
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development and Validation of on-board systems control laws / Medici, Giovanni; Viola, Nicole; Corpino, Sabrina; Fioriti,
Marco. - In: AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY. - ISSN 1748-8842. - STAMPA. -
84:3(2012), pp. 151-161. [10.1108/00022661211222003]

Original

Development and Validation of on-board systems control laws

Publisher:

Published
DOI:10.1108/00022661211222003

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2485226 since:

Emerald

Development and validation of on-board
systems control laws

Giovanni Medici, Nicole Viola, Sabrina Corpino and Marco Fioriti

Department of Aerospace Engineering, Politecnico di Torino, Torino, Italy

Abstract
Purpose – The purpose of this paper is to describe the tool and procedure developed in order to design the control laws of several UAV (Unmanned
Aerial Vehicle) sub-systems. The authors designed and developed the logics governing: landing gear, nose wheel steering, wheel braking, and fuel
system.
Design/methodology/approach – This procedure is based on a general purpose, object-oriented, simulation tool. The development method used is
based on three-steps. The main structure of the control laws is defined through flow charts; then the logics are ported to ANSI-C programming
language; finally the code is implemented inside the status model. The status model is a Matlab-Simulink model, which uses an embedded Matlab-
function to model the FCC (Flight Control Computer). The core block is linked with the components, but cannot access their internal model. Interfaces
between FCCs and system components in the model reflect real system ones.
Findings – The user verifies systems’ reactions in real time, through the status model. Using block-oriented approach, development of the control laws
and integration of several systems is faster.
Practical implications – The tool aims to test and validate the control laws dynamically, helping specialists to find out odd logics or undesired
responses, during the pre-design.
Originality/value – The development team can test and verify the control laws in various failure scenarios. This tool allows more reliable and effective
logics to be produced, which can be directly used on the system.

Keywords Simulation, Control systems, Design, Unmanned aerial vehicles, Control system design, Flowcharts, Programmable logic controller

Paper type Research paper

Nomenclature

Definitions, acronyms and abbreviations
FCC ¼ flight control computer

FS ¼ fuel system

GCS ¼ ground control station

HALE ¼ high altitude long endurance

IMA ¼ integrated modular avionic

LASE ¼ low altitude short endurance

LDG ¼ landing gear system

MALE ¼ medium altitude long endurance

NWS ¼ nose wheel steering system

PS ¼ pressure sensor

SOV ¼ shut off valve

SSC ¼ supervision and coordination station

SMAT ¼ advanced environment monitoring system

TCS ¼ tactical control station

UAS ¼ unmanned aerial system

UAV ¼ unmanned aerial vehicle

WBS ¼ wheel braking system

WOW ¼ weight on wheels

Introduction

In the last 20 years the use of electronics in aviation industry has

seen a dramatic growth. When a complex system is designed,

each subsystem’s logic controller must be created. Once the

subsystem’s control laws are designed, they must be validated.

During control laws test and validation, considerable cost

reduction can be achieved (Zhang et al., 2000), by using digital

models of the system.
When considering remotely controlled devices, reliability and

safety requirements grow (Loh et al., 2009). Unmanned aerial

vehicle (UAV), due to the lack of a pilot on the aircraft, shall

manage autonomously many systems and routines. Moreover,

data-link delays (due to satellite or distance) leave to the remote

operator little time margins. For this reason a considerable

amount of procedures and routines of various systems must be

stored in (and invoked autonomously by) the flight control

computers (FCCs). This amount of avionics needs a huge

integration effort. Single failure of any component (including

one FCC) may lead to a downgraded system operation, but

never to total system loss. Integrated modular avionics (IMAs)

is an answer to complex system design, and its use in UAVs is

rising (Lopez et al., 2008). IMA has been widely used since the

beginnings of the 1990s, both in aeronautics and space

applications (Doss et al., 1996). Being used for the first time

in Boeing 777, this technology has led to step improvement

The work has been performed through a close cooperation with
Alenia Aeronautica staff, with constant technical meetings and a
continuous information exchange. In particular the authors wish to
thank Dr Maria Airoldi, Mr Marco Mantovani, Dr Alessandro Pasquino
and Dr Massimiliano Paternoster.

1

in system quality, reliability, safety, and maintainability, while
reducing cost (Morgan, 1991).
This paper describes the method used to develop and test the

control laws of several systems on a UAV: Landing Gear, Nose
Wheel Steering, Wheel Braking, and Fuel System (FS). SMAT
UAS project is described in the first section, while the following
sections illustrate the development of themethod and theStatus
Model. Eventually some conclusions are drawn.

The SMAT UAS project

The authors have developed the present method in the
framework of SMAT UAS project. SMAT project is currently
under way and has now completed the first phase (named
SMAT-F1), with a Demo flight on September 30, 2011.
The aim of SMAT is to define, design and develop an

Advanced Environment Monitoring System, based on UAS.
Within the UAS, UAV and their ground control stations
(GCSs) are coordinated and managed by a Supervision and
Coordination Station (SSC); a summarized conceptual
overview of SMAT system is shown in Figure 1.
The analysis of innovative solutions to improve performances

of future UAV is a remarkable activity within SMAT project.
Some of these novel approaches have already been tested on
some Alenia Aeronautica Technological Demonstrators
(Chiesa et al., 2010a, b; Farfaglia et al., 2009). Both
technological and knowledge-based issues have been widely
tested during the development of the SKY-Y, a Medium
AltitudeLongEndurance technological demonstrator of Alenia
Aeronautica. TheUAV,which flies at the highest altitude (more
than 12,000m) in SMAT project (Figure 1), is not yet available
as Alenia Aeronautica’s Product, but will be developed on the
basis of SKY-Y (Table I andFigure 1 collect some technical data
and the design layout of the SKY-Y UAV).
The performances of SKY-Y are reduced, if compared to

the envisaged performances of the final product.
Nevertheless, studies for a derivative UAV are on going. The
authors have been working on these improvements.
The UAV is designed to be single failure proof; its FCCs

have been developed to share both software and hardware.

Depending on the position they have on the rack, the software

loaded can be: FCC1, FCC2 or FCC3. The redundant

hardware design allows, in the event of FCC failure, to keep

control of every system. The dual-redundant mission

management computer has been used in various UAVs

(Loegering and Evans, 1999), such as the Global Hawk.
The UAV has been developed using a modular design. If

any failure occurs (FCC loss included), the system (and each

subsystem) keeps on operating in normal or in a downgraded

mode. Let us focus our attention on an example: FCC1

powers the landing gear’s actuators. In an event of FCC1

Failure, Landing Gear System (LDG) extension function

cannot be performed. In order to avoid this event (LDG

extension failure), FCC3 has the authority to release the up-

locks, allowing the landing gear’s unpowered actuators to free-

fall (due to gravity and drag). Although the function is

downgraded (there is no control on the actuators), the landing

gear subsystem withstands the FCC1 failure.
This approach leads to a safer and more reliable airplane.

Safety and reliability have always been fundamental

requirements in the aviation field, and by now are key-

points along the path to certification for civil use of UAVs

(use in a civil air traffic control scenario).
The relatively newgrowth of those particular airplanes has led

to the need to define certification requirements from scratch.

The certification authorities are working hard and side by side

with the manufacturers to fill this gap. Software should be

certified too, and certification authorities are interested in

graphical visualization of the algorithms for their purposes.

The Status Model uses widely the graphical approach.

The control laws development procedure

During the development of SMAT-F1 project the authors and

Alenia Aeronautica staff have been requested to define the

control logics for various subsystems: LDG, Nose Wheel

Steering System (NWS), Wheel Braking System (WBS)

(both Hydraulic and Electrical Powered), and FS. Each

system has been designed by using the same procedure.

Figure 1 The SMAT system, an overview and design layout

MEDIUM ALTITUDE
MEDIUM ENDURANCE

HIGH ALTITUDE
LONG ENDURANCE

LOW ALTITUDE
SMALL ENDURANCE

>12,000 m

5,000 m

<100 m
Datalink

Ground

GCS

GCS

GCS

SSC

Operative
centers

2

The design method has three main steps: control laws

algorithm definition, code development, and validation

(Figure 2 shows the main stages of the procedure).
Initially the main control laws logic has been defined by

using a fast, easy to modify and extremely direct visual

language, i.e. the flowchart approach. This well known

approach (ISO Standards, 1985) is flexible and valid in the

preliminary design phase. It has been effective during the

initial brainstorming sessions, aiding specialists to focus on

the key safety issues, and troubleshoot failures modes.
Once the general structure of the algorithms had been

defined, the code to be used in the various systems has

been developed. This part of the procedure aims at defining

every detail of the control laws. The flowcharts have been used

as reference for the code’s development, for which a standard

programming language has beenutilized.The intention is to use

the same control laws already developed (the code) inside the

FCCs; for this reason ANSI C has been used (FCC runs ANSI

Ccompiled programs).The code is easy to read and can be used

with minor changes on the Status Model.
The purpose of the last step of this method is to test and

validate the control laws. In aerospace industries it is common

practice to build a test-rig of the system (iron bird), upload

the control laws on the FCCs and verify various scenarios by

using a checklist. Any control law error may cause the test-rig

system to fail mechanically (development cost increase) or in

the worst case, a system redesign (which affects budget too).
A virtual model of the system has been developed using

Simulink, with the purpose of testing and validating the

control laws. It has proved to be a fast and almost inexpensive

way to test different failures scenarios. The tool, called Status
Model, is described in the next section.

The Status Model

The Status Model is a tool to model, test and validate the
control laws. It uses the same code developed in the previous

steps and tests it. The Status model is a Matlab Simulink
based model. An embedded Matlab function block, the core,

models the FCCs (which contains the same control laws that
have been previously developed). Each component of the

system is defined through a virtual model, and every FCC I/O
interface is preserved with respect to the real system.
An overview of the Status Model layout is shown in

Figure 3. The Simulink Model file contains all components of

the UAV systems (e.g. actuators, relays, pumps, valves, etc.).
By using a Matlab function block, the core models the three

FCCs (central block in Figure 3). The FCC block contains
the ANSI C code (minor conversion from C to Matlab syntax

is required), receives the inputs (signals: discrete or analog)
from the various components, and sends back commands/

outputs. The interfaces of the virtual model and the real
system are identical; for example the power relay, which feeds
the nose landing gear’s leg-actuator, receives a discrete input

from the FCC2; the same interface is modelled in Simulink;
the FCC2 block outputs a discrete to the power relay model.
In the simulation, during every time step, FCCs control

laws (and software, stored in the Matlab Function Block) run

simultaneously. Three FCCs receive all input signals, process
them, and send the outputs signal back.
This particular layout allows testing the control laws that

have been previously designed, by implementing them directly

inside a modelled Mother Board (modelled with the Matlab
Function Block). The outputs of such blocks are linked to the

simplified system components models (modelled through
other Simulink Blocks).
Specialists are able to create a model using a reusable set of

components. Matlab Simulink has a huge block library, which

contains fully scriptable switches, relays, transfer functions
blocks and much more. Those items can be used “out of the

box”, in order to model some simple subsystem components.
Block-oriented approach offers some features valuable for

building customized systems, and has been used widely
in system control development (Gilberl and Diehl, 1994;

Figure 2 Procedure used to develop the control laws

Table I SKY-Y male technical data

Dimensions (m) Weight (kg)
Length 9.725 MTOW 1,200

Span 9.937 OEW 800

Wing area 10.785 Max fuel 250

Max payload 150

Payloads Performances (km)
EO/IR sensor LOS radius 185

Hyper spectral sensor Max range 925

Synthetic aperture radar Altitude .7.6

Propulsion one dieseljet TDA 1.9 JTD 8 valve diesel aviation engine

Endurance 14 (h)

3

Ji et al., 2006; Keller, 2006; Renfrow et al., 1994). The basic

object is the component: a reusable, self-contained entity that

requires inputs andproduces outputs. It is also possible to group

and reuse customized components or even subsystems. This

allows specialists to build up a customized library, which

satisfies their needs. A component can be controlled (by other

components) only through its inputs (external interface).

Consequently, its internal (private) data and methods are

hidden (encapsulated) from the other components (or Matlab

EmbeddedFunctionBlock). Even the icon of a componentmay

be customized inorder to recall the real component shape.Once

the model is complete, specialists can test and validate their

controller logics. Since the model uses signal as input for the

Matlab Function Block, it is possible to test the system

behaviour when a failure occurs.
For example, an input signal can be forced to reach a null

value or to take a weird behaviour; FCCs will act

consequently. The Status model is suitable for multi-system

integration, so that the FCCs’ control laws stiffness can be

tested crosswise. This approach allows the operator to check

how a faulted component may affect other functions or

systems, and helps the troubleshooting inside complex and

integrated systems.

General layout

In the next sections the Status Model will be described

through a detailed overview of the model. Once the operator

starts a simulation and opens the Simulink Model File, three

main windows show up (Figure 4):
1 Display window. This window displays all lights and status

indicators of the model, which changes colour

dynamically during the simulation.
2 Log window. This window is a console; it displays all text

messages (warning, status, counters) in a verbose mode.

Saving log sessions is possible too.
3 Command window. From this window the user can send

commands and/or invoke failures dynamically (in real

time) during the simulation.

Display window

The display window has different lights and indicators, as

reported in Figure 5. It is basically a customized Matlab

Figure, with a status handle for each element. This panel

summarizes various vital information of each subsystem.

Figure 5 summarize every light and indicator through a

numbered list; a brief description of each item is provided in

the next paragraph:
. LDG system: (1). Emergency LDG command: depending

on its colour, this light indicates normal, potential

emergency (as previously stated, in the event of FCC1 or

FCC2 failure, the landing gear can be extracted only

through an emergency command) or emergency command

sent (2). Override LDG Command: it indicates either

override or normal mode in action. The present command

overrides any pre-retraction checklist and forces the landing

gear retraction. This routine is important during

maintenance and in some emergency procedures (11).

Weight on wheels (WOW) Aircraft Status: reports the

WOW status, can be Air, Ground, unknown/failure (12).

LDG Command: the light depicts the LDG command

status, and indicates inactive command, a gear-up/gear-

down command, or a system failure (13). LDG Position:

this indicator represents the down-lock, up-lock sensors

status on each leg. Locked down status is displayed as green,

while a red status indicates a not locked position (failure or

moving LDG), once the leg-actuator has reached the

locked-up position, the lights turn off (gray).
. FS: (3). Fuel Full light: it points out normal or full fuel

tank level (4). Fuel Bingo light indicates whether the

Bingo Fuel level is reached or not. Bingo is the minimum

amount of Fuel that allows the UAV to turn back and

head immediately to the base (5). Fuel low light: this light

flashes when the Fuel is low. In this condition the system

will soon end to work properly (engine power loss) (8).

Fuel Temperature light: it indicates Fuel Temperature to

be or not within the defined thresholds.
. WBS system: (6). Braking power indicator: these two bars

report the left and right braking demand of the aircraft.
. NWS system: (7). Steering angle nose LDG command

and position: those lights point out the angle command of

the nose LDG’s leg (solid yellow thin line) and position

(solid blue thick line) (10). Steering centred signal:

indicates un-centred/centred nose LDG’s leg.
. Boundary conditions data (9). Aircraft Speed Indicator:

reports the speed of the aircraft. The Status model does not

simulate any physic model of the aircraft; speed-reading is

used to trigger some checks (such as LDG retraction, NWS

system activation), and can be adjusted as desired.

Figure 3 Status model layout

4

Log window

The log window writes the verbose log of the status of each

sensor, relay, and FCCs command. It is used to monitor the

systems’ status and to check when a failure is detected by the

FCC. The Log window collects every message, warning or

information that the FCC produces and sends to Tactical

Control Station (TCS). The Status Model contains also a

routine that dumps the data to a text file, in order to be used

as simulation post processing tool.

Command window

The command window embodies the Simulink model, this is

the core of the tool; it contains several sub-masks and is

briefly explained in the next section (Figure 6).
The Command Window splits the screen in three major

parts. The central part houses the core block, FCC (pink box

in Figure 6); all other components are connected to this block

(as shown in the general overview of Figure 3). Various

systems masks (blue and green boxes in Figure 6) are

Figure 5 Status model display window

 Figure 4 Status model simulink window

5

 Figure 6 Status model structure

6

present in Figure 6: LDG, NWS, WBS, and the FS. On the

right hand side at the bottom in Figure 6 there is the failure

panel (red box), while at the top there is the scope. It collects

and plots useful information (turquoise box), like for instance,

relay status, pressures, and LDG leg position.
During the simulation the operator simulates the TCS, or

Pilot inputs. The Pilot Command Window (Figure 4, point 3)

contains a customized graphical user interfaces (GUI), which

the operator uses to interact with the Status Model. In order

to give to the user a better and more intuitive experience while

using the Status Model, customized icon (which look like the

real system’s buttons) have been used as masks for subsystems

and blocks in general. The Pilot Command Block collects

every command the pilot (or TCS) may send to the virtual

model. The integrated command interface presents several

controls (14), which derive from the four systems modelled.

In the bullet list below these commands are grouped

depending on the subsystem they are related to:
. Landing gear. This system handles three TCS commands

to the LDG: emergency extension (EMEX), override

retraction (OVERRIDE), normal mode (UP DN).
. Braking system. Several braking modes can be activated:

parking brake (PARK), EMEX, and normal braking

(through the left and right BRK pedals).
. Steering system. Steer demand, and towing. The NWS icon

opens the steering angle command interface; by clicking on

the (TOWING) switch, theNWSactuatordisconnects from

the wheel, so that the UAV can be moved on ground freely.
. FS. Fuel pumps, and shut off valve (SOV) switch. The

fuel pumps rotary switch has three positions: OFF, Flight,

P2. In the off position both fuel pumps are turned off, and

pressure sensors are neglected. In Flight mode fuel pump

one is turned on; if Pressure Sensors (PS1 or PS2) detect

out of range pressure, the FCC powers on fuel pump two.

The P2 mode overrides any PS check, and powers on fuel

pump two.
. General commands. Few commands can change the

environment the UAV is flying in, which in turns affect

various subsystems (e.g. temperatures, speed, WOW, etc.).

The block-oriented design allows the subsystem model to be

visually easy to understand. Specialists build the Status model

using components, and drawing the connections between each

element, with the same layout as pipes and wires join

the components in the real system. During the simulations the

operator can open each block and visually check the status of the

relays (in thisway is possible to estimate the system status in real

time). The operator can send system specific commands

directly from the subsystem block window (Figure 7), and look

at the system reaction.

Subsystem blocks

In the next section the hydraulic braking subsystem and its

respective virtual model are taken as example, and described

in detail; a comparison between the real system and the Status

Model is provided; then a single component (valve) model is

sketched out.
Figures 8 and 9 show, respectively, the hydraulic braking

system layout of the UAV and the overview of the hydraulic

brake subsystem interface in Matlab Simulink (Status

Model).

The hydraulic brakes system of the UAV is based on three

operating modes: park brake, normal mode, and emergency

mode. The park brake mode supplies full brake power with no

regulation on the demand. A bistable valve provides pressure

to the brakes line. This particular valve must receive a discrete

command to change its position, in this way, even when the

UAV is powered off, it can still keep brakes active, as long as

the braking system pressure remain within the designed

thresholds. The bistable valve, named Parkvalve in Figures 8

and 9, is powered by two relays (Park Open Rel and Park

Close Rel). Normal brake mode is regulated by the isolation

valve (Isovalve), which returns feed readings (Isofeed). One

relay powers the valve (Iso rel). The servo-valve and shuttle

valve provide the brake demand regulation on the left and

right brake wheels. Emergency brake mode is activated by the

emergency valve (Emexvalve), a relay provides power to the

valve (Emex rel).
Only one valve shall be open at the same time. FCCs must

check that all valves are switched off prior to power-on any

valve’s relay. The latter requirement has been the main issue in

the control laws design. Various failures and simultaneous

commands scenarios have been tested, by using the Status

Model, in order to validate the braking system control laws.

When hydraulic pressure in the brake power module is

lower than a defined threshold or the LDG is down, the

hydraulic pump is powered on by the dedicated relay (Pow rel).
In the Status Model is common practice to split the

subsystem blocks in two major parts (as shown by the red

numbers in Figure 9):
1 on the left hand side the user accesses the commands; and
2 on the right hand side there is the braking system model.

In the hydraulic brakes block the user, during the simulation,

can switch to the desired mode by clicking the manual

switches on the left hand side of the subsystem, and watch the

sequence of actions performed by FCCs. On the right the

Simulink model traces any reaction of the relays (power relay,

isolation valve relay, parking valve open and close, and

emergency valve relay) and draws it automatically. The relays

position changes accordingly to the FCCs commands, so that

the user can visually decode the system status, directly by

looking at the relays symbol. In the Status Model each

component has been modelled with a degree of detail

depending on its role in the entire system.
The purpose of the Status Model is to validate the control

laws in various systems, using a virtual model, without

building a test bench. The model of each component should

be as detailed as required. Transients, non-linearity, noise and

other phenomena should be included in the model only if they

affect the control law’s response. Therefore, a description of a

component model (valve) is here presented.
The various valves blocks in the hydraulic brakes subsystem

window (Figure 9) contain a transfer function. Let us

consider the isolation valve: its inlet is the hydraulic pump’s

outlet. The blue relay on the right (iso rel) commands the

valve (either open or closed). The FCCs command directly

the relays. When the valve receives a discrete, there is a

transient (due to the transfer function), that models the valve

opening sequence, and then the new position is reached (valve

open). A variable gain models the shuttle valves; it regulates

the pressure supply, in order to satisfy the brake demand.

Since FCCs do not receive any output from this component,

a very simple model has been used.

7

Figure 7 Pilot commands window

Figure 8 Hydraulic brakes system

8

These brief examples show the procedure used to model

simple and complex components, but once a valve component

is created, it can be reused in any other application, which

requires that degree of detail.

Failures

The Status Model’s tool enables to verify exactly how the

FCCs’ logics respond in the event of failure. It is possible to

cut a discrete input (0-28V) to the FCCs or force it to a

weird, random behaviour. Since FCCs are modelled as

embedded Matlab Function Blocks, they just receive

components inputs (relays, sensors, etc.). Thus, FCCs’

logics must estimate the system status. There are actually

19 different possible failures modelled in the Status model.
Failures are grouped in various classes: FCCs failures, LDG

and NWS failures, WBS failures and FS failures. One FCC

may fail, the landing gear actuators may block or slow their

movements, pumps and sensors can block or freeze. Since all

components are blocks, modelled outside the FCCs core

function, their model can be changed freely to simulate the

malfunction. The UAV is designed to withstand a single

failure without any system/function loss; by using the Status

Model is possible to verify how the system reacts to single or

even double failure (and eventually improve the logics in

order to overcame some critical failures combinations). A key

point of the Status Model is the integrated environment.

Integration is important since a failure of the component of a

subsystem may affect the control laws of another subsystem;

in the Status Model all subsystems run simultaneously.
The validation activity of the control laws has led to the

analysis of 30 failure scenarios, and various improvements of

the control laws of the systems have been designed and

implemented.

Outputs and post processing

A set of post processing tools has been developed to manage

the results of a simulation. The Simulink model collects both

graphical and textual information. Each subsystem plots the

most important variables vs time in a Scope block. By

analysing the plots is possible to monitor how the system has

reacted to the operator’s commands; system failures can be

monitored too.
A Matlab routine saves all these plots in several formats, so

that they can be easily attached to any document. Figure 10

shows an example: the hydraulic brakes plot. The plot depicts

the braking system scope; it collects all the WBS vital

information, such as: the generator pump discrete signal, the

outlet pressures of emergency, isolation and parking valves,

and the pressure (brake power) on the left and right brake.
Graphical plots combined with the textual log file offer a

powerful summarizing tool to the test and validation purpose.

The time history shown in Figure 10 shows a typical flight

profile. FCCs initialise the system (verify it is powered on),

and then send the Park Brake command. Park brakes are

released shortly afterward, and the UAV starts the taxi

operation. During taxi isolation valve is open, and some brake

commands are sent to the left and right brake. Once the UAV

takes off, the LDG is retracted and the brake system is

powered off. Prior to landing, once the LDG extension

sequence is completed, a built-in test (BIT) on the WBS

system starts; the three braking modes: normal (33, 66,

100 per cent brake pressure) mode, emergency mode, and

park mode are tested.

Conclusions

A new programmable logic controller development procedure

has been defined and tested on a UAV. This method

Figure 9 Hydraulic brakes block

9

is a valuable tool for specialists and software development
team, which helps integration and validation of the system
logics. Communication and data exchange between specialists
may be supported by dynamic simulation video or test cases.
The modular nature of the Status Model enables the creation
of a customized-blocks library. Various Failure scenarios can
be simulated and tested, reducing time and costs of a test-rig
development. Finally the tool allows faster and more reliable
controller logics development, integration and validation.

References

Chiesa, S., Corpino, S. and Medici, G. (2010a), “System
programmable logic computer aided development
procedure”, 8th ACD2010 European Workshop on Advanced
Control and Diagnosis, pp. 229-34.

Chiesa, S., Farfaglia, S. and Viola, N. (2010b), “Design of all
electric secondary power system for future advanced MALE
UAV”, Proceedings of the 27th International Congress of the
Aeronautical Sciences, International Congress of the
Aeronautical Sciences, p. 10.

Doss, M., Liebel, K., Lee, S., Calcagni, K. and Crum, R.
(1996), “Migration of integrated modular avionics to
space”, Proceedings of the 15th Digital Avionics Systems
Conference (AIAA/IEEE), Atlanta, GA, USA, pp. 131-7.

Farfaglia, S., Tranchero, B., Chiesa, S., Ragusa, C., Scavino,
G. and Viola, N. (2009), “The SAVE project: hypothesis

and investigation strategies for alternative energy based

systems for MALE UAV”, 20th National Congress AIDAA,

pp. 1-18.
Gilberl, J.G. and Diehl, G.R. (1994), “Application of

programmable logic controllers to substation control

and protection”, IEEE Transactions on Power Delivery,

Vol. 9, pp. 384-8.
ISO Standards (1985), “Documentation symbols and

conventions for data, program and system flowcharts,

program network charts and system resources charts, ISO

5807:1985”, Information Processing, ISO Standards

Handbook 1, International Organization for

Standardization, Geneva.
Ji, K., Dong, Y., Lee, Y. and Lyoul, J. (2006), “Reliability

analysis safety programmable logic controller”, paper

presented at SICE-ICASE International Joint Conference.
Keller, J.P. (2006), “Interactive control system design”,

Control Engineering Practice, Vol. 14, pp. 177-84 (Special

Section on Advances in Control Education Advances in

Control Education Symposium).
Loegering, G. and Evans, D. (1999), “The evolution of the

global hawk and MALD avionics systems”, Proceedings of

the 18th Digital Avionics Systems Conference, Vol. 2, pp. 1-8.
Loh, R., Yi, B. and Roe, T. (2009), “UAVs in civil airspace:

safety requirements”, Aerospace and Electronic Systems

Magazine, IEEE, Vol. 24 No. 1, pp. 5-17.

Figure 10 Hydraulic brakes plot

10

Lopez, J., Royo, P., Barrado, C. and Pastor, E. (2008),

“Modular avionics for seamless reconfigurable UAS

missions”, Proceedings of the 27th IEEE/AIAA

Digital Avionics Systems Conference, DASC, Vol. 1,

pp. 1.A.3-1-10.
Morgan, M.J. (1991), “Integrated modular avionics for next

generation commercial airplanes”, Aerospace and Electronic

Systems Magazine, IEEE, Vol. 6 No. 8, pp. 9-12.
Renfrow, J., Liebler, S. and Denham, J. (1994), “F-14 flight

control law design, verification, and validation using

computer aided engineering tools”, Proceedings of the

Third IEEE Conference on Control Applications, Vol. 1,

pp. 359-64.
Zhang, H., Ning, J. and Schmelzer, O. (2000), “Integrated

landing gear system retraction/extension analysis using

ADAMS”, paper presented at the North American

ADAMS User Conference, June 19-21.

Further reading

Birbir, Y. and Nogay, S.H. (2008), “Design and

implementation of PLC-based monitoring control system

for three-phase induction motors fed by PWM inverter”,

International Journal of Systems Applications, Engineering

& Development, Vol. 2, pp. 128-35.
Davidson, C.M. and McWhinne, J. (2000), “Engineering the

control software development process”, Factory 2000 –

The Technology Exploitation Process, Fifth International

Conference, Vol. 1, pp. 247-50.
Jeong-Woo, J., Ki-Chang, L., Don-Ha, H. and Yong-Joo, K.

(2002), “Development of a dynamic simulator for braking

performance test of aircraft with anti-skid brake system”,

Proceedings of the 2002 IEEE International Symposium, Vol. 2,

pp. 518-23.
Lu, L. and Lei, J. (2010), “Design and reliability prediction of

a distributed landing gear control system”, Aircraft

Engineering & Aerospace Technology, Vol. 82 No. 1,

pp. 15-22.

About the authors

Giovanni Medici is a PhD student of Politecnico di Torino
(Department of Aerospace Engineering) and Alenia
Aeronautica. The main topic of his PhD is “Advanced control
system: thrust vectoring on an UCAV”. He is mainly involved
in: propulsion, simulation, and fuel cells heat management. He
graduated in 2009 with a thesis in collaboration with ETSIA
Madrid. Giovanni Medici is the corresponding author and can
be contacted at: giovanni.medici@polito.it

Nicole Viola has been working as an Assistant Professor at the
Department of Aeronautics and Space Engineering,
Politecnico di Torino, since March 2008. She had been
working as Researcher on aeronautics and space systems design
at Politecnico di Torino sinceApril 2000. She obtained her PhD
in Aerospace Engineering in 2004 on the “Conceptual
definition of transatmospheric and space vehicles”. She is
author of papers published in books, journals and international
and national proceedings. She is currently teacher of the course
“On-board Equipments and Avionic Systems” of the third year
of the first level degree in Aerospace Engineering.

Sabrina Corpino obtained her degree and PhD in Aerospace
Engineering from Politecnico di Torino. She is now Assistant
Professor at Politecnico di Torino in the field of Aerospace
System Engineering and is involved mainly in the definition of
design methodologies for both aeronautical and space systems
and in RAMS techniques definition, development and
application in the aerospace field. In particular, her main
interest is the research in the simulation of aerospace systems
with innovativemethods such ashardware in the loop techniques
for verification and validation of the design.

Marco Fioriti, PhD, graduated from Politecnico di Torino in
Aerospace Engineering. He is working as a Research Assistant
of Aircraft System Design at Politecnico di Torino and has
been collaborating with Alenia Aeronautica Preliminary
Aircraft Design Department for five years on Systems,
Technology Innovation and Life Cycle Cost.

11

