Self-similarity of higher order moving averages

Original

Availability:
This version is available at: 11583/2488907 since:

Publisher:
APS

Published
DOI:10.1103/PhysRevE.84.046113

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
I. INTRODUCTION

Statistical physics is increasingly recognized and explored for unraveling complexity in diverse systems. Self-similarity and long-range correlations have been investigated in financial series [1–7], other than in systems as biological and physiological [8–11], solar, geophysical, environmental, and solid state [12–16]. In particular, stock markets are complex dynamical systems operating in synchronization to other social activities. Thus financial time series exhibit patterns related to such activities, which are under intense investigation by statistical physics approaches. Technical traders sell and buy stocks near the top and close to the bottom of the trend. Occurrence of maximum and minimum of the price trend and trend reversal trigger trading decisions. The golden cross (buy stocks) and dead cross (sell stocks) rule exploits the behavior of a particular stock market. Technical rules based on moving averages are under continuous investigation and improvement [4–7]. Correlations are quantified in terms of scaling exponents by using estimators suitably defined for such systems [17–20]. For nonstationary time series, the detrended fluctuation analysis (DFA) [21–27], the rescaled range statistical analysis (R/S), and the detrending moving average variance agree. This means of the detrending moving average algorithm (Sec. III). Finally, we note that the higher-order polynomials correspond to estimates of trends at smaller and smaller time scales: as the degree of the polynomial increases, the power law dependence of the generalized variance σ_{DMA} is obtained:

$$\sigma_{DMA}^2 \sim n^{2H},$$

II. HIGHER-ORDER MOVING AVERAGE POLYNOMIALS

The proposed procedure is based on a generalization of the least-square method, which is commonly applied for the best fit of random data by minimizing the sum of the squares.
of the deviations of a set of \(N \) data points, with respect to a polynomial \(\tilde{y}_m(t) \) of degree \(m \). For a first degree polynomial \(\tilde{y}_1(i) = a_0 + a_1 i \), the coefficients \(a_0 \) and \(a_1 \) that minimize the sum of the squares are

\[
a_1 = \frac{\sum_{i=1}^{N} y(i)i - \frac{1}{N} \sum_{i=1}^{N} i \sum_{i=1}^{N} y(i)}{\sum_{i=1}^{N} i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} i \right)^2}, \tag{3a}
\]

\[
a_0 = \frac{1}{N} \sum_{i=1}^{N} y(i) - a_1 \frac{1}{N} \sum_{i=1}^{N} i. \tag{3b}
\]

One can note that the moving average defined by Eq. (1) can be obtained by Eq. (3b) when the sum is performed over a moving window of size \(n \) rather than over the whole data set \(N \) and \(a_1 = 0 \). Therefore, one can generalize Eqs. (3a) and (3b) with the sum calculated over a moving window:

\[
\tilde{a}_{n,1}(i) = \frac{\sum_{k=0}^{n-1} y(i-k)(i-k) - \frac{1}{n} \sum_{k=0}^{n-1} y(i-k) \sum_{h=0}^{n-1}(i-h)}{\sum_{k=0}^{n-1}(i-k)^2 - \frac{1}{n} \left(\sum_{k=0}^{n-1}(i-k) \right)^2}, \tag{4a}
\]

\[
\tilde{a}_{n,0}(i) = \frac{1}{n} \sum_{k=0}^{n-1} y(i-k) - \frac{1}{n} \tilde{a}_1(i) \sum_{k=0}^{n-1}(i-k). \tag{4b}
\]

The quantities \(\tilde{a}_{n,0}(i) \) and \(\tilde{a}_{n,1}(i) \) are function of \(i \), as opposed to \(a_0 \) and \(a_1 \) in Eqs. (3a) and (3b) which are constant. One can note that if \(\tilde{a}_{n,1}(i) \) is zero, Eq. (4b) coincides with Eq. (1).

By using Eqs. (4a) and (4b), the first order moving average polynomial can be written as

\[
\tilde{y}_n(i) = \tilde{a}_{n,0}(i) + \tilde{a}_{n,1}(i)i. \tag{5}
\]

Furthermore, we observe that the reference point of the moving average window may be changed to any point within the window \(n \) by the introduction of a parameter \(\theta \) with \(0 \leq \theta \leq 1 \). The general expressions of \(\tilde{a}_{n,0}(i) \) and \(\tilde{a}_{n,1}(i) \) with the sum extremes depending on \(\theta \) are written in the Appendix.

By following the approach described above, higher-order moving average polynomials of the form

\[
\tilde{y}_n(i) = \tilde{a}_{n,0}(i) + \tilde{a}_{n,1}(i)i + \ldots + \tilde{a}_{n,m}(i)i^m \tag{6}
\]

can be thus generated, where the coefficients \(\tilde{a}_{n,0}(i), \tilde{a}_{n,1}(i), \ldots \tilde{a}_{n,m}(i) \) are obtained by generalizing the corresponding terms of the least-square expansion. Higher-order moving average polynomials, defined by Eq. (6), have been simulated by means of artificial long-range correlated series with scaling exponent \(H \) by the random midpoint displacement (RMD) and the Cholesky-Levinson factorization (CLF) algorithms [43]. Moving average polynomials of order \(m = 0, m = 1, m = 2, \) and \(m = 3 \) are shown in Fig. 1 with window size \(n = 400 \) referred to the midpoint of the window (\(\theta = 0.5 \)). One can note that the fit improves for higher order polynomials.

Next, we consider the variance

\[
\sigma_{DMA}^2 = \frac{1}{N-n} \sum_{i=m}^{N} [y(i) - \tilde{y}_n(i)]^2, \tag{7}
\]

where \(y(i) \) is a long-range correlated series with Hurst exponent \(H \). The log-log plots of \(\sigma_{DMA}^2 \) vs \(n \) for \(m = 0, m = 1, m = 2, \) and \(m = 3 \) are shown in Fig. 2. The polynomials are calculated for artificial series generated by the RMD method and are centered in the first (\(\theta = 1 \)), in the middle (\(\theta = 0.5 \)), and in the last (\(\theta = 0 \)) point of the window. The
FIG. 2. (Color online) Log-log plots of σ^{2}_{DMA} vs n for moving average polynomial degree $m = 0, 1, 2, 3$, referred, respectively, to the endpoints ($\theta = 1; \theta = 0$) and to the midpoint ($\theta = 0.5$) of the window n. The series have been generated by the random midpoint displacement algorithm. The nominal Hurst exponent is $H = 0.3, 0.5, 0.7$. The values of H obtained on five samples of such series are shown in Table I.

Values of the Hurst exponents estimated as the slopes of the curves plotted in Fig. 2 are summarized in Table I. The length of the series is $N = 2^{20}$. In order to check the self-similarity of the moving average polynomials for shorter series, samples with length equal to $N = 2^{16}, 2^{14}, 2^{12}, 2^{10}$ with $H = 0.5$ have been analyzed for $\theta = 0.5$ and $m = 0, 1, 2, 3$. The results are shown in Table II.

The Hurst exponent is estimated through a linear best fit of the numerical data (similarly to those plotted in Fig. 2). Such a linear dependence does not hold exactly for small n, particularly for $\theta = 0$ and $\theta = 1$. The deviations occurring at

<table>
<thead>
<tr>
<th>m</th>
<th>ΔH_0</th>
<th>ΔH_1</th>
<th>ΔH_2</th>
<th>ΔH_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.32</td>
<td>0.07</td>
<td>0.35</td>
<td>0.17</td>
</tr>
<tr>
<td>1</td>
<td>0.32</td>
<td>0.07</td>
<td>0.35</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>0.51</td>
<td>0.02</td>
<td>0.54</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td>0.51</td>
<td>0.02</td>
<td>0.54</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>0.72</td>
<td>0.03</td>
<td>0.74</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>0.69</td>
<td>-0.01</td>
<td>0.69</td>
<td>-0.01</td>
</tr>
<tr>
<td>6</td>
<td>0.72</td>
<td>0.03</td>
<td>0.74</td>
<td>0.06</td>
</tr>
</tbody>
</table>

TABLE I. Estimation of the Hurst exponent and relative error.
TABLE II. Estimation of the Hurst exponent for series with different length \(N \) with \(H = 0.5 \). The reference for the moving window is \(\theta = 0.5 \).

<table>
<thead>
<tr>
<th>(N)</th>
<th>(m = 0)</th>
<th>(m = 1)</th>
<th>(m = 2)</th>
<th>(m = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N = 2^{16})</td>
<td>0.48</td>
<td>0.48</td>
<td>0.43</td>
<td>0.35</td>
</tr>
<tr>
<td>(N = 2^{14})</td>
<td>0.48</td>
<td>0.48</td>
<td>0.43</td>
<td>0.35</td>
</tr>
<tr>
<td>(N = 2^{12})</td>
<td>0.50</td>
<td>0.49</td>
<td>0.45</td>
<td>0.38</td>
</tr>
<tr>
<td>(N = 2^{10})</td>
<td>0.50</td>
<td>0.49</td>
<td>0.45</td>
<td>0.38</td>
</tr>
</tbody>
</table>

short scales are quite generally reported for the zeroth order polynomials (see [40] and references therein). It is plausible that higher-order polynomials are more strongly affected by the nonlinearities, which may explain why the discrepancies in the estimations of \(H \) increase with \(m \). For \(\theta = 0.5 \), the data for \(m = 0 \) and \(m = 1 \) practically overlap, as well as those in the estimations of \(H \) increase with \(m \).

TABLE III. Asymptotic values of the DMA variances with \(\tilde{y}_n(i) \) of order zero and one. The reference point is in the first point of the window (\(\theta = 1 \)), in the midpoint (\(\theta = 0.5 \)), and in the endpoint (\(\theta = 0 \)). The factor \(n^{2H} \) has been omitted everywhere.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\sigma_{DMA_0})</th>
<th>(\sigma_{DMA_1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\frac{1}{2(H + 1)})</td>
<td>(\frac{1 - H}{(H + 1)(H + 2)})</td>
</tr>
<tr>
<td>0.5</td>
<td>(\frac{2^{1-2H}(H + 1) - 1}{2(H + 1)(2H + 1)})</td>
<td>(\frac{2^{1-2H}(H + 1) - 1}{2(H + 1)(2H + 1)})</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{1}{2(H + 1)})</td>
<td>(\frac{1 - H}{(H + 1)(H + 2)})</td>
</tr>
</tbody>
</table>

FIG. 3. (Color online) Prefactor \(C_H \) of the scaling laws (8) for \(m = 0 \) (left column) and \(m = 1 \) (right column), respectively, with \(\theta = 1 \), \(\theta = 0.5 \), and \(\theta = 0 \). Circles are numerical estimations obtained by using self-similar series generated by the random midpoint displacement algorithm. Continuous lines are analytical values obtained by using the \(C_H \) expressions given respectively by Eqs. (9a) and (9b). The different values of \(C_H \) at the extremes of the curves are due to the \(H \) overestimation in the linear fits of the curves plotted in Fig. 2. The errors can be estimated by the data of Table I where nominal and experimental values of \(H \) are reported.
for \(m = 2 \) and \(m = 3 \). This can be understood on the basis of the following reasoning. The moving average acts as a discrete integral over the series; since for \(\theta = 0.5 \) the reference point is in the center of the moving window, all the sums are performed over a symmetric interval. In this condition, the odd terms of the polynomials do not contribute to the sums, as can be inferred by thinking of the integral of odd functions over symmetric intervals. This cancellation mechanism may also explain the fact that low scale nonlinearities are smoothed out for \(\theta = 0.5 \), as shown in Fig. 2.

III. ASYMPTOTIC BEHAVIOR

In this section the asymptotic behavior of the generalized variance defined by Eq. (7) is investigated with \(\tilde{y}_n(i) \) defined by Eq. (5) for \(m = 1 \). The asymptotic behavior of Eq. (7) yields a closed-form approximation of the scaling law of the form

\[
\sigma^2_{\text{DMA}} = C_H n^{2H} \quad (8)
\]

at large \(n \). The whole process is technically easy but quite cumbersome, thus more details are provided in the Appendix.

The motivation for working out expression (8) is to prove that the self-similarity index of the time series is kept unchanged after implementing each step of the algorithm. This kind of investigation has been performed for the DFA in [44,45], for the DMA in [46], and for the R/S in [47]. We report three cases of particular interest extracted from Eq. (A16) of the Appendix:

\[
\begin{align*}
\theta = 0; & \quad \theta = 1 \quad C_H = \frac{1 - H}{(H + 1)(H + 2)}, \quad (9a) \\
\theta = 0.5 \quad C_H = & \quad \frac{1}{2(H + 1)} - \frac{1 - 2^{-2H}}{2H + 1}. \quad (9b)
\end{align*}
\]

In Table III the prefactors of the scaling laws (9a) and (9b) are summarized in the third column. In the second column those obtained for the zeroth order \(\sigma^2_{\text{DMA}} \) are also reported [46].

As for the zeroth order \(\sigma^2_{\text{DMA}} \), the asymptotic values coincide at the endpoints of the moving window (i.e., with \(\theta = 0 \) and \(\theta = 1 \)). For moving average polynomial referred to the middle of the window (\(\theta = 0.5 \)), the zeroth and first order exhibit the same value of the variance. For \(\theta = 0 \) and \(\theta = 1 \), and in general \(\forall \theta \neq 0.5 \), the fit of order one is more accurate than that of order zero (the variance is smaller). Finally, we compare the analytical results reported in the last column of Table III with those obtained by numerical estimation shown in Fig. 2. The behavior of the \(\sigma^2_{\text{DMA}} \) expected from the asymptotic limit is in very good agreement with the numerical estimates. In Fig. 3 the theoretical values of \(C_H \), calculated by using Eqs. (9a) and (9b), are compared with those obtained by the intercepts of the curves plotted in Fig. 2 for \(\theta = 0, \theta = 0.5 \), and \(\theta = 1 \). Since the fractional Brownian motions have been generated by the RMD algorithm, in the calculation of \(C_H \) it must be kept in mind that \(\sigma^2 = (1 - 2^{2H-2})/2^{2H}\sigma^2_{\text{Gauss}} \), \(\nu \) being the number of steps and \(\sigma^2_{\text{Gauss}} \) the variance defined for the RMD algorithm.

IV. CONCLUSIONS

The relationship for the calculation of the standard moving average Eq. (1) has been generalized allowing the definition of higher-order moving average polynomials Eqs. (5) and (6). The scaling behavior of such polynomials has been characterized by means of the detrending moving average algorithm. The proof of self-similarity rules out the existence of characteristic times and cut-off frequencies in the trend estimation. Furthermore, the asymptotic behavior of the exponents \(H \) of the moving average polynomials and of their detrending moving average variance agree, meaning that DMA algorithm does not change the value of \(H \). The asymptotic values are compared with the results obtained by the simulations. The higher-order polynomials provide to trend estimates at smaller and smaller time scales. As the degree \(m \) of the polynomial increases, the low-frequency components are filtered out accordingly. Remarkably, polynomials with different degrees are obtained with constant moving average window \(n \), thus trends at different time spans can be calculated over data set having the same size. These polynomials could improve the accuracy of trend estimates over different space or time horizons as needed for example in financial markets and image texture analysis.

APPENDIX: ASYMPTOTIC BEHAVIOR: DERIVATION OF THE EQUATIONS

We consider the coefficients \(a_0(i) \) and \(a_1(i) \) in their general form where the sum extremes contain the term \(\theta n \), with \(\theta \) a parameter ranging from 0 to 1,

\[
\tilde{a}_1(i) = \frac{\sum_{k=-\theta n}^{-1-\theta n} y(i - k)(i - k) - \frac{1}{2} \sum_{k=-\theta n}^{-1-\theta n} y(i - k) \sum_{k=-\theta n}^{n-1-\theta n} (i - h)}{\sum_{k=-\theta n}^{-1-\theta n} (i - k)^2 - \frac{1}{\theta} \left[\sum_{k=-\theta n}^{-1-\theta n} (i - k) \right]^2}, \quad (A1a)
\]

\[
\tilde{a}_0(i) = \frac{1}{\theta} \sum_{k=-\theta n}^{-1-\theta n} y(i - k) - \frac{1}{\theta} \tilde{a}_1(i) \sum_{k=-\theta n}^{n-1-\theta n} (i - k). \quad (A1b)
\]

The coefficients \(a_0(i) \) and \(a_1(i) \) can be simplified and rewritten as

\[
\tilde{a}_1(i) = \frac{12}{n^2} \sum_{k=0}^{n-1} y(i - k)(i - k) + \left(\frac{n}{2} - i \right) \sum_{k=0}^{n-1} y(i - k), \quad (A2a)
\]

\[
\tilde{a}_0(i) = \frac{1}{n} \sum_{k=0}^{n-1} y(i - k) + \frac{n}{2} \tilde{a}_1(i) - i \tilde{a}_1(i), \quad (A2b)
\]
where the change of variables $k \to k + \theta n$ and $i \to i - \theta n$ has also been implemented. With these notations Eq. (7) becomes

$$\sigma_{\text{DMA}}^2 = \frac{1}{N-n} \sum_{i=0}^{N} [y(i - \theta n) - a_0(i) - (i - \theta n)a_1(i)]^2.$$ (A3)

The procedure is now to substitute Eqs. (A2a) and (A2b) into (A3) and to compute all the summations in the large n limit, which formally amounts to replace summations with integrals.

$$(N-n)\sigma_{\text{DMA}}^2 = \sum_{i=0}^{N} [y(i - \theta n) - a_0(i) - (i - \theta n)a_1(i)]^2$$

$$= \sum_{i=0}^{N} [y^2(i - \theta n) + a_0^2(i) + i^2a_1^2(i) - 2a_0(i)y(i - \theta n) - 2ia_1(i)y(i - \theta n) + 2ia_0(i)a_1(i)]$$

$$+ \sum_{i=0}^{N} \left[\theta^2a_1^2(i) - 2\theta ia_1^2(i) + 2\theta a_1(i)y(i - \theta n) - 2\theta a_0(i)a_1(i)\right]$$

$$= \sum_{i=0}^{N} y^2(i - \theta n) + 16 \sum_{i=0}^{N} \left[\sum_{k=0}^{n} y(i - k) \right]^2 + 36 \sum_{i=0}^{N} \left[\sum_{k=0}^{n} y(i - k)(i - k) \right]^2$$

$$+ \frac{36}{n^2} \sum_{i=0}^{N} i^2 \left[\sum_{k=0}^{n} y(i - k) \right]^2 - \frac{48}{n^2} \sum_{i=0}^{N} i \left[\sum_{k=0}^{n} y(i - k) \right]^2$$

$$+ \frac{48}{n^3} \sum_{i=0}^{N} \sum_{k=0}^{n} y(i - k)(i - k) \sum_{h=0}^{n} y(i - h) - \frac{72}{n^2} \sum_{i=0}^{N} \sum_{k=0}^{n} y(i - k)(i - k) \sum_{h=0}^{n} y(i - h)$$

$$- \frac{8}{n} \sum_{i=0}^{N} y(i - \theta n) \sum_{k=0}^{n} y(i - k) - \frac{12}{n^2} \sum_{i=0}^{N} y(i - \theta n) \sum_{k=0}^{n} y(i - k)$$

$$+ \frac{12}{n^2} \sum_{i=0}^{N} iy(i - \theta n) \sum_{k=0}^{n} y(i - k) + \frac{144}{n^6} (\theta^2 n^2 - \theta^2) \sum_{i=0}^{N} \left[\sum_{k=0}^{n} y(i - k)(i - k) \right]^2$$

$$+ \left(\frac{n}{2} - i\right)^2 \left[\sum_{k=0}^{n} y(i - k) \right]^2 + 2\left(\frac{n}{2} - i\right) \sum_{k=0}^{n} y(i - k)(i - k) \sum_{h=0}^{n} y(i - h)$$

$$+ \frac{24}{n^2} \theta \sum_{i=0}^{N} \left[y(i - \theta n) \sum_{k=0}^{n} y(i - k)(i - k) + \left(\frac{n}{2} - i\right) y(i - \theta n) \sum_{k=0}^{n} y(i - k) \right.$$

$$- \frac{1}{n} \sum_{k=0}^{n} y(i - k)(i - k) \sum_{h=0}^{n} y(i - h) - \frac{1}{n} \left(\frac{n}{2} - i\right) \left[\sum_{k=0}^{n} y(i - k) \right]^2 \right].$$ (A4)

Taking the large n limit ($n \to \infty$), while keeping $n \ll N$, of Eq. (A4) implies that we can approximate summations with integrals:

$$\sum_{i=0}^{N} \simeq n \int_{-\frac{n}{2}}^{\frac{n}{2}} dx, \quad \text{with} \quad i = nx,$$

$$\sum_{k=0}^{n} \simeq n \int_{0}^{1} dx, \quad \text{with} \quad k = nx.$$ (A5)

It is convenient to compute each sum separately, and then substitute the results into (A4). For the sake of clarity, let us stress that in the following equations the equality signs are intended up to higher-order corrections in the large n expansion:

$$\sum_{i=0}^{N} y^2(i - \theta n) = \frac{n^{2H+1}}{2H+1} \left[\left(\frac{N}{n} - \theta\right)^{2H+1} - (1 - \theta)^{2H+1}\right].$$ (A6)
\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k) \right]^2 = \frac{n}{2(H+1)(2H+1)} \left[N^{2H+2} - n^{2H+2} - (N-n)^{2H+2} \right] - \frac{n^{2H+2}}{2(H+1)(2H+1)} (N-n), \quad \text{(A7)}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k) \right]^2 = \frac{n}{2(H+1)(2H+3)} \left[N^{2H+3} - n^{2H+3} - (N-n)^{2H+3} \right] - \frac{n^{2H+3}}{2(H+1)(2H+1)} (N-n)^2 - \frac{n^{2H+2}}{4(H+1)(2H+1)} (N^2 - n^2), \quad \text{(A8)}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right]^2 = \frac{n}{2(H+1)(2H+2)} \left[N^{2H+4} - n^{2H+4} - (N-n)^{2H+4} \right] - \frac{n^2}{(2H+1)(2H+3)} (N-n)^{2H+3}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{2(H+1)(2H+3)} \left[N^{2H+3} - n^{2H+3} - (N-n)^{2H+3} \right] - \frac{n^2}{4(H+1)(2H+1)} (N-n)^{2H+2}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{8(H+1)(2H+1)} \left[N^{2H+3} - n^{2H+3} - (N-n)^{2H+3} \right] - \frac{n^2}{4(H+1)(2H+3)} (N-n)^{2H+2}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{8(H+1)(2H+3)} \left[N^{2H+3} - n^{2H+3} - (N-n)^{2H+3} \right] - \frac{n^2}{4(H+1)(2H+1)} (N-n)^{2H+2}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{8(H+1)(2H+1)} \left[N^{2H+3} - n^{2H+3} - (N-n)^{2H+3} \right] - \frac{n^2}{4(H+1)(2H+3)} (N-n)^{2H+2}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{8(H+1)(2H+1)} \left[N^{2H+3} - n^{2H+3} - (N-n)^{2H+3} \right] - \frac{n^2}{4(H+1)(2H+3)} (N-n)^{2H+2}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{2(H+1)} \left[(N-\theta)^{2H+1} - (n-\theta)^{2H+1} \right] + \frac{n}{4(H+1)(2H+1)}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{2(H+1)} \left[(N-\theta)^{2H+1} - (n-\theta)^{2H+1} \right] + \frac{n}{4(H+1)(2H+1)}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{2(H+1)} \left[(N-\theta)^{2H+1} - (n-\theta)^{2H+1} \right] + \frac{n}{4(H+1)(2H+1)}
\]

\[
\sum_{i=n}^{N} \left[\sum_{k=0}^{n} y(i-k)(i-k) \right] = \frac{n}{2(H+1)} \left[(N-\theta)^{2H+1} - (n-\theta)^{2H+1} \right] + \frac{n}{4(H+1)(2H+1)}
\]
\[
\sum_{i=0}^{N} \left[\sum_{k=0}^{n} y(i - \theta)(i - k)(i - k) \right] = \frac{1}{4(2H + 1)(2H + 3)} \left[N^{2H+3} - n^{2H+3} - (N - n)^{2H+3} \right] - \frac{N^2}{4(2H + 1)} \left[(N - \theta)^{2H+1} - (n - \theta)^{2H+1} \right]
\]

\[
+ \frac{n}{4(2H + 1)} \left[(N - \theta)^{2H+2} - (n - \theta)^{2H+2} \right] + \frac{\theta(n - \theta)^{2H+1}}{2(2H + 1)} (N - n) + \frac{(n - \theta)^{2H+2}}{2(2H + 1)} (N - n) - \frac{\theta^2H+2}{4(2H + 1)} (N - n).
\]

(A14)

\[
\sum_{i=0}^{N} \left[\sum_{k=0}^{n} y(i - \theta)(i - \theta)(i - k) \right] = \frac{n}{4(2H + 1)(2H + 3)} \left[N^{2H+3} - n^{2H+3} - (N - n)^{2H+3} \right]
\]

\[
- \frac{\theta}{4(2H + 1)(2H + 3)} \left[N^{2H+2} - n^{2H+2} - (N - n)^{2H+2} \right] - \frac{\theta(n - \theta)^{2H+1}}{2(2H + 1)} (N - n) - \frac{\theta^2H+2}{2(2H + 1)} (N - n) + \frac{n\theta}{2(2H + 1)} \left[(N - \theta)^{2H+1} - (n - \theta)^{2H+1} \right]
\]

\[
- \frac{\theta}{2(2H + 1)} \left[(N - \theta)^{2H+1} - (n - \theta)^{2H+1} \right] (N - n) + \frac{\theta}{4(2H + 1)(2H + 3)} \left[N^{2H+2} - n^{2H+2} - (N - n)^{2H+2} \right].
\]

(A15)

Plugging all these partial results into Eq. (A4), after some algebra one obtains

\[n^{-2H} g_{\text{DMA}}^2 = \]

\[
= \frac{4}{(H + 1)(H + 2)^2} + \frac{9}{(H + 1)(H + 2)(2H + 1)} + \frac{4}{2H + 1} \left[\theta(1 - \theta)^{2H+1} + \frac{3}{H + 1} \left[(1 - \theta)^{2H+2} \right] \right]
\]

\[
- \frac{6}{2H + 1} \theta(1 - \theta)^{2H+1} - \frac{6}{2H + 1} \theta^2H+2 + \frac{18H}{(H + 1)(H + 2)(2H + 1)} \theta(1 - \theta) + \frac{6}{H + 1} \theta(1 - \theta)^{2H+2}
\]

\[
+ \frac{6}{(H + 1)(2H + 1)} \theta^{2H+3} - \frac{6}{2H + 1} \theta^2H+2 - \frac{6}{2H + 1} \theta(1 - \theta)^{2H+1} + \frac{12}{2H + 1} \theta^2(1 - \theta)^{2H+1}.
\]

(A16)