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Modelling the compression and reor ganization of cell aggregates

C.Giverso' *, L. Preziosi!

! Department of Mathematics, Politecnico di Torino, Corsa®degli Abruzzi 24, 10129 Torino, Italy

Abstract.

In this paper we study the mechanical behavior of multitetlaggregates using the notion of
multiple natural configurations. In particular, we extehd tlasto-visco-plastic model proposed
in [18] taking into account of the liquid constituent presencellular spheroids. Aggregates are
treated as porous materials, composed of cells and filleld weétter. The cellular constituent is
responsible for the elastic and the plastic behavior of tatenal. The plastic component is due to
the rearrangement of adhesion bonds between cells isatadshto the existence of a yield stress
in the macroscopic constitutive equation. On the other hrediquid constituent is responsible of
the viscous-like response during deformation. The geriexalework is then applied to describe
the uniaxial homogeneous compression both when a constadti$ applied and when a fixed
deformation is imposed and subsequently released. We gertiparesults of the model with the
dynamics observed during the experiments in [10].

Key words: aggregate compression, living tissues rheology, elaismsyplasticity

1. Introduction

Cells and biological tissues are complex materials, madeufiple subelements [29]: each cell
is bounded by the plasma membrane to form a closed objecaioory the nucleus and a fluid,
the cytosol (made of water, soluble proteins, sugar ang, setiere numerous organelles are im-
mersed. An important intracellular structure, that plakeywrole in many biological process (e.g.
maintaining cell shape, enabling movement, aiding calldikgsion) and that strongly affects cell
mechanical behavior, is the cytoskeleton, a complex meshaigpolymers crossing through the
cytosol. Each subcellular element is different from theeottind mechanical properties are non-
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homogenously localized inside each of them [31]. For instamcytoplasm properties strongly
depend on the amount of actin or tubulin and on the degreelgimasisation of these filaments.
Similarly, the membrane has a bending modulus which is diégr@ron proteins embedded into it
[31]. This high heterogeneity in cell composition and inseilular properties makes mechanical
response difficult to be modelled even for a single cell. Idigoh, cellular materials are different
from usual soft materials because they can develop an aesg®nse when submitted to stresses.
This response is due to mechanotransduction, which is thigyat cells to transform mechanical
external stresses into biochemical signals (and vice yansarder to transfer information to and
from the nucleus [6, 17, 31]. This ability of cells to deforndegenerate forces in an active manner,
coupled with their extreme complexity and their non linesponse to mechanical stimuli outlines
the need of a specific mathematical model to describe celiyl@amics.

Furthermore, cells are able to interact with each othertim fiissues and multicellular aggre-
gates in some stages of their life. The rheological propemi such materials are quite uncom-
mon, because they contain both cells and fluids embeddetkirsich cell and in the extracellular
matrix (ECM) among them. It is then known that not only theiimdic properties of the base
components - cells and collagen - but also their relativecentration can affect the rheological
properties of multicellular aggregates [7, 8, 30, 31].

Therefore there are big theoretical difficulties in congiatg a cell aggregate as a liquid or as
a solid. Indeed, treating it like a fluid may bring some sirfigéitions (e.g. to deal with velocities
rather than deformations). However, the fact that the zlliquid is contained in a solid structure,
puts in evidence the simplifications introduced by such goolyesis. On the other hand, it is
not correct to consider multicellular spheroids as elastitds, because they are composed of
living material: cells forming the aggregates continuguklplicate and die, the ECM is constantly
remodelled by the same cells and, even in absence of growthieath, cells can reorganize in
response to an external mechanical stimulus. Therefasentpossible to define a fixed natural.

Due to this complexity, the mechanical behavior of multidar systems is still far from being
understood and most of our knowledge concerning the rheabgnd mechanical properties of
cell aggregates comes from previous studies on soft bicdbgssues [30, 31], usually correspond-
ing to visco-elastic materials or to non-Newtonian fluid3][1IHowever, cellular aggregates have
been shown to play an important role in many biological pmesea and it has been recently found
that many pathologies are characterized by an alterati@elbmechanical behaviors and hence
the response of soft biological tissues may serve as an taygatiagnostic parameter in the early
detection of diseases [16, 25] and in the diagnosis of tunetastatic potential [32]. Therefore
a more detailed description of aggregates mechanical grepés needed. Indeed, in the recent
years there have been many studies focused on cell mictogyeand mechanical behavior, aimed
both at establishing the constitutive equation of cellsaggregates [1, 2, 3, 18] and at measuring
properties like cell interfacial energy, elastic modulusl aelaxation times [10, 11, 12, 32]. In
particular, in [3, 18] it was shown that the phenomena oleskduring some compression experi-
ments performed in [10, 11, 12], where a fixed deformatiorpjsliad to the cell aggregate, or in
[15], where a dense cell suspension is subjected to sheabhecaxplained using the concept that
the natural configuration evolves, due to the rearrangewfeatihesion bonds. Then, aggregate
mechanical behavior can be modelled coupling the viscbelashaviors with a yield condition,



generating a plastic reorganization, when the stress bestoo high.

However, pressure controlled experiments (e.g. creep ¢ast not be fully explained with
the models in [3, 18]. Indeed experimental evidences [1012]L.suggest that, when an imposed
deformation is removed, the shape recovery dynamics okggdgs, requires some times. On the
contrary in [1, 2, 3, 18, 19], when the stress is releasedstiag@e recovery is instantaneous. A
similar behavior is found when a stress is suddenly appliecgddition, if the stress imposed is
sufficiently high, the initial configuration is no more readh which can not be described in the
models presented in [10, 11, 12], that are based essertiallije existence of a surface tension
holding together the cell aggregate. A similar difficultyescountered when dealing with the
description of periodic compressions of the spheroid.

The purpose of this work is then to extend the elasto-vidastic model in [18] to include the
effects described above. On one hand, we take into accotiné @xistence of a maximum stress
that can be sustained by the cell aggregate before reomggriad on the other hand, we consider
the fact that the total stress exerted by the specimen ismyptoe to the cellular component, but
also to a further viscous term due to the action of the liqindse.

The structure of the paper is the following: after introdhgrihe constitutive equation in Section
2, the model is applied to cell aggregate compression aedselin Section 3. In Section 4, the
constitutive model is used to simulate the behavior of tallgpheroids under compression at
constant load, possibly repeated over time (Section 4d yader a cycle of constant deformation
and stress releases, as in [10] (Section 4.2). The resuigénedd with the model (in terms of
spheroid deformation and applied stress) are comparedthatiprediction of previous models
[18, 19] and mechanical experiments performed in [10]. Tinitptive properties of the solution
are described in detail, with proofs reported in the Appendi

2. TheConstitutive Model of Cell Aggregates

Cellular spheroids used in biological experiments [10,1],have a diameter ranging from 200
and 60Qum, which means a number of cells between ten and two hundregana. Therefore cell
aggregates can be modelled as continuum media, presefdsiggviscous and plastic behaviors:

e the elastic component is mainly due to the cytoskeletonckvie composed of elastic fila-
ments strongly cross-linked,

¢ the dissipative component, responsible of the viscouswh@hariginates primarily from the
flow of the cytosol along with and through the cytoskeletorshveork and from extracellular
fluid movements,

e the plastic component is due to the re-organization of adhdsnds between cells and to
actin network remodelling inside cells.

Hence, a mathematical model aiming at capturing cell aggeagechanics has to consider all
these properties. The main difficulty in describing cell mggtes and biological tissues consists
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in the fact that even in the absence of growth the ensemblelts andergoes an internal re-
organization in response to an applied strain or stresghwlimacroscopically translated in plastic
deformation.

Addressing this problem, Ambrosi and Mollica [1, 2], propddo investigate cell aggregate
mechanics with the aid of the theory for materials with eumdvnatural configurations. This
setting, introduced in [20, 21, 22, 27], has been succdgsdpplied to describe the growth and
remodelling of several tissues, allowing to model seprdke contribution due to growth from
the one due to deformation alone (see [4] for a review). Thed gyolution of the tissue is given
through the deformation tensby, which is a mapping from the tangent space related to thialinit
(or reference) configuratioi, onto the tangent space related to the current configur&tiand
represents how the body is deforming locally. Thenitis fgme$o consider the map frofi, to /C.
as composed of three parts: the first one related to pure yfdedth (therefore accompanied with
mass variation, here neglected), the second one due taahtearrangement of cells and the third
one due to stress-induced deformation (both without chafgeass). This consideration leads
to the introduction of two virtual configurations: the "groveonfiguration”,/C, that represents
cells that have undergone pure growth, without undergoitiggeremodelling or stress-induced
deformation and the natural (or locally stress-free) statewhich takes into account cell internal
re-organization [3, 18].

Ko

Initial configuration Current configuration

—_

Natural configuration

Figure 1:Diagram of the states from the original unstressed configur#C, to the current configuratioki., in the
framework of multiple natural configuration£’,, represents the natural state, which takes into accounintethal
re-organization.



In particular, in the case of mechanical testing of multidal aggregates, it is natural to as-
sume that no growth occurs during stress-induced defoomagince mitosis and apoptosis occur
on a much longer time scale (several hours) than the typroal$cale of mechanical deformation.
Therefore, referring to Figure 1, one can introduce theoWaithg multiplicative decomposition of
the deformation gradient

F =F,F,, (2.1)

whereF,, identifies the deformation without cell re-organizatioegdribing how the body is de-
forming locally while going from the natural configuratidt, to X.), F,, describes the internal
re-organization of cells (evolution froig, to £,,).

Cell and aggregate responses to mechanical stimuli havedoeeessfully described using this
framework in [3, 18, 19]. However, the viscous contributadfrthe liquid encapsulated inside the
multicellular system has always been neglected.

The aim of this work is to describe cell aggregate mechansasguthe concept of materials
with evolving natural configuration, treating the systemaagdeformable porous material filled
with physiological liquid.

The volume ratio of the solid phase is denotedgythe liquid one byp, and obviously the
saturation assumption holdg; + ¢, = 1. Then the total tension of the mixture as a whdadlg,,
is due both to the stress exerted by the cellular constitdentand to the one exerted by the fluid
contained in the cells and in which the spheroid is immer3gd,

T, = ¢CTC + ngT@ - (bcTc + (1 - ¢C)Tﬁ : (22)

Treating the fluid as a linear incompressible Navier-Stdked and assuming that cells and liquid

move with the same velocity, the second term in equation) (2&dsT, = —pI + 2vD, where

D= §(L + LT) is the symmetric part of velocity gradiedt,= FF~!, whereag is a Lagrangian

multiplier due to the volume additivity of the constituersisd it represents the interstitial fluid
pressure that will also appear in the stress tensor for hdareconstituent.

Obviously this is only an approximation and a better desicnipof the phenomenon should
take into account of the porous structure and the relativeommf the liquid with respect to
cells as given, for instance, by Darcy’s law. The introdoctof the viscous term is consistent
with Saramito’s work [23, 24] on elasto-visco-plastic flsjcduch as liquid foams, emulsions and
blood flows. Indeed in these works the 1D total stress is sgmted by = 7 + ne, wherer is
an extension of the Oldroyd model coupled with the Binghamstitutive equation, whereas the
second term takes into account of viscous phenomena.

It is important to observe that, in (2.2), the viscous cosdfit v, is proportional to the vis-
cosity of the fluid encapsulated in the cellular specimen,tis not simply the viscosity of the
physiological liquid. As explained in Section 3, an estien&dr this coefficient can be derived



linking the consolidation time of a porous medium filled wiiduid to the characteristic time of
the model presented in this paper.

Concerning the tensa@r, representing the response of the cellular constituentefee to [18],
where elasto-visco-plastic effects are included startingn the idea that the rearrangement of
adhesion bonds during the deformation of multicellularesphus is related to the existence of a
yield condition in the macroscopic constitutive equatidnhe stress tensor. The yield stress is a
very important quantity in rheology and it is associatedhtite existence of strong interactions,
causing the impossibility for a fluid to flow when small shetaesses are applied.

Indeed experimental evidences suggest that when a cekb@aigrundergoes compression:

1. for moderate values of applied stress, cell aggregatesdelastically;

2. above a limit value, the cell aggregate undergoes inteznarganization which can be mod-
elled at a macroscopic level as a visco-plastic deformation

The so-called yield stress, denoted hiy.), depends on the number of cells per unit volume
because the threshold of the onset of cell re-organizasqroportional to the area of the cell
membranes in contact times the bond energy, that repretbentgork needed to break cell-to-cell
bonds. This is related to the experimental observationathesion bonds between cells have a
finite strength and might break or build up during the evolo{s, 9, 26].

To translate this idea into formal terms, we propose a maditio of the model presented in
[18]. Using the virtual-power formulation and considerthgt the Cauchy tensdE,.., is workcon-
jugate with the elastic deformation ratg = F,,LF;1 whereas the plastic tensdr,, is workcon-
jugate withL,, = F,F, L, it can be proved [14] that

T, =JF. T F, ", (2.3)
whereT’, = T, — 3 (trT,)I is the deviatoric part oT...

Introducing a constitutive free energyand postulating a dissipation principle, the following
inequality holds

77/) - Tc : Ln - Tp ' Lp < 0. (24)

Then takingy = z/S(Fn) and using the classical Coleman-Noll procedure for theatgilon of
second law of thermodynamics, we obtain

-
T. = aF,,,F" (2.5)

T, L, >0. (2.6)

ThereforeL,, = G'T, satisfies the previous relations, given any positive lifieactionalG on the
natural configuration space.



Taking into account the mechanical observations on theexngs of a yield criterion and the fact
that the material can be considered isotropic, we can choose

ol (8] o

wheref(¢.T',) is a suitable frame invariant measure of the stress of thelaetonstituent|], and
sym respectively stand for the positive and the symmetric plati@r arguments. The parameter
« is in the rang€0, 1] and determines the viscous behavior at high shear ratese lfolowing,
the particular case = 1 will be considered, to obtain the following constitutiveuagjon

¢c 7—(¢C) T/ =T
L,=D,= 20(60) {1 f(T’C)} . sym (FnT F ) ; (2.8)
assuming isochoric transformations= 1.

Equation (2.8) can be interpreted, considering that a atuoie in the reorganization of cells
is played by the shedr- T.n that can be mapped back to the natural configuration takitzg in
account that a material vector transforms like F,t,, whereas the normal to a material surface
like n = det(F,)F,"n, = F,Tn,, sinceF, is an isochoric transformation. Then, one has that
t-T/n = tn-FZT’CF;Tnn. Therefore a crucial role in determining whether the mateeorganizes

is the tensofl, = F1 T’ .F, .

Referring back to equation (2.8), we explicitly observe tha

tr(T.) = tr(FLT.F, ) = tr(D,) = 0, (2.9)

and that the eigenvalues Bf,” T_F” are the same as thoseDf,

Furthermore beind” . objective, we have to study how the quantities in equatiod) (@ansform
under an euclidean change of frame. Denoting with a($jathe value of a field after the change
of frame and withQQ an orthogonal tensor, thanks to the following relations

F* = QF, (2.10)
F:=F,, (2.11)

one has
D, =D; = G(F.T.,F,")" = GFIQ"T;QF,”, (2.12)

which implies the frame indifference df...

We remark that in the limit of small deformation with respgethe natural configuration, i.e.
B, - I — 3| < 1, equation (2.8) simplifies i, = GT’,, that is the relation sometimes given
in plasticity theory, assuming,, sufficiently small. Moreovethe proposed constitutive model, in
the case ofv = 1 simplifies in

T, + % [1 - f(;(dDT,))} ) T, =2 (D - % (trD) I) (2.13)
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n(¢e)

where\ = is the cell-reorganization timgor plastic rearrangement time). We observe

that in (2.13)/,Ltﬁe term containing the yield stress plagsrtile of a stress relaxation term but it
switches on just when the stress overcomes the yield stréssms of the set measure. In this case
the energy is no longer elastically stored but it is spenelhunbinding and cytoskeleton reorga-
nization at the microscopic scale, which produces the gptheearrangement at the macroscopic
scale. Otherwise, fof(¢.T’.) < 7(¢.), this equation can be integrated to give back the elastic

. 1
equationT’. = u (Bn — g(tan)I).

3. Uniaxial compression

In this section we will study in more detail the response ofaerial satisfying (2.2) - (2.8) subject
to a uniaxial compression test. Though the results of thisiae also apply to an elongation
test, we focus on compressive forces. Typical experimarisbe performed under the following
conditions:

e a constant load is imposed to the specimen and the corresigodeformation is recorded
upon time. Possibly the compression is released after siomeeailowing a stress-free evo-
lution of the specimen. Then, the process of compressidm thvé same constant load can
be re-iterated. Usually, the first experiment is calbeglep tesiand for this reason, in the
following, we will denote the last process @gclic creep test

e a fixed deformation is applied and the evolution of the stiasgle the body is moni-
tored Etress relaxation tegt Finally the same deformation is applied periodicallytite
spheroids to freely expand between two subsequent conipmes$n the following we will
refer to this process ayclic deformation test

We will assume that the deformation, generated by a uniéxieé or strain applied along the
z-axis, is homogeneous inside the body, keeping a constantheoratiog., and is given by

X Y
Mok y = ok z=9Y(t)7Z . (3.1)

Then the deformation gradient from the initial to the finahfiguration is given by

(3.2)

1 1
— di , , .
F 'ag{fw(w NGO W)}

The deformation gradient due to the internal reorganinatiche cytoskeleton can be represented
by



1 1
F, = diag , U (t)} , (3.3)
’ { NACRVAZON
whereV,(t) is a measure of how much the aggregate has reorganized amattial configuration
has evolved. FoW,(t) = 1 we have no contribution due to rearrangement of bonds irtbiele
body.
From equations (3.2) and (3.3), beiRg= F,F,, it is clear that

- Up(t) [Up(t) ¥(t)
F, = diag AN AN . (3.4)
{\/ o(t) % B0 (1)
Assuming that the cellular spheroid obeys a neo-Hookean tlasvfirst term of the sum in
equation (2.2) is

T(: - _pI - E(z(gbr:)]: + IU/BTL 5 (35)

whereX..(¢.) is the symmetric part of the cellular constituent stressden

Therefore considering that in the uniaxial compressiofy the total force is applied in the
z-direction, one has

Tm - = (p + (bczc((bc)) I+ /Mchn + 2(1 - (bc)VD - dlag{o Ov _Pappl(t)} ’ (36)

where we consideP,,,,; to be positive for a compressive load.
In a creep test,,,; is a known constant and it vanishes in the stress release plibsreas it is a
function of time in a stress-relaxation experiment understant deformation.

Considering that the liquid and the cellular component moita the same velocityD =

. 11\ ()
dlag{_§’ _5’ 1} m .
2
Then, beingB,, = diag{ ip(%), ip(%), éﬁig} and denoting witl = p + ¢.2.(¢.), we obtain

the following equation for the stress exerted by the mixture

_ i U,(t) (1) ¥°()
T = Sl ol gk T )
+2y(1—gbc)diag{—%,—%,1}%, (3.7)

9



or from (3.6)

Wy (t) »(t)

E(t) = Ude /l/)(lf) - V(l - Qbf)m ) (3.8)
R O ) b(t)
Poppi(t) = /WCW —3v(l— (bC)W . (3.9)

The first terms in the sum of both (3.8) and (3.9) are the sartaraa in [18], taking account of the
cellular constituent only, whereas the second terms anese the introduction of the viscous phase
in the model. Equation (3.9) can provide the stress exelydtidaggregate when a deformation
is imposed along the-axis (e.g. a fixed deformatiogy), or it can be used to derive the evolution
of ¥)(t) when, for instance, a constant load is applied

é _ Pappl + :U’d)c \Dz - wB
WP 3w(l —¢)  3v(l—¢) v¥2 7

where we omit the dependence frarfor sake of simplicity. As a particular case, equation (3.10
can be used to model the stress-free evolution of the systepasingF,,,, = 0. We can ob-
serve that the ratio/; represents a characteristic time in equation (3.10). @enisig the fact
that we are compressing a multicellular aggregate, thi:saa:ltraristic:2 time can be related to the
fho L

(3.10)

consolidation time of a saturated porous material filledhlitid, , Wherey,, is the dynamic

viscosity of the physiological liquidl. the multicellular aggregate heiglit,the permeability of
the porous structure ankl its elastic modulus. In this way it is possible to derive tlaegmeter
v from physical quantities measurable in experiments and &gn® of known estimates bf e.g.
the Kozeny-Carman relation.

Equation (3.10) need to be joined with equation (2.8), tgkmo account that

3 3
! 12}w v (3.11)

T~ pdiag{ 3.1

37 33 U2y
and postulating an equation fije. T?.).
Here we consider that the frame invariant measure of thessiseéhe maximum shear stress magni-
tude, given by half of the difference between the maximumthaeninimum stress in the principal
directions (Tresca’s criterion)

f(¢.T,) = L R (3.12)
p

which means that cell unbinding is primarily caused by thgpsige of cells along the maximum
shear stress surface, which seems reasonable in a cetigiagate under compression. In a more

10



general case, in which the principal stresses are not ltyiiaown, it is possible to use the von
Mises criterion, taking into account that Tresca’s craaris more conservative and, therefore, it
predicts plastic reorganization for stresses that aleestic according to the von Mises criterion.
The evolution for the internal reorganization is therefore

i W2 U3 _ 3
%:_i 1_27’ fpg P ;D ' (3.13)
v, 3\ e | W3 — 93| A
_ n(¢e) - - _
wherel = ——, as previously defined, and= 7(¢.).

HPe
Equation (3.13) states that when the quantity inside tharsgoarenthesis is positive, thép will
evolve.
Considering that,(0) = 1,

1 0> 27

(G fie
is called in the followingyield conditionbecause it determines the deformation that switches on
the evolution ofl,,. Fory € (0, 1], the right hand side of equation (3.14) is a positive andekessr
ing function ofvy and therefore only values of sufficiently small, so that the yield condition is
satisfied, are able to trigger the internal reorganizatside spheroids.
We observe that, as we will see more in detail in the followsagtion, in a stress relaxation exper-
iment with constant deformation equalidtg satisfying (3.14) the equilibrium of (3.13) is reached
Uy~ 2t

77Z)0\Il;2; :U’d)c

(3.14)

when

, I.e. from (3.10) at?,,,, = 27, independently of), as in [18].

4. Resultsand Discussion

The model presented in Section 3 can provide some usefuhnafiton on the mechanical behavior
of aggregates both when they are compressed with a constaatdnd when they are released. In
Section 4.1 we present the results obtained in the case alia cyeep test and then in Section 4.2
those in the case of a cyclic deformation test, as performéok experiments in [10].

The following proposition, proved in the Appendix, will beeful.

Proposition 1. When the aggregate is compressed according to the followipgsed deformation
and stress histories:

a) Any given compressive deformatigrit) with ¢)(t) < 0

b) Any sequence of giver(t) with &(t) < 0fort € [ty, ts41] followed by a stress release for
te [t2i+1, tQ(H_l)] with 7 = 0,....,n

c) Any compressive load,,,;(t) > 0

11



Then

U, (1) > 9(t) V> 0.

This proposition allows to get rid of the modulus in (3.13yaawrite (3.10) and (3.13) as

| L TUE) - (e o
O = eewn e, @D
. Pappl(t) M¢C \Dz(t)_w(t)?)
-0’V ni—oy vy

(4.2)

4.1. Cycliccreep test.

In a cyclic creep test a constant load is applied and thenstrduced on the spheroids is measured
over a period of time and then the stress on the upper platgrsved. Considering only forces
directed along the negativeaxis, it was shown in Proposition 1 (casethat v, (¢) > (¢) and
therefore equations (4.1)-(4.2) hold. Obviously, whenupeer plate is lifted-up?,,,; = 0 in
equation (4.2).

Equations (4.1) and (4.2) admit non trivial equilibria oifly?,,,, < 27, as it is stated in the
following proposition (proved in the Appendix).

Proposition 2. In creep tests

. 1 P, : .
a) if Py < 27, thenW,(t) = 1andy(t) > ¢, : — — 2 = —al are solutions of equations

c HPe
(4.1) and (4.2), with initial condition®,(0) = 1 and«(0) = 1.
b) if P,,,(t) > 27, Vt, then equations (4.1) and (4.2) admit only the trivial edpilim.

In fact, in the particular case of constdy,,;, the right hand side of (4.2) vanishes for non null
\112 - wg _ Pappl
(N5 e
it is evident from plotting the vector field corresponding4ol) - (4.2), if P,,,; < 27 the solution
. . . . 1 P,
starting fromW,(0) = 4 (0) = 1 will keep ¥, = 1 while ¢ will tend to ¢, : — — 2 = —22

(see Figure 2, left). On the other handff,,; > 27, solutions of (4.1)-(4.2) will tend to theut?ii/ial
equilibria (Figure 2, right).

Hence in a certain range of load, i.e. fBy,,, < 27, the cellular aggregate does not undergo
an internal reorganization, thel, () = 1, whereag)(¢) decreases until the valug is reached.
In this case, if after some time the load is removed, the spatiwill go back to the initial config-
uration,y, = 1, following the classical visco-elastic response, due &elastic response of cells
and the viscous term of the liquid component (see Figure 3).

U, only if

that makes the right hand side of (4.1) vanish onlg,if,; < 27. As
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Figure 2: Vector field (blue arrows) corresponding to (4.1) - (4.2)Pif,,; < 27 (on the left) andP,,,; > 27 (on

\113 _ 3 2 \113 _ 3 Pa
the right). The red curve corresponds%g—2 = —T, whereas the green curve ¢’ f = —@rl tis clear
Y e (CA e

that if P,,,; < 27, and¥ will tend to the green curve (in color online). On the othendh& ~,,,;, > 27, ¥, — 0
andvy — 0.

We observe that if the load is not constant, but smaller thait, ¥, (¢) = 1 is still a solution
of (4.1).

In order to trigger spheroid internal reorganizatiBy,, must be larger thadr, which cor-
respond to the yield condition (3.14). In this cabg will decrease fromV,,(0) = 1 according
to (4.1), causing a macroscopic remodelling of the mulidat body. Therefore when the upper
plate is removed a plastic deformation of the aggregate easbberved. The internal reorganiza-
tion rate depends on the intensity of the load applied to ¢lggegate, compared to the yield stress
(see Figure 4) and, iP,,,,(t) > 27 Vt, it continues until the equilibrium is reached, thép — 0
andy — 0. This physically means that the aggregate is totally sceebent between the upper
and lower plates of the apparatus.
These results are intuitively reasonable and analyticalyect, however they need to be verified
with experimental tests, not present in literature. It ipartant to observe that standard creep
tests used for the measurement of mechanical propertigsedfmaterial, eventually need to be
modified to be suitable for the application to living cell aggates, that must be kept in healthy
conditions during measurements.

4.2. Cyclic deformation test.

In the compression experiments, like those performétiinll, 12] a fixed deformation is applied
to cellular spheroids, usingtaermostated parallel plate apparatus, immersed in a oairfiked

with pre-warmed tissue culture medium. The specimens usgdj 11, 12] were obtained from 5
to 6 day old chick embryos, whose cells were dissociated wiwien of trypsin and then placed
in a tissue culture medium, to allow them to reorganize. Wbltured for about a day, in a
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Figure 3:Cycle of compressions whéh,,,,; < 27 is applied and then removed. The simulation is performeihget
the yield stress = 0.2Pa andF,,,,; = 0.45Pa, according to the yield condition. The cellular volume@at. is set
equal to0.8, which is consistent with biological observations [28] d@hd cell-reorganization time is = 22s. The
other parameters can be scaled according to the choéeere: 1 = 1.1Pa andv = 20Pa - s). The compression
and release times are both equalto= 44s. Being the applied stress under the yield condition, theriinternal
reorganization of bondsl(,(t) = 1), therefore when the compression is removed aggregatgsgssively go back to
the initial configurations),, = 1. The liquid component in the mixture is responsible of thiagéntroduced in the

recovery dynamics of spheroids when the upper plate iglliff@

37°C shaker bath, these multicellular aggregates adopted avsaprrfect spherical shape, with a
diameter ranging fror@00um to 500um.

Recording the force exerted by aggregates upon the uppepression plate, it is possible to
observe that living structures undergoing constant dedition, are able to relax the internal stress
until an asymptotic value is reached [10, 12].

A variation of this experiment is the cyclic deformationttdge those performed in [10, 11],
in which multicellular bodies are forced to periodic congsiens at controlled deformation and
the compressive force is briefly interrupted at intervalsrdythe approach to shape equilibrium.
When compression is interrupted early in this process (ageoed to the reorganization time,
aggregates can be observed to almost retrieve their isltegbe, over the course of a few seconds,
whereas after some releases from compressions, a maciodefgrmation can be measured. The
process is reiterated until the attainment of an asympbatinavior, described in the following.

The force relaxation curve and the presence of a plastiauehafiion are consistent with the
visco-elastic model combined with the existence of a yiglelss, described in [18Jyhere the ex-
perimental stress-relaxation curves are reproducedtgtiadily (a direct comparison is not possible
due to the lack of some fundamental dalageed the internal reorganization (due to the presence
of 7), leads to the relaxation of a part of the streBs,,(¢) to the yield value,P,,, .. = 27,
regardless of the magnitude of the applied strainas long as), satisfies the yield condition
stated in (3.14). For such valuesf, if the deformation is released, then the spheroid will not
recover its initial shape, because in the meantime the alatonfiguration has changed. How-
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Figure 4: Creep test and release for valuesRy,,, above the yield condition, i.eP = P, /7 > 2 (with

7 = 0.2Pa). The other parameters are the same specified in Figure 3. plbssible to see that, because of the
internal reorganization that occurs within the spheroidarrcompressiony(,, dynamics), the natural configuration
of the aggregate changes and when the upper plate is remoeedulticellular body does not recover its original
shape and a macroscopic deformation can be seen. The ptbatksads to the plastic deformation of aggregates is
faster asP,,,; increases and, independently/of,,;, ¥,, — 0 andy — 0, which physically means the rupture of the
aggregate.

ever, in [18] this process is instantaneous: if at any irtstathe compression is released, then
U,(t) = U,(t1), Vt > t; andy will suddenly adjust to the value(t) = W, (¢;), V¢ > ¢, S0
that P,,,, = 0 (see top curve in Figure 5). This result does not couple wih Wwiological ex-
periments [10, 11, 12], where aggregates progressivelgrekin height trying to recover their
previous shapes, in a process that takes few seconds (dlge specific case of 5-day-old chick
embryonic liver cells, 11 s were allowed for this) [10].

The introduction of the viscous component in (2.2), due ®oabueous constituents of aggre-
gates is able to take into account of this phenomenon. To gteehavior of the model described
in Section 3 and in order to compare the results obtainedm#thanical data in [10], we simulate
cycles of compressions at constant deformation.

We know that¥,,(t) > 1 (¢) during the entire process thanks to Proposition 1 (tjsElence dur-
ing the compression stage, the deformation is imposed amatieq (4.1) holds, with)(t) = vy,
whereas when the upper plate is removed, equation (4.1) icechiwith (4.2) and the condition
P, = 0 (stress-free evolution) can describe the shape recovagge st

The results of the integration of these two systems is mglattd=igure 5, where it is clear that the
shape recovery is not instantaneous and its dynamics isotledtby the viscous coefficient: as
increases the shape recovery will require more time.

Indeed the characteristic time for the shape recovery ierghw v/(1.¢.). Moreover, the body
will not recover the original height7, but it presents some plastic deformatidfeeping fixed
the mechanical properties of the spheroid, the amplitudeefemodelling and hence the shape
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Figure 5: Shape dynamics of cell aggregates when the imposed defom{at, = 0.7), above the yield value, is
released at a given time (hereto = \/2, where) = 22s). All the simulations are performed with the fixed value of
7 = 0.2Pa and¢. = 0.8, whereas: = 2.5Pa. The blue curves represent the model with no viscous effeet,0
corresponding to the model in [18]. It is possible to obseheeinfluence of the viscous parameter= v/7, on the
internal reorganization and shape recovery dynamics. wicg to the experiments in [10] the shape recovery requires
tens of seconds, which can be reproduced in our simulatsgesrfhagenta curve) setting= 50s (i.e. v = 10Pa - s).

recovery depend on the time under compression. In Figutaspossible to see that in our sim-
ulations, with a reorganization time of 22 seconds, a cosgioa of 1 second will be recovered
up t098% while a 10 second compression upfio. These results are consistent with biological
observations, in fact in Figure 4 of [12] the spheroid aggtegompressed for few seconds almost
recovers the original shape, showing a little flatteningheftop.

It is also important to remark that even for very long compi@s times,t; > ), the body
will still recover an amount of the deformation, correspimgcto the elastic componenindeed,
keeping the compression for times much larger than the amargtion time, spheroids will still
experience an elastic recovery that can be considerablifesn@most75% in our case, see the
leftmost graphs in Figure 6), consistently with Figure 5 B2][ In other words, aggregates will
not keep the imposed deformatiaf, even if the upper plate is removed after a very long time.

It is also interesting to see that during the stress-freduéon of spheroids, the internal reorga-
nization continues following equation (4.1) until an edarium is reached, corresponding to the
new natural configuration of the remodelled body.

Turning to cycles of compressions at constant deformatr@hraleases, as in [10], a typi-
cal result for a twenty-cycle compression/release teshasva in Figure 7. It is possible to see
that, at the end of the simulation, the aggregate reachesi@x@num of internal reorganization
corresponding to the imposed deformatianand therefore an asymptotic behavior in the shape
recovery is attained. An interesting parameter in the msgelwhich affect the recovery dynam-
ics, along withv: for small values of this parameter, we have no internalgaoization, because
the yield condition (3.14) is not satisfied, and thereforehaee no changes in aggregate shapes;
on the other hand gsincreases the plastic reorganization of aggregates is proreunced (see
Figure 8).

In [10] measurements are presented in terms of height/wadithover time under compression.
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Figure 6:Uniaxial compression test for different values of compi@stme, ¢, (measured in seconds). The viscosity
is chosen in order to reach the shape equilibrium in a peridd.seconds (i.ev = 10, see Figure 5). The shape
recovery gets smaller and smaller as the compression ticnedees, approaching a limit value (in color online).

We try to report the results of our simulations in a similaywabserving that in our model this
quantity is represented hy*/?(¢), from equation (3.1). The results are presented in Figu 9 f
different values of the parameterand in Figure 10 for different values of reorganization time
(keepingu fixed). The best fit is obtained for a reorganization time equabtg whereas the best-
fitting values ofy depends on the imposed deformation. Indeas gossible to observe that the
equilibrium of (3.10) and (3.13) is reached whe(t) = V,(t) = ¥, ., satisfying the condition
indicated in the following proposition (see the appendixaqroof).

Proposition 3. During the cyclic deformation test at constant deformatiog such that the yield
condition (3.14) holdsy, is non increasing, tending to the asymptotic valyg,, satisfying

\1}3 _ 3 2
p,00 - ¢0 _ T (43)
woqu7oo IU“¢C

Asymptoticallyy)(t) € ¢, ¥poo)-

The physical interpretation of this result is straightfard. In the stress release process, the
deformation gradient between the deformed configuratidretey (¢) = v,) and the final config-
uration (where)(t) = 1) is
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Figure 7:Spheroid behavior under a cycle of 20 compressions at cardgformation and subsequent stress releases.
The figures report the internal reorganizatibp (left) and the deformation gradient along thexis,+ (right). The
simulation is performed letting the aggregate reorganimten compression for a time = A/4 and then remove the
upper plate forl 1s (corresponding td\/2).

i Yo Yo P
o _d'ag{\/ Voo \ U }

B }
B, = dlag{—, _— =
Yoo Yoo U
If we consider the asymptotic stale, = ¢ = U, , as the reference configuration, a deforma-

Yo

tion = will not trigger further reorganization and the energy asstically stored, as

then

¢(:T(: - Qb(: (_(p + ZJ(:)l + MBn) - dlag{07 07 27—} )

where we consider that, when the remodelling inside thersfhbas attained the maximum, the
internal stress is equal &r.

We obtain
p+X. = uz/i , (4.4)
Yoo
Yo 2/)2 2T
_ 70 Yoo ) 4.5

Taking into account that,, = ¥, , this is the same result we have obtained only with analytical
considerations (see Appendix).
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Figure 8: Influence ofi = u¢./7 on spheroid behavior under a compression cycle test (5). Aggregates are
compressed fot. = A\/2 and are let free to expand for = 2 (in order to allow the fulfilment of shape recovery).
For the imposed deformatiomy = 0.7, value ofii < 2.1309 are not able to induce the internal reorganization of cell,
because (3.14) is not satisfied. Therefére= 1 (blue curve) and when the compression is released the mliter
body comes back to the original shape in some seconds.

Thereforewi{2 is the asymptotic value in Figures 9 and 10, and it is a funabioyg, 7, i, P..
Thanks to this result, it is possible to find for eagha value ofu (see Figure 11), fitting experi-

mental data from [10], where the imposed deformation is dafately not knownAs shown in

figure 11, knowing this datum it would be possible to get thet fiing value ofy = mw“.
T

5. Conclusions

The aim of this paper is to study the non-linear mechanichhber related to the re-organization
of multicellular structures. The 3D elasto-visco-plastiodel provided here is based on the exis-
tence of a yield criterion, above which cells reorganize.

In fact, the cyclic deformation test presented in [10] caro@described only resorting on a surface
tension model, while the model characterized by a yield ¢ as that presented here, can.

In this paper we have improved the constitutive model prieseim [18], to take into account
the viscous component of cell aggregates. Though the totnsti model is kept as simple as
possible, we have shown how it can reproduce compressitsmpgegormed by [10, 11, 12] and
how it can explain creeping phenomena. Moreover with th@dhiction of the viscous term the
model is able to reproduce aggregate release dynamicsvelsduring biological experiments.

Of course, the model can be improved in several directiosder to reproduce more closely
the behavior of cell aggregates. An extension can be remexdy the inclusion of more cell
re-arrangement times, that can be related, for instancenetaetachment of different adhesion
proteins inside the cell membrane or to the response oaguimside the cell itself with the rear-
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Figure 9:Height/width ratio chart for a cubic multicellular aggrégaThe height and width are computed through
equation (3.1) and therefore the rafig is represented by the quantity’/? that is plotted for different value of
i = po./7, considering the same imposed deformatign= 0.7 and A\ = 50s. Experimental data obtained by
Forgacs et al. [10] are marked with black stars.

rangement of the actin cytoskeleton. The introduction ofemrelaxation times would certainly
lead to a better understanding of the mechanics and a bétéeiperimental data. Indeed in the
experiments in [10] it is evident the existence of at least telaxation times in the cellular matter
(one of the order of few seconds and the other of the ordemsfaéseconds).

Furthermore, more realistic 2D and 3D simulations of aggteg deformation have to be per-
formed, in order to obtain a more precise calculation of #iglt/width ratio, which is of relevant
importance for comparing computational data to experialentes.

Atthe same time, from the experimental point of view, an imig@at issue is the transposition of
biological tests performed on nonphysiological subssrébethree-dimensional settings involving
complex fibre networks, reproducing the extra-cellularnratt is well known that cells are able
to remodel their environment extensively, but the intecexs between cells and the ECM while
under stress remains to be characterized.

Therefore a mathematical model aiming at capturing spteraiure of porous materials, com-
posed of cells, extracellular materials and liquid, haseanvestigated yet, in order to attain a
detailed description of soft biological tissue mechanied anderstand its implication in some
pathologies.

Appendix

Proposition 1. When the aggregate is compressed according to the follonwipgsed deformation
and stress histories:
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Figure 10:Height/width ratio chart for a cubic multicellular aggreggor different value of\(s). The parameten
is fixed, in order to obtain the right asymptotic value (seguFé 9), whereas changes. The best fit with experimental
data (black stars) is obtained far= 66 s .

a) Any given compressive deformatigrft) with () < 0

b) Any sequence of giver(t) with ¢(t) < 0 for ¢ € [ty;, ;1] followed by a stress release for
t e [tQH_l, t2(i+1)] withi =0,...,n

c) Any compressive loa®,,,;(t) > 0
Then

U,,(t) > (1) vVt >0.
Proof.

Case a)
We first prove the proposition in the case of a given deforomati(t) < 1 with ¢)(¢) < 0 applied
to the cellular aggregate forc [0, ¢,], wheret; is the time when the upper plate is possibly lifted
up. The same proof holds for — oc.

Considering tha¥,(0) = 1, if the imposed deformation(t) is so small that the yield condition
(3.14) is not satisfied, from (3.13) the quantity in the squaarenthesis is always negative and
Up(t) = 1> (1)

On the other hand, if the imposed deformation is not so smallthe yield condition is over-
come, then we can rewrite equation (3.13) regulating théuéwen of the internal reorganization,
as

1 [I‘Iff, i

P T30 D2 - 1o } sgn(¥, — ), (5.1)
p cd 4
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Figure 11:Height/width ratio chart for a cubic multicellular aggreggor different value of initial deformation.
To obtain the right fit with experimental data (black stadg)][ ;. is computed according to equation (5.12).

It is trivial to check that starting fron¥,(0) = 1, ¥, (¢) is always positive. For the thesis, we then
definew(t) = ¥, (¢) — ¢(¢) and consider the positive part,., given by

=ty { 50 00

and the negative paut_ defined as

w(t) <0

w(t) >0

Therefore the functiom can be expressed in termswof andw_, asw = w; — w_.
Thenw evolves according to

w_ = max{—w(t),0} = { 6w(t>

T3

1 [|w3 — 3 2 ,
_P qu‘_uﬂ sgrw) W, — ¢ . (5.2)
P cd 4

starting fromw(0) > 0, since at the initial time’,,(0) = 1 > (0).
We multiply each side of (5.2) by _ and integrate frond to an arbitrary time < (0, ¢,] to get
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t~ 1 t~ \Ij?) _ 3 2 t~ .
/ ww_dt = P il 7 ] sgnw)w_W,dt —/ Yw_dt =
0 n 0

3Ny | w2 fioe
1 f[|‘1f§:—w3l 27] /t~ -

= — — w_V,dt + —w_dt >0, (5.3)
3\Jo L ¥92 pee), 7 0

being both integrands non negative< (0,¢,]. Hence

t t
1, .-
og/ wwdt:—/ wow_dt = —-w?(t) <0,
0 0 2

where we used the condition(0) > 0, i.ew_(0) = 0.
Therefore

w? (1) =0 = w(t) > 0= V,(t) > () Vte(0,t].

Case b)
If at any time,t = ¢,, the upper plate is lifted up, then, the equations regudatie evolution of
the system, from = t; on, are (3.10) and (3.13), that can be rewritten as

S L e s

qu - _ﬁ { wlpg - M¢J . Sgl’(\pr - w)qu (5-4)
o :U¢c \Il:;) - 77Z)3

Y = () 02 ) (5.5)

We apply the same method presented before, computing forkdinaay timet € (¢,
wheret, is the time when the compression is possibly restored (aisiydhe same proof holds for
tg — OO)

t t 3 — 3
/wwdt = —“d)c/ P p— V| QT} sgnw)w_W,dt +
t1 +

3 Sy L 02 e
C wge [T YT,
31— o) /lt1 72 ww_dt . (5.6)

We observe that also in this case, (t,) = 0, beingw(t;) = V,(¢;) — ¢ (t1) > 0 (as demon-
- 1 .
strated before) and thefj1 ww_dt = —§w3. On the other hand, both terms on the left hand side
are always greater or equal to zero, being(agn_ = —w_ < 0 andww_ = —w? < 0.
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Then also in this case, we can conclude that
w(t) = wy(t) > 0= V,({) > ¢(f) Vi€ (ti,ts] .

Then it is possible to reiterate the process, together \Wettohe in casa) to demonstrate the
thesis.

Casec)
In the case of the application of a compressive Idag,;(¢) > 0, along the negative-axis

b, = —3% [ngjw 1 E;CLsgr(% — )T, (5.7)
v = _3v<1;ap—pl¢c>w " z’w(fdic %) qjg‘;f | &)
Using the same definition fan(¢) we have that
/ngw_dt _ —’;?7 /Ot~ P\Di;;?)' = igcksgr(w)w_\lfpdw
P2 4 0 2
B ?w(/lmic dc) /0 = w‘l’%p i+

The last integral in equation (5.9) is obviously non negatwd therefore also in this case

Wy (t) = (1)
(|

Proposition 2. In creep tests

a) if P,y < 27, thenV,(t) = 1 andy(t) > 9. : L P2 = % are solutions of equations
(4.1) and (4.2), with initial conditiond,(0) = 1 and(0) = 1.
b) if P, > 27, then equations (4.1) and (4.2) admit only the trivial edpilim.
Proof.
Case a)

If Poppi(t) < 27, Vi, from equations (4.1)-(4.2), being, (0) = 1 andy(0) = 1 the right hand
side of (4.1) is initially null, that meang,(0) = 0, whereas from (4.2)(0) < 0.
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U, =1 andy > ¢, makes| |, of (4.1) equal td). Indeed, beingl— — ¢? a decreasing function

(B
of v,
1 2 27 1 o Poppl 1 o Pappi
_ _ - _ _ P - _ 9P 5.10
(0 v U = (0 v U = e v HDe 0 (5.10)

which holds for allt > 0.

From (4.2) it is then clear that = ¢, and ¥, = 1 makesy = 0 and thaty) > 1, and
v, =1 makesy < 0. We will then show that)(t) > 1.Vt > 0, using the same argument as in
Proposition 1. We define = ¢ — ¢, and hence

L _ PPe Tl — 9 Py

where we used the fact that when # 0, ¢ < . and the parenthesis in the integral is positive.
Therefore

t
1, .-
og/ ww_dt:—iwg(t)go,
0

where we used the condition(0) > 0, i.ew_(0) = 0.
For the arbitrariness df this means that(t) > 1. vVt > 0.

Case b)
The equilibrium for equation (4.1) is reached eitheWif(t) = 0 or if the expression in square
brackets is negative (i.e. the region above the red linegaréi 2 on the right).

\113 _ 3 2
If P,,(t) > 27, this second condition corresponding téwj) < ; , would make the
H He

right hand side of (4.2) always strictly negative.
Therefore the only possible equilibrium for (4.1)-(4.2)lis.. =0, oo =0
]

Proposition 3. During the cyclic deformation test at constant deformatiog such that the yield
condition (3.14) holdsy, is non increasing, tending to the asymptotic valyg,, satisfying

lpz,oo - w(?)) . 27
¢0\Il;27,oo M¢c

(5.12)

Asymptoticallyz(t) € [0, ¥p, o)
Proof. During each compression phase at constant deformatioredabeyield condition, equation

W, o0 — 2
poo — Y0 _ 27 , that corresponds,

(4.1) states tha¥, is non increasing and thdt, = 0 when =
’ g{p woqjg,oo He

recalling equation (3.9), t&,,,;, = 27.
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Considering the system (4.1) and (4.2), with the limit coiodiV, (¢,) = U, . andiy(t1) = v,
we have thatl,(t,) = 0 whereas)(t;) > 0. Actually, beingy(t) < ¥, Vt > t, (Proposition
1), &(t) > 0 and theny increases until the limit value af = ¥, is reached, which corresponds
to the equilibrium of (4.2). From the physical point of viels means that the aggregate exgands

: . : . v, —
when the compressive force is removed. At the same time,(8sincreases, the ratlez)T
) P
decreases, so that square brackets in (4.1) is still equartoand therefor@ ,(t) = 0Vt > ¢4,
thenV,(t) = U, .
I U, — P8 2
Therefore at the equilibriumt,, = ¥, ,, : —2 5 % - T
¢0\Ilp7oo M¢C
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