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Extended Topological Metrics for the Analysis of
Power Grid Vulnerability

Ettore Bompard, Enrico Pons, and Di Wu

Abstract—Vulnerability analysis in power systems is a key issue
in modern society and many efforts have contributed to the anal-
ysis. Recently, complex networks metrics, applied to assess the
topological vulnerability of networked systems, have been used
in power grids, such as the betweenness centrality. These metrics
may be useful for analyzing the topological vulnerability of power
systems because of a close link between their topological structure
and physical behavior. However, a pure topological approach
fails to capture the electrical specificity of power grids. For
this reason, an extended topological method has been proposed
by incorporating several electrical features, such as electrical
distance, power transfer distribution, and line flow limits, into
the pure topological metrics. Starting from the purely topological
concept of complex networks, this paper defines an extended
betweenness centrality which considers the characteristics of
power grids and can measure the local importance of the elements
in power grids. The line extended betweenness is compared
with the topological betweenness and with the averaged power
flow on each line over various operational states in the Italian
power grid. The results show that the extended betweenness is
superior to topological betweenness in the identification of critical
components in power grids and at the same time could be a
complementary tool to efficiently enhance vulnerability analysis
based on electrical engineering methods.

Index Terms—Betweenness, complex networks, electrical
betweenness, vulnerability.

Nomenclature

The symbols and abbreviations used in this paper are listed
as follows.

Y Transmission network, Y = {L, B}.
L Set of lines, L = {..., lij , . . . }, dim{L} = NL, i, j ∈ B.
L

V Set of lines connecting bus v, L
V = {..., lvi, . . . , ljv,

. . . }, i, j, v ∈ B.
B Set of buses, B = {..., i, . . . , j, . . . }, dim{B} = NB, B

= G∪D∪T.
W Weights associated with the lines W = {..., wij , . . . },

dim{W} = NL, i, j ∈ B.
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G Set of buses connected with generators, G⊆ B =
{..., g, . . . }, dim{G} = NG.

D Set of buses connected with loads, D ⊆ B = {..., d,
. . . }, dim{D} = ND.

T Set of transmission buses, T⊆B, dim{T} = NT.
F L x N matrix of power transmission distribution fac-

tors.
dij Geodesic distance between vertices i and j.
σij(v) Number of the geodesic paths between vertices i and

j that pass through a vertex v (i �= j �= v).
σij(l) Number of the geodesic paths between vertices i and

j that includes the edge l.
σij Total number of the geodesic paths connecting vertices

i and j.
flj Change of the power on line l corresponding to a unit

change of power injection at bus j and withdrawal at
the reference bus.

f
gd

l Change of the power on line l for injection at gener-
ation bus g and withdrawal at load bus d.

Pmax
l Power flow limit of line l.

Cd
g, Power transmission capacity from buses g to d.

T (v) Electrical betweenness of bus v.
T (l) Electrical betweenness of line l.
T p(l) Positive electrical betweenness of line l.
T n(l) Negative electrical betweenness of line l.
Zd

g Equivalent impedance between buses g and d.
Ud

g Voltage drop when a unit of current is injected at
generator g and withdrawn at load d.

Ig Current is injected at generator g.
zgd g-row, d-column entry of the impedance matrix of a

power grid.
EY Efficiency of transmission network Y.
AY Net-ability of transmission network Y.

I. Introduction

VULNERABILITY analysis is necessary for transmission
system operators to identify the vulnerable components

whose protection or backup will result in a more robust system
against accidents or malicious threats.

In general, the physical behavior of power systems is de-
termined by two aspects: topological structure and operational
state. Hence, the vulnerability analysis of power systems can
also be classified as the conventional vulnerability analysis
and the structural vulnerability analysis [1]. The conventional
vulnerability analysis based on complete operational data
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and topological information, as well as standard engineering
models in power systems [2], [3], is challenged in large-scale
power systems since the topological and operational states
become more and more complicated with the increase of size
of the system and with the introduction of the electricity
market. On the other hand, there exists a close relationship
between the topological structure and the physical behavior
in power systems because the structural change could alter
operational conditions of a power system and then change its
physical behavior. Although structural vulnerability analysis
cannot substitute for the conventional vulnerability analysis, it
may be a complementary tool for the conventional vulnerabil-
ity analysis. Moreover, the structural vulnerability analysis is
also useful to understand the global properties of power grids
affecting their local behaviors [4].

Complex network methodology is a popular method to
analyze and comprehend power grids from a topological point
of view [5]–[10]. Recent works demonstrate that electrical
power grids have not only the characteristics of the small-
world networks [6]–[8], but also the features of the scale-free
networks [9], [10]. In the methodology, topological properties
can be analyzed using different metrics, local or global. Local
metrics benefit from computational speed but give only a
local measure, while global metrics can measure the overall
performance of a network but suffer from the computational
time. Among these metrics, betweenness centrality [11] as a
local measure plays a key role in identifying the criticality of
components (vertices and edges) [12], [13]; on the other hand,
efficiency [14] is one of the most widely used global metrics:
it cannot only indicate the importance of components in a
network but also enables us to assess its performance [15]–
[18]. However, these existing metrics that are used to analyze
structural vulnerability of power grids from a pure topological
perspective fail to capture some basic and important features
of power grids. Consequently, these purely topological metrics
could result in misleading research results [19], which may be
far from real physical behaviors of power grids.

To overcome this problem, the extended topological method
was proposed by introducing some electrical engineering
specificity into the complex networks method. For instance,
efficiency is redefined as net-ability [20] by incorporating
electrical distance, power transmission capacity, and bus clas-
sification. In this paper, we redefine the topological between-
ness centrality as an extended betweenness centrality that
takes account of power transmission capacity, power transfer
distribution, and bus classification in order to identify the
criticality of components in power grids.

The rest of this paper is organized as follows. Nomenclature
lists the symbols that will be used in this paper, Section II
gives the definition of the topological betweenness centrality,
the extended betweenness is introduced in Section III, the nu-
merical analysis is presented in Section V, and the conclusion
is summarized in Section VI.

II. Pure Topological Betweenness

In complex networks, the networked systems such as the
power grid can be abstracted as a directed and weighted graph

Y = {B, L, W} to analyze the inherent structure features, where
B is the set of vertices (or nodes) and L is the set of edges
(or links) with an associate set of weights W. Each vertex can
be identified by its code i; the edge is identified by lij that
represents a connection going from vertex i to vertex j and
that is associated with a weight wij .

A walk from vertex i to vertex j is a sequence of vertices and
edges that begins with i and end with j while a path is a walk
in which no vertex is visited more than once. A geodesic path
(i.e., shortest path) is the path which has the minimal number
of edges between two vertices. The geodesic distance dij is
the number of edges in geodesic path between vertices i and
j. In a network, the importance of a vertex can be measured
by the betweenness of the vertex, which is defined in [11]

B(v) =
N∑
i

N∑
j

σij(v)

σij

i �= j �= v ∈ B (1)

where σij(v) is the number of the geodesic paths between
vertices i and j that pass through a vertex v (i �= j �= v).
σij denotes the total number of the geodesic paths connecting
vertex i and vertex j. N is the number of vertex in network.
Similarly, the edge betweenness can also be defined as follows
[11]:

B(l) =
N∑
i

N∑
j

σij(l)

σij

i �= j ∈ B l ∈ L (2)

where σij(l) is the number of the geodesic paths between
vertices i and j that includes the edge l.

III. Extended Betweenness

The complex network theory has been successfully applied
in the analysis of technological networks, such as the World
Wide Web. However, the pure topological concepts and met-
rics disregard the real physical properties and the operative
constraints of power grids so that the straight application of
the topological perspective fails in capturing their specificity.
In complex networks, each vertex, which may be a source or
a sink, has equal function when some physical quantities are
transmitted over the network. However, in power grids, buses
are distinguished depending on their functions as generation
buses [G, dim(G) = NG], load buses [D, dim(D) = ND], and
transmission buses [T, dim(T) = NT]. Furthermore, power
is only transmitted from generation buses to load buses and
each transmission line provides its own contribution involving
basically all the buses and lines of the system.

In the linearized model of power systems, the contribu-
tion of each transmission line to power transmission can be
computed by the power transfer distribution factors (PTDFs).
PTDF reflects the sensitivity of the power flowing on each
line for a power injection/withdrawal at a couple of buses.
PTDF can be represented by a LN matrix F in which each
element flj expresses the change of power on each line l for a
unit change of power injection at bus j and withdrawal at the
reference bus; f

gd

l is the change of the power on line l (l∈L)
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for injection at generation bus g and withdrawal at load bus
d, and f

gd

l can be computed as follows:

f
gd

l = flg − fld l ∈ L (3)

where flg and fld are, respectively, the lth row gth column and
lth row dth column of F.

In order to maintain stability and security in the operation of
power grids, each transmission line l has its own transmission
limit Pmax

l which is a physical parameter of line l, unrelated to
operational conditions and electrical transactions in the power
grid. As the line flow limit plays a major role in the power
transmission between generation buses and load buses, we
define the power transmission capacity Cd

g in (4) to consider
the impact of the parameter on the structural analysis

Cd
g = Min

⎧⎨
⎩

Pmax
1∣∣∣f gd
1

∣∣∣
, . . . ,

Pmax
l∣∣∣f gd

l

∣∣∣
, . . .

Pmax
NL∣∣∣f gd
NL

∣∣∣

⎫⎬
⎭ (4)

where Cd
g represents the maximum power which can be

injected at bus g and withdrawn at bus d, while the power
on each transmission line is smaller than or equal to its own
line flow limit.

According to the above-mentioned specific features of
power grids, the electrical betweenness of bus v can be
redefined as follows:

T (v) =
1

2

∑
g∈G

∑
d(g �=d)∈D

Cd
g

∑

l∈LV

∣∣∣f gd

l

∣∣∣ v �= g �= d ∈ B (5)

where
∑

l∈LV

∣∣∣f gd

l

∣∣∣ is the sum of the PTDF of all the lines con-
necting bus v when power is injected at bus g and withdrawn
at bus d; 1/2 · Cd

g

∑
l∈LV

∣∣∣f gd

l

∣∣∣ represents the transmission
power taken by bus v when the power is transmitted from
generation bus g to load bus d; G and D, respectively, are
the sets of generation buses and load buses; L

V is the set of
lines connecting bus v. Equation (5) computes the extended
betweenness of bus v. The bus v is neither a specified generator
bus g nor a specified load bus d. Meanwhile, generator g and
load d are not the same, too.

Similarly, the electrical betweenness of line l can be rede-
fined as follows:

T (l) = max[T p(l), |T n(l)|] l ∈ L (6)

where T p(l) and T n(l) represent, respectively, the positive
electrical betweenness and the negative electrical betweenness
of the line l

T p(l) =
∑
g∈G

∑
d(g �=d)∈D

Cd
gf

gd

l iff gd

l > 0

T n(l) =
∑
g∈G

∑
d(g �=d)∈D

Cd
gf

gd

l iff gd

l < 0

where Cd
gf

gd

l represents the power flowing on line l when the
power is transmitted from generator bus g to load bus d.

It is worthy of noticing that the computational complexity
of the extended betweenness is lower than that required for
the original metrics defined in (1) and (2). For example, the

computational complexity may be O(NLN2
B) [21] to compute

the original betweenness of all vertices in a power grid.
On the other hand, the complexity could be O(NGND) for
the extended betweenness and in general, the number of
generators and loads are smaller than the number of buses
and transmission lines in a real power grid. Taking the Italian
power grid as an example, there are 641 lines and 521 buses,
including 158 generators and 205 loads in the real power grid.
Therefore, the extended betweenness is superior to the original
betweenness in the computational complexity when measuring
the importance of buses or lines in real power grids.

IV. Extended Metric for Net Efficiency:

Net Ability

Efficiency was proposed to measure the overall performance
of a network [14] and to locate the critical components of
the networked infrastructure systems [15]–[18]. The efficiency
EY of a network Y defined in (7) quantifies the overall
performance of the network Y as the mean geodesic distance
over all pairs of vertices in the network

EY =
1

NB(NB − 1)

∑
i �=j∈B

1

dij

(7)

where NB is the total number of vertices in a network, dij is
the geodesic distance between vertices i and j.

The general goal of a power transmission network is the
feasible and economic power transmission from generation
buses to load buses. Feasibility refers to technical issues
(losses, voltage drop, stability, and so on). Economy is related
to other aspects (transmission costs, market efficiency, and so
on). Therefore, we extend then efficiency as the new concept
of net-ability which measures the network ability to perform
properly the function of a power grid under normal operating
conditions. Since performing the function properly depends
on the maximum (real or apparent) line flow limits (transfer
arbitrary amounts of power) and on the impedance of the lines
(economic and technical convenience), we define net-ability
AY of a power grid Y in [20] which quantifies the performance
of power grid Y as the mean “electrical” distance over all pairs
of generators and loads in the power grid

AY =
1

NGND

∑
g∈G

∑
d(d �=g)∈D

Cd
g

1∣∣Zd
g

∣∣ (8)

where NG is the total number of generators in a power grid,
ND is the total number of loads in a power grid, Cd

g is
the power transmission capacity defined in (4), |Zd

g | is the
electrical distance between a pair of generator g and load
d. The detailed discussions on the electrical distance are
presented in the Appendix.

Besides, the unit for net-ability is MW/� which indicates
with one unit of cost (�) how many benefits (power transmis-
sion) can be achieved through the considered network from
any generator to any load. This meaning is consistent with the
concept of efficiency in [15]–[17].
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Fig. 1. Criticality of lines measured by various scenarios in Italian power
grid. (a) Criticality of lines through normalized averaged power flow.
(b) Criticality of lines through normalized extended betweenness. (c) Crit-
icality of lines through normalized topological betweenness.

V. Numerical Studies

In this section, we compare the line extended betweenness
with the line topological betweenness in the Italian power grid.
The Italian power grid is a real power grid that is composed
of 641 lines and 521 buses, including 158 generator buses
and 205 load buses. Meanwhile, we also compare the two
types of line betweenness with the power flow on each line
averaged over various operational states in the real power grid.
The averaged power flow is chosen as a standard contingency
metric to rank lines because the two types of line betweenness
quantify the flow on each line in a power grid from the
structural point of view. Moreover, the larger averaged power
flow on a line means the line could be more critical since in
most cases the more critical line failure could lead to more
overloaded line failures in the remaining lines due to more
power flow redistribution from the faulted line to the remaining
lines. Therefore, the averaged power flow on each line can be
seen as a contingency ranking metric to be compared to two
types of line betweenness. Although some researchers have
directly compared the power flow on each line with the line
topological betweenness in order to investigate the correlation
between structure and function of power systems [22], the
power flow on each line is sensitive to operative conditions.
Hence, we average the power flow on each line over 100
evaluations. In each evaluation, the load randomly changes
in the interval [0, 2Pd] (Pd is the base load in Italian power
grid, d ∈ D), and the power flow on each line is determined
by DC power flow computation.

Fig. 1(a) illustrates the averaged power flow on each line of
the Italian power grid. The averaged power flow is normalized
by its maximum. The extended betweenness and topological
betweenness on each line are also normalized by its each own
maximum, as shown in Fig. 1(b) and (c), respectively.

At the beginning, we compare the line extended between-
ness with the line topological betweenness and averaged power

flow on lines by investigating the effect of random and
intentional attacks on critical lines on Italian power grid by
means of remaining load in the power grid. The criticality
of a line can be evaluated in terms of the value of the
extended betweenness, topological betweenness, or averaged
power flow, respectively: a bigger value in these metrics means
a more critical line. We rank lines in a descending order of the
extended betweenness, the topological betweenness, and the
averaged power flow, respectively. The remaining load is the
residual amount of load in the power grid after each removal
of ranked lines. The remaining load is indirectly computed by
optimal dispatch and load shedding based on DC power flow.
Similar to the evaluation of the averaged power flow, assessing
remaining load under attacks is related to the operational
states of power grids as well. Therefore, the simulated results
are averaged among 50 evaluations both for random attacks
and for intentional attacks. In each evaluation, the load also
randomly changes in the interval [0, 2Pd]. For random attacks,
50 lines are randomly selected and then removed successively
from the Italian power grid in each simulation. For deliberate
attacks, the top 50 most critical lines ranked by the above-
mentioned three measures are successively removed from the
Italian power grid. The results for random and deliberate
attacks are compared in Fig. 2(a)–(c), where the whiskers
represent the standard deviation over 50 evaluations.

In these figures, we show the decrease of remaining load in
the Italian power grid as a function of the number of removed
critical lines when the power grid is attacked either randomly
or deliberately. As we can see from these figures, the Italian
power grid is sensitive to intentional attacks in terms of the
extended betweenness and averaged power flow on lines but
relatively robust to random failures since the remaining load
drops more quickly when the lines are removed according
to the ranking suggested. However, when the ranked lines
are removed according to topological betweenness, it is not
always true that the remaining load drops more quickly than
the removal of random lines. This implies that topological
betweenness is unable to effectively identify critical lines.

We further compare the line extended betweenness with
topological betweenness and averaged power flow on each line
in the case where only critical lines are deliberately removed
as shown in Fig. 2(d). It can be observed that the power grid is
more vulnerable when attacking lines which are ranked by the
averaged power flow on each line rather than the two types
of line betweenness since the remaining load in the power
grid deceases faster. On the other hand, the line extended
betweenness is better than the topological betweenness to
locate the critical lines because the remaining load drops faster
under the attack of critical lines identified by the extended
betweenness. Similar results can be found in Fig. 3, where
the network performance under various scenarios of attacks is
evaluated by net-ability.

When the averaged power flow on each line as a contingency
ranking metric identifies the criticality of lines in a power grid,
both structure and operational states are considered in the
identification. However, the extended betweenness identifies
the criticality of lines from a structural point of view, though
the extended betweenness introduces electrical specificity
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Fig. 2. Remaining load in the Italian power grid after removing 50 most critical lines in various scenarios. (a) Random attack versus power flow criterion
attack. (b) Random attack versus extended betweenness criterion attack. (c) Random attack versus topological betweenness criterion attack. (d) Comparison
between the three criteria.

Fig. 3. Remaining net-ability in the Italian power grid after removing
50 most critical lines in various scenarios.

into topological betweenness. Therefore, the identification for
averaged power flow is superior to the extended betweenness.
Even so, when we use the averaged power flow on each
line as a contingency ranking metric to locate critical lines
whose failures could cause serious consequence at a majority

Fig. 4. Correlation of the number of critical lines among various scenarios.

of operational conditions, we have to average evaluations over
a multitude of various operational states. The computation is
time-consuming, especially in large-scale power grids.

To enhance the computational efficiency, it could be useful
to find the correlation between the extended betweenness
and the averaged power flow on each line. As for the Italian
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power grid, the correlation is reported in Fig. 4 which shows
a number of the first critical lines for the averaged power flow
on each line can be found in a subset of critical lines ranked
by the extended betweenness or topological betweenness. For
instance, we can spot out the first 50 most critical lines for
the averaged power flow on each line in a subset of the first
410 critical lines ranked by the extended betweenness. This
implies that after the subset of critical lines for extended
betweenness is first spotted out, it could be efficient and
effective that the averaged power flow on each line is applied
to the subset of critical lines to evaluate the criticality again.
Though the dimension of the subset might be large, the
dimension of the subset smaller than the total number of lines
in the Italian power grid and the computational simplicity
of the extended betweenness make the extended betweenness
possible to be a complementary tool for contingency ranking
metrics like the averaged power flow on each line to analyze
vulnerability of power systems.

VI. Conclusion

An extended topological method was proposed to overcome
the shortcomings that complex networks methodology is di-
rectly applied to analyzing power grids from a topological
point of view. In this paper, we proposed the extended be-
tweenness by introducing some electrical engineering speci-
ficity into the topological betweenness. Taking line extended
betweenness as an example, we showed that it is superior to
topological betweenness in the identification of critical lines
in power grids. Although the extended betweenness is still not
as good as electrical engineering contingency ranking metric
to accurately measure the criticality of components, thanks to
its computational simplicity it may hopefully become a com-
plementary tool to improve the efficiency of the vulnerability
analysis based on electrical engineering methods.

APPENDIX

The distance in complex network method is quantified as
geodesic distance since it is assumed that physical quantity
is transmitted along the geodesic path. However, in a power
grid, the current or power is transmitted from generators and
loads not only along geodesic paths but also the remaining
paths. Hence, the geodesic distance should be replaced with
an electrical distance when power grids are analyzed from the
structural point of view by means of the complex network
method. In this paper, the electrical distance is defined as the
magnitude of equivalent impedance |Zd

g | between generator g
and load d in (9). The equation indicates |Zd

g | is the magnitude
of voltage drop |Ud

g | between generator g and load d when a
unit of current is injected at generator g and withdrawn at
load d (i.e., Ig = 1), and the equivalent impedance |Zd

g | can
be computed in terms of elements in the impedance matrix of
a power grid (see the details in [20])

∣∣Zd
g

∣∣ =
∣∣Ud

g

∣∣
Ig

=
∣∣Ud

g

∣∣ ⇒ ∣∣Zd
g

∣∣ = ∣∣(zgg − zgd) − (zgd − zdd)
∣∣
(9)

where zgd denotes the g-row, d-column entry of the impedance
matrix of a power grid; zgd is generally a complex number
composed of resistance and reactance.

It is worth noticing that the electrical distance |Zd
g | is dif-

ferent from the electrical distance in [10], where the electrical
distance between a pair of buses i and j is defined as the mag-
nitude of nondiagonal elements |zij| in the impedance matrix.
The magnitude of element |zij| represents the magnitude of the
voltage drop between bus i and specified reference bus (rather
than bus j) when a unit of current or power is injected in bus
j and withdrawn at the reference bus (rather than bus j).

Besides, the electrical distance |Zd
g | among all pairs of

generators and loads in a power grid can be represented as
a matrix whose dimension is NG×ND. The elements of the
matrix are nonnegative. The symmetry of the matrix depends
on its elements and the number of generators NG and the
number of loads ND in a power grid. The matrix is possibly
asymmetric because its entry |Zj

i | is probably not equal to the
entry |Zi

j| and NG is also possibly smaller than ND in a power
grid. Besides, the entry in the matrix is always not to satisfy
the triangle inequality∣∣∣Zj

i

∣∣∣ + ∣∣Zk
j

∣∣ ≥ ∣∣Zk
i

∣∣ . (10)
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