
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Experiences of Internet Traffic Monitoring with Tstat / Finamore, Alessandro; Mellia, Marco; Meo, Michela; Munafo',
MAURIZIO MATTEO; Rossi, DARIO GIACOMO. - In: IEEE NETWORK. - ISSN 0890-8044. - STAMPA. - 25:(2011), pp.
8-14. [10.1109/MNET.2011.5772055]

Original

Experiences of Internet Traffic Monitoring with Tstat

Publisher:

Published
DOI:10.1109/MNET.2011.5772055

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2486379 since:

IEEE



1

10-year Experience of Internet Traffic Monitoring
with Tstat

A. Finamore M. Mellia M. Meo M. M. Munaf̀o D. Rossi
1Politecnico di Torino 2TELECOM ParisTech

email: {lastname@tlc.polito.it} email: dario.rossi@enst.fr

Abstract—Network monitoring has always played a key role in
understanding telecommunication networks since the pioneering
time of the Internet. Today, monitoring traffic has become a
key element to characterize network usage and users’ activi-
ties, to understand how complex applications work, to identify
anomalous or malicious behaviors. In this paper, we present our
experience in engineering and deploying Tstat, a free open source
passive monitoring tool that has been developed in the past ten
years. Started as a scalable tool to continuously monitor packets
that flow on a link, Tstat has evolved into a complex application
that gives to network researchers and operators the possibilityto
derive extended and complex measurements via advanced traffic
classifiers. After discussing Tstat capabilities and internal design,
we present some examples of measurements collected deploying
Tstat at the edge of several ISP networks in the past years.
We then discuss the scalability issues that software based tools
have to cope with when deployed in real networks, showing the
importance of properly identifying bottlenecks.

I. I NTRODUCTION

Since the Internet childhood, network monitoring has played
a vital role in network management, performance analysis and
diagnosis. Nowadays, with the increased complexity of the
Internet infrastructure, the applications and services, this role
has become more crucial than ever. Over the years, a number
of methodologies and tools have been engineered to assist
the daily routines of traffic monitoring and diagnosis and to
understand the network performance and users’ behavior [1].

To analyze a system, researchers can follow experimental
science principles and devise controlled experiments to induce
and measure cause-effect relationships, or, observational sci-
ence principles and, avoiding artificial interference, study the
unperturbed system. In the specific field of network traffic
measurement, the above two disciplines are referred to as
active and passive measurements, respectively. The active
approach aims at interfering with the network to induce a
measurable effect, which is the goal of the measurement
itself. Active approaches generate traffic, e.g, by injecting
specifically crafted probe packets or alter the network state,
e.g., by enforcing artificial packet loss. A number of Internet
monitoring tools are based on active probing, ranging from
simple operation management or network tomography via
“ping” or “traceroute”, to more complex delay and capacity
estimation via “capprobe” or “pathchar”. Finally, large and
controlled testbeds can be easily setup using tools like “netem”

This work has been supported by the European Commission through NAPA-
WINE Project (Network-Aware P2P-TV Application over Wise Network), ICT
Call 1 FP7-ICT-2007-1.

(a)

TCP/UDP

Behavioural

FSM DPI

Pure DPI

L7

L4

IPL3

(b)

Fig. 1. Tstat monitoring probe setup (a) and analysis workflow(b).

or “dummynet”. For the passive approach pure observations
are performed by means of dedicated tools, named “sniffers”
by the Internet metrology community, that simply observe and
analyze the traffic that flows on links. Several passive measure-
ment tools are available. Some tools, such as “tcpdump” or
“Wireshark”, are designed to let researchers interactively ana-
lyze the captured packets. Other tools are instead automated,
so that the human interaction is minimized; examples are
the flow-level monitoring tool “NetFlow”, intrusion detection
system like “Snort” or “Bro”, and the traffic classification tool
“CoralReef”. A comprehensive list of both active and passive
tools can be found in [1].

Tstat is an example of automated tool for passive mon-
itoring. It has been developed by the networking research
group at Politecnico di Torino since 2000 [2]. Tstat offers
live and scalable traffic monitoring up to Gb/s using off-the-
shelf hardware. It implements traffic classification capabilities,
including advanced behavioral classifiers [3], while offering
at the same time performance characterization capabilities of
both network usage and users’ activities [4]. After more than
ten years of development, Tstat has become a versatile and
scalable application, used by several researchers and network
operators worldwide. In this paper, we report our experience
with Tstat development and use. We illustrate as a case study
the traffic evolution as observed during the last year at different
vantage points in Europe, and discuss some issues about the
feasibility of Internet traffic monitoring with common PCs that
can help researchers to avoid common pitfalls that we have
faced in the past.

II. T STAT OVERVIEW

Tstat started as evolution oftcptrace[5], which was de-
veloped to track and analyze individual TCP flows, offering



2

detailed statistics about each flow. Tstat initial design objective
was to automate the collection of TCP statistics of traffic
aggregate, adding real time traffic monitoring features. Over
the years, Tstat evolved into a more complex tool offering rich
statistics and functions. Developed in ANSI C for efficiency
purposes, Tstat is today an Open Source tool that allows
sophisticated multi-Gigabit per second traffic analysis tobe run
live using common hardware. Tstat design is highly flexible,
with several plugin modules offering different capabilities that
are briefly described in the following. In addition, pluginscan
be activated and deactivated on the fly, without interrupting the
monitoring. Being a passive tool, live monitoring of Internet
links, in which all flowing packets are observed, is the typical
usage scenario. Fig. 1(a) sketches the common setup for a
probe running Tstat: on the left there is the network to monitor,
e.g., a campus network, that is connected to the Internet
through an access link that carries all packets originated
from and destined to terminals in the monitored network.
The Tstat probe observes the packets and extracts the desired
information. Note that this scenario is common to a wide set of
passive monitoring tools. Therefore the problems faced when
designing Tstat are common to other tools as well.

A. Monitored objects

The basic objects that passive monitoring tools considers
are the IP packets that are transmitted on the monitored
link. Flows are then typically defined by grouping,
according to some rules, all packets identified by the
same flowID and that have been observed in a given
time interval. A common choice is to considerflowID =
(ipProtoType, ipSrcAddr, srcPort, ipDstAddr, dstPort),
so that TCP and UDP flows are considered. For example, in
case of TCP, a new flow starts is commonly identified when
the TCP three-way handshake is observed; similarly, its end
is triggered when either the proper TCP connection tear-down
is seen, or no packets have been observed for some time.
Similarly, in case of UDP, a new flow is identified when the
first packet is observed, and it is ended after an idle time.

As Internet conversations are generally bidirectional, the
two opposite unidirectional flows (i.e., having symmetric
source and destination addresses and ports) are then typically
grouped and tracked asconnections. This allows to gather
separate statistics forclient-to-serverandserver-to-clientflow,
e.g., the size of HTTP client requests and server replies.

Furthermore, the origin of information can be distinguished,
so that it is possible to separatelocal hosts fromremotehosts
in the big Internet. As depicted in Fig. 1(a), traffic is then
organized in four classes:

• incomingtraffic: the source is remote and the destination
is local;

• outgoingtraffic: the source is local and the destination is
remote;

• local traffic: both source and destination are local;
• externaltraffic: both source and destination are remote.

This classification allows to separately collect statistics about
incoming and outgoing traffic; for example, one could be
interested in knowing how much incoming traffic is due to

YouTube, and how many users access Facebook from the
monitored network. The local and external cases should not
be considered but in some scenarios they can be present.

At packet, flow and application layers, a large set of statis-
tics can be defined and possibly customized at the user’s will.
In case of Tstat, several statistics are already available,and
they can be easily customized and improved being Tstat Open
Source. A detailed description of all available measurement
indexes can be found in [2].

B. Workflow analysis

As far as the analysis process is concerned, each observed
packet is handed over to the analyzer plugins that are activated,
as illustrated in Fig. 1(b). Following the Internet naming
standard and going up in the protocol stack, layer-2 (L2) frame
de-encapsulation is first done. Then, the network-layer (L3)
header is processed. Given the datagram service offered by
IP networks, at L3 only per-packet statistics, such as bitrate,
packet length, are possible.

Going up to the transport-layer (L4) analysis, a set of com-
mon statistics for both TCP and UDP flows are maintained,
e.g., packet and byte counters, round trip time (RTT) and
throughput of the data download.

At the application-layer (L7), the main goal of a monitoring
tool is to perform trafficclassificationtask, that is to identify
the application that generated the traffic. As traffic classifi-
cation is known to be prone to fallacies, several approaches
have been studied in the literature [6]. Each tools has then
its peculiarities. In the case of Tstat, three different engines
are available, each relying on different technologies. They are
designed to work even when the complete packet payload is
not available, that is a common situation in live networks
monitoring, since, usually, only a limited portion of each
packet is exposed to the sniffer due to privacy reasons.

The simplest engine isPure Deep Packet Inspection (PDPI).
It uniquely identifies applications by matching asignature
in the application payload. All the application signaturesare
collected in a dictionary, defining a set of classification rules,
and are then checked against the current packet payload until
either a match is found, or all the signatures have been
tested. In the first case, the packet/flow is associated to the
matching application, while in the second case it is labeled
as “unknown”. Signatures cover a large set of applications,
ranging from standard email protocols to Peer-to-Peer appli-
cations, like Bittorrent, eMule, Gnutella, PPLive, and Sopcast.
Extending and updating the signatures is a key issue with
PDPI, as we will discuss later.

The second engine, namedFinite State Machine Deep
Packet Inspection (FSMDPI), inspects more than one packet
of a flow. Finite State Machines (FSM) are used to verify
that message exchanges are conform to the protocol standard;
to have a positive match, a specific sequence of matching
rules have to be triggered. For example, if the first packet
containsGET http:// and the response carriesHTTP/1.0
OK, the flow can be considered as HTTP. Using this approach,
more complex signatures can be defined, allowing to identify
more web based applications like YouTube, Vimeo, Facebook,



3

Flickr, or chat services like MSN, XMPP/Jabber, Yahoo.
Finally Voice over IP phone (VoIP) calls based on RTP/RTCP
cannot be easily detected using PDPI and then FSMDPI
classification is required.

To cope with applications that leverage on encryption
mechanisms which make any DPI classifier useless, Tstat
implements aBehavioral classifier (BC)engine that exploits
statistical properties of traffic to distinguish among applica-
tions. For example, packet size or inter arrival time in flows
carry information about the application generating the content,
so that VoIP flows have very different characteristics with
respect to data download flows. Using this approach, Tstat
identifies encrypted traffic like the one generated by Skype
and Obfuscated P2P-file-sharing of BitTorrent and eMule [3].

In Section III we present some results that exploit traffic
classification capabilities of Tstat. While the performanceand
accuracy of the classifier are out of scope of this paper, overall,
they have been found to “outperform [other] signature based
tools used in the literature” when compared by independent
researchers [7].

C. Input data

Software based monitoring tools like Tstat are designed
to work in real-time when installed in operational networks.
The software tool runs on a “probe”, i.e., a dedicated PC
that “sniffs” traffic flowing on an operative link, as shown
in Fig. 1(a). The libpcap library is the de-facto standard
Application Programming Interface (API) to capture packets
from standard Ethernet linecards under several Operating
Systems. Dedicated hi-end capture devices such as Endace
DAG or AITIA S1GED cards are also available on the
market1. They offer hardware packet monitoring solutions that
offload the main CPU while guaranteeing higher performance
than software based solutions. Tstat supports both standard
sniffing based on libpcap, and hardware solutions as the ones
mentioned earlier.

Furthermore, Tstat can be also compiled as a “library” to
allow an easy integration with already existing tools such
as those typically deployed by an ISP which already has a
monitoring solution. In the latter case, the ISP is free to
customize Tstat and decide what packets should be further
processed, so as to tune the amount of payload, filter packets,
anonymized addresses for privacy purposes. In our experience,
this approach has been very successful to facilitate the integra-
tion of Tstat with the monitoring tools of several ISPs around
Europe and with other traffic analysis tools developed by the
research community.

Besides live traffic analysis, monitoring tools are also com-
monly adopted to offline process packet level traces that have
been previously collected. In this case, the tool can be usedto
inspect specific traffic for post-mortem analysis, or to develop
more complex statistical analysis for advanced performance
evaluation, or to double check the accuracy of any new index
that is being developed. Since several trace file formats are
available on the market, a variety of dump file formats should
be supported, such as pcap, erf, etherpeek, snoop to name a

1http://www.endace.com, http://www.aitia.ai

few. Besides providing already a large set of trace file format
input plugins, Tstat allows to easy integrate new formats
thanks to its open and flexible design.

D. Output statistics

Finally, each monitoring tool offers a set of output statistics
that are strictly bound to the goal of the tool itself. For exam-
ple, intrusion detection systems like Snort or Bro output the list
of triggered alarms and violations, while traffic classification
tools like Tie or Coralreef report statistics about application
traffic shares. Considering Tstat, statistics are available with
different granularities: per-packet, per-flow, and aggregated. At
the finest level of granularity,Packet tracescan be dumped into
trace files for further offline processing. This output format
is extremely valuable when coupled with Tstat classification
capabilities: indeed, packets can be dumped per-application
in different files. For example, it is possible to instruct Tstat
to only dump packets generated by Skype and BitTorrent
applications, while discarding all other packets.

At an intermediate level of granularity,Flow-level logsare
text files providing detailed information for each monitored
flow. A log file is arranged as a simple table where each
column is associated to a specific information and each line
reports the two unidirectional flows of a connection. Several
flow-level logs are available, e.g., the log of all UDP flows, or
the log of all VoIP calls. The log information is a summary of
the connection properties. For example, the starting time of the
VoIP call, its duration, the number of suffered packet losses,
the jitter are all valuable metrics that allow to monitor the
VoIP quality of service. Flow-level logs use much less space
than the original packet level traces, and can be collected for
much longer periods of time.

At an even higher level of granularity, Tstat gathers statistics
about flows aggregates. Two formats are available in this case.
Histogramsare empirical frequency distributions of collected
statistics over a set of flows. For example, the distributionof
the VoIP call duration is automatically computed by consid-
ering all VoIP flows that were observed during each 5 minute
time interval. To overcome the problem of storage space explo-
sion of packet-traces, flow-level logs and histograms over time,
the second available format is represented byRound Robin
Database(RRD) [8], that allows to build a database that spans
over several years by keeping the amount of space limited.
RRD handles historical data with different granularities:newer
samples are stored with higher frequencies, while older data
are averaged in coarser time scales. This dramatically reduces
the requirements in terms of disk space (a priori configurable)
and, thanks to the tools provided by the RRD technology, it is
possible to visually inspect the results. For example, RRD data
collected by a Tstat probe can be queried in real time using a
simple web interface [2], and plots of historical measurements
over multiple sites can be shown. Results presented in this
paper are obtained from the corresponding RRD data.

III. T RAFFIC TRENDS FROM DIFFERENT VANTAGE POINTS

After having presented the main Tstat features and char-
acteristics, we now show Tstat capabilities through a few



4

TABLE I
PROBES CHARACTERISTICS

Location Users Technology Type
Polish ISP 10k ADSL Home

Hungarian ISP 4k ADSL Home
Italian ISP 5k ADSL Home
Italian ISP 15k FTTH Home

Italian Campus 10k LAN and WLAN Campus

results and discuss some conclusions we drawn from our long
experience in using it.

We have been collecting measurement data since 2005 in
collaboration with several ISPs. A Linux-based Tstat probe
has been installed and properly configured in different Points-
of-Presence (PoPs).

A. Probe description

The main characteristics of the 5 probes are summarized in
Tab. I, which reports the PoP location, the approximate number
of aggregated users, the access technology and the type of
customers distinguishing between Home or Campus users. As
it can be observed, the set of probes is very heterogeneous: it
includes Home users in three different countries, with ADSL
or LAN and WLAN access technologies. Depending on the
type of contract with the ISP and on the quality of the physical
medium, ADSL technology offers the users different bitrates,
ranging from 2 to 20 Mb/s downstream and up to 1024 kb/s
upstream. Fiber to the Home (FTTH) customers are offered
10Mb/s full duplex Ethernet connectivity, while Campus users
are connected to a 10Gb/s based Campus network using either
100 Mb/s Ethernet, or IEEE 802.11a/b/g WiFi access points.
The Campus network is connected to the Internet via a single
1 Gb/s link and a firewall is present to enforce strict policies,
to block P2P traffic (unless obfuscated), and to grant access
to only official servers inside the campus.

Probes were upgraded several times to update the Tstat
version and to include advanced features, so as to enhance
traffic classification accuracy and augment the number of
protocol signatures. All probes are configured to continuously
collect RRD information.

B. Traffic share and trends

We first present results covering the May 1st, 2009 to Oct
31th, 2010 period. Figure 2 shows the traffic breakdown for
incoming traffic, i.e., traffic received by customers. The appli-
cations generating the largest amount of traffic are highlighted
using different colors. Over time, we enhanced the classifica-
tion portfolio of Tstat by adding both PDPI/FSMDPI rules and
statistical signatures. For example, since June 2009 we have
been collecting statistics about both Streaming Applications,
such as YouTube, Vimeo, Google video and other flash-based
streaming services, and File Hosting Web based services like
RapidShare or MegaUpload that allow users to share large
files. Light and dark pink colors highlight them in the plots.
Developed and double checked in the Campus network first,
we then deployed these capabilities into other probes. Simi-
larly, since December 2009 the BitTorrent obfuscated traffic

(plotted in light green) is correctly identified by Tstat, and
the more recent BitTorrent UDP based data transport protocol
named uTP [9] is correctly classified since July 2010 (dark
red). This latter classifier was developed while investigating
the cause of the sudden increase of UDP traffic share that is
clearly visible in the Hungarian vantage points during February
2010. This is an example of the usage of Tstat to effectively
support traffic monitoring.

Several considerations can be derived from the presented
results.
• Before the BitTorrent adoption of uTP protocol, the

volume of UDP traffic was marginal in all vantage points
but in the Italian ISP. This is due to this ISP offering
Video on Demand (VoD) services over UDP that makes the
volume of VoD UDP traffic in this network about 10% of
the total. Customers of the same operator are offered native
VoIP service using standard RTP/RTCP protocols over UDP.
Still, the volume of traffic due to VoIP is almost negligible,
accounting for less than 2% of total traffic (in purple color
in the figure). Nowadays, UDP traffic can top 20% of total
volume, depending on the popularity of BitTorrent-uTP or
VoD applications. Therefore, the widely popular statementthat
UDP traffic is negligible does not hold anymore.
• Applications usage is very different at different places.

For example, in Poland the fraction of HTTP traffic is predom-
inant, with more than 60% of traffic due to several applications
adopting HTTP protocol. In both the Italian ISP PoPs, instead,
Peer-to-Peer (P2P) applications amount to more than 50% of
traffic, with eMule clearly being preferred over BitTorrent. In
Hungary, on the contrary, BitTorrent is more popular (with a
traffic share above 20%), while an almost negligible amount
of traffic that is due to eMule. Finally, note that in the Italian
Campus network the fraction of P2P traffic is marginal being
the firewall very effective in blocking such traffic.
• Some slow long-term trends are clearly visible. For

example, P2P traffic share is generally decreasing, while
streaming applications are becoming more and more popular
with a share that has reached more than 20% in Poland,
and is above 15% in other PoPs. Interestingly, there is a
corresponding positive trend for File Hosting applications,
which are eroding important percentage of traffic to P2P file
sharing applications. Indeed, the same content can be retrieved
by users through P2P or File Hosting technologies. The latter
is nowadays becoming more and more popular among users
since it offers much better performance.
• While the above mentioned changes in traffic shares are

typically slow, sudden changes are possible due to changes
in the application. For example, as already mentioned, the
popular µtorrent application was updated during February
2010 to use by default the uTP transport protocol instead
of TCP. Correspondingly, there is an increase of UDP traffic
clearly visible in some probes. Similarly, RapidShare changed
the application protocol during September 2010, and this
change fooled the PDPI classifier. An artificial drop in File
Hosting traffic is then observed in those vantage points in
which RapidShare is popular, e.g., in Poland.
• Traffic shares are very stable and little variations are

visible among different days. Only in the Campus network,



5

T
ra

ffi
c 

sh
ar

e 
[%

]
Polish ISP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

May09 Jul09 Sep09 Nov09 Jan10 Mar10 May10 Jul10 Sep10

T
ra

ffi
c 

sh
ar

e 
[%

]

Hungarian ISP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

May09 Jul09 Sep09 Nov09 Jan10 Mar10 May10 Jul10 Sep10

T
ra

ffi
c 

sh
ar

e 
[%

]

Italian ISP - ADSL

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

May09 Jul09 Sep09 Nov09 Jan10 Mar10 May10 Jul10 Sep10

T
ra

ffi
c 

sh
ar

e 
[%

]

Italian ISP - FTTH

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

May09 Jul09 Sep09 Nov09 Jan10 Mar10 May10 Jul10 Sep10

T
ra

ffi
c 

sh
ar

e 
[%

]

Italian Campus

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

May09 Jul09 Sep09 Nov09 Jan10 Mar10 May10 Jul10 Sep10

TCP

Emule

Emule Obfuscated

BitTorrent

BitTorrent Obfuscated

P2P

Streaming (YouTube, Vimeo, ...)

FileHosting (RapidShare, ...)

Others HTTP (SSL/TLS, Chat, ...)

HTTP

FTP, email, Unknown

Other

UDP

BitTorrent

BitTorrent uTP

P2P

DNS, VoD, Unknown

RTP/RTCP

Other

Fig. 2. Comparison of traffic as observed on 5 different trafficprobes.

the variability is very high and the weekly pattern is clearly
visible (see also the figure and related comments in the next
section). Indeed, during the weekend, few users are presentin
the campus and little traffic flows on the link. This causes the
application usage pattern to be different.

While it is out of scope of this paper to provide a detailed
analysis of Internet traffic trends and user habits, the presented
results highlight the importance of constantly monitoringthe
network with a flexible tool that has to be constantly upgraded
and enhanced to follow its changes.

IV. SCALABILITY ISSUE OF SOFTWARE BASED

MONITORING TOOLS

When implementing a live monitoring tool, the knowledge
of the maximum sustainable load that the probe can handle
is one the most critical issues that must be faced. Indeed, as

seen in the previous section, Internet traffic widely changes
over both time and space. In a finer timescale, traffic is known
to exhibit even larger variability considering both the packet
and flow levels. For example, packet level burstiness can stress
the sniffing hardware so that packet bursts can arrive at very
high speed. Packet capturing, filtering and timestamping are
then critical, especially if implemented in software. Similarly,
bursts of new flows can stress the per-flow operations, so that
memory management becomes typically a bottleneck.

While Tstat is as an example of advanced traffic monitoring
tool, most of the operations it handles are common to any
flow level sniffer and monitoring tool. Indeed, similar data
structures must be used to store basic per-flow information
such as flow identifier, packets and bytes counters, timestamp
and the classification status. Notice that flow structures must
be accessed and updated for each packet: hence, efficient
data structures like hash-tables must be considered, where



6

T
ra

ffi
c 

lo
ad

C
P

U
 lo

ad
 [%

]

Max CPU load Tot. bitrate [Mb/s] Flows tracked [kflows/s]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

Mon Tue Wed Thu Fri Sat Sun Mon
 0

 20

 40

 60

 80

 100

(a) Italian ISP FTTH probe.

T
ra

ffi
c 

lo
ad

C
P

U
 lo

ad
 [%

]

Max CPU load Tot. bitrate [Mb/s] Flows tracked [kflows/s]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Mon Tue Wed Thu Fri Sat Sun Mon
 0

 20

 40

 60

 80

 100

(b) Italian Campus probe.

Fig. 3. Total link bitrate, number of flows and maximum CPU utilization
during a typical week.

collisions are minimized and eventually handled using chain-
ing. Further optimizations of memory management are also
needed; freed structures should be manually handled as reuse
lists by a garbage collector, so as to avoid generic and
expensive garbage collection routines to kick-in and slow
down the main analysis operations.

In [10] we extensively analyzed the computational com-
plexity of the Tstat analysis workflow, showing that even with
off-the-shelf hardware it is possible to run advanced analysis
techniques on several Gb/s worth of traffic in real-time.

To provide some examples of the typical workload that
Tstat has to support, and to highlight some critical points
in the design of a flow-sniffer, Fig.3 shows the evolution a
one week long period of time of the total link bitrate (gray
line), number of tracked flows (black line) and maximum CPU
utilization (dotted line), i.e., the total time spent by theCPU
in running Tstat, including both kernel and user space CPU
time. Measurements refer to a time window of 5 minutes. The
results for the Italian ISP FTTH and Italian Campus probes
are reported on the top and bottom plots, respectively; results
from other probes are not reported for the sake of brevity.

Considering the total link bitrate, the two probes handle
approximately the same amount of traffic, which tops to nearly
500Mb/s at the peaks. Notice that the peak-hour occurs at
different times, reflecting the different user habits of Home
and Campus users. The number of active flows is also very
different, with the Campus probe having to handle a per-flow
load which is about two times higher. This is due to the
different traffic mix generated by Campus users, as previously

shown in Fig. 2. Therefore, hash table sizes must be correctly
tuned to support the various values of the load.

In the CPU load curves, we see a very different behavior:
the Italian ISP probe exhibits a very low maximum CPU
utilization, which is not correlated with either the packetor
flow level patterns. On the contrary, the Campus maximum
CPU utilization is always above 30%, and it tops 100% during
sustained traffic load. Investigating further, we pinpointed this
to be due to the packet capturing input module, which is
based on a common Gigabit Ethernet linecard in the Campus
probe, while the Italian ISP probe relies on dedicated Endace
linecard. Based on our experience indeed, the major bottleneck
is due to the linecard-to-memory communications, which can
overload CPU by generating a large number of Interrupt
Requests (IRQ) per second, i.e., one for each received packet.
Dedicated traffic capturing devices solve this problem by im-
plementing timestamping functionalities and Direct Memory
Access (DMA) based transfers of packet batches. The CPU
utilization figures of the other probes, not shown in the paper
due to lack of space, confirm this. All ISP probes are indeed
equipped by dedicated hardware capturing linecards so that
the maximum CPU utilization remains very limited even if
they have to handle a large volume of traffic, topping to about
1.5Gb/s.

In summary, with common hardware it is possible to mon-
itor several Gb/s volumes of traffic in real time, provided
the packet capturing is performed with efficient hardware that
offload the CPU from the per-packet memory copy and times-
tamping operations. Similarly, efficient memory management
algorithms must be adopted to perform per flow operations,
which optimize both the flow lookup performed for every
packet, and garbage collection mechanisms required to avoid
memory starvation.

V. CONCLUSIONS

In this paper, we described our experience in using Tstat,
a software based Internet traffic monitoring tool that we
have being developing for the past 10 years. Presenting
measurements collected from several ISP networks, we have
shown that Internet traffic widely changes over both time and
space: application shares are different at different networks
even if common trends are visible due to slow changes in
applications popularity; however, sudden changes are observed
after the deployment of disruptive technologies made by appli-
cations themselves. We then discussed the implication of using
software based solutions for traffic monitoring showing that
moderate volumes of traffic can be monitored with common
hardware, provided that efficient packet capturing devicesare
used, and proper memory management is implemented.

REFERENCES

[1] Les Cottrell, “Network Monitoring Tools Collection,” http://www.slac.
stanford.edu/xorg/nmtf/nmtf-tools.html.

[2] Tstat Homepage, http://tstat.tlc.polito.it
[3] A.Finamore, M.Mellia, M.Meo, D.Rossi, “KISS: Stochastic Packet

Inspection Classifier for UDP Traffic”IEEE/ACM Transactions on
Networking,, Vol.18, No.5, pp.1505-1515, Oct. 2010.

[4] M.Mellia, R. Lo Cigno, F. Neri, “Measuring IP and TCP behavior on
edge nodes with Tstat”,Computer Networks, Vol.47, No.1, pp.1-21, Jan.
2005.



7

[5] TCPTrace Homepage, http://www.tcptrace.org
[6] T.Nguyen, G.Armitage, “A survey of techniques for internet traffic

classification using machine learning,”Communications Surveys & Tu-
torials, IEEE, vol.10, no.4, pp.56-76, 2008.

[7] M. Pietrzyk, J. Costeux, G. Urvoy-Keller, and T. En-Najjary, “Challeng-
ing Statistical Classification for Operational Usage : the ADSL Case”,
ACM Internet Measurement Conference, Chicago, IL, Nov. 2009.

[8] RRDtool Homepage http://oss.oetiker.ch/rrdtool/
[9] S.Shalunov, G.Hazel, J. Iyengar, “Low extra delay background transport

(LEDBAT)”, IETF Draft, October 2010.
[10] D. Rossi and M. Mellia, “Real-Time TCP/IP Analysis with Common

Hardware,”IEEE International Conference of Communication (ICC’06),
Istanbul, Turkey, June 2006.


