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MULTISCALE DEVELOPMENTS OF THE CELLULAR POTTS
MODEL∗

M. SCIANNA† AND L. PREZIOSI†

Abstract. Multiscale problems are ubiquitous and fundamental in all biological phenomena that
emerge naturally from the complex interaction of processes which occur at various levels. A number
of both discrete and continuous mathematical models and methods have been developed to address
such an intricate network of organization. One of the most suitable individual cell-based model for
this purpose is the well-known cellular Potts model (CPM). The CPM is a discrete, lattice-based,
flexible technique that is able to accurately identify and describe the phenomenological mechanisms
which are responsible for innumerable biological (and nonbiological) phenomena. In this work, we
first give a brief overview of its biophysical basis and discuss its main limitations. We then propose
some innovative extensions, focusing on ways of integrating the basic mesoscopic CPM with accurate
continuous models of microscopic dynamics of individuals. The aim is to create a multiscale hybrid
framework that is able to deal with the typical multilevel organization of biological development,
where the behavior of the simulated individuals is realistically driven by their internal state. Our
CPM extensions are then tested with sample applications that show a qualitative and quantitative
agreement with experimental data. Finally, we conclude by discussing further possible developments
of the method.
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1. Introduction. All biological phenomena emerge from an intricate interaction
of multiple levels of organization—the molecular scale, the cell, and the tissue; see
Figure 1. These natural levels can approximately be connected to a microscopic,
a mesoscopic, and a macroscopic scale, respectively. The microscopic scale refers
to those processes that occur at the subcellular level, such as DNA synthesis and
duplication, the activation of receptors, the transduction of chemical signals, and the
diffusion of ions. The mesoscopic scale, on the other hand, can refer to cell-level
phenomena, such as adhesive interaction between cells or between cells and fibers
forming the extracullular matrix (ECM), cell duplication, and cell motion. Finally, the
macroscopic scale corresponds to those processes that are typical of the multicellular
level, such as population growth and dynamics.

However, the flow of information between these different spatial and temporal
levels is often too complex to be studied with only experimental techniques ; an in-
creasing collaboration with applied mathematics is therefore necessary (for a comment
refer to [59]). In fact, even though no hypothetically perfect single model (which is
probably computationally unfeasible) can incorporate each and every aspect of all the
processes involved in the considered phenomenon, a computational approach is able
to simplify the biological problem and offers both a concise description of its essential
features and the possibility of highlighting which experimental quantities are the most
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2 M. SCIANNA AND L. PREZIOSI

Fig. 1. Multiscale view of biological systems. A cell population consists of a huge number of
cells. A zoom allows the identification of single polarized cells adhering to each other. A further
zoom permits the identification and localization of intracellular elements, such as the nucleus, the
Golgi Apparatus, and some mitochondria. Representative image kindly provided by the Department
of Animal and Human Biology, Università degli Studi di Torino.

relevant. It can also be used, in a predictive manner, to determine the consequences
of experimental manipulations, and it can provide a useful guide for future experi-
ments. Procedurally, a good approach is to build the simplest possible model, focused
on a single scale and based on the minimal set of assumptions that are consistent
with biological observations. After checking its validity with experimental results, it
is then possible to gradually add more components and more levels of abstraction:
this continuous feedback and feedforward between in silico and in vitro techniques
can therefore in principle lead to a complete understanding of the complex multiscale
mechanisms of the studied phenomenon.

Mathematical approaches to biological problems employ a wide range of tech-
niques which depend on the particular spatio-temporal scale of interest; see Figure 2.
However, most of them fall into two categories: continuous and discrete models.

Fig. 2. Hierarchies of biological length and temporal scales, and the corresponding modeling
techniques.

Continuous models approach biological phenomena in terms of variation of fields.
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Characteristic of a macroscopic point of view, these methods represent populations
of biological individuals as densities which evolve satisfying a set of balance laws or
diffusion equations. However, continuous approaches overlook the behavior of sin-
gle individuals and also fail to describe their pair interactions. Thus, when dealing
with biological processes in which what occurs at the scale of the single elements is
fundamental, continuous models may be unsatisfactory. In these cases, it is better
to approach the biological problem adopting techniques that preserve the identity
and the behavior of individual elements, e.g., individual cell-based models (IBMs); for
comprehensive reviews see [1, 3, 47]. IBMs are discrete models that are focused on the
cell level of abstraction. They represent biological individuals, with the typical length
scale of a cell, as one or a set of discrete units, with rules that describe their move-
ments and interactions. The morphology of the elements is restricted according to
some underlying discretizations of the simulation domain, which can be either regular
(such as square or cubic grids) or irregular (Voronoi tessellations). These approaches
can be further classified into two categories: those in which each individual is cor-
related to a single spatial unit of the domain, and those in which each element can
be constituted by a collection of spatial units. In comparison to continuous methods,
IBMs can more naturally capture detailed biophysical properties, such as cell shape,
geometry, and adhesion, and they are also able to handle local interactions between
the simulated objects. In cell-based methods, the individuals behave according to a
relatively small set of prescribed rules, which they execute depending on their type
and the signals they receive from the neighbors and from the environment. In par-
ticular, these techniques are able to analyze the mechanisms by which the relatively
simple behavior and interactions of individuals collectively direct macroscopic pattern
formation and development, and, vice versa, to infer how phenomena that occur at the
macroscopic level feed back to the phenomenology of single elements, as commented
on in [59]. Moreover, cell-based models help to unravel how abnormal cell behavior
can produce abnormal patterns. However, by approaching biological phenomena from
a mesoscopic point of view, IBMs do not usually describe molecular-level processes
and thus neglect the microscopic mechanisms that underlie individual phenomenol-
ogy. Furthermore, since they are computationally expensive, they can only simulate
several individuals at once.

In the last decade, we have witnessed an increasing integration of discrete and
continuous techniques: the aim is to create modeling environments that are able to
span a wide range of biological scales with a sufficient level of accuracy. Offering
the advantages of both types of approaches, such hybrid methods usually use IBMs
to represent the dynamics of single cell-level individuals and diffusion equations to
describe the evolution of microscopic molecules; see, for example, [11, 25]. One of
these approaches is the cellular Potts model (CPM), also called the Glazier–Graner–
Hogeweg model, which was developed in [33, 35] and reviewed in [6, 34, 51].

As a generalization of the Ising model, the CPM is a grid-based, stochastic Monte
Carlo method, based on an energy minimization philosophy, which drives the evolution
of the simulated system. All CPM approaches represent the simulated environment
on a lattice and define a list of objects. CPM objects can be both generalized cells
and fields. Generalized cells are spatially extended, mesoscopic, cell-scale elements;
they may correspond to unicellular organisms, cells, cell subcompartments, clusters
of cells, ECM fibers, or portions of noncellular materials. The fields instead represent
the spatio-temporal evolution of microscopic quantities, such as diffusive ions and
molecules. The attributes of the discrete individuals, and the rules for their dynamics
and interactions with fields, are described by an effective potential formalism and are
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included in a system energy that is given by the Hamiltonian. This functional, which
may include true energies (e.g., cell-cell adhesion) and terms that mimic energies (e.g.,
the response of a cell to a chemical gradient), describes the state of the system and
drives all the lattice rearrangements with an algorithm of stochastic minimization (a
modified Metropolis procedure which we will describe in detail in the next section).
As long as a biological mechanism can be described with an energetic formalism, it
can be included in the CPM framework. Thus the CPM is not for a specific type of
biological problem but can be considered as a framework for model building. The new
ideas, which are constantly emerging to extend it to describe new biological (and non-
biological) phenomena, can in fact be automatically integrated with the whole body
of prior work. Such flexibility, as well as a simplicity of implementation, make the
CPM unusually rewarding to work with. The CPM method is becoming an increas-
ingly common technique for the mathematical modeling of a wide range of biological
phenomena, including avascular and vascular tumor growth [7, 75, 82, 91], gastrula-
tion [27], skin pigmentation [65], yeast colony growth [92], stem cell differentiation
[100], fruiting body formation of Dictyostelium discoideum [52], epidermal formation
[77], hydra regeneration [63], retinal patterning [61], wound healing [50], biofilms [69],
chick limb-bud growth [14, 15, 70], differential adhesion-driven cell rearrangement [34],
cellular differentiation and growth of tissues, blood flow and thrombus development
[96, 97, 98], angiogenesis [56, 57, 80], and cell scattering [78]. Figure 3 shows some of
the innumerable applications of the CPM.

Fig. 3. Different examples of CPM applications. (A) Calcium-dependent in vitro vasculogenesis
[80]. (B) HGF-dependent scatter of hepatocyte cells [78]. (C) In vitro wound healing assay. (D)
Ovarian cancer transmesothelial invasion [32].
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A brief review of the biophysical bases of the classical CPM is given in section 2
of this paper. In particular, we systematically examine and comment on some critical
points that could be improved to make the model closer to reality. This preliminary
discussion is the mandatory starting point from which to investigate and present some
important developments of the method; our aim is in fact to provide useful guidance
for the construction of more realistic and biologically accurate simulations. In par-
ticular, our developments, which are dealt with in detail in section 3, are focused
on ways of describing the microscopic level, which is only roughly approached in the
basic cell-level CPM. First, in section 3.1, we propose a more accurate representation
of biological individuals, which can be realistically compartmentalized into reasonable
subunits, such as cell nucleus, cytosol, plasmamembrane, and organelles. In section
3.2, we then give a plausible procedure to interface the basic CPM with accurate mod-
els of microscopic biochemical pathways, which modulate the mesoscopic properties
of the simulated individuals (such as their motility, adhesive strength, and elasticity).
In other words, the behavior of individuals can now continuously and realistically be
driven by the evolution of their internal state and not defined only by a normally used
qualitative set of a priori assumptions. In section 3.3, we propose alternative laws for
the Boltzmann transition function, the core of the Metropolis algorithm, with special
emphasis on the description of the motility of individuals. Throughout the text, we
also illustrate some relevant test applications, showing how our approach can improve
the accuracy of real multiscale simulations to a great extent. Our extended CPM can
in fact be easily adapted to different biological contexts of interest, while maintaining
good qualitative and quantitative agreement with experimental evidence. In the last
part of the work, after a useful discussion on the computational implementations of
the method given in section 5, we draw conclusions and briefly comment on other
possible developments for further improvements of the CPM.

2. Basic CPM. All CPM approaches include a list of objects, a description of
their interactions, and rules for their dynamics. The CPM domains are d-dimensional
lattices Ω ⊆ R

d, where d = 1, 2, 3. The term lattice defines a regular repeated graph,
formed by identical d-dimensional grid sites x ∈ R

d, and characterized by periodic or
fixed boundary conditions in each direction. The volumetric extension of Ω is equal
to the total number of its sites, which therefore represents the basic unit of length of
the system. Each site x ∈ Ω is uniquely identified by its location and is labeled by
an integer number, σ(x) ∈ N, where σ can be interpreted as a degenerate spin value
coming from the original Ising approach [19, 43, 71]; see Figure 4(A). As classically
adopted in CPM models, a neighboring site of x is denoted by x′ and its overall
neighborhood by Ω

′
x, i.e., Ω

′
x = {x′ ∈ Ω : x′ is a neighbor of x}.

Objects in the CPM are either discrete or continuous. Discrete objects are fi-
nite, spatially extended lattice subdomains of contiguous sites denoted with the same
spin σ. They are therefore undifferentiated functional units which, in basic CPMs,
represent single biological elements with the typical mesoscopic length scale of a cell.
Examples are bacteria, unicellular organisms, single cells, ECM fibers, or other sub-
strates; see Figure 4(B–C). Trivially, a collection of N discrete individuals is defined
by N integers, σ = 1, 2, . . . , N . The borders between sites with different spins, which
are thus shared between a couple of objects, define their membranes. Each unit σ has
a set of attributes (both geometrical, such as volume and surface, and biophysical,
such as velocity and elasticity) and an associated type τ(σ) (e.g., endothelial cell,
fibroblast, or ECM fiber). Mesoscopic, cell-level objects rearrange their boundaries to
realistically reproduce shape changes and motion. Moreover, they can grow, die, du-
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Fig. 4. (A) Typical 2D rectangular CPM lattice. The integer numbers (σ) identify single
discrete objects. The individual σ = 5 and σ = 6 are of the same type τ and are identified by
the same color. (B) Population of experimental cells (image courtesy of Prof. Luca Munaron and
of the Department of Animal and Human Biology, Università degli Studi di Torino) and virtual
cells. (C) Anisotropic fibers of collagen I in the reality (representative image kindly provided by
the Department of Animal and Human Biology, Università degli Studi di Torino) and in a sample
simulation. Note the different length scale between the in vitro and in silico images.

plicate (and the daughter objects typically inherit some the properties of their parent
[39, 64, 70]), and carry a set of possible rules for transitions between types (a cell type
map (CTM) [18]). Sometimes, we use the notation σ′ to identify a discrete object
neighbor of σ.

Continuous objects, or fields, represent the spatio-temporal evolution of micro-
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scopic entities, which are described as variable concentrations. They may reside within
the discrete objects (as DNA, RNA, cytosolic ions, and proteins) or in the external en-
vironment (as growth factors, matrix proteins, and matrix metallo-proteinases). The
continuous equations that describe the variation of the microscopic quantities are nu-
merically solved on grids that exactly match the domain Ω and that are discretized
at the same resolution.

Interactions between discrete cell-level objects and continuous molecular-level ob-
jects (for example, cell absorption and secretion of chemical diffusants) are character-
ized either by auxiliary equations [37, 53] or by specific terms in the field equations
themselves [7, 80]. This coupling between the dynamics of microscopic and meso-
scopic objects constitutes a typical hybrid modeling approach. The motion of the
discrete objects may cause continuous fields to evolve into subdomains with moving
boundaries.

Obviously, each CPM application needs the specification of the initial condition
of the lattice, i.e., the initial spatial configuration of all the objects.

The CPM core principle consists of an iterative stochastic minimization of a
system free energy, which is described by the Hamiltonian functional H , that will be
defined in detail below. Simulated objects in fact rearrange and evolve to gradually
reduce such a pattern energy looking for a global minimum, rather than toward a
configuration in which multiple local minima coexist. Since the energy gradient is
not completely smooth, on its way to global minimization, the system has to move
through transient states, which are characterized by higher energies than the previous
configurations. This energy minimization philosophy is implemented by adopting a
modified version of the classical Metropolis algorithm for Monte Carlo–Boltzmann
thermodynamics [35, 60]. It evolves in time using repeated probabilistic updates of
the site identification spins. Procedurally, at each simulation time step, t, a lattice site
x, belonging to an object interface, is randomly selected (source voxel) and proposed
to copy its spin σ(x) into an arbitrary unlike neighbor x′ (target voxel). The proposed
change in the lattice configuration (also called spin flip) is accepted with a classical
Boltzmann transitional probability, which is a relic of the CPM descent from statistical
physics [71]:

(2.1) P (σ(x) → σ(x′))(t) =

⎧⎨
⎩

e−ΔH|σ(x)→σ(x′)/T , ΔH |σ(x)→σ(x′) > 0 ,

1, ΔH |σ(x)→σ(x′) ≤ 0 ,

where

(2.2) ΔH |σ(x)→σ(x′) = Hafter spin flip −Hbefore spin flip

is the net variation in the total energy of the system as a consequence of the spin
update and T ∈ R

+ is a Boltzmann temperature, which does not reflect any con-
ventional thermal temperature, but in basic CPMs broadly correlates to an overall
system motility. T is measured in units of energy. In one of our recent papers [32]
such a motility is allowed to depend on the object type (T = T (τ)); however, it is
also possible to relate it to each single unit, T = T (σ). This aspect is described in
more detail in sections 3.2 and 3.3. The nomenclature of T originates from the fact
that membrane agitation rates in biological individuals play an analogous role to real
temperatures in ordinary thermodynamics [62]. From a statistical point of view, T
represents the likelihood of the energetic unfavorable changes in lattice configurations,
since it determines the rate of their acceptance. For very small values, the system
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evolution is almost deterministic, and it can be trapped in local minima. For very
large T all moves are accepted, and the simulated objects are characterized by a biased
random walk in the absence of potential barriers. Their motility, in fact, overcomes
the constraints set by the local environment, since ΔH |σ(x)→σ(x′)/T → 0 for all the
proposed displacements of its membrane sites. After the discrete object σ has evolved
through a spin flip, both equations that describe the variation of continuous fields
and the attributes of all the objects are rederived on the basis of new lattice config-
uration. The basic step of the Metropolis algorithm is then iterated until the end of
the simulation time or until the whole system reaches an energetic global minimum,
if it exists.

The unit of time of all CPM approaches is the Monte Carlo step (MCS). An
MCS corresponds to a fixed number of trial lattice updates, which usually consists of
a multiple of the total number of sites of Ω (i.e., 1 MCS = k · VolumeΩ) and which
has to be translated into the actual unit of time (i.e., seconds, hours, or days).

The discrete effective energy of the system, given by the Hamiltonian H , may
contain a variable number of terms, which can be grouped as

(2.3) H(t) = Hadhesion(t) +Hconstraint(t) +Hforce(t).

Hadhesion describes the adhesive/repulsive interfacial energy between all the couples
of discrete objects that interact across their common membrane. Hadhesion is based
on Steinberg’s differential adhesion hypothesis (DAH) [35, 84, 85]. The DAH proposes
that individuals in the same aggregate adhere to each other with different strengths,
according to their type. Such a hierarchy of contact forces is one of the main driving
mechanisms behind of the evolution of biological systems, whose final organization
maximizes the overall strength of interface interactions (or, in other words, minimizes
the overall adhesion energy). However, the DAH says nothing about the dynamics
of moving objects: differential adhesion itself, in fact, helps only to select the most
favorable configuration among the different possibilities that have been explored. Ev-
idence supporting DAH has been observed in a wide array of biological systems; for
example, it successfully explains how cellular adhesive properties can operate to de-
termine tissue reorganization during cell sorting [4, 34, 35]. The typical formulation
of DAH-derived Hadhesion is

Hadhesion(t) =
∑

x∈Ω,x′∈Ω′
x

Jτ(σ(x)),τ(σ(x′))(t)[1 − δσ(x),σ(x′)(t)]

=
∑

x∈Ω,x′∈Ω
′
x

σ(x)�=σ(x′)

Jτ(σ(x)),τ(σ(x′))(t),(2.4)

where Ω
′
x is, as seen, the neighborhood of site x, and the Kronecker delta is δm,n =

{1,m = n; 0,m �= n}, ensuring that only links between different objects (i.e., σ(x) �=
σ(x′)) contribute to the overall contact energy. The coefficients Jτ(σ(x)),τ(σ(x′)) ∈ R

are the binding forces per unit area, the first type of the so-called Potts parameters,
and are obviously symmetric. In basic CPMs, they depend only on the type of dis-
crete objects that are in contact (i.e., τ(σ(x)) and τ(σ(x′)) in (2.4)), as they are not a
characteristic of each single unit; see, for example, [58, 62, 75, 76]. Moreover, they are
uniformly distributed over the whole surface of the discrete objects, neglecting micro-
scopic inhomogeneities, such as a clusterization or a different strength of adhesion in
well-localized parts of their membranes. This issue will be discussed in more detail in



MULTISCALE DEVELOPMENTS OF THE CPM 9

section 3.2, as the model will be extended in this respect. In the case of cells, such
contact strengths give a qualitative measure of the expression of adhesion molecules
in the individuals on either side of the common border, whose activity defines their
binding properties. In particular, at least two classes of J can be identified—those
relative to the adhesion between cells and extracellular material (and thus modeling
the activity of cell-matrix adhesion molecules, such as integrins), and those that me-
diate the adhesion between cells of either the same or different populations (and thus
related to the expression of cell-cell adhesion molecules, such as cadherins). A sur-
face contact force can also be defined with an external undifferentiated medium (for
example, culture medium, air, or generic substrate), but it is biologically meaningless.

The term Hconstraint, whose use also comes from the physics of classical mechan-
ics, sums the energetic components that describe the object attributes. They are
written as energetic penalties which increase as the objects deviate from a designed
state, in a characteristic elastic form,

(2.5) Hconstraint(t) =
∑
σ

∑
i−constraint

λi
σ(t)

[
aiσ(t)−Ai

σ(t)
]2

,

where aiσ(t) is the actual value of the i-attribute of individual σ, and Ai
σ(t) is its target

value, that usually characterizes an object type and that can vary in time. λi
σ ∈ R

+

are spring moduli, other Potts parameters, which determine the weight of the relative
energetic constraint and thus the importance of the relative attribute. Low values of
λi
σ in fact allow the discrete unit σ to deviate more from the configuration that satis-

fies the constraint. Since the energetic contributions given in (2.5) decrease smoothly
to a minimum when the attributes are satisfied, the modified Metropolis algorithm
automatically drives any configuration toward one that satisfies the constraints. Ob-
viously, the simulated system is not able to exactly satisfy all the constraints of all
the objects σ at any given time t, since multiple attributes may be in conflict; this
leads to stochastic lattice configurations which fluctuate around the equilibrium con-
dition. Among others, the energetic components relative to geometrical attributes of
discrete objects, such as their volume and surface, are of particular relevance. These
components depend on the actual measures of each mesoscopic element, avolume

σ (t)
and asurfaceσ (t), as well as on the same quantities in the relaxed/undeformed state
Avolume

σ (t) and Asurface
σ (t). In particular, λvolume

σ regulates the conservation of mass
of the discrete objects, and encodes all the bulk effects: moreover, their growth can
be realistically included by assuming that Avolume

σ (t) increases during the simulation
[14, 70]. λsurface

σ instead represents the inverse compressibility of σ, the ease with
which it can change its shape. If λsurface

σ is very large, σ has a negligible elasticity,
and its membrane is tight. In particular, for λvolume

σ , λsurface
σ → ∞, σ behaves as a

rigid body. In the case of cells, λvolume
σ and λsurface

σ regulate, respectively, the growth
and the change of shape due to active reorganizations of the actin cytoskeleton trig-
gered by both internal stimuli (such as small G-protein activity), or external stimuli
(such as ECM contact guidance).

Attribute constraints, and the relative energetic penalties, can also regulate in-
teractions between objects. Their form is analogous to (2.5):

(2.6) Hconstraint(t) =
∑
σ,σ′

∑
j−constraint

λj
σ,σ′(t)

[
ajσ,σ′(t)−Aj

σ,σ′(t)
]2

.

A typical example is a linear spring connecting the center of mass of a pair of cells
(σ, σ′). In this case, Aj

σ,σ′ represents the equilibrium length of the connection, and
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ajσ,σ′ is the actual distance between the center of mass of the two neighboring cells.
Such a constraint is useful, for instance, when representing tight junctions between
endothelial cells in a mature capillary which maintain the integrity of the vessel [82].

The last term in (2.3) includes the energetic counterparts of the forces (both
effective and generalized) that act on the simulated individuals. All of these are
described with the same architecture [22]:

(2.7) Hforce(t) = −
∑
x∈σ

∑
k−force

μk
σ(t) F

k(t) · rx,

where rx = (ix, jx, kx)
T is the position vector of lattice site x, which is the application

point of force Fk, and μk
σ is the relative Potts parameter, which measures the effective

strength of the force on object σ. The most diffused examples in CPM applications are
the forces that are exerted by extracellular chemical substances (which are continuous
CPM objects) on a population of cells (which are, as seen, discrete objects):

(2.8) Hchemical
force (t) = −

∑
σ

∑
x∈σ

μσ(t)c(x, t),

where c(x, t) is the concentration of the chemical sensed by cell site x (which can be
modeled as the local chemical concentration in site x itself [41, 56] or in its neigh-
borhood [79, 80]), and the Potts coefficient μσ is, in this case, an effective chemical
potential of cell σ. Moreover, the net energy difference caused by such a chemical
force is

(2.9) ΔHchemical
force

∣∣
σ(x)→σ(x′) = μσ[c(x, t)− c(x′, t)],

where x, which, as usual, belongs to the border of σ, and x′ are the two neighboring
lattice sites randomly selected during the trial update at time t [76]. If μσ is a
constant, σ has a linear chemical sensitivity. In particular, μσ > 0 yields to its
motion up the gradient of c (which is thus a chemoattractant, and the relative force
is called chemotaxis), while μσ < 0 yields to its motion in the opposite direction
(and c is a chemorepellent). Moreover, if c is a nondiffusive fixed substrate, (2.8) is a
representation of a haptotactic force, as in [49, 91].

3. Developments. Basic CPM approaches work surprisingly well in the model-
ing of a wide range of biological processes. In particular, they can provide important
new insights into the principles of multicellular (tissutal) patterning in a number of
phenomena, as they are able to analyze their driving mechanisms; see, for example,
[37, 51, 70]. Moreover, CPM applications are a way of comparing the outcomes of
different and equally plausible scenarios, providing a predictive value as well. Authors
can in fact analyze the system’s response to a range of experimental perturbations,
as shown in [49, 59, 80, 82].

The first advantage of the CPM compared to alternative cell-based modeling ap-
proaches that represent biological individuals as point particles or fixed-sized spheres
or ellipsoids (for examples see [3]) is that it differentiates between bound and un-
bound regions of their membranes. Moreover, morphologies and changes of shape of
discrete elements are easily and realistically implemented. The key benefits of the
CPM energetic formalism are its simplicity and extensibility. Almost any biological
mechanism can in fact be included in the model, simply by adding an appropriate
generalized potential term in the Hamiltonian H , as suggested in the main reviews



MULTISCALE DEVELOPMENTS OF THE CPM 11

of the method [6, 33]. It is therefore possible to easily comprehend the importance
of each mechanism involved in the simulated phenomenon by only altering the rel-
ative Potts parameter so that the other terms in the Hamiltonian scale accordingly.
In particular, by equating all the other terms to zero, it is possible to understand
whether such a mechanism is individually capable of producing the process of interest
or whether it requires cooperative processes.

However, most CPM approaches suffer from some limitations. First, the repro-
duction of biological entities is improbable, since they are usually represented by single
discrete objects, which are isotropic and formed by equivalent and undifferentiated
sites. This representation provides a useful level of abstraction but also hides relevant
inhomogeneous properties that characterize all biological individuals. For example, in
the case of simulated cells reproduced by a single functional unit, the cytoskeleton and
the plasmamembrane do not have an independent existence on one hand, while, on the
other, the nuclear envelope is not defined. Moreover, while certain model quantities,
such as energy or temperature, have unambiguous meanings, most Potts parameters
do not have a direct correspondence with biophysical measurable quantities; see also
[59] for a comment. This is a crucial drawback for a good quantitative comparison
between in silico and in vitro results and thus for a predictive value of CPM applica-
tions. Additionally, these constraint weights, which modulate the dynamic behavior
of the simulated individuals, are generally static over the whole simulation or have
unrealistic variations. This situation in not plausible since real biological elements
continuously change their biophysical and biomechanical properties as a consequence
of continuous internal and external stimuli. These considerations lead to one of the
main criticisms of CPM approaches: most simulated phenomena emerge from quite
strong a priori assumptions that are derived from experimental observation; see again
[59]. In particular, the behavior of the simulated individuals is imposed by qualitative
rules (such as the energetic constraints regulated by fixed parameters) that do not
easily adapt during the evolution of the system. Furthermore, by treating simulated
individuals with only this cell-level phenomenologic approach, most CPM applications
do not consider (or, in some cases, only approximately describe) the molecular scale of
the biological organisms, as explained in [33]. In fact, basic CPMs neglect the contin-
uous flow of information between the microscopic and the mesoscopic scales, which,
as seen in the introduction, is fundamental for developmental biology. Finally, all
the objects belonging to a given type (τ) are usually constrained to feature the same
biophysical properties, such as the target states of most attributes or the adhesive
strength, despite their individuality.

In the next sections, we propose some extensions for CPM applications in order
to overcome the above-cited limitations and to improve the biological realism of the
method.

3.1. Compartmentalization approach. As we have seen, most existing CPMs
generally treat biological individuals as undifferentiated discrete objects, i.e., sin-
gle functional units identified by a common spin σ. Different spin states therefore
represent different simulated entities. However, biological elements are composed of
different parts (such as the nucleus or the cytosol in a eukaryotic cell or the microcom-
partments in bacteria) which play a fundamental and unique role in the development
of the organism. Moreover, each of these parts is characterized by particular and
well-defined biophysical, biochemical, and biomechanical properties.

The simplest and most realistic way of reproducing such complex morphologies is
to introduce a compartmentalization technique. According to this approach, a collec-
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Fig. 5. (A) Table of the symbolism used in both the standard CPM and in the compartmen-
talized extension, with appropriate examples. (B) Bidimensional square CPM domain representing
the elements defined in the compartmentalized example in the above table. The bold borders indicate
their external membranes and the light borders their internal ones. η = 1, 2 are compartmentalized
individuals, each of which is formed by four units, while σ = 9, 10 are standard, noncompartmental-
ized individuals.

tion of standard CPM objects can be clustered to form a compartmentalized element,
which can better reproduce a real biological individual. In other words, if in the basic
CPM a single discrete object represented an entire individual, it now represents one of
its compartments. Technically, with the new procedure, the discrete units, identified,
as usual, with their spin σ, share an additional attribute, a cluster id η(σ) ∈ N, which
defines the compartmentalized individual they belong to. Obviously, discrete units
without η are not part of a compartmentalized entity, but represent, on their own,
an entire element (as in the basic CPMs). Apart from the type already defined for
the discrete units, τ(σ), we can now introduce a type for the entire clusters, θ(η); see
Figure 5(A). The compartmentalized individuals η of the same family θ are formed
by the same number and type of units σ. The borders between subunits belonging
to the same individual represent its internal membranes. Referring to Figure 5 as
an example, we see that the discrete objects σ = 1, 2, 3, 4 are clustered in individual
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η = 1, which represents an endothelial cell, while objects σ = 5, 6, 7, 8 form individual
η = 2, which represents a fibroblast. Moreover, units σ = 9 and 10 represent entire
standard noncompartmentalized entities.

This new representation of individuals requires a redefinition of the characteristic
quantities of the CPM. First, it is necessary to differentiate the contributions of
Hadhesion due either to the contact between discrete units belonging to the same
element, or to the contact between discrete units belonging to different elements,
which, from a biological point of view, are of different nature. Hence, we distinguish
between external and internal contact adhesions:

(3.1) Hadhesion(t) = Hint
adhesion(t) +Hext

adhesion(t).

In particular, Hint
adhesion models generalized contact forces between couples of objects

that belong to the same individual, e.g., the nucleus and the cytosol in a cell:

Hint
adhesion(t) =

∑
x∈Ω,x′∈Ω′

x

J int
τ(σ(x)),τ(σ(x′))(t)δη(σ(x)),η(σ(x′))(t)[1− δσ(x),σ(x′)(t)]

=
∑

x∈Ω,x′∈Ω
′
x

η(σ(x))=η(σ(x′ ))
σ(x)�=σ(x′)

J int
τ(σ(x)),τ(σ(x′))(t).(3.2)

The form of (3.2) is analogous to that of (2.4), as well as the Kronecker deltas.
J int
τ(σ(x)),τ(σ(x′)) ∈ R

− account for high contact tensions (we refer the reader to [66] for

comments), which prevent single individuals from splitting.
Hext

adhesion is formed instead by the effective adhesion energies between different
compartmentalized individuals, which interact with their external membranes:

Hext
adhesion(t) =

∑
x∈Ω,x′∈Ω′

x

Jext
τ(σ(x)),τ(σ(x′))(t)[1− δη(σ(x)),η(σ(x′))(t)][1 − δσ(x),σ(x′)(t)]

=
∑

x∈Ω,x′∈Ω
′
x

η(σ(x))�=η(σ(x′ ))
σ(x)�=σ(x′)

Jext
τ(σ(x)),τ(σ(x′))(t).(3.3)

The strengths Jext
τ(σ(x)),τ(σ(x′)) ∈ R

+ depend, as usual, on the type of unit σ in con-
tact. As a simple extension of the basic CPM, they may also depend on the types
of the respective interacting clusters (i.e., on θ(η(σ(x))) and θ(η(σ(x′)))). However,
in the present form, the Jext’s remain spatially homogeneous throughout the object
membranes and do not depend on the single units in contact. These issues will be
addressed in the following section. It is worth noticing that, if the objects in con-
tact represent standard noncompartmentalized individuals, then the relative energetic
contributions are in the classical form of (2.4).

The compartmentalized approach requires us then to define the attributes, and
the relative energetic contributions, of all the units and those that regulate their
mutual interactions. A straightforward generalization of (2.5) and (2.6) results in

Hconstraint(t) =
∑

η,σ,i−constraint

λi
η,σ(t)

[
aiη,σ(t)−Ai

η,σ(t)
]2

;(3.4)

Hconstraint(t) =
∑

(η,η′),(σ,σ′),j−constr

λj
(η,η′),(σ,σ′)(t)

[
aj(η,η′),(σ,σ′)(t)−Aj

(η,η′),(σ,σ′)(t)
]2

,

(3.5)
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where aiη,σ and aj(η,η′),(σ,σ′) are the actual values of the attributes, A
i
η,σ andAi

(η,η′),(σ,σ′)

are their target values, and λi
η,σ and λi

(η,η′),(σ,σ′) ∈ R
+ are the relative Potts param-

eters. However, we prefer to define the constraint contributions to the Hamiltonian
as

Hconstraint(t) =
∑

η,σ,i−constraint

λi
η,σ(t)(t)

∣∣∣∣∣a
i
η,σ(t)−Ai

η,σ(t)

aiη,σ(t)

∣∣∣∣∣
p

,(3.6)

Hconstraint(t) =
∑

(η,η′),(σ,σ′),j−constr

λj
(η,η′),(σ,σ′)(t)

∣∣∣∣∣
aj(η,η′),(σ,σ′)(t) −Aj

(η,η′),(σ,σ′)(t)

aj(η,η′),(σ,σ′)(t)

∣∣∣∣∣
p

,

(3.7)

with p ∈ R
+. These latter forms allow us to have finite energetic contributions

as well as a blow-up in the case of aiη,σ, a
j
(η,η′),(σ,σ′) → 0. This means that, for

instance, an infinite energy is needed by a discrete unit to achieve a vanishing value
of one of its constraints, e.g., shrinking a cell to a point. Moreover, in this way, all
the components of Hconstraint are nondimensional, and thus all the relative Potts
coefficients are coherently scaled to units of energy.

Finally, we characterize the forces acting on each object with

(3.8) Hforce(t) = −
∑
x∈σ

∑
k−force

μk
η,σ(t) F

k(t) · rx(t),

where μk
η,σ is the Potts coefficient that measures the effective strength of the force Fk

sensed by the unit σ of the individual η.
Although each simulated element can in principle be compartmentalized in a

variety of ways (for example, along symmetry planes, or in a fixed number of equiv-
alent and undifferentiated subunits), a biologically plausible compartmentalization is
preferable as the subunits, and the relative attributes, assume experimentally rele-
vant meanings. An accurate and realistic representation of individuals is in fact also
mandatory for a detailed description of their internal, microscopic mechanisms, whose
introduction into the CPM method can be considered a further improvement, which
will be introduced in the next section. All biochemical and biomechanical processes
are in fact strongly localized within biological organisms and are characteristic of
well-defined subcompartments. Moreover, the compartmentalized approach is clearly
flexible, since it allows the level of detail to be tuned by only increasing or decreasing
the number of units that form the clustered individual, or the number of lattice sites
per functional unit. However, it is obviously computationally expensive, and often
such a level of detail is neither required nor relevant for a good simulation of a number
of biological processes. The optimal strategy depends on the phenomenon of interest,
which therefore requires a preliminary analysis.

The compartmentalization technique is not entirely new in the CPM; it was in
fact first introduced in [83], where the authors have subdivided a Myxococcus Xan-
thus into strings of subcellular domains in order to give the bacterium a particular
geometry and to control its overall length. Moreover, in [53] a keratocyte has been
represented with a set of undifferentiated hexagonal subunits, which have allowed us
to reproduce its polarization during motion. Although these approaches are correct,
the fact that the proposed subcellular compartments do not have an immediate or di-
rect correspondence with real subcellular elements has limited the practicality and the
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Fig. 6. Comparison between a cell section of (A) electron micrograph and (B) compartmen-
talized CPM cells. In both cases, it is straightforward to identify the nucleus, the nucleolus, the
plasmamembrane, the Golgi Apparatus, some mitochondria, and some secretory granules.

usefulness of the relative models. As explained above, to the best of our knowledge,
the most accurate way of realistically reproducing different and extremely complex
cell morphologies is to compartmentalize them according to the compartmentalization
suggested in nature, and thus to explicitly represent the plasmamembrane (PM), the
cytosolic region, the nucleus, and other intracellular organelles (e.g., mitochondria,
ribosomes, Golgi apparatus, and secretory granules; see Figure 6). This approach
also allows us to accurately model most of the main intracellular phenomena. For in-
stance, the introduction of an explicit PM permits us to define the activity of surface
receptors, as well as to better describe the cell adhesive properties, i.e., to simulate
the diffusion of adhesion molecules from the cell cytosol or their clusterization within
particular regions. Moreover, it is possible to reproduce the active and continuous
reorganization of the cytoskeleton, which provides the mechanical support for cells
and mediates their coordinated and directed movements, in response to mechanical
tensions and stresses from the local environment or to internal biochemical signals.
The explicit representation of the cell nucleus would instead be mandatory to model
genetic mechanisms such as DNA duplication, RNA synthesis, and diffusion.

3.1.1. An example: Endothelial cell chemotactic migration. As a simple
test simulation, we model the chemotactic migration of a single endothelial cell (EC),
placed on one side of a three-dimensional CPM domain Ω of 600 × 200 × 80 sites,
and stimulated by an exogenous vasculuar endothelial growth factor (VEGF) source,
which is located on the opposite side. In this case, one lattice site is set to correspond
to 0.125 μm3, while one Monte Carlo step is set to 10 s. The cell, which initially
is a hemisphere, is differentiated into three compartments: a central spheric nucleus
(σ = 1, τ(σ) = N), the surrounding cytosol (σ = 2, τ(σ) = C), and the PM (σ = 3,
τ(σ) = M), which encloses the entire cell; see Figure 7(A). The cell cluster id of {σ :
σ = 1, 2, 3} is η = 1, of type θ(η) = E. We further define a special generalized object
(σ = 0, τ(σ) = Q) which represents the extracellular medium, and which is assumed to
be homogeneously distributed throughout the simulation domain, forming no large-
scale structures and thus without volume or surface attributes. The extracellular
substrate is also static and passive: cells can change it only by occupying sites which,
once abandoned, return to a matrix state. The Hamiltonian H is formed by the
geometrical attributes of the cell units, by the generalized adhesion terms, and by the
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Fig. 7. Test simulation: chemotactic migration of a compartmentalized EC in a 600 × 200
× 80 lattice site domain Ω ( 1 lattice site = 0.125 μm3). (A) xy section of the compartmentalized
EC. We can see the different units that form the clustered individual: nucleus (σ = 1, τ(σ) = N),
cytosolic region (σ = 2, τ(σ) = C), and PM (σ = 3, τ(σ) = M). (B) EC phenomenology reproduced
from representative images taken at 45-min. intervals until t = 6 h ( 1 MCS = 10 s). The cell, after
a short latency, rapidly polarizes establishing a leading edge, a long thin pseudopodium, which gives
the direction of motion. The red dot represents the VEGF source, placed at x = (600, 100, 0). The
parameter setting used Jint

N,C = Jint
C,M = −20, Avol

1,1 = 900 μm3, Avol
1,2 = 32000 μm3, Avol

1,3 = 5653

μm3, Asur
1,1 = 3140 μm2, Asur

1,2 = 1110, Asur
1,3 = 2223 μm2, μm3, λvol

1,1 = λvol
1,2 = λvol

1,3 = λsur
1,1 = 20,

λsur
1,2 = λsur

1,3 = 1.2; μ1,3 = 5; T1,1 = 0.4, T1,2 = T1,3 = 4. (C) Model results in the case of
basic CPM. The EC is formed by a unique undifferentiated unit. The Hamiltonian is formed
only by the geometrical constraint of the unit and by the term relative to the chemotactic force; all
other parameters are the same as the previous case. The basic approach is unable to reproduce cell
polarization, as the cell is only a deformed mass that moves toward the chemical source. (D) For
comparison, experimental images of chemotactic migration of an adult human dermal microvascular
EC (HMEC, left) and of a tumor-derived EC obtained from breast lobular-infiltrating carcinoma (B-
TEC, right). In both cases, we can see that a pseudopodium-like motility structure has formed in
the direction of motion and that the nucleus lags behind, in the trailing zone of the cell. Images
courtesy of the Department of Animal and Human Biology, Università degli Studi di Torino.
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energetic counterpart of the chemical force:

(3.9) H(t) = Hint
adhesion(t) +Hconstraint(t) +Hchemical

force (t).

In particular, referring to (3.2), we have

(3.10) Hint
adhesion(t) =

∑
x∈Ω,x′∈Ω

′
x

η(σ(x))=η(σ(x′ ))
σ(x)�=σ(x′)

J int
N,C +

∑
x∈Ω,x′∈Ω

′
x

η(σ(x))=η(σ(x′ ))
σ(x)�=σ(x′)

J int
C,M ,

where high negative values of JN,C and JC,M , the generalized adhesions between
the cytosolic region and the nuclear cluster and the PM, respectively, prevent the
EC from disconnecting. For the sake of completeness, we should also include the
contact energy between the nucleus and the PM; however, we have omitted it (i.e.,
imposing J int

N,M = 0), as this is an unrealistic situation, since the nuclear and the
plasma membranes do not in fact interact directly during cell motion [2]. We also
neglect the external adhesion between the cell PM and the virtual medium (i.e.,
Jext
C,Q = 0); as seen, the extracellular environment is in fact assumed to be simply

a passive medium-like substrate which does not influence cell behavior. Hconstraint

consists of the geometric constraints of the subcellular units:

(3.11) Hconstraint(t) = Hvolume(t) +Hsurface(t),

where

Hvol(t) = λvol
1,1

[
avol1,1(t)−Avol

1,1

avol1,1(t)

]2

+ λvol
1,2

[
avol1,2(t)−Avol

1,2

avol1,2(t)

]2

+ λvol
1,3

[
avol1,3(t)−Avol

1,3

avol1,3(t)

]2

,

(3.12)

Hsur(t) = λsur
1,1

[
asur1,1 (t)−Asur

1,1

asur1,1 (t)

]2

+ λsur
1,2

[
asur1,2 (t)−Asur

1,2

asur1,2 (t)

]2

+ λsur
1,3

[
asur1,3 (t)−Asur

1,3

asur1,3 (t)

]2

.

(3.13)

All the terms in (3.12) and (3.13) resemble (3.6) with p = 2. The target dimensions
are taken from the typical measures observed in classical cultures for resting ECs
in the absence of external forces, as given in [89]. Assuming that the cell does not
grow during migration, we keep the cell volume fluctuations negligible by setting high
constant values of λvol

1,1 , λ
vol
1,2 , and λvol

1,3 . Moreover, since the nucleus does not deform
to any great extent in response to an external chemical stimulus, λsur

1,1 is also high.
Finally, the ability of ECs to reorganize their shape after VEGF stimulations [28] is
taken into account with low values of λsur

1,2 and λsur
1,3 , which, as seen, represent the

inverse elasticities of the cytosolic region and the PM, respectively.
The net energy difference due to the chemical force is the same as in (3.8):

(3.14) ΔHchemical
force = μ1,3[C(xtarget, t)− C(xsource, t)],

where xsource and xtarget are, respectively, the source and the final lattice sites ran-
domly selected during a trial update in an MCS; xsource belongs to the PM, while
xtarget is a medium site. μ1,3 represents the chemotactic sensitivity of the cell, which
is related to the activity of the surface receptors. C is a measure of the local extra-
cellular concentration of the VEGF, given by c, sensed by the moving cell membrane
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site (see [79, 80]):

(3.15) C(x, t) =
∑

x′∈Ω′
x:σ(x

′)=0

c(x′, t).

The spatial profile of the VEGF concentration satisfies the following diffusion equa-
tion:

(3.16)
∂c(x, t)

∂t
= Dc∇2c(x, t) − λcc(x, t) + S(x),

where c(x, t) denotes the actual concentration of the peptide at the medium site x
(σ(x) = 0). The coefficients of diffusivity, Dc = 10 μm2s−1, and of degradation,
λc = 1.8· 10−4 s−1, are homogeneous throughout the extracellular environment [81].
S describes the production of VEGF at a constant rate φc = 0.78 h−1 per unit of
time by the punctual source placed in the middle of the bottom-right side of domain
Ω (i.e., at site x = (600, 100, 0)); see Figure 6(B). The Boltzmann temperature of
the nucleus, T1,1, is low, which translates into biologically reasonable small nuclear
membrane fluctuations. High values of T1,2 and T1,3 instead give a quantitative idea
of a VEGF-enhanced intrinsic motility of the cell, as they cause a high frequency of
random extension and retraction of cytoskeletal pseudopods and of membrane ruffles.

As shown in Figure 7(B), the stimulated endothelial cell undergoes a gradual
transition from the initial symmetric stationary state to a polarized migratory state,
characterized by clearly distinguishable leading and trailing edges. In particular, a
long and thin membrane-bound cytoplasmic pseudopodium emerges at the front of
the cell, defining the direction of migration toward the chemotactic source, as the
elongated cell moves by constantly protruding at the leading edge, while retracting
at the rear. Such a phenomenology, consistent with in vitro realizations performed in
[28], where VEGF-stimulated ECs are found to assume an extended bipolar morphol-
ogy, results from the interplay between the chemotactic-induced membrane extension
at the leading front of the cell and the mechanical properties given to its compart-
ments, with a stiff nucleus and more fluid cytoplasmic and membrane regions (i.e.,
λsur
1,1 > λsur

1,2 = λsur
1,3 while T1,1 < T1,2 = T1,3). From the mechanical view point,

the exogenous stimulus causes the right region of the cell plasmamembrane to locally
protrude in the direction of increasing VEGF gradients, with a speed of protrusion
proportional to the modulus of the local chemical strength, μch (for instance, in any
CPM model the simulated objects experience an implicit drag force from the lattice,
and thus they have Aristotelian dynamics; i.e., their local velocity and not their ac-
celeration is proportional to the local force; refer to (3.22) and to [6, 53] for more
details). The leading front of the membrane, through the high generalized adhesion
force J int

C,M , then drives the motion of the cytosolic region. The cell cytosol, due to
its high motility and elasticity, in turn deforms and moves forward, while pulling on
the nucleus with the same force (exerted through the contact tension J int

N,C). How-
ever, the nuclear cluster (which, as a CPM object, also follows Aristotelian dynamics)
is basically stuck to the underlying lattice as a consequence of its rigidity and low
motility; therefore, it lags behind, creating the characteristic polarized morphology
of the EC. The chemotactic-induced extension of the leading front of the cell then
causes an average displacement of the lateral and trailing regions toward the chemical
source (due to the volume constraint of the membrane and the cytosolic clusters). In
particular, when the rear part of the individual has moved far enough to the right,
the nucleus, in order to preserve its energetically favorable contact with the lagging
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part of the cytosol, that has remained interposed between the nucleus itself and the
PM (since both J int

N,C and J int
C,M 	 0), is forced to move in the same direction. We

have therefore a conversion from nuclear sites to cytoplasmic sites which propagates
from the left to the right to preserve the nuclear volume. These mechanisms are a
simplified picture of the biological processes underlying cell movement (the relative
literature is vast; however we refer the reader to the comprehensive biochemical re-
views [68, 72] and the classical books [2, 40]), which can be differentiated into two
stages. In the first, the external chemical stimulus, via surface receptors, triggers the
active polymerization of the cell cytoskeleton, which results in the constant abutting
of the cell PM in the direction of motion and in the coordinated development and
release of focal adhesions (FAs). In particular, during this first phase, the nucleus is
unable to have a directional movement, as it fluctuates only negligibly in the cytoplas-
mic fluid. In the second phase, the cytoskeletal components drag the trailing regions
of the cell and pull the nucleus via mechanical forces transmitted by the intermediate
actin filaments and microtubules to which it is anchored, as clearly reproduced in
the representative experimental images in Figure 7(D) and reviewed in [93] and the
references therein. Indeed, the absence of significant nucleus displacements in the first
stage of cell motion is reproduced in the model by the artifact of staking the nuclear
cluster to the underlying lattice with a high rigidity, while its subsequent passive
motion is instead achieved by giving a high contact energy J int

N,C , which forces the
nucleus to simultaneously move with the lagging cytosolic region. Obviously, a more
realistic model should explicitly include the dynamics of the cell cytoskeleton and its
signal transduction (this topic, often approached in the literature with multiphase
models (see, for example, the book [16]), could represent a fundamental improvement
of CPM applications, since it has received little though increasing attention). In the
presented example, the importance of the compartmentalized approach is underlined
by studying the phenomenology of the cell in the case of a monocompartmental rep-
resentation (i.e., the EC is formed by a single, undifferentiated cytoplasm, while all
the other model assumptions are not changed): as reproduced in Figure 7(C), the
polarization process does not emerge and the cell is a deformed mass which moves in
the direction of the chemical source (notice that also the top of the cell unrealistically
protrudes). As a further confirmation of the advantages of applying the compartmen-
talized model, some authors using the basic CPM have needed to introduce an ad hoc
rule on cell length to make cells polarize [57].

In order to explain the use of the external adhesion energy, we now turn to
apply the above-presented model of cell chemotactic migration in the case of a two-
component inhomogeneous extracellular environment, which is constituted by a net-
work of collagen-like fibers and by the classical isotropic medium. The endothelial
cell is therefore planted in the left side of a 300 × 200 × 80 site domain Ω, where 100
matrix threads have been randomly arranged. As in the previous application 1 lattice
site = 0.125 μm3 and 1 MCS = 10 s. The collagenous cords are standard, noncom-
partmentalized CPM objects σ = 4, . . . , 103, of type τ(σ) = F . They are 80 lattice
sites long and 4 lattice sites wide and fixed (i.e., Tσ=4,...,103 = 0). The Hamiltonian
is the same as in (3.9), except for the addition of the appropriate term relative to the
adhesive interactions between the cell PM and the collagenous fibers:

(3.17) Hext
adhesion(t) =

∑
x∈Ω,x′∈Ω

′
x

η(σ(x))�=η(σ(x′ ))
σ(x)�=σ(x′)

Jext
M,F .
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Moreover, since cell motion through small fiber pores requires not only a strong de-
formation of the cytosol and of the PM but also the ability of the nucleus to squeeze,
we also set a low value of λsur

1,1 . All the other model parameters are the same as in the
previous model application, as is the evolution of the VEGF, whose source is placed
at x = (300, 100, 0). The phenomenological result is given in Figure 8, where we also
prove the comparison with an experimental image.

Fig. 8. Test simulation: (A) Computational results and of the chemotactic migration of the
compartmentalized endothelial cell in a 300 × 200 × 80 site domain Ω, representing a two-component
extracellular environment. 100 matrix threads have been randomly arranged throughout the simulated
isotropic. As in the previous application, 1 lattice site = 0.125 μm3 and 1 MCS = 10 s. Repre-
sentative three-dimensional views taken at 30 min intervals until t = 1.5 h. The red dot represents
the chemical source. The parameter setting used is the same as in Figure 6, except for Jext

M,F = 5

and λsur
1,1 = 1. (B) Representative experimental image of the migration of a human umbilical vein’s

Endothelial Cells (HUVEC) planted in three-dimensional fibrous matrix. Figure kindly provided by
the Department of Animal and Human Biology, Università degli Studi di Torino.

3.2. Adding subcellular mechanisms. In order to improve the realism of
CPM applications, research has mainly focused on defining more complex Hamiltoni-
ans able to reproduce increasingly specific rules for object behavior and interactions
[52]. However, as pointed out in [33, 59], little has been done to obtain an accurate
description of the internal state of individuals, whose evolution directly controls their
phenomenology. In fact, microscopic mechanisms have only been modeled to influ-
ence the behavior of CPM objects via appropriate extra terms in the Hamiltonian
[53], or with changes in cell mitotic rates [41] or types. In this regard, an intrigu-
ing approach has been used in a model for chick limb-bud development [14, 15]: a
threshold local concentration of activator TGF-β in fact drove the differentiation of
responsive cells in the active zone, eventually varying their properties (i.e., they be-
came fibronectin-producing and upregulated the intercellular adhesion). In interesting
models of thrombus formation [96, 97, 98], the activation of platelets was instead con-
trolled by the level of chemical components, which derived from biochemical reactions
of coagulation pathways in blood flow and on cell surface. Such approaches have
given qualitatively correct results and represent a useful starting point for further
improvements of the method. However, we here assume that the internal state of a
biological individual (i.e., the microscopic level) regulates its biophysical properties
(described by mesoscopic Potts coefficients) and not directly its dynamics (described
by the terms in the Hamiltonian). An analogous idea was introduced in [39] for a
specific case but was barely developed. On the basis of this hypothesis, we propose a
comprehensive and general procedure to incorporate microscopic models for individual
internal states within the mesoscopic CPM.

Let σ denote a certain discrete object (which, as seen, can now represent a whole
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individual or one compartment): we define its internal state vector sσ ∈ R
n. The

length n of sσ is defined by the number of internal factors (i.e., nutrients, proteins,
and growth factors) considered in the microscopic model and represents a sort of
internal degree of freedom of σ. Each component sσ,l, where l = 1, . . . , n, can be
local (i.e., per site) and/or time-dependent (i.e., specified as a known function and
thus linked to a specific regulatory pathway, which needs to be modeled, as will
be explained later). Hence, in general, sσ = sσ(x, t), where x ∈ σ. The spatial
localization of sσ is mandatory to accurately represent internal inhomogeneities of σ,
while its time-dependence reproduces its microscopic evolution.

For any σ, let us consider a generic Potts coefficient α ∈ {λi
σ;Tσ;μ

k
σ}. We now

define sασ ∈ R
m, where m ≤ n, the subvector of sσ whose components influence the

biophysical property of σ described by α. Therefore, α can be expressed as

(3.18) α(sασ) = fα(s
α
σ),

where fα : Rm 
→ R is a continuous function, which obviously needs to be appropri-
ately defined in relation to the case of interest (an example is given in section 4). In
particular, if fα is an increasing (respectively, decreasing) function of the component
sασ,j , where j = 1, . . . ,m, we can therefore say that sασ,j enhances (respectively, in-
hibits) α. In some cases it is useful to order the components of sασ and to write it as
sασ = (sα,Aσ , sα,Iσ ), where sα,Aσ ∈ R

k (respectively, sα,Iσ ∈ R
m−k, with k ≤ m) consists in

the activators (respectively, the inhibitors) of the biophysical property defined by α.
According the same notation we have that, if γ ∈ {J int

τ(σ),τ(σ′), J
ext
τ(σ),τ(σ′)}, then

(3.19) γ(sγσ, s
γ
σ′) = gγ(s

γ
σ, s

γ
σ′ ),

where gγ : Rm ×R
m 
→ R and σ and σ′ are two objects in contact. In particular, the

adhesive strengths are determined by the internal state of both elements, as they are
not only a property of each single individual. Moreover, differentiating the components
of the internal state vector that either enhance or downregulate the relative contact
forces, we have that, if gγ = gγ(s

γ,A
σ , sγ,Aσ′ ), then gγ is a decreasing function of its

components, while, if vice versa gγ = gγ(s
γ,I
σ , sγ,Iσ′ ), then it is an increasing function.

Equations (3.18) and (3.19) state that the variation of the Potts coefficients of the
element σ (as usual, either an entire individual or one of its compartments) is due to
the evolution of its internal state; in this way the mesoscopic biophysical properties of
σ are no longer given a priori (or varied with prescribed rules) but are autonomously
and continuously inherited from the flow of information coming from the microscopic
molecular level. They therefore assume a biologically more realistic and accurate
characterization and, in principle, can be more easily compared with experimentally
measurable quantities. Procedurally, at every simulation time step t, the microscopic
model of each object σ is run. The outcome is then used to modulate the values of
the relative Potts coefficients which, in turn, rescale the pattern energy H . After the
subsequent spin flip, the microscopic model is rederived, based on the new position of
the object. The different levels of organization thus continuously give feedback and
influence each other.

The application of the new approach to biological cells, depicted in Figure 9, is
of particular interest. In this context, each component of the internal state vector s
can represent the spatio-temporal variation of the concentration of intracellular ions
and molecules (nutrients, nucleic acids, proteins, growth factors, etc.), whose presence
and quantity strictly regulate the cell activity and its biological properties. In par-
ticular, for any component sσ,l of sσ, given a well-characterized (although simplified)
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Fig. 9. Hierarchy of scales and environments, the corresponding biological mechanisms, and
our proposed modeling approach. Information flows from the microscopic biochemical processes to
the cell-level phenomenology.

biochemical pathway

(3.20) A+B � C +D · · · � E + F � sσ,l,

it is always possible to set a suitable model, whose outcome is sσ,l itself. For the sake
of simplicity, it is not restrictive to combine groups of reactions in (3.20), whose results
have the same effect on the final result of the network. Biochemical kinetics can be
accurately described by reaction-diffusion (RD) systems, which usually specialize in
several coupled differential equations. As an example of the potentials of the proposed
model development, the Boltzmann temperature T in (2.1) is no longer a biologically
meaningless agitation rate but a variable property of each moving cell and therefore
assumes a well-defined value of cell intrinsic motility, which is mediated by a wide
range of intracellular substances (i.e., calcium ions, fatty acids, etc.).

Microscopic models of intracellular dynamics can be used together with the com-
partmentalized approach described in the previous section (if σ represents a subregion
of compartmentalized individual η, the internal state vector is sη,σ) to further improve
the models by adding more realistic details. In fact, if σ represents a cell subunit,
the biochemical processes defined in (3.20) are accurately localized within a well-
defined subcellular compartment, as occurs in reality. Such an integration between
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the two proposed extensions of the CPM therefore allows us to handle several biolog-
ical mechanisms, which are difficult to reproduce with the basic CPM. For example,
the explicit representation of the cell PM permits us to straightforwardly model a
wide range of surface receptor-activated intracellular pathways, as well as specific
protein cascades that mediate the activity of the cell adhesion molecules. Moreover,
the geometrical properties of the cell cytosolic compartment, such as its elasticity, can
now evolve according to a model of the active reorganization of the actin filaments,
which is powered, for example, by ATP (adenosine triphosphate) hydrolysis. A more
realistic representation of the mitotic process is also possible. In most existing CPMs,
the cell cycle is not modeled explicitly, since cells usually undergo duplication when
they reach a fixed volume [7, 75, 82]. With the presented CPM improvements, it is
instead possible to incorporate appropriate intracellular signaling cascades regulating
cell cycle-dependent events.

The proposed method to interface the basic mesoscopic CPM with models of
microscopic dynamics can be considered a general guide to reproduce complex in-
teractions between the different levels of organization that are typical of biological
phenomena. It can in fact be applied to a number of situations, given the knowledge
of

• the pathways of interest and
• the specific functional laws that describe their influence on the biophysical
properties of individuals, i.e., the functions f and g.

In section 4 we will give a sample application of the above-defined procedure that will
also be useful in clarifying the complex notation adopted in this section.

3.3. Motility of individuals. The motility of individuals plays an important
role in all biological phenomena. For example, the migratory properties of cells are
involved, to various extents, in both physiological (such as embryo development and
organogenesis, organism growth and survival, or wound healing) and pathological
(such as inflammation and atherosclerosis, cancer invasion, or metastatization) fun-
damental processes. An accurate description of the motility of individuals is therefore
a fundamental issue for all computational approaches, and it is one of the most at-
tractive features of the CPM. The Metropolis algorithm is in fact able to naturally
represent the continuous, exploratory behavior of migrating organisms through biased
extensions and retractions of their boundaries. Moreover, by updating only one spin
at a time, the individuals move gradually, rather than in jumps, as in some other ap-
proaches (for instance, multispin dynamics like Kawasaky dynamics are also possible,
as mentioned in [33]). The CPM technique also allows us to differentiate between
the isotropic intrinsic motility of each individual, which is described by its Boltzmann
temperature T (which can be approximately compared to a diffusion coefficient with
a continuous point of view), and the directional, force-based component of its motion.
Since a difference in a potential energy might be related to a force; at any given time
t, for any site x of the domain Ω, the local negative gradient of the functional H can
be related to the local applied force

(3.21) Fx∈Ω(t) = −−→∇Hx∈Ω(t),

where Hx∈Ω is the Hamiltonian restricted to site x (i.e., formed only by the terms
involving x). In particular, for any element σ (as usual, both a whole individual or
a subcompartment), the local velocity, and not the acceleration, is proportional to
the local force, resulting in the so-called Aristotelian dynamics. This relation is also
known as overdamped force-velocity response, and it is characteristic of other IBMs
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[25, 26]:

(3.22)
drx∈σ

dt
= vx∈σ(t) = kx∈σFx∈σ(t) = −kx∈σ(t)

−→∇Hx∈σ(t).

The coefficient kx∈σ(t) is the net rate of transition of site x (i.e., the difference between
its probability of moving and that of staying still, P (σ(x) → σ(x′))−P (σ(x) � σ(x′)),
as in [33]). As analytically demonstrated again in [33] (and in [53] for a particular
case), kx∈σ(t) is related to the Boltzmann temperature. We can therefore write

(3.23) vx∈σ(t) ∝ −Tσ(t)
−→∇Hx∈σ(t).

As far as the above-mentioned published results are concerned, we here prefer to use
a proportional dependence between kx∈σ(t) and Tσ(t) and not an equation, since the
exact relation between the Monte Carlo spin copy attempts and continuous time, as
well as the kinetics application of the Metropolis-like algorithm, are still debated and
persistent sources of criticism. Some comments on the consequences of relation (3.23)
are given here:

• It is characteristic of an extremely viscous regime, such as the biological
environment, where the individuals thus evolve under strong damping.

• It is definitive confirmation that discrete CPM objects move in order to min-
imize the total energy. The modulus of the local velocity of σ, at any given
time t, depends on the magnitude of the sensed local energy gradient, as
well as on its intrinsic motility Tσ(t), which, in our extended approach, is
coherently a variable property of each unit σ.

• Given that the energy functional H is the sum of the terms that represent
multiple biological mechanisms with the same architecture, it is straightfor-
ward to evaluate the contribution of each of them to the local velocity of unit
σ. In fact, for any mechanism i, by equating all the other terms to zero, we
obtain

(3.24) vx∈σ

∣∣
i−mechanism

(t) ∝ −Tσ(t)
−→∇Hi−mechanism

x∈σ (t).

In particular, it is possible to differentiate the contributions of either short-
range or long-range mechanisms,

(3.25) vx∈σ(t) ∝ −Tσ(t)
[−→∇Hshort range

x∈σ (t) +
−→∇H long range

x∈σ (t)
]
,

the former of which includes, for example, adhesion and haptotaxis, while the
latter includes chemotaxis.

However, even with the new meaning and expression assumed by the Boltzmann tem-
perature, the model in (2.1) can be further improved with the use of alternative laws
that are better able to describe experimental observations on the ruffling of individual
membranes. In particular, the main weakness of (2.1) is that, in the case of nonposi-
tive net energy differences caused by the proposed displacement (ΔH |σ(x)→σ(x′) ≤ 0),
each element σ is certainly going to move, regardless of its Tσ. This lacks biological
realism, since the effective motion of an organism is closely dependent on its motility.
For example, a “frozen” cell (i.e., with negligible intrinsic motility) does not extend
its pseudopods toward a chemical source even if it senses a high chemotactic gradient
(which, in the absence of other external forces, results in ΔH 	 0). This situation is
the model counterpart of experimental cells pretreated with cytochalasin B, or held
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at 4 ◦C, as clearly shown in [62]. This issue can easily be addressed using a modi-
fied family of transition probabilities P (σ(x) → σ(x′)), which takes into account the
object motility Tσ also in the case of energetically favorable displacement attempts.
The proposed modeling option is

P (σ(x) → σ(x′))(t) =

⎧⎨
⎩

p(Tσ(t))e
−ΔH|σ(x)→σ(x′)/Tσ(t), ΔH |σ(x)→σ(x′) > 0 ,

p(Tσ(t)), ΔH |σ(x)→σ(x′) ≤ 0 ,

(3.26)

where p(Tσ(t)) : R
+ 
→ [0, 1], a sort of maximum transition probability, is a continuous

and increasing function of Tσ and is characterized by

(3.27)

⎧⎪⎨
⎪⎩

p(0) = 0,

lim
Tσ→+∞

p(Tσ) = 1.

With reference to the above-mentioned example, (3.26) and (3.27) state that if Tσ → 0,
cell σ does not move, even if it senses a steep energy gradient, as it is really frozen.
According again to the discussion in [33, 53], we obtain

(3.28)
drx∈σ

dt
= vx∈σ(t) = k′x∈σ(t)Fx∈σ(t) = −k′x∈σ(t)

−→∇Hx∈σ(t),

where k′x∈σ(t) is the new net rate of transition coming from the proposed proba-
bility function in (3.26). Furthermore, considering the expression of (2.1) itself and
comparing it with (3.26) (i.e., the latter is equal to the former multiplied by factor
p(Tσ(t))), it is straightforward to notice that k′x∈σ(t) = p(Tσ(t))kx∈σ(t) and that
therefore k′x∈σ(t) ∝ p(Tσ(t))Tσ(t). Summing up, we finally obtain

(3.29) vx∈σ(t) ∝ −p(Tσ(t))Tσ(t)
−→∇Hx∈σ(t),

where the local velocity of σ is again dependent on its motility Tσ(t), which is now
scaled by the value of p(Tσ(t)). In Figure 10 we plot an example of the Boltzmann-like
probability given in (3.26) as a function of both temperature Tσ and the magnitude
of the energy difference. In particular, we choose p(Tσ(t)) = tanh(Tσ(t)).

However, it is useful to underline that alternative functions of p can also be used by
authors: obviously, each of them will have various degrees of success, when compared
to experimental data.

4. An example: Wound healing assay. In order to show how the general
theory illustrated in the previous sections can be applied, we here present a com-
prehensive test model. We simulate a wound healing assay of a culture of a poorly
differentiated thyroid carcinoma-derived cell line, called ARO [23, 44], stimulated by
saturating levels of HGF/SF (hepatocyte growth factor/scatter factor [20, 55]). A
wound healing experiment is considered a simple and reliable test for a quantitative
evaluation of cell motility, in particular in response to molecules putatively involved
in migratory processes. Procedurally, a cell population, coated with a matrix, grows
to confluence in a culture plate. The monolayer is then wounded with a sharp ob-
ject (for example, a pipette tip) and stimulated with nanomolar concentrations of the
molecule of interest. The recolonization of the lesion by the remaining cell mass is
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Fig. 10. Diagram showing the variation of the Boltzmann-like transition probability equation
(3.27) as a function of both the intrinsic motility of the individual, Tσ, and the sensed net energy
gradient due of the displacement attempt, ΔH|σ(x)→σ(x′). In particular, we choose p(Tσ(t)) =
tanh(Tσ(t)). The small panels represent the Boltzmann-like curves in the case of fixed Tσ = 4 (top)
and fixed ΔH = −2 (bottom).

then monitored by means of time-lapse microscopy: images are captured at regular
intervals during cell migration and then used for an accurate analysis of the popula-
tion migratory capacity, which is measured as the rate of advance of the wound edge
or by the quantification of the recolonized area.

The HGF/SF is a potent growth factor that elicits multiple cellular responses,
including scattering, motility, and morphogenesis [10, 21, 88, 90]. Such a combi-
nation of events, also known as invasive growth, is fundamental during the embry-
onic development of most epithelial tissues. When inappropriately activated, this
genetic program confers an invasive ability to normal and neoplastic epithelial cells
[23, 86, 94]. The high affinity receptor for HGF/SF is the tyrosine kinase Met [24, 46].
Met activation causes the disruption of intercellular adhesion complexes (cadherin-
cadherin interactions), and it initiates a number of intracellular signaling pathways.
Among others, Phosphatidylinositol 3-kinases (PI3K) and MAPK cascades have been
studied intensively and well characterized [20, 99]. Without going into detail, the
activity of the multidocking sites of the Met triggers the biosynthesis, in the cell sub-
plasmamembrane regions, of PI3K (via the production of Gab1) and of MAPK (via
the activity of the adaptor proteins Grb2 and Ras). PI3K and MAPK molecules then
diffuse within the cell cytosol, where they induce the production of Cdc42 and Rac
small GTP-ases [23, 99], which in turn stimulate the migratory capacity of the cells.
In particular, Cdc42, which can lead to the activation of Rac itself [5], is considered
to be a central regulator of cell protrusive activity [29, 74]. Rac is instead required for
lamellipodia and membrane ruffles [9]. Both Cdc42 and Rac mediate actin polymer-
ization by activating the actin-related protein, Arp2/3 complex [38, 73, 74]. Figure
11 diagrammatically represents the previously described key biochemical processes.

The multilevel modeling environment takes into account all the proposed devel-
opments of the CPM: at the mesoscopic, cellular level, a compartmentalized CPM
represents the phenomenology of the population of AROs, focusing on their shape,
membrane fluctuation, and adhesive interactions. Moreover, the internal state of
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Fig. 11. Simplified schematic representation of HGF/SF signaling cascades in the control
of ARO cell motogenesis. Met receptors activate a series of intracellular events that induce the
recruitment of Phosphatidylinositol 3-kinase (PI3K) and Mitogen-activated protein kinase (MAPK).
Both intracellular messengers are able to activate Rac and Cdc42 molecules. Increases in Rac and
Cdc42 activity trigger cell motility. The dashed arrows stand for indirect pathways are not completely
included in the model.

each cell is explicitly approached with a continuous model, which reproduces the bio-
chemical signaling pathways activated, via Met receptors, by the HGF/SF, whose
extracellular evolution is in turn described by a standard continuous equation. All
the levels are then inextricably linked so that the behavior of the AROs is realistically
driven by their microscopic, molecular dynamics.

4.1. Cell-level model. The core of our simulation framework is obviously the
extended CPM, which naturally handles cellular and multicellular behavior and inter-
actions. Since we wish to compare our simulations with experimental wound healing
assays, we use a bidimensional domain Ω ⊆ R

2. The AROs are compartmentalized
individuals η of type θ(η) = E. In particular, each cell is subdivided into the three
well-defined units σ defined in section 3.1.1: the nucleus, a central round cluster of type
τ(σ) = N , the surrounding, initially circular, cytosolic region of type τ(σ) = C, and
the PM of type τ(σ) = M . Again in this case, the nuclear membrane is not explicitly
modeled, as it is simply defined as the interface between the cytosolic compartment
and the nuclear region. In fact, with respect to the PM, no relevant phenomena occur
there, while it is important to look more carefully at the processes occurring at the
PM. For any cell η, we define the state vector of each compartment:

• if σ is such that τ(σ) = M , sη,σ(x, t) = (m(x, t)) ∈ R, where m(x, t) is the
local concentration of the activated surface receptors Met;

• if σ is such that τ(σ) = {C,N}, sη,σ(x, t) = (p(x, t), k(x, t), c(x, t), r(x, t)) ∈
R

4, where p(x, t) corresponds to the local concentration of PI3K, k(x, t) of
MAPK, c(x, t) of Cdc42, and r(x, t) of Rac.

All these quantities are expressed in units of μM. The extracellular environment, i.e.,
the experimental-like Matrigel, is modeled as a special generalized cell σ = 0 of type
τ = Q. As usual, it is assumed to be static, passive, and homogeneously distributed
throughout the simulation domain and therefore without volume or surface attributes.
Also in this case, we neglect cell-matrix interactions or matrix remodeling mechanisms
such as the secretion of protein or degrading enzymes.
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Table 4.1

Parameters involved in the model of section 4.

Parameter Description Model value Reference

Avol
η,N volume of nuclear compartment 50 [μm2] fit to [23, 78]

Asur
η,N surface of nuclear compartment 43 [μm] fit to [23, 78]

Avol
η,C volume of cytosolic compartment 150 [μm2] fit to [23, 78]

Asur
η,C surface of cytosolic compartment 90 [μm] fit to [23, 78]

Avol
η,M volume of plasmamembrane 60 [μm2] fit to [23, 78]

Asur
η,M surface of plasmamembrane 60 [μm] fit to [23, 78]

λvol
η,σ volume elasticity 20

λsur
η,σ surface elasticity 20

Jint
C,N = Jint

C,M generalized intracellular adhesion -20

J0 basal adhesive strength 4.5 fit to [23, 78]
k coefficient for Jext

M,M 1/2

T0 basal ARO motility 0.4 fit to [23]
h Michaelis–Menten coefficient for T 1/2

Tη,N generalized motility of the nucleus 0.25
DH diffusion constant of HGF 10−13 [m2s−1] [78]
λH on-rate constant of HGF degradation 10−4 [s−1] [78]
φH on-rate constant of HGF addition 10−4 [s−1] [78]
z coefficient of the amount of bound HGF 1 [s−1]
nr total number of Met receptors 311.200
Dp diffusion constant of PI3K 5 [μm2s−1] [48]
λp on-rate constant of PI3K degradation 1 [s−1] [48]
μp maximal rate of PI3K activation 10 [μMs−1] fit to [12]
μp,0 Mich.–Ment. const. for PI3K activation 2 [μM] fit to [12]
Dk diffusion constant of MAPK 2 [μm2s−1] [42, 54]
λk on-rate constant of MAPK degradation 1 [s−1] [42, 54]
μk maximal rate of MAPK activation 10 [μMs−1] fit to [12]
μk,0 Mich.–Ment. const. for MAPK activation 2 [μM] fit to [12]
Dr diffusion constant of Rac 105 [nm2s−1] [53]
λr on-rate constant of Rac degradation 1 [s−1] [53]

μp−r rate of PI3K-dependent Rac activation 4.5 [s−1]
μk−r rate of MAPK-dependent Rac activation 4.5 [s−1]
μc−r rate of Cdc42-dependent Rac activation 4.5 [s−1] [53]
Dc diffusion constant of Cdc42 105 [nm2s−1] [53]
λc on-rate constant of Cdc42 degradation 1 [s−1] [53]

μp−c rate of PI3K-dependent Cdc42 activation 2.5 [s−1]
μk−c rate of MAPK-dependent Cdc42 activation 3 [s−1]

The system Hamiltonian is given by

(4.1) H(t) = Hconstraint(t) +Hadhesion(t).

Hconstraint includes the constraints that regulate cell volume and surface (which, in
two dimensions, correspond to the cell area and perimeter). They have the same
form as (3.12) and (3.13). The cell target dimensions, given in Table 4.1, reflect the
most common morphologies observed in classical cultures of ARO cells [23] and have
been kindly measured by the same group of biologists for a previous paper of ours
[78]. Cells are not seen to grow during an experimental wound healing assay [23], and
HGF/SF stimulation does not cause a dramatic cytoskeletal reorganization; thus, for
any cell η and for any unit σ, it is not restrictive to assume high constant values of
λvol
η,σ and λsur

η,σ (cf. Table 4.1).
Hadhesion is straightforwardly differentiated into the internal and external con-

tact energy contributions; cf. (3.1), (3.2), and (3.3). In particular, Jext
σ(x),σ(x′), where

τ(σ(x)) = τ(σ(x′)) = M , is related to the capability of cells η(σ(x)) and η(σ(x′)) of
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creating local intercellular cadherin-cadherin complexes, that is downregulated by the
activation of Met receptors. Hence, adopting the same notation used in section 3.2,
for any ARO η and for τ(σ) = M , we obtain that

• sJ
ext,I

η,σ (x, t) = sJ
ext

η,σ (x, t) = sη,σ(x, t) = (m(x, t));

• Jext(sJ
ext,I

η,σ (x, t), sJ
ext,I

η′,σ′ (x, t)) = gJext(sJ
ext,I

η,σ (x, t), sJ
ext,I

η,σ′ (x, t)) = gJext(m(x, t),

m(x′, t)) = J0 exp(km(x, t)m(x′, t)), where the coefficient J0 represents the
adhesive force between resting AROs. It is a low value, qualitatively repro-
ducing the high contact interactions between unstimulated AROs which, in
the absence of external stimulations, tend to remain closely packed in circu-
lar islands, as it is possible to appreciate in the representative experimental
images in [23, 78].

The above relations reproduce the fact that Met activation induces the disruption
of cell-cell adhesion junction by the dispersal of E-cadherin and β-catenin from the
intercellular complexes [23]. It is useful to notice that, if we had used the basic
CPM, without the compartmentalization technique, it would have been impossible to
define a realistic relation of the local cell adhesive strength and the local quantity of
activated Met. Moreover, since, obviously, cells cannot break into small fragments,
we fix very low bond energies J int

C,N and J int
C,M . For the same reasons of the example in

section 3.1.1, the unrealistic contacts between the nucleus and the PM within the same
cell and the adhesion energy between the cell PM and the ECM are not considered.
Furthermore, we obviously neglect the case of a direct interaction between the nuclei
and the cytosolic regions of different cells.

Given the Hamiltonian, the transition probability of a spin flip has the form of
(3.26). In particular, we test the model using p(T (t)) = tanh(T (t)). For any cell
η, Tη,σ, with τ(σ) = N , is a low constant positive value that mimics the passive
motion of the nucleus of η. If τ(σ) = {M,C}, then Tη,σ represents instead, as seen,
a measure of the real motility of η, which is regulated by the intracellular quantity of
the activated Rac and Cdc42 molecules; see also [74]. Adopting again the notation of
(3.18) and (3.19), for any ARO η and for τ(σ) = {C,M}, we now have that

• sT,A
η,σ (x, t) = sTη,σ(x, t) = (r(x, t), c(x, t));

• Tη,σ(s
T,A
η,σ (x, t)) = fT (s

T,A
η,σ (x, t)) = fT (r(x, t), c(x, t)) = T0

[ 1+c(η,t)r(η,t)
1+hc(η,t)r(η,t)

]
,

where r(η, t) =
∑

x∈η r(x, t) and c(η, t) =
∑

x∈η c(x, t) are the actual total
intracellular amounts of, respectively, chemicals Rac and Cdc42 in cell η,
and T0 is the ARO basal motility. As given in Table 4.1, T0 is a low value,
which is qualitatively estimated by observing the negligible basal migratory
capacity of the unstimulated cell line, as provided with wound healing assays
and time-lapse videorecording techniques in [23]. We use a Michaelis–Menten
law to model a dose-dependent enhancement of cell motility driven by the
total intracellular level of the G-proteins Rac and Cdc42.

4.2. Molecular-level model. The intracellular HGF/Met-driven pathways on
which the model is based are depicted in the scheme in Figure 11. Although simplified,
they are consistent with biomolecular experiments presented in [21, 99].

The HGF/SF is uniformly added to the culture, it diffuses in the ECM, where
it decays at a constant rate, and it is taken up by ARO cells through Met receptors
sited in the membrane compartment. Mathematically, the HGF/SF spatial profile
thus satisfies the diffusion equation

(4.2)
∂H(x, t)

∂t
= DH∇2H(x, t)− λHH(x, t)−B(x, t,H(x, t)) + S(x, t),
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where H(x, t) denotes the local concentration of the peptide at medium site x (i.e.,
τ(σ(x)) = Q. The coefficients of diffusivity, DH , and of degradation, λH , are assumed
to be homogeneous throughout the simulated Matrigel and have been derived from
experimental measurements performed for a recent paper of ours [78]. S(x, t) describes
the addition of the growth factor, at a constant rate φH outside the cells. The HGF/SF
binding and uptake by AROs is defined asB(x, t,H(x, t)) and is limited to a maximum
rate of βH(t) > 0 over the external surface of the cells:

(4.3) B(x, t,H(x, t)) = min{βH(t), zH(x, t)},

where τ(σ(x)) = Q and ∃x′ ∈ Ω
′
x : τ(σ(x′)) = M and prefactor z is in units of time.

This result is realistic since the capacity of an ARO cell to locally uptake the growth
factor through its boundary will saturate at a rate-limit, βH , which is the maximum
number of HGF/SF molecules that can be locally bound and internalized per unit of
time. To compute βH(t), we have followed the discussion provided in [7] for the uptake
of VEGF molecules by an endothelial cell. In particular, we have here considered a
spatially homogeneous average number of Met receptors per cell membrane site; this
number has been estimated by dividing the total number of HGF receptors in a generic
ARO cell for the actual extension (i.e., at time t) of the membrane of the cell to which
the site belongs. Moreover, we have taken into account of an instantaneous HGF/SF-
receptor complex internalization rate of 4.3 · 10−4 per second [31], and 95 kDa as the
molecular weight for an HGF/SF molecule [20]. We now define the local number of
activated Met receptors:

(4.4) m(x, t) =
∑

x′∈Ω′
x

z−1B(x′, t,H(x, t)),

where τ(σ(x)) = M and τ(σ(x′)) = Q and z is the same as in (4.3). In (4.4) we have
assumed a one-to-one interaction between the HGF/SF molecules and their surface
receptors [20]. The activation of Met receptors then initiates a series of events that
regulate the cytosololic biochemical kinetics of the PI3K and MAPK molecules:

∂p(x, t)

∂t
= Dp∇2p(x, t)− λpp(x, t) +

μpΥ(x, t)

μp,0 +Υ(x, t)
;(4.5)

∂k(x, t)

∂t
= Dk∇2k(x, t)− λkk(x, t) +

μkΥ(x, t)

μk,0 +Υ(x, t)
.(4.6)

The diffusion coefficients, Dp, Dk, and the degradation rates, λp, λk, of PI3K and
MAPK are assumed to be constant and homogeneous within cell cytosol and are taken
from theoretical works presented in literature [42, 48, 54]. The third terms in (4.5)
and (4.6) describe the PI3K and MAPK production, which is triggered by the Met
receptors at the sub-PM region, as

(4.7) Υ(x, t) =
∑

x′∈Ω′
x

m(x′, t),

where τ(σ(x)) = C and τ(σ(x′)) = M . In the absence of specific determinations
for AROs, the Michaelis–Menten coefficients μk and μk,0 are chosen to reproduce
the curve of the HGF/SF-dependent MAPK phosphorylation provided for retinal en-
dothelial cells (RECs) in [12]. μp and μp,0 are estimated to fit the maximal amount
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of phosphorylated PI3K at a given concentration of HGF/SF, which has been mea-
sured in the same article. Finally, the intracellular quantities of the activated Rac
and Cdc42 are regulated, respectively, by the equations

∂c(x, t)

∂t
= Dc∇2c(x, t)− λcc(x, t) + μp−cp(x, t) + μk−ck(x, t),(4.8)

∂r(x, t)

∂t
= Dr∇2r(x, t) − λrr(x, t) + μp−rp(x, t) + μk−rk(x, t) + μc−rc(x, t),(4.9)

where τ(σ(x)) = {C,N} and the diffusion and decay rates are constant. The third
and fourth terms in (4.8) describe the activation of Cdc42 mediated by PI3K and
MAPK, with constant rates μp−c and μk−c. In literature there are no values available
for such constants; however, we set μp−c < μk−c to describe a stronger dependency of
Cdc42 on MAPK and a weaker dependency on PI3K. This is biologically consistent as
PI3K activates Cdc42 only in a direct way, while MAPK interacts with the G-protein
through distinct pathways [87]. The last three analogous terms in (4.9) reproduce the
triple regulation, by PI3K, MAPK, and Cdc42, on the activation of Rac at constant
rates given by μp−r, μk−r, and μc−r, respectively. Given the value of μc−r estimated
in the case of a moving keratocyte in [53], in the absence of other specific published
estimates, we set μp−r = μk−r = μc−r.

4.3. Results. The domain Ω is a square lattice of 1500 × 1500 lattice sites, with
periodic boundary conditions. The characteristic length of each grid site is scaled to
0.5 μm, and thus Ω represents a section of a 24-well of size 0.75 mm. One MCS
corresponds to 1 s. Diffusion processes are integrated using an explicit Euler method
on lattices with the same spatial resolution of Ω, with sufficiently small time steps to
guarantee numerical stability (i.e., 10 diffusion steps per MCS). The initial conditions
consist of a confluent population of cells scraped by a wound of d0 = 600 pixels (300
μm). The width of the scratch is lower than in experimental cases in order to avoid
cell overlapping and to compensate for the absence of mitosis.

As shown in Figure 12(B), without HGF/SF stimulation, the simulated ARO cells
barely display any detectable healing after 8 h, which is indicative of their inability
to invade the tissue. In particular, they typically maintain close contacts with each
other and feature negligible movement. The evolution of the unstimulated ARO
culture coincides qualitatively well with experimental evidence, as shown in the same
figure and provided in [23]. This gives us confidence in the choice made for the
parameters describing the basal properties of the simulated AROs. After the addition
of a nanomolar concentration of the chemical, the cell population is instead observed to
have an evident enhancement of motility, as the overall migration of the two masses
is biased toward the gap. The AROs placed at the fronts have loosened contacts,
dissociated, moved from their original site, and started wandering in close proximity,
displaying an evident capability to invade open spaces. In other words, they have lost
the physiological regulation of the contact-inhibition mechanism. Also this behavior
is consistent with the relative experimental counterpart; see Figure 12(C) and [23].

As is usual practice in experimental work [67], the healing capability of the popu-
lation is quantified by the rate of advance of the wound edges (in percentage), which
is given by

(4.10) D(t) =
1

N

N∑
i=1

(
1− di(t)

d0

)
· 100,
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Fig. 12. Comparison of the experimental (first column) and simulated (second column) wound
healing. The pictures show healing at (A) t = 0 h and (B–C) t = 8 h, in the absence of HGF/SF
(B), and in the presence of HGF/SF (C).
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Fig. 13. Evolution in time of the wound healing process. Comparison between experimental and
simulated results in the case of control conditions (no stimulation, dotted lines) and with HGF/SF
stimulation (solid lines).

where di represents the distance between a couple of cells across the wound, and d0
is the initial width of the scratch. The average of N = 30 randomly chosen values is
used to avoid biases toward accounting for outlier individuals. As shown in Figure 13,
the healing of the simulated population, in both control conditions and in the case of
HGF/SF treatment, is slightly slower than the experimental one. However, after the
initial phase (t > 2 h), it evolves at a comparable rate in both cases. Figure 14 offers
a definitive confirmation of the HGF-induced increase in cell motility; we compare, in
fact, single-cell trajectories obtained by following the displacement of the cell center
of mass during the whole healing resulting from the experiments and the numerical
simulation. It is worth noticing that in both control conditions and after the HGF/SF
treatment, AROs feature an isotropic Brownian movement. This motion can easily
be seen from an observation of the circular shape of the delimited area of the chart.
Moreover, the increased size of the oval highlights the enhanced migratory capacity
of cells in the presence of the growth factor, as the mean effective distance covered by
the stimulated individuals is more than doubled (12 μm compared to 5 μm).

5. Computational implementation. The implementation of the CPM core
algorithm (i.e., the definition of the Hamiltonian and the modified Metropolis itera-
tion) requires a simple code, which has never created problems for most researchers.
CPM users have therefore usually written their own software programs, which were
built according the specific application they were developing. However, as mentioned
in [6], these proprietary versions were often incompatible, making both the replica-
tion of published results almost impossible and the integration of new CPM extensions
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Fig. 14. HGF/SF-mediated increase in cell motility. Single-cell motion tracks obtained from 8-
hour time-lapse experiments and simulations of ARO cells cultured in the presence or absence (N.S.)
of HGF ( 100 U/ml), as indicated. Ten representative tracks were chosen for each experimental
condition and optimally arrayed for picture presentation. The red oval positioned at the center of
each group of tracks represents the size of a single cell. The green ovals give a measure of the
maximum of the effective cell displacements for each condition.

considerably difficult.
In order to obtain a common CPM-based program, which would have allowed

researchers to communicate, combine efforts, and compare and validate their results,
several groups have released open-source, extensible packages over the last few years.
Among others, the CompuCell3D1 environment has recently become a standard pro-
gram for the implementation of basic CPM applications. CC3D was jointly set up
by groups at the University of Notre Dame2 and at the Biocomplexity Institute of
Indiana University at Bloomington,3 and it is still under full and active development.
Among its C++ core module, CC3D uses an XML-based markup language and a rea-
sonably simple Python scripting (i.e., plug-ins and stepables) to define the simulated
system and to control the model parameters. The resulting simulations are then run
from a flexible graphical player.

Our extended CPM has been implemented by a modified version of CC3D. Al-
though the compartmentalization approach was already a standard feature of the
program, the other developments have required structural changes. The introduction
of the new probability function in (3.26) has led to a modification of the core of the
code (i.e., of the part that deals with the basic iteration of the Metropolis algorithm).
A group of Python routines, which are set to run within the CC3D framework it-
self, has instead been implemented for the numerical solution of the models of the
individual internal dynamics, as well as for the interfacing of their outcomes with
the basic CPM. In principle, these separated microscopic models could also have
been approached by adopting external connections between the standard CC3D and
some existing packages that deal with biochemical pathways and RD systems (such as
BioSpice4 or Systems BiologyWorkbench;5 see [6]. Our choice was done to avoid those

1http://www.compucell3d.org
2http://www.nd.edu
3http://www.biocomplexity.indiana.edu
4http://www.biospice.org
5http://www.sbw.sourceforge.net



MULTISCALE DEVELOPMENTS OF THE CPM 35

compatibility problems that usually arise from the interoperability between different
software programs. However, in the free-ware spirit of CC3D and of the other codes
that implement the CPM, any interested readers can contact the authors to obtain
further information on the program modifications and, if necessary, to get either the
entire software or parts of it.

Finally, it is obvious that the improvements in the CPM presented so far require
increasing computational power, therefore causing a significant slow down in the speed
of the relative simulations. For example, a realization of the wound healing model
in section 4 takes almost 4 hours when using a normal notebook, while a simulation
of the analogous phenomenon approached with the basic CPM would last less than
30 minutes. To limit this type of issue, we strongly advise researchers to make a
preliminary study of the problem of interest and to decide on the needed level of
detail. Typically, if the biological phenomenon requires an accurate description of
the microscopic scale of individuals, it should also allow one to take into account a
small number of individuals themselves. On the contrary, if it requires the simulation
of a huge population (for example, a full model of organ morphogenesis requires the
simulation of millions of cells), the level of detail for each element can be significantly
decreased. In other words, CPM authors should always follow this law:

number of simulated individuals · details of each individual = constant.

However, it is not always possible to either simplify the internal structure of simu-
lated individuals or to reduce their number. For instance, a full extended CPM of the
morphogenesis of a complete organ or of an entire embryo would require the repre-
sentation of 106–108 compartmentalized cells, with the relative subcellular dynamics;
given that CPM realizations are usually run hundreds of times to average out the
results determined by the same values of parameters, the first outcomes might be ob-
tained after months. Efficient computational techniques, able to significantly increase
the simulation speed, would therefore be needed. As mentioned in [6, 17], one of the
main issues in the CPM implementations is that too low acceptance probabilities of
spin flips (i.e., 10−4–10−6) often waste a lot of calculation time. In this regard, imple-
menting into the non–Metropolis Monte Carlo algorithms of rejection free dynamics,
such as the N-fold Way and the kinetic Monte Carlo approach, would be particularly
productive [8, 30, 45]. For each time step, they in fact do not consider a trial in-
dex copy, which may or may not be accepted, but choose only from among the set
of allowed lattice updates (i.e., those that decrease the system energy). Obviously,
the net computational gain will depend on the balance between the average number
of possible spin flips and the average acceptation rate. The random-walker (RW)
algorithm instead reduces, but does not eliminate, the rejection rate by selecting as
target sites only those belonging to an object boundary [13]. The automatic rejection
of nonboundary sites, characteristic of a normal algorithm, is therefore eliminated:
however, the increment of the computational speed is appreciable only in the pres-
ence of large individuals. However, the most attractive area of improvement in CPM
computational implementation is represented by the use of a distribute computing,
where the overall simulation domain is divided into equivalent subdomains, which are
in turn assigned to different nodes, as addressed again in [6]. A first parallel ver-
sion of the original Potts method has been implemented in [95] on a model of grain
growth, where the effective energy consisted only of local grain boundary interactions,
so that each spin flip changed only the energies of its neighbors. Moreover, a recent
RW distributing implementation of the CPM ran significantly faster [36]; however,
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the proposed parallel scheme required shared memory with all processors sharing the
same subdomains. This issue therefore limited the total domain extension to the
memory size of a single computer. Indeed, following the useful and detailed expla-
nations provided in [6, 17], the main difficulty in all forms of CPM parallelization
is that the effective energy is nonlocal: when a given object crosses between nodes,
any modification to it requires an efficient parameter passing between nodes, so that
the overall computation does not use stale values. Therefore, naive parallelizations,
where the activity of each processor is restricted to a predefined subdomain of the
total lattice, will increase the frequency of interprocessor communication for synchro-
nization, and, eventually, the waiting time of each node will be much greater than its
calculating time. An interesting attempt to overcome this issue has been made with
the Checkerboard algorithm, presented in [17]. Its authors have used an improved data
structure to describe simulated individuals and have further decomposed the subdo-
main assigned to each node into smaller subgrids (i.e., sublattices), chosen so that
the corresponding ones on different processors do not interact. In this way, an update
in one sublattice affects only the set of the nearest-neighbor sublattices. Each node
is therefore able to determine the spin flips affecting neighbor nodes, to accumulate
them, and to pass them synchronously. In this case, the speed gain increases with the
size of the subgrids per processor and decreases with the interaction range. Such a
basic checkerboard parallelization can also implement rejection-free or RW methods
by using either equivalent or master-slave computations [6].

6. Conclusions. Over the last decade, the CPM method has become a standard
technique for cell-to-tissue level in silico biology, first replicating, then guiding, in vitro
experiments and eventually leading to new experimental discoveries [33, 52, 59]. In
this work, we have offered a brief overview of its biophysical bases and discussed
its main limitations. We have also introduced several possible developments and
improvements.

First, we have proposed a more realistic representation of biological individuals,
based on a compartmentalized approach. Such a technique is not entirely new in CPM
applications, but we have applied it in a novel way, using sets of individual compart-
ments with a direct correspondence to their “natural” counterparts, instead of sets of
compartments with no biological basis. Among others, of particular relevance is the
application of this procedure to represents cells, which can be accurately differenti-
ated into their characteristic subcellular elements, such as the PM, the nucleus, and
the cytosol.

Moreover, we have focused on the explicit representation of the internal state of
the simulated individuals and on its influence on their phenomenology. Our main
assumption has been that the microscopic dynamics within each element mediate its
biophysical properties, which, in turn, drive its behavior. Therefore, we have used
the classic Potts parameters to interface continuous models reproducing the molecular
evolution of the individuals with the mesoscopic CPM describing their phenomenol-
ogy. The combined use of this multilevel approach with the compartmentalization
technique is a further step toward an improved realism of the CPM. It, in fact, allows
an accurate localization of microscopic processes within well-characterized internal
regions of the simulated individuals (e.g., expression and internalization of receptors
at cell membrane, actin polymerization within the cytosol, protein absorption, and
activation of signaling cascades in the nucleus). The resulting framework therefore fea-
tures a complex, but realistic, web of interactions between different submodels focused
on different scales and has the potential to accurately describe multiple phenomena
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with increased biological usefulness and predictive power.
The third development concerns the introduction of a new family of Boltzmann-

like transition probability functions, which better represent the migratory ability (or
mobility) of biological elements. In particular, the proposed laws realistically take
into account the intrinsic motility of moving individuals, even in the case of energetic
favorable displacement attempts.

However, since a powerful modeling approach should be able to adapt to different
biological contexts of interest and to represent multiple types of phenomena, we have
illustrated some relevant sample simulations. In particular, we have modeled the
chemotactic migration of an endothelial cell in both an isotropic undifferentiated
medium and in a two-component substrate, and a typical wound healing assay of
an ARO cell population stimulated by saturating levels of HGF/SF. In all these
cases, the results obtained by the model have agreed with the published experimental
observations, thus showing the consistency of our CPM extensions. However, it would
also be very useful to test our extended model on other biological problems, some of
which have been suggested in the text.

Although our approach has increased the accuracy of CPM applications, it is
still not able to deal with many biological details and could obviously be improved in
several ways. A first, natural development of the method would be a better character-
ization of the motion of the individual internal compartments, such as the nucleus in
the case of compartmentalized cells. In the present version, in fact, they move almost
passively, dragged by displacements of their surrounding regions (i.e., the cytoplasm
for the nucleus). In the future, we plan to introduce the possibility of “autonomous”
fluctuations of such internal units, which can be independent of the movement of the
entire individual they belong to. In our opinion, a further fundamental aspect still to
be developed in CPMs is the addition of the genetic level; see also [59]. In this way, it
would be possible to analyze the influence of gene network dynamics on the internal
state of biological elements and, consequently, on their behavior. In particular, efforts
could be made to link the alterations of an individual phenotype to a specific genetic
defect.
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