitude of the load
proportional component.

I. INTRODUCTION

In networking, one of the main causes of energy waste
is the fact that most of the devices do not consume energy
proportionally to the work they do, but they consume much
even when they are under-utilized. On the contrary, network
usage and traffic follow the typical human being activity
patterns, with significant differences between peak and off-
peak values and with long periods of low traffic. The network
results thus highly under-utilized for long periods of time
causing a large energy waste. Many solutions are being studied
to reduce this waste, or, equivalently, to make the network
consumption proportional to the traffic load [1]. The proposed
approaches can be divided into two main categories: i) Energy
proportional approaches adopt solutions that work on the
individual devices and try to achieve energy proportionality by
adapting the speed (and capacity) of the devices to the actual
load; and ii) Sleep mode approaches investigate solutions that
involve the network as a whole and approximate load propor-
tionality by carefully distributing the traffic in the network so
that some devices are fully utilized and others become idle
and are put in sleep modes. The latter are motivated by the
fact that energy consumption of current devices is practically
independent on the load. Clearly, the two solutions can be
merged so that energy proportional devices are present and
can be put in sleep mode to possibly save more energy.

A natural question is then which approach is more effective.
Given the Internet topology characteristics and traffic, and
given a model of the energy consumed by a device as a
function of its load, is it better to purely rely on device
energy proportionality capability, or, on the contrary, is it
always better to couple it with sleep mode solutions? And,

also, which is the minimum energy proportionality that would
make sleep mode ineffective? The answer to these questions
is the ambitious goal of this paper.

When a device is switched-off the traffic passing through it
has to be rerouted on different, typically longer, paths; thus,
the beneficial saving achieved by switching off the device is
mitigated by the increase of the consumption of the devices
that remain on, due to the higher load they have to sustain.

To investigate this trade-off we model: i) the device energy
consumption as a function of load, and ii) the load that the
devices that are powered on have to sustain for a given
traffic demand. We focus on network links, whose energy
consumption we model by a variable part that is proportional
to the traffic that flows through the device and a constant
amount that includes the fraction of the node energy cost due
to the link. Node energy cost is thus simply proportional to
the number of its links that are active. The network model
and its topological characteristics are represented by a random
graph; leveraging then on random graph theory, the load on
network links is computed from the knowledge of the shortest
path among node pairs. Thus, the energy consumption of all
network links is easily computed.

Given a random graph representing a network, the use of
sleep modes is modeled by considering a new graph in which
some nodes are removed according to some policy. The energy
consumption due to the links of nodes that remain on can
be evaluated from the topological characteristics of the new
graph. The same problem has been recently faced in [2] using
simple simulations. In this work we present some modeling
results that corroborate the intuition of [2] but allow to derive
more general insights.

We present an extensive sensitivity analysis to show the
impact of the model parameters. In particular, we include both
small-world and power-law models that are claimed to accu-
rately reflect Internet topology properties [3]. Our results show
that when the variable part of the cost model is small with
respect to the constant part, as is typical of today devices, sleep
modes are convenient. However, for future devices, whose
consumption will probably be more load proportional, sleep
modes might not be convenient anymore. Still, the variable part
of the energy cost has to be of the same order of magnitude
of the constant component to make sleep mode inefficient.
Interestingly, when power-law graphs are considered, the de-
gree of load proportionality required to make sleep mode not
convenient anymore is higher than for simple random graphs.
This suggests that, given the today technological constraints
that make the constant energy consumption of networking



devices quite large, sleep mode enabled networks will allow to
save more energy than purely energy proportional approaches
for long time.

II. METHODOLOGY

In this section we provide a general overview of the
methodology we use to evaluate sleep mode gains.

The network is composed by access and transport devices.
Access devices are the possible sources and destinations of
traffic, therefore they can never be powered off. On the
contrary, some of transport devices can be turned off if their
traffic can be supported by other devices that remain on.

We adopt the following assumptions: i) traffic is uniformly
exchanged among all access nodes; ii) traffic is routed on
the shortest paths among nodes; iii) the set of devices to
be switched off is given a-priori, e.g., it has been previously
pre-computed; iv) we model the network power consumption
focusing on links only, as in [2], and the contribution of nodes
in terms of power consumption is accounted in the link power
model; v) link power consumption is composed by a fixed
amount of power, and a variable part that scales linearly with
the current traffic flowing on the link; vi) the same power
consumption model is applied to all the links in the network.

A. Basic formulation and metrics

Let the transport network topology be described by an
undirected graph G(n, l), with n the set of nodes, with
cardinality N = |n|, and l the set of links, with cardinality
L = |l|. The average node degree is K = 2L

N . The link
capacity is denoted by Rl. T is the total traffic flowing in
the transport network from access nodes.

The i− th link consumption is modeled by a constant part,
CF , and a variable part that is proportional to the link load
ρi through a parameter α: the link consumption is CF + αρi.
The average total network consumption, C, can be computed
as

C =
∑

i∈l

(CF +αρi) = L (CF + αρ̄) = N
K

2
(CF + αρ) (1)

where ρ̄ is the mean link load.
We define the constant cost equivalent load as

ν =
CF

α
(2)

ν is the amount of load that, added to a link, makes its
energy consumption increase of a quantity CF . Or, in other
terms, whenever the load increases by an amount ν, the energy
consumption increases by CF . The parameter ν plays a crucial
role in the evaluation of the sleep mode schemes, as we will
show in Section IV.

The average link load can be computed as:

ρ̄ =
Td

N K
2 Rl

(3)

where d is the average shortest path length and N K
2 Rl is the

total capacity offered by the network. We call C the all on

network consumption and we take this value as a reference of
the nominal consumption of the network.

We now intend to compute the network consumption when
some nodes enter sleep mode. We assume that the scheme
according to which the nodes are put in sleep mode has been
preliminary planned so that, when the nodes are powered off,
the network is still connected and no QoS target is violated;
for example, the scheme might work during off-peak hours
when many devices are under-utilized. Clearly, when a node
is powered off, all links connected to it are switched off too.

Let p ∈ (0, 1) be the fraction of nodes that are switched
off. We model the network resulting from the sleep mode
scheme through the new random graph in which we randomly
eliminate a fraction p of nodes; we assume that p < pc, where
pc is the critical probability after which the network becomes
disconnected. In this regime, random node elimination makes
the new graph maintain the same structure of the original
graph; refer to [6] for details. The total number of nodes after
a random removal of nodes becomes N ′ = N(1− p), and the
new average degree is K ′ = K(1− p). The average network
consumption in sleep mode C ′ is now:

C ′ = N ′K
′

2
(CF + αρ̄′) = N

K

2
(1− p)2 (CF + αρ̄′) (4)

with

ρ̄′ = T
d′

N ′K′
2 Rl

= T
d′

N K
2 (1− p)2Rl

(5)

where d′ is the average shortest path length in the new graph.
Our aim now is to compare the energy consumption of the

all on scheme, C, to the one of the network with sleep modes,
C ′. To this purpose, we define the ratio E = C ′/C as the
energy reduction ratio. Intuitively, the use of sleep modes for
network devices saves energy when E < 1.

By evaluating E and comparing C and C ′ in (1) and (4),
it is possible to evaluate when sleep modes are convenient:

C > C ′

N K
2 (CF + αρ̄) > N K

2 (1− p)2 (CF + αρ̄′)

(
CF + αTd

N K
2 Rl

)
> (1− p)2

(
CF + αTd′

N K
2 Rl(1−p)2

) (6)

that is equivalent to

ν >
T

(2p− p2)N K
2 Rl

(d′ − d) (7)

This equation defines the region in which a sleep mode
approach is convenient.

Lemma 1: If α = 0 then C ′ < C and E < 1.
Proof: With α = 0, (6) simplifies to N K

2 CF > N K
2 (1−

p)2CF , which is always verified for any p ∈ (0, 1).
Lemma 2: For graphs in which d′ > d, if CF = 0 then

E > 1.
Proof: If CF = 0, (6) becomes: d > d′, i.e., it is verified

if the average shortest path after some node switch off, d′, is
smaller than the initial average shortest path d, which is never
true. Consequently, E > 1.



Lemma 1 states that if devices do not implement load
proportionality, sleep mode is always convenient. Conversely,
Lemma 2 states that if the fixed power consumption is zero,
sleep mode is never convenient.

III. NETWORK MODELS

In the literature, several models have been proposed to
represent the Internet topology. However, deciding which
model fits better the current Internet is an open problem
[4]. Therefore in this paper, instead of focusing on a single
model, we analyze different models, showing that common
properties about energy consumption can be inferred in all
cases. In general, the Internet network satisfies the following
properties: (i) small-world property, according to which the
average number of hops between each node pair is quite
limited, (ii) local clustering, according to which the Internet is
divided in different and highly connected zones, (iii) heavy-
tailed distributions of per node link number, meaning that, in
general, most of the nodes have few links while few nodes
have a large number of links.

We consider three well-known graph models: Erdös and
Rényi, Power Law and Watts-Strogatz.

In the Erdös and Rényi (ER) model [5] nodes are connected
by links according to a given probability, and the resulting de-
gree distribution follows a Poisson distribution. The properties
of this model are well-known in the literature and have been
extensively studied. In particular, the ER model shows the
small-world property, according to which the diameter of the
graph scales typically as log N . However, the local clustering
and heavy-tailed properties are not met.

In the Power Law (PL) model [6] the node degree distribu-
tion, P (k), follows a power-law distribution, i.e., P (k) ∼ k−γ .
The intuition is that some nodes behave like hubs, and have
many more connections than others.

The Watts-Strogatz (WS) model [7] starts from a regular
lattice in which each node is linked to a fixed number of
neighbors. Then, as a second step, additional edges are inserted
between randomly chosen pairs of nodes1. The resulting graph
is an interpolation between ordered lattices and purely random
graphs. This model matches both small-world and the local
clustering properties, but the degree distribution is not heavy-
tailed.

A. The Erdös-Rényi model

The average shortest path of an Erdös-Rényi graph is
given by: d = log(N)

log(K) , as reported by [3]. With our energy
consumption model, the all on consumption of the network is:

C = N
K

2
CF +

αT

Rl

log(N)
log(K)

(8)

1In the original WS model presented in [8] shortcuts are rewired from the
lattice. However, the resulting graph is affected by a not negligible probability
to be disconnected. Therefore, we adopt the modification of the WS model
proposed by [7], in which shortcuts are additionally inserted as new links. In
this way, the resulting graph is always connected.

After randomly removing a fraction p of the nodes, the average
shortest path becomes: d′ = log(N(1−p))

log(K(1−p)) and, from (4), the
network consumption becomes:

C ′ = N
K

2
(1− p)2CF +

αT

Rl

log(N(1− p))
log(K(1− p))

(9)

Note that Lemma 2 is verified for the ER model. Indeed, in
this case d < d′ is always verified. To prove this, we need to
verify the inequality: log(N)

log(K) − log(N(1−p))
log(K(1−p)) < 0. Simplifying

the inequality, at the denominator we have log(K) log(K(1−
p)), that is always larger than 0, being each argument of the
logarithmic terms larger than 1 (for connected networks the
average node degree must be larger than 1). The numerator
becomes log(N) log(K(1 − p)) − log(N(1 − p)) log(K), or,
also, log(1−p)(log(N)− log(K)); that is always smaller than
0. Therefore, d < d′ is verified and consequently E > 1.

B. Power-law model

We consider a graph in which the distribution of the degree
k follows a power law (PL), i.e., P (k) ∼ k−γ . In this case,
the average shortest path can be computed as in [3]:

d ≈ 1 +
log(N/K)

log[(〈K2〉 −K)/K]
(10)

where 〈K2〉 is the second moment of the degree distribution.
In particular, we consider a Pareto distribution for the degree

since it is one of the most widely used and studied power laws
in the literature. The Pareto distribution is described by the
parameters (a, km), where km is the minimum possible value
of K, and a is a positive parameter. For this distribution we
have: K = akm/(a− 1) and 〈K2〉 = ak2

m/(a− 2). Similarly
to what done for the previous graph model, using (1), (3)
and (10), we can compute the all on network consumption C.
Since, as reported in [6], a power law graph remains power
law even after a random removal of nodes, the average shortest
path of the network with sleep modes is:

d′ ≈ 1 +
log(N/K)

log
[(

〈K2〉−K
K

)
(1− p)

] (11)

from which we can compute the network consumption with
sleep mode.

Using a rationale similar to the one adopted for the ER
model, it can be shown that also the PL model satisfies Lemma
2.

C. The Watts-Strogatz model

The Watts-Strogatz (WS) model interpolates between or-
dered lattices and purely random graphs [9]. Starting from a
lattice of N vertices in which each vertex is symmetrically
connected to its KL nearest neighbors, randomness is intro-
duced by independently adding shortcuts between randomly
chosen pairs of nodes. We denote by x the number of links
that are randomly added [7]. The average vertex degree K is
given by K = KL + 2x/N .



For the shortest path length, depending on the value of x,
two regimes are possible: for very small values of x, i.e., x <<
N/KL, the average shortest can be approximated as

d ' N

KL/2
log(2x)

4x
(12)

while for large values of x, i.e., x >> N/KL, the WS graph
is similar to a purely random graph and the average shortest
path can be approximated by

d ' log(N)
log(KL)

(13)

However, since actual network topologies can be repre-
sented by a graph with a value of x that is in between these
two extreme cases, we propose a new model to compute d.
We use the following expression,

d ≈ log(N)[
φτ log(KL) + (1− φτ ) log

(
2x
N

)] (14)

with φ = 2x/N
KL

and τ derived by interpolation from simulation
results, the best fitting being τ = 0.1 for the considered
scenarios. The intuition suggests that for lower values of x,
the average shortest path tends to increase proportionally with
x, i.e., d ≈ log(N)

log( 2x
N )

, since the random component of the graph

decreases with x. On the contrary, when x ≈ NKL

2 the term
log(N)
log(KL) becomes predominant.

During the sleep mode regime, the average shortest path
becomes:

d′ ≈ log(N(1− p))[
φτ log(KL(1− p)) + (1− φτ ) log

(
2x
N (1− p)

)] (15)

As before, using (6), (14) and (15), we derive the cost C
and C ′ for the WS graph in this regime.

Similarly to the previous models, it can be shown that also
the WS model satisfies Lemma 2.

Model Validation: We validated the proposed models with
comparison against simulations in a large number of scenarios.
Due to lack of space, we report here only the results for the
WS model since, in this case, we propose a new model for
the computation of the average shortest path. The complete
simulations for the ER and PL graphs are detailed in the
Appendix. In brief, we found that the models accurately match
results obtained by simulation, with an error always smaller
than 4%.

To validate the WS model, we consider networks with a
given value of N and of the node degree K, but different
values of x. By varying x we make the random and local
components of the degree vary. In particular, since the average
degree is K = KL + 2x/N , when x increases, the random
component increases and the local component KL decreases
as KL = K−2x/N . We denote the degree of randomness by
Px = 2x/N

K , which represents the fraction of the degree that
is given by randomly chosen links.

Top plot of Fig. 1 reports the average shortest path d for
the case N = 5, 000, K = 20, and degree of randomness
Px varying between 0.1 and 0.5. For each value of Px, we
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Fig. 1. Validation of the proposed model to compute d for WS graphs:
(top) average shortest path for different models and by simulation, considering
N = 5, 000, K = 20, x ∈ [5, 000−25, 000], (bottom) energy reduction ratio
versus p for the proposed model and the simulation, considering N = 10, 000,
K = 6, x = 10, 000.

average results over 20 independent runs in which different
random seeds are used for adding the shortcuts. The figure
reports d computed from: (12) that corresponds to the model
for small values of x, (13) that is the model for large values of
x, our proposed model (14), and simulation results. Clearly,
the model for small values of x does not match the measured
d for the considered scenarios; the model for large values of
x matches the measured d only when 2x

N ≈ KL, otherwise
d is underestimated. Our model presents the best matching,
since it is fitted for these scenarios. We have also validated
the model in other scenarios, including scenarios with sleep
modes. A complete set of results is reported in the Appendix.

Bottom plot of the figure shows the energy reduction ratio,
E, computed by simulation and with the proposed model, for
the case of a network with sleep modes, N = 10, 000 nodes,
K = 6 and x = 10, 000; the fraction of nodes that are switched
off varies between 0 and 0.4. Again, observe how accurate the
proposed model is. In the following we therefore adopt our
model for computing C and C ′.

IV. MODELS COMPARISON

In this section, we compare the effectiveness of the ap-
proaches based on sleep modes under the different network
models proposed in the previous section.

For the numerical results, unless otherwise specified, we
use the set of parameters reported in Tab. I. In particular, we



TABLE I
PARAMETERS VALUES

N 104

K 6
Rl 100
T (0.5Rl)KN
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Fig. 2. Equivalent load ν versus the switch-off probability p for the ER, PL
and WS model.

set the average degree K to 6. This reflects the results of
some measurement studies about Internet topology (see [10]
for an overview), according to which K ranges between 4
and 8. We assume that the total traffic scales linearly with
the number of nodes N and the current degree K. This is
equivalent to assume that the average network load is 0.5,
i.e., the network has to support a moderate load so that the
variable energy cost αρ̄ is not negligible with respect to the
fixed power consumption CF . For the PL model, we set a = 3
and Km = 4, so that K = 6; for the WS model, we set
KL = 4 and x = 10, 000 (Px ' 0.33) and the average vertex
degree is K = KL + 2x/N = 6.

We first evaluate the energy reduction ratio E for different
values of the switch off probability p. In particular, from (7)
we compute the minimum value of ν for which E becomes
smaller than 1. This transition represents a breakeven point for
which sleep mode saves energy. Fig. 2 reports the breakeven
curve for the considered models. Intuitively, if the value of
ν falls above the breakeven curve, sleep mode is convenient;
otherwise, the network consumes a higher amount of energy
when devices are switched off. In all cases, as p increases the
minimum value of ν increases too, meaning that sleep mode
with a large number of off devices (large p) is convenient
only when the constant part of the energy cost is high with
respect to the variable part. In particular, for the ER model the
breakeven curve ranges between 1.2 and 2.6. The PL model
breakeven curve is below the ER model one, meaning that
energy cost of the traffic demand increase can be balanced by
lower fixed cost. The WS breakeven curve is above the ER
model one. This is due to the fact that the average shortest
path length increases faster than in the ER model. Interestingly,
when power-law graphs are considered, ν is smaller, meaning
that α required to make sleep mode not convenient anymore

is smaller than for simple random graphs, i.e., a less efficient
load proportionality factor is required.

A. Impact of Technology Constraints
To assess the impact of technology constraints, we compute

the energy reduction ratio E for different values of ν. Fig. 3
reports the values of E for the three proposed models; the
different curves correspond to different values of p.

In all cases, the breakeven point for which E = 1 occurs
when CF and α are of the same order of magnitude (ν ≈
1). Two different regimes are possible: i) sleep mode is not
convenient (E > 1), and ii) sleep mode is convenient (E < 1).
In the first regime, the higher the probability to switch off
devices is, the higher the energy loss is, being the WS the
worst case. In the second regime, instead, sleep mode leads to
high energy savings for all models, and the savings strongly
increase with p. If ν ≈ 1, the highest savings can be obtained
by the ER and PL models; if ν >> 1, all models obtain similar
savings.

Notice that with today technology, we are in the right part
of the figures (sleep mode is always convenient), while in the
future, the values of ν will probably decrease, meaning that
sleep mode will become less convenient.

B. Impact of Network Properties
We then consider the impact of the network properties on

the possible energy savings. In particular, we start by setting
K = 6, while we vary N in [102, 105]. For the WS model
we set x = N . Fig. 4 reports the energy reduction ratio E
for the considered models, for ν = 3 and p = 0.3. Again, the
highest saving is obtained by the PL model. In all the cases, E
increases (sleep mode effectiveness reduces) with the number
of nodes. Under the WS model, sleep mode is not convenient
for large values of N , namely N > 103. Intuitively, in the
limit N → ∞, no finite cost CF can balance the increase of
the variable cost.

Finally, we consider the impact of the average node degree
K and select values of K that mimic those used in [10] to
represent the average vertex degree of the Internet graph. We
set ν = 3 and p = 0.3. Moreover, for the WS model we fix
x = 10, 000 and we vary KL ∈ [2, 8]. Fig. 5 shows E versus
K. For all the models, the energy reduction ratio is decreasing
as K is increasing. Indeed, for large values of K, the number
of possible paths between any two nodes is large and, once
some nodes are powered off, it is easy for the network to find
alternative paths; or, in other terms, the increase of the average
shortest path due to sleep modes is limited if K is large. For
low values of K, sleep mode is not convenient. For example,
for the WS model E is around 1.7 when K = 4, meaning that
the sleep mode wastes an additional 70% of power with respect
to an always on solution. Conversely, when K increases, the
additional cost due to the increase of path length is smaller,
so that sleep-mode is more efficient.

Finally, notice that the energy reduction ratio for the ER
and PL models is consistently lower than the WS one. This is
due to the better path length properties the former two graphs
have.
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Fig. 3. Energy reduction ratio E versus equivalent load ν for different values of p, from left to right: ER, PL, WS model.
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Fig. 4. Energy reduction ratio E versus the number of nodes N for ν = 3
and p = 0.3.
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Fig. 5. Energy reduction ratio E versus average vertex degree K for ν = 3
and p = 0.3.

V. CONCLUSION

In this paper, we have proposed an analytical framework
for the evaluation of the potential energy saving that can be
achieved applying sleep modes to the devices of a complex
network, like the Internet. We have modeled the network
device power consumption by means of a simple function
composed of a constant cost and a variable cost proportional
to the device load; leveraging on random graph theory, we
have then computed the overall power consumption of a
network equipped with load proportional devices. We have
then evaluated the total power consumption of a network in
which all devices are power on, and in which a fraction of

devices are put in sleep mode to save additional energy. By
comparing the two figures, we can assess when the sleep mode
adoption is still convenient. Indeed, if the load proportionality
cost is larger than the constant cost, the adoption of sleep
mode increases the total power consumption due to the extra
load devices that are still on have to carry.

Our results suggest that with today technology, with device
consumption that varies very little with the load, the use of
sleep modes is the most effective in reducing the network
energy consumption; however, with future devices whose
consumption will very likely be more load proportional, the
effectiveness of sleep mode approaches will reduce. Interest-
ingly, highly connected networks, with large node degree and
high randomness, tend to make the use of sleep modes more
convenient.

Finally, we are currently investigating what can happen if
variable power costs follow sub- or super-linear costs, as it
can happen depending on the future device technology.
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APPENDIX

In the following we report further simulation results that
validate our analytical model for each of the considered graph
models.

A. Erdös-Rényi model

Fig. 6 shows the energy reduction ratio, E, computed
by simulation and with the proposed model (eq. 8, 9). As
previously observed for the WS model, we can note how
accurate our model is.

B. Power-law model

Fig. 7 shows the energy reduction ratio, E, computed by
simulation and with the proposed model in Section III-B. For
the PL model, we can observe that our model is even more
accurate than in the case of ER and WS models.

C. Watts-Strogatz model

Fig. 8 shows the average shortest path after the switch-off d′

for the case N = 5, 000, K = 20, and degree of randomness
Px varying between 0.1 and 0.5. As previously observed in
Fig. 1 (top), our model presents the best matching, since it is
fitted for these scenarios.
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Fig. 6. ER model: energy reduction ratio versus p for the proposed model
and the simulation, considering N = 10, 000 and K = 6.
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Fig. 7. PL model: energy reduction ratio versus p for the proposed model
and the simulation, considering N = 10, 000 and K = 6.
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