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Modelling the compression and reorganization of cell aggregates

C. Giverso1 ∗, L. Preziosi1

1 Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract.
In this paper we study the mechanical behavior of multicellular aggregates using the notion of

multiple natural configurations. In particular, we extend the elasto-visco-plastic model proposed
in [18] taking into account of the liquid constituent present in cellular spheroids. Aggregates are
treated as porous materials, composed of cells and filled with water. The cellular constituent is
responsible for the elastic and the plastic behavior of the material. The plastic component is due to
the rearrangement of adhesion bonds between cells is translated into the existence of a yield stress
in the macroscopic constitutive equation. On the other hand, the liquid constituent is responsible of
the viscous-like response during deformation. The generalframework is then applied to describe
the uniaxial homogeneous compression both when a constant load is applied and when a fixed
deformation is imposed and subsequently released. We compare the results of the model with the
dynamics observed during the experiments in [10].

Key words: aggregate compression, living tissues rheology, elasto-visco-plasticity

1. Introduction

Cells and biological tissues are complex materials, made ofmultiple subelements [29]: each cell
is bounded by the plasma membrane to form a closed object containing the nucleus and a fluid,
the cytosol (made of water, soluble proteins, sugar and salt), where numerous organelles are im-
mersed. An important intracellular structure, that plays akey role in many biological process (e.g.
maintaining cell shape, enabling movement, aiding cellular division) and that strongly affects cell
mechanical behavior, is the cytoskeleton, a complex meshwork of polymers crossing through the
cytosol. Each subcellular element is different from the other and mechanical properties are non-
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homogenously localized inside each of them [31]. For instance, cytoplasm properties strongly
depend on the amount of actin or tubulin and on the degree of polymerisation of these filaments.
Similarly, the membrane has a bending modulus which is dependent on proteins embedded into it
[31]. This high heterogeneity in cell composition and in subcellular properties makes mechanical
response difficult to be modelled even for a single cell. In addition, cellular materials are different
from usual soft materials because they can develop an activeresponse when submitted to stresses.
This response is due to mechanotransduction, which is the ability of cells to transform mechanical
external stresses into biochemical signals (and vice versa) in order to transfer information to and
from the nucleus [6, 17, 31]. This ability of cells to deform and generate forces in an active manner,
coupled with their extreme complexity and their non linear response to mechanical stimuli outlines
the need of a specific mathematical model to describe cellular dynamics.

Furthermore, cells are able to interact with each other to form tissues and multicellular aggre-
gates in some stages of their life. The rheological properties of such materials are quite uncom-
mon, because they contain both cells and fluids embedded inside each cell and in the extracellular
matrix (ECM) among them. It is then known that not only the intrinsic properties of the base
components - cells and collagen - but also their relative concentration can affect the rheological
properties of multicellular aggregates [7, 8, 30, 31].

Therefore there are big theoretical difficulties in considering a cell aggregate as a liquid or as
a solid. Indeed, treating it like a fluid may bring some simplifications (e.g. to deal with velocities
rather than deformations). However, the fact that the cellular liquid is contained in a solid structure,
puts in evidence the simplifications introduced by such an hypothesis. On the other hand, it is
not correct to consider multicellular spheroids as elasticsolids, because they are composed of
living material: cells forming the aggregates continuously duplicate and die, the ECM is constantly
remodelled by the same cells and, even in absence of growth and death, cells can reorganize in
response to an external mechanical stimulus. Therefore it is impossible to define a fixed natural.

Due to this complexity, the mechanical behavior of multicellular systems is still far from being
understood and most of our knowledge concerning the rheological and mechanical properties of
cell aggregates comes from previous studies on soft biological tissues [30, 31], usually correspond-
ing to visco-elastic materials or to non-Newtonian fluids [13]. However, cellular aggregates have
been shown to play an important role in many biological phenomena and it has been recently found
that many pathologies are characterized by an alteration ofcell mechanical behaviors and hence
the response of soft biological tissues may serve as an important diagnostic parameter in the early
detection of diseases [16, 25] and in the diagnosis of tumor metastatic potential [32]. Therefore
a more detailed description of aggregates mechanical properties is needed. Indeed, in the recent
years there have been many studies focused on cell microrheology and mechanical behavior, aimed
both at establishing the constitutive equation of cells andaggregates [1, 2, 3, 18] and at measuring
properties like cell interfacial energy, elastic modulus and relaxation times [10, 11, 12, 32]. In
particular, in [3, 18] it was shown that the phenomena observed during some compression experi-
ments performed in [10, 11, 12], where a fixed deformation is applied to the cell aggregate, or in
[15], where a dense cell suspension is subjected to shear, can be explained using the concept that
the natural configuration evolves, due to the rearrangementof adhesion bonds. Then, aggregate
mechanical behavior can be modelled coupling the viscoelastic behaviors with a yield condition,
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generating a plastic reorganization, when the stress becomes too high.
However, pressure controlled experiments (e.g. creep test) can not be fully explained with

the models in [3, 18]. Indeed experimental evidences [10, 11, 12] suggest that, when an imposed
deformation is removed, the shape recovery dynamics of aggregates, requires some times. On the
contrary in [1, 2, 3, 18, 19], when the stress is released, theshape recovery is instantaneous. A
similar behavior is found when a stress is suddenly applied.In addition, if the stress imposed is
sufficiently high, the initial configuration is no more reached, which can not be described in the
models presented in [10, 11, 12], that are based essentiallyon the existence of a surface tension
holding together the cell aggregate. A similar difficulty isencountered when dealing with the
description of periodic compressions of the spheroid.

The purpose of this work is then to extend the elasto-visco-plastic model in [18] to include the
effects described above. On one hand, we take into account ofthe existence of a maximum stress
that can be sustained by the cell aggregate before reorganizing and on the other hand, we consider
the fact that the total stress exerted by the specimen is not only due to the cellular component, but
also to a further viscous term due to the action of the liquid phase.

The structure of the paper is the following: after introducing the constitutive equation in Section
2, the model is applied to cell aggregate compression and release in Section 3. In Section 4, the
constitutive model is used to simulate the behavior of cellular spheroids under compression at
constant load, possibly repeated over time (Section 4.1) and under a cycle of constant deformation
and stress releases, as in [10] (Section 4.2). The results obtained with the model (in terms of
spheroid deformation and applied stress) are compared withthe prediction of previous models
[18, 19] and mechanical experiments performed in [10]. The qualitative properties of the solution
are described in detail, with proofs reported in the Appendix.

2. The Constitutive Model of Cell Aggregates

Cellular spheroids used in biological experiments [10, 11,12] have a diameter ranging from 200
and 600µm, which means a number of cells between ten and two hundred thousand. Therefore cell
aggregates can be modelled as continuum media, presenting elastic, viscous and plastic behaviors:

• the elastic component is mainly due to the cytoskeleton, which is composed of elastic fila-
ments strongly cross-linked,

• the dissipative component, responsible of the viscous behavior, originates primarily from the
flow of the cytosol along with and through the cytoskeleton meshwork and from extracellular
fluid movements,

• the plastic component is due to the re-organization of adhesion bonds between cells and to
actin network remodelling inside cells.

Hence, a mathematical model aiming at capturing cell aggregate mechanics has to consider all
these properties. The main difficulty in describing cell aggregates and biological tissues consists
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in the fact that even in the absence of growth the ensemble of cells undergoes an internal re-
organization in response to an applied strain or stress, which is macroscopically translated in plastic
deformation.

Addressing this problem, Ambrosi and Mollica [1, 2], proposed to investigate cell aggregate
mechanics with the aid of the theory for materials with evolving natural configurations. This
setting, introduced in [20, 21, 22, 27], has been successfully applied to describe the growth and
remodelling of several tissues, allowing to model separately the contribution due to growth from
the one due to deformation alone (see [4] for a review). The total evolution of the tissue is given
through the deformation tensorF, which is a mapping from the tangent space related to the initial
(or reference) configuration,K0, onto the tangent space related to the current configurationKc and
represents how the body is deforming locally. Then it is possible to consider the map fromK0 toKc

as composed of three parts: the first one related to pure growth/death (therefore accompanied with
mass variation, here neglected), the second one due to internal rearrangement of cells and the third
one due to stress-induced deformation (both without changeof mass). This consideration leads
to the introduction of two virtual configurations: the ”grown configuration”,Kp that represents
cells that have undergone pure growth, without undergoing either remodelling or stress-induced
deformation and the natural (or locally stress-free) stateKn, which takes into account cell internal
re-organization [3, 18].

FnFp

F

K0 Kc

Kn

Initial configuration Current configuration

Natural configuration

Figure 1:Diagram of the states from the original unstressed configurationK0 to the current configurationKc, in the
framework of multiple natural configurations.Kn represents the natural state, which takes into account cellinternal
re-organization.
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In particular, in the case of mechanical testing of multicellular aggregates, it is natural to as-
sume that no growth occurs during stress-induced deformation, since mitosis and apoptosis occur
on a much longer time scale (several hours) than the typical time scale of mechanical deformation.
Therefore, referring to Figure 1, one can introduce the following multiplicative decomposition of
the deformation gradient

F = FnFp , (2.1)

whereFn identifies the deformation without cell re-organization (describing how the body is de-
forming locally while going from the natural configurationKn to Kc), Fp describes the internal
re-organization of cells (evolution fromK0 to Kn).

Cell and aggregate responses to mechanical stimuli have been successfully described using this
framework in [3, 18, 19]. However, the viscous contributionof the liquid encapsulated inside the
multicellular system has always been neglected.

The aim of this work is to describe cell aggregate mechanics using the concept of materials
with evolving natural configuration, treating the system asa deformable porous material filled
with physiological liquid.

The volume ratio of the solid phase is denoted byφc, the liquid one byφℓ and obviously the
saturation assumption holds:φc + φℓ = 1. Then the total tension of the mixture as a whole,Tm,
is due both to the stress exerted by the cellular constituent, Tc, and to the one exerted by the fluid
contained in the cells and in which the spheroid is immersed,Tℓ

Tm = φcTc + φℓTℓ = φcTc + (1 − φc)Tℓ . (2.2)

Treating the fluid as a linear incompressible Navier-Stokesfluid and assuming that cells and liquid
move with the same velocity, the second term in equation (2.2) readsTℓ = −pI + 2νD, where

D =
1

2
(L + LT ) is the symmetric part of velocity gradient,L = ḞF−1, whereasp is a Lagrangian

multiplier due to the volume additivity of the constituentsand it represents the interstitial fluid
pressure that will also appear in the stress tensor for the cellular constituent.

Obviously this is only an approximation and a better description of the phenomenon should
take into account of the porous structure and the relative motion of the liquid with respect to
cells as given, for instance, by Darcy’s law. The introduction of the viscous term is consistent
with Saramito’s work [23, 24] on elasto-visco-plastic fluids, such as liquid foams, emulsions and
blood flows. Indeed in these works the 1D total stress is represented byσ = τ + ηε̇, whereτ is
an extension of the Oldroyd model coupled with the Bingham constitutive equation, whereas the
second term takes into account of viscous phenomena.

It is important to observe that, in (2.2), the viscous coefficient, ν, is proportional to the vis-
cosity of the fluid encapsulated in the cellular specimen, but it is not simply the viscosity of the
physiological liquid. As explained in Section 3, an estimate for this coefficient can be derived
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linking the consolidation time of a porous medium filled withliquid to the characteristic time of
the model presented in this paper.

Concerning the tensorTc representing the response of the cellular constituent, we refer to [18],
where elasto-visco-plastic effects are included startingfrom the idea that the rearrangement of
adhesion bonds during the deformation of multicellular spheroids is related to the existence of a
yield condition in the macroscopic constitutive equation of the stress tensor. The yield stress is a
very important quantity in rheology and it is associated with the existence of strong interactions,
causing the impossibility for a fluid to flow when small shear stresses are applied.
Indeed experimental evidences suggest that when a cell aggregate undergoes compression:

1. for moderate values of applied stress, cell aggregates deform elastically;

2. above a limit value, the cell aggregate undergoes internal re-organization which can be mod-
elled at a macroscopic level as a visco-plastic deformation.

The so-called yield stress, denoted byτ(φc), depends on the number of cells per unit volume
because the threshold of the onset of cell re-organization is proportional to the area of the cell
membranes in contact times the bond energy, that representsthe work needed to break cell-to-cell
bonds. This is related to the experimental observation thatadhesion bonds between cells have a
finite strength and might break or build up during the evolution [5, 9, 26].

To translate this idea into formal terms, we propose a modification of the model presented in
[18]. Using the virtual-power formulation and consideringthat the Cauchy tensor,Tc, is workcon-
jugate with the elastic deformation rateLn = ḞnF

−1
n whereas the plastic tensor,Tp, is workcon-

jugate withLp = ḞpF
−1
p , it can be proved [14] that

Tp = JFT
nT′

cF
−T
n , (2.3)

whereT′

c = Tc −
1
3
(trTc)I is the deviatoric part ofTc.

Introducing a constitutive free energyψ and postulating a dissipation principle, the following
inequality holds

ψ̇ − Tc · Ln − Tp · Lp ≤ 0 . (2.4)

Then takingψ = ψ̂(Fn) and using the classical Coleman-Noll procedure for the exploitation of
second law of thermodynamics, we obtain

Tc =
∂ψ̂

∂Fn
FT

n (2.5)

Tp · Lp ≥ 0 . (2.6)

ThereforeLp = GTp satisfies the previous relations, given any positive linearfunctionalG on the
natural configuration space.
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Taking into account the mechanical observations on the existence of a yield criterion and the fact
that the material can be considered isotropic, we can choose

G =
φc

2η(φc)

[

1 −

(

τ(φc)

f(T′
c)

)α]

+

sym() , (2.7)

wheref(φcT
′

c) is a suitable frame invariant measure of the stress of the cellular constituent,[]+ and
sym respectively stand for the positive and the symmetric part of their arguments. The parameter
α is in the range[0, 1] and determines the viscous behavior at high shear rates. In the following,
the particular caseα = 1 will be considered, to obtain the following constitutive equation

Lp = Dp =
φc

2η(φc)

[

1 −
τ(φc)

f(T′
c)

]

+

sym
(

FT
nT′

cF
−T
n

)

, (2.8)

assuming isochoric transformations,J = 1.
Equation (2.8) can be interpreted, considering that a crucial role in the reorganization of cells
is played by the sheart · T′

cn that can be mapped back to the natural configuration taking into
account that a material vector transforms liket = Fntn whereas the normal to a material surface
like n = det(Fn)F−T

n nn = F−T
n nn, sinceFn is an isochoric transformation. Then, one has that

t·T′

cn = tn ·FT
nT′

cF
−T
n nn. Therefore a crucial role in determining whether the material reorganizes

is the tensorTp = FT
nT′

cF
−T
n .

Referring back to equation (2.8), we explicitly observe that

tr(T′

c) = tr(FT
nT′

cF
−T
n ) = tr(Dp) = 0, (2.9)

and that the eigenvalues ofF−T
n T′

cF
T
n are the same as those ofDp.

Furthermore beingT′

c objective, we have to study how the quantities in equation (2.8) transform
under an euclidean change of frame. Denoting with a star(∗) the value of a field after the change
of frame and withQ an orthogonal tensor, thanks to the following relations

F∗

n = QFn (2.10)

F∗

p = Fp , (2.11)

one has

Dp = D∗

p = G(FT
nT′

cF
−T
n )∗ = GFT

nQT T
′
∗

c QF−T
n , (2.12)

which implies the frame indifference ofT′

c.

We remark that in the limit of small deformation with respectto the natural configuration, i.e.
|Bn · I − 3| ≪ 1, equation (2.8) simplifies inDp = GT′

c, that is the relation sometimes given
in plasticity theory, assumingFn sufficiently small. Moreoverthe proposed constitutive model, in
the case ofα = 1 simplifies in

Ṫ′
c +

1

λ

[

1 −
τ(φc)

f(φcT′
c)

]

+

T′

c = 2µ

(

D −
1

3
(trD) I

)

(2.13)

7



whereλ =
η(φc)

µφc
is the cell-reorganization time(or plastic rearrangement time). We observe

that in (2.13), the term containing the yield stress plays the role of a stress relaxation term but it
switches on just when the stress overcomes the yield stress in terms of the set measure. In this case
the energy is no longer elastically stored but it is spent in cell unbinding and cytoskeleton reorga-
nization at the microscopic scale, which produces the spheroid rearrangement at the macroscopic
scale. Otherwise, forf(φcT

′

c) < τ(φc), this equation can be integrated to give back the elastic

equation,T′

c = µ

(

Bn −
1

3
(trBn)I

)

.

3. Uniaxial compression

In this section we will study in more detail the response of a material satisfying (2.2) - (2.8) subject
to a uniaxial compression test. Though the results of this section also apply to an elongation
test, we focus on compressive forces. Typical experiments can be performed under the following
conditions:

• a constant load is imposed to the specimen and the corresponding deformation is recorded
upon time. Possibly the compression is released after some time allowing a stress-free evo-
lution of the specimen. Then, the process of compression with the same constant load can
be re-iterated. Usually, the first experiment is calledcreep testand for this reason, in the
following, we will denote the last process ascyclic creep test.

• a fixed deformation is applied and the evolution of the stressinside the body is moni-
tored (stress relaxation test). Finally the same deformation is applied periodically, letting
spheroids to freely expand between two subsequent compressions. In the following we will
refer to this process ascyclic deformation test.

We will assume that the deformation, generated by a uniaxialforce or strain applied along the
z-axis, is homogeneous inside the body, keeping a constant volume ratioφc, and is given by

x =
X

√

ψ(t)
, y =

Y
√

ψ(t)
, z = ψ(t)Z . (3.1)

Then the deformation gradient from the initial to the final configuration is given by

F = diag

{

1
√

ψ(t)
,

1
√

ψ(t)
, ψ(t)

}

. (3.2)

The deformation gradient due to the internal reorganization of the cytoskeleton can be represented
by
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Fp = diag

{

1
√

Ψp(t)
,

1
√

Ψp(t)
,Ψp(t)

}

, (3.3)

whereΨp(t) is a measure of how much the aggregate has reorganized and thenatural configuration
has evolved. ForΨp(t) = 1 we have no contribution due to rearrangement of bonds insidethe
body.

From equations (3.2) and (3.3), beingF = FnFp it is clear that

Fn = diag

{
√

Ψp(t)

ψ(t)
,

√

Ψp(t)

ψ(t)
,
ψ(t)

Ψp(t)

}

. (3.4)

Assuming that the cellular spheroid obeys a neo-Hookean law, the first term of the sum in
equation (2.2) is

Tc = −pI − Σc(φc)I + µBn , (3.5)

whereΣc(φc) is the symmetric part of the cellular constituent stress tensor .

Therefore considering that in the uniaxial compression test, the total force is applied in the
z-direction, one has

Tm = − (p+ φcΣc(φc)) I + µφcBn + 2(1 − φc)νD = diag{0, 0,−Pappl(t)} , (3.6)

where we considerPappl to be positive for a compressive load.
In a creep test,Pappl is a known constant and it vanishes in the stress release phase, whereas it is a
function of time in a stress-relaxation experiment under constant deformation.

Considering that the liquid and the cellular component movewith the same velocity,D =

diag

{

−
1

2
,−

1

2
, 1

}

ψ̇(t)

ψ(t)
.

Then, beingBn = diag

{

Ψp(t)

ψ(t)
,
Ψp(t)

ψ(t)
,
ψ2(t)

Ψ2
p(t)

}

and denoting withΣ = p + φcΣc(φc), we obtain

the following equation for the stress exerted by the mixture.

Tm = −ΣI + µφc diag

{

Ψp(t)

ψ(t)
,
Ψp(t)

ψ(t)
,
ψ2(t)

Ψ2
p(t)

}

+

+ 2ν(1 − φc)diag

{

−
1

2
,−

1

2
, 1

}

ψ̇(t)

ψ(t)
, (3.7)
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or from (3.6)

Σ(t) = µφc
Ψp(t)

ψ(t)
− ν(1 − φc)

ψ̇(t)

ψ(t)
, (3.8)

Pappl(t) = µφc

Ψ3
p(t) − ψ3(t)

Ψ2
p(t)ψ(t)

− 3ν(1 − φc)
ψ̇(t)

ψ(t)
. (3.9)

The first terms in the sum of both (3.8) and (3.9) are the same obtained in [18], taking account of the
cellular constituent only, whereas the second terms arise from the introduction of the viscous phase
in the model. Equation (3.9) can provide the stress exerted by the aggregate when a deformation
is imposed along thez-axis (e.g. a fixed deformation,ψ0), or it can be used to derive the evolution
of ψ(t) when, for instance, a constant load is applied

ψ̇

ψ
= −

Pappl

3ν(1 − φc)
+

µφc

3ν(1 − φc)

Ψ3
p − ψ3

ψΨ2
p

, (3.10)

where we omit the dependence fromt for sake of simplicity. As a particular case, equation (3.10)
can be used to model the stress-free evolution of the system,imposingPappl = 0. We can ob-
serve that the ratioν/µ represents a characteristic time in equation (3.10). Considering the fact
that we are compressing a multicellular aggregate, this characteristic time can be related to the

consolidation time of a saturated porous material filled with fluid,
µwL

2

kE
, whereµw is the dynamic

viscosity of the physiological liquid,L the multicellular aggregate height,k the permeability of
the porous structure andE its elastic modulus. In this way it is possible to derive the parameter
ν from physical quantities measurable in experiments and by means of known estimates ofk, e.g.
the Kozeny-Carman relation.

Equation (3.10) need to be joined with equation (2.8), taking into account that

T′

c = µ diag

{

−
1

3
,−

1

3
,
2

3

}

ψ3 − Ψ3
p

Ψ2
pψ

. (3.11)

and postulating an equation forf(φcT
′

c).
Here we consider that the frame invariant measure of the stress is the maximum shear stress magni-
tude, given by half of the difference between the maximum andthe minimum stress in the principal
directions (Tresca’s criterion)

f(φcT
′

c) =
µφc

2

|Ψ3
p − ψ3|

ψΨ2
p

, (3.12)

which means that cell unbinding is primarily caused by the slippage of cells along the maximum
shear stress surface, which seems reasonable in a cellular aggregate under compression. In a more
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general case, in which the principal stresses are not trivially known, it is possible to use the von
Mises criterion, taking into account that Tresca’s criterion is more conservative and, therefore, it
predicts plastic reorganization for stresses that are still elastic according to the von Mises criterion.
The evolution for the internal reorganization is therefore

Ψ̇p

Ψp

= −
1

3λ

[

1 −
2τ

µφc

ψΨ2
p

|Ψ3
p − ψ3|

]

+

Ψ3
p − ψ3

ψΨ2
p

. (3.13)

whereλ =
η(φc)

µφc

, as previously defined, andτ = τ(φc).

Equation (3.13) states that when the quantity inside the square parenthesis is positive, thenΨp will
evolve.
Considering thatΨp(0) = 1,

1

ψ
− ψ2 >

2τ

µφc
(3.14)

is called in the followingyield conditionbecause it determines the deformation that switches on
the evolution ofΨp. Forψ ∈ (0, 1], the right hand side of equation (3.14) is a positive and decreas-
ing function ofψ and therefore only values ofψ sufficiently small, so that the yield condition is
satisfied, are able to trigger the internal reorganization inside spheroids.
We observe that, as we will see more in detail in the followingsection, in a stress relaxation exper-
iment with constant deformation equal toψ0 satisfying (3.14) the equilibrium of (3.13) is reached

when
Ψ3

p − ψ3
0

ψ0Ψ2
p

=
2τ

µφc
, i.e. from (3.10) atPappl = 2τ , independently ofψ0 as in [18].

4. Results and Discussion

The model presented in Section 3 can provide some useful information on the mechanical behavior
of aggregates both when they are compressed with a constant force and when they are released. In
Section 4.1 we present the results obtained in the case of a cyclic creep test and then in Section 4.2
those in the case of a cyclic deformation test, as performed in the experiments in [10].
The following proposition, proved in the Appendix, will be useful.

Proposition 1. When the aggregate is compressed according to the followingimposed deformation
and stress histories:

a) Any given compressive deformation,ψ(t) with ψ̇(t) ≤ 0

b) Any sequence of givenψ(t) with ψ̇(t) ≤ 0 for t ∈ [t2i, t2i+1] followed by a stress release for
t ∈ [t2i+1, t2(i+1)] with i = 0, ..., n

c) Any compressive load,Pappl(t) > 0
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Then

Ψp(t) ≥ ψ(t) ∀t > 0 .

This proposition allows to get rid of the modulus in (3.13) and rewrite (3.10) and (3.13) as

Ψ̇p(t) = −
1

3λ

[

Ψ3
p(t) − ψ(t)3

ψ(t)Ψ2
p(t)

−
2τ

µφc

]

+

Ψp(t) , (4.1)

ψ̇(t) = −
Pappl(t)

3ν(1 − φc)
ψ(t) +

µφc

3ν(1 − φc)

Ψ3
p(t) − ψ(t)3

Ψ2
p(t)

. (4.2)

4.1. Cyclic creep test.

In a cyclic creep test a constant load is applied and the strain induced on the spheroids is measured
over a period of time and then the stress on the upper plate is removed. Considering only forces
directed along the negativez-axis, it was shown in Proposition 1 (casec) thatΨp(t) ≥ ψ(t) and
therefore equations (4.1)-(4.2) hold. Obviously, when theupper plate is lifted-upPappl = 0 in
equation (4.2).

Equations (4.1) and (4.2) admit non trivial equilibria onlyif Pappl ≤ 2τ , as it is stated in the
following proposition (proved in the Appendix).

Proposition 2. In creep tests

a) if Pappl ≤ 2τ , thenΨp(t) = 1 andψ(t) ≥ ψc :
1

ψc
− ψ2

c =
Pappl

µφc
are solutions of equations

(4.1) and (4.2), with initial conditionsΨp(0) = 1 andψ(0) = 1.

b) if Pappl(t) > 2τ , ∀t, then equations (4.1) and (4.2) admit only the trivial equilibrium.

In fact, in the particular case of constantPappl, the right hand side of (4.2) vanishes for non null

Ψp only if
Ψ3

p − ψ3

ψΨ2
p

=
Pappl

µφc
that makes the right hand side of (4.1) vanish only ifPappl ≤ 2τ . As

it is evident from plotting the vector field corresponding to(4.1) - (4.2), ifPappl ≤ 2τ the solution

starting fromΨp(0) = ψ(0) = 1 will keep Ψp = 1 while ψ will tend toψc :
1

ψc
− ψ2

c =
Pappl

µφc
(see Figure 2, left). On the other hand, ifPappl > 2τ , solutions of (4.1)-(4.2) will tend to the trivial
equilibria (Figure 2, right).

Hence in a certain range of load, i.e. forPappl ≤ 2τ , the cellular aggregate does not undergo
an internal reorganization, thenΨp(t) = 1, whereasψ(t) decreases until the valueψc is reached.
In this case, if after some time the load is removed, the specimen will go back to the initial config-
uration,ψr = 1, following the classical visco-elastic response, due to the elastic response of cells
and the viscous term of the liquid component (see Figure 3).
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Figure 2:Vector field (blue arrows) corresponding to (4.1) - (4.2), ifPappl ≤ 2τ (on the left) andPappl > 2τ (on

the right). The red curve corresponds to
Ψ3

p − ψ3

ψΨ2
p

=
2τ

µφc
, whereas the green curve to

Ψ3

p − ψ3

ψΨ2
p

=
Pappl

µφc
. It is clear

that if Pappl ≤ 2τ , ψ andΨ will tend to the green curve (in color online). On the other hand if Pappl > 2τ , Ψp → 0
andψ → 0.

We observe that if the load is not constant, but smaller than2τ ∀t, Ψp(t) = 1 is still a solution
of (4.1).

In order to trigger spheroid internal reorganizationPappl must be larger than2τ , which cor-
respond to the yield condition (3.14). In this caseΨp will decrease fromΨp(0) = 1 according
to (4.1), causing a macroscopic remodelling of the multicellular body. Therefore when the upper
plate is removed a plastic deformation of the aggregate can be observed. The internal reorganiza-
tion rate depends on the intensity of the load applied to the aggregate, compared to the yield stress
(see Figure 4) and, ifPappl(t) > 2τ ∀t, it continues until the equilibrium is reached, thenΨp → 0
andψ → 0. This physically means that the aggregate is totally squeezed out between the upper
and lower plates of the apparatus.
These results are intuitively reasonable and analyticallycorrect, however they need to be verified
with experimental tests, not present in literature. It is important to observe that standard creep
tests used for the measurement of mechanical properties of inert material, eventually need to be
modified to be suitable for the application to living cell aggregates, that must be kept in healthy
conditions during measurements.

4.2. Cyclic deformation test.

In the compression experiments, like those performed in[10, 11, 12], a fixed deformation is applied
to cellular spheroids, using athermostated parallel plate apparatus, immersed in a chamber, filled
with pre-warmed tissue culture medium. The specimens used in [10, 11, 12] were obtained from 5
to 6 day old chick embryos, whose cells were dissociated in a solution of trypsin and then placed
in a tissue culture medium, to allow them to reorganize. Whencultured for about a day, in a
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Figure 3:Cycle of compressions whenPappl < 2τ is applied and then removed. The simulation is performed setting
the yield stressτ = 0.2Pa andPappl = 0.45Pa, according to the yield condition. The cellular volume ratio,φc is set
equal to0.8, which is consistent with biological observations [28] andthe cell-reorganization time isλ = 22s. The
other parameters can be scaled according to the chosenτ (here:µ = 1.1Pa andν = 20Pa · s). The compression
and release times are both equal to2λ = 44s. Being the applied stress under the yield condition, there is no internal
reorganization of bonds (Ψp(t) = 1), therefore when the compression is removed aggregates progressively go back to
the initial configuration,ψr = 1. The liquid component in the mixture is responsible of the delay introduced in the
recovery dynamics of spheroids when the upper plate is lifted up.

37◦C shaker bath, these multicellular aggregates adopted an almost perfect spherical shape, with a
diameter ranging from200µm to 500µm.

Recording the force exerted by aggregates upon the upper compression plate, it is possible to
observe that living structures undergoing constant deformation, are able to relax the internal stress
until an asymptotic value is reached [10, 12].
A variation of this experiment is the cyclic deformation test, like those performed in [10, 11],
in which multicellular bodies are forced to periodic compressions at controlled deformation and
the compressive force is briefly interrupted at intervals during the approach to shape equilibrium.
When compression is interrupted early in this process (as compared to the reorganization time,λ),
aggregates can be observed to almost retrieve their initialshape, over the course of a few seconds,
whereas after some releases from compressions, a macroscopic deformation can be measured. The
process is reiterated until the attainment of an asymptoticbehavior, described in the following.

The force relaxation curve and the presence of a plastic deformation are consistent with the
visco-elastic model combined with the existence of a yield stress, described in [18],where the ex-
perimental stress-relaxation curves are reproduced qualitatively (a direct comparison is not possible
due to the lack of some fundamental data). Indeed the internal reorganization (due to the presence
of τ ), leads to the relaxation of a part of the stress,Pappl(t) to the yield value,Pappl,∞ = 2τ ,
regardless of the magnitude of the applied strainψ0, as long asψ0 satisfies the yield condition
stated in (3.14). For such values ofψ0, if the deformation is released, then the spheroid will not
recover its initial shape, because in the meantime the natural configuration has changed. How-
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Figure 4: Creep test and release for values ofPappl above the yield condition, i.e.P̂ = Pappl/τ > 2 (with
τ = 0.2Pa). The other parameters are the same specified in Figure 3. It is possible to see that, because of the
internal reorganization that occurs within the spheroid under compression (Ψp dynamics), the natural configuration
of the aggregate changes and when the upper plate is removed the multicellular body does not recover its original
shape and a macroscopic deformation can be seen. The processthat leads to the plastic deformation of aggregates is
faster asPappl increases and, independently ofPappl, Ψp → 0 andψ → 0, which physically means the rupture of the
aggregate.

ever, in [18] this process is instantaneous: if at any instant t1 the compression is released, then
Ψp(t) = Ψp(t1), ∀t ≥ t1 andψ will suddenly adjust to the valueψ(t) = Ψp(t1), ∀t ≥ t1 so
thatPappl = 0 (see top curve in Figure 5). This result does not couple well with biological ex-
periments [10, 11, 12], where aggregates progressively expand in height trying to recover their
previous shapes, in a process that takes few seconds (e.g. inthe specific case of 5-day-old chick
embryonic liver cells, 11 s were allowed for this) [10].

The introduction of the viscous component in (2.2), due to the aqueous constituents of aggre-
gates is able to take into account of this phenomenon. To showthe behavior of the model described
in Section 3 and in order to compare the results obtained withmechanical data in [10], we simulate
cycles of compressions at constant deformation.
We know thatΨp(t) ≥ ψ(t) during the entire process thanks to Proposition 1 (caseb). Hence dur-
ing the compression stage, the deformation is imposed and equation (4.1) holds, withψ(t) = ψ0,
whereas when the upper plate is removed, equation (4.1) combined with (4.2) and the condition
Pappl = 0 (stress-free evolution) can describe the shape recovery stage.
The results of the integration of these two systems is plotted in Figure 5, where it is clear that the
shape recovery is not instantaneous and its dynamics is controlled by the viscous coefficient: asν
increases the shape recovery will require more time.
Indeed the characteristic time for the shape recovery is given byν/(µφc). Moreover, the body
will not recover the original height,Z, but it presents some plastic deformation.Keeping fixed
the mechanical properties of the spheroid, the amplitude ofthe remodelling and hence the shape
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Figure 5:Shape dynamics of cell aggregates when the imposed deformation (ψ0 = 0.7), above the yield value, is
released at a given timet2 (heret2 = λ/2, whereλ = 22s). All the simulations are performed with the fixed value of
τ = 0.2Pa andφc = 0.8, whereasµ = 2.5Pa. The blue curves represent the model with no viscous effect,ν = 0
corresponding to the model in [18]. It is possible to observethe influence of the viscous parameter,ν̂ = ν/τ , on the
internal reorganization and shape recovery dynamics. According to the experiments in [10] the shape recovery requires
tens of seconds, which can be reproduced in our simulations (see magenta curve) settingν̂ = 50s (i.e. ν = 10Pa · s).

recovery depend on the time under compression. In Figure 6, it is possible to see that in our sim-
ulations, with a reorganization time of 22 seconds, a compression of 1 second will be recovered
up to98% while a 10 second compression up to95%. These results are consistent with biological
observations, in fact in Figure 4 of [12] the spheroid aggregate compressed for few seconds almost
recovers the original shape, showing a little flattening of the top.

It is also important to remark that even for very long compression times,t1 ≫ λ, the body
will still recover an amount of the deformation, corresponding to the elastic component.Indeed,
keeping the compression for times much larger than the reorganization time, spheroids will still
experience an elastic recovery that can be considerably smaller (almost75% in our case, see the
leftmost graphs in Figure 6), consistently with Figure 5 of [12]. In other words, aggregates will
not keep the imposed deformation,ψ0 even if the upper plate is removed after a very long time.
It is also interesting to see that during the stress-free evolution of spheroids, the internal reorga-
nization continues following equation (4.1) until an equilibrium is reached, corresponding to the
new natural configuration of the remodelled body.

Turning to cycles of compressions at constant deformation and releases, as in [10], a typi-
cal result for a twenty-cycle compression/release test is shown in Figure 7. It is possible to see
that, at the end of the simulation, the aggregate reaches themaximum of internal reorganization
corresponding to the imposed deformationψ0 and therefore an asymptotic behavior in the shape
recovery is attained. An interesting parameter in the modelis µ, which affect the recovery dynam-
ics, along withν: for small values of this parameter, we have no internal reorganization, because
the yield condition (3.14) is not satisfied, and therefore wehave no changes in aggregate shapes;
on the other hand asµ increases the plastic reorganization of aggregates is morepronounced (see
Figure 8).

In [10] measurements are presented in terms of height/widthratio over time under compression.
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Figure 6:Uniaxial compression test for different values of compression time,t1 (measured in seconds). The viscosity
is chosen in order to reach the shape equilibrium in a period of 11 seconds (i.e.ν = 10, see Figure 5). The shape
recovery gets smaller and smaller as the compression time increases, approaching a limit value (in color online).

We try to report the results of our simulations in a similar way, observing that in our model this
quantity is represented byψ3/2(t), from equation (3.1). The results are presented in Figure 9 for
different values of the parameterµ and in Figure 10 for different values of reorganization time
(keepingµ fixed). The best fit is obtained for a reorganization time equal to66s, whereas the best-
fitting values ofµ depends on the imposed deformation. Indeed itis possible to observe that the
equilibrium of (3.10) and (3.13) is reached whenψ(t) = Ψp(t) = Ψp,∞, satisfying the condition
indicated in the following proposition (see the appendix for a proof).

Proposition 3. During the cyclic deformation test at constant deformation, ψ0, such that the yield
condition (3.14) holds,Ψp is non increasing, tending to the asymptotic valueΨp,∞ satisfying

Ψ3
p,∞ − ψ3

0

ψ0Ψ2
p,∞

=
2τ

µφc
(4.3)

Asymptotically,ψ(t) ∈ [ψ0,Ψp,∞).

The physical interpretation of this result is straightforward. In the stress release process, the
deformation gradient between the deformed configuration (whereψ(t) = ψ0) and the final config-
uration (whereψ(t) = ψ∞) is
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Figure 7:Spheroid behavior under a cycle of 20 compressions at constant deformation and subsequent stress releases.
The figures report the internal reorganizationΨp (left) and the deformation gradient along thez-axis,ψ (right). The
simulation is performed letting the aggregate reorganize under compression for a timetc = λ/4 and then remove the
upper plate for11s (corresponding toλ/2).

Fn = diag

{
√

ψ0

ψ∞

,

√

ψ0

ψ∞

,
ψ∞

ψ0

}

then

Bn = diag

{

ψ0

ψ∞

,
ψ0

ψ∞

,
ψ2
∞

ψ2
0

}

.

If we consider the asymptotic stateΨp = ψ = Ψp,∞ as the reference configuration, a deforma-

tion
ψ0

ψ∞

will not trigger further reorganization and the energy is elastically stored, as

φcTc = φc (−(p + Σc)I + µBn) = diag{0, 0, 2τ} ,

where we consider that, when the remodelling inside the spheroid has attained the maximum, the
internal stress is equal to2τ .

We obtain

p+ Σc = µ
ψ0

ψ∞

, (4.4)

−
ψ0

ψ∞

+
ψ2
∞

ψ2
0

=
2τ

µφc
. (4.5)

Taking into account thatψ∞ = Ψp,∞ this is the same result we have obtained only with analytical
considerations (see Appendix).
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Figure 8: Influence ofµ̂ = µφc/τ on spheroid behavior under a compression cycle test (n = 5). Aggregates are
compressed fortc = λ/2 and are let free to expand fortr = 2λ (in order to allow the fulfilment of shape recovery).
For the imposed deformation,ψ0 = 0.7, value ofµ̂ < 2.1309 are not able to induce the internal reorganization of cell,
because (3.14) is not satisfied. ThereforeΨp = 1 (blue curve) and when the compression is released the multicellular
body comes back to the original shape in some seconds.

Thereforeψ3/2
∞ is the asymptotic value in Figures 9 and 10, and it is a function of ψ0, τ, µ, φc.

Thanks to this result, it is possible to find for eachψ0 a value ofµ (see Figure 11), fitting experi-
mental data from [10], where the imposed deformation is unfortunately not known.As shown in

figure 11, knowing this datum it would be possible to get the best fitting value ofµ =
muφc

τ
.

5. Conclusions

The aim of this paper is to study the non-linear mechanical behavior related to the re-organization
of multicellular structures. The 3D elasto-visco-plasticmodel provided here is based on the exis-
tence of a yield criterion, above which cells reorganize.
In fact, the cyclic deformation test presented in [10] cannot be described only resorting on a surface
tension model, while the model characterized by a yield condition, as that presented here, can.

In this paper we have improved the constitutive model presented in [18], to take into account
the viscous component of cell aggregates. Though the constitutive model is kept as simple as
possible, we have shown how it can reproduce compression tests performed by [10, 11, 12] and
how it can explain creeping phenomena. Moreover with the introduction of the viscous term the
model is able to reproduce aggregate release dynamics observed during biological experiments.

Of course, the model can be improved in several directions inorder to reproduce more closely
the behavior of cell aggregates. An extension can be represented by the inclusion of more cell
re-arrangement times, that can be related, for instance, tothe detachment of different adhesion
proteins inside the cell membrane or to the response occurring inside the cell itself with the rear-
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Figure 9:Height/width ratio chart for a cubic multicellular aggregate. The height and width are computed through
equation (3.1) and therefore the ratioh/ℓ is represented by the quantityψ3/2 that is plotted for different value of
µ̂ = µφc/τ , considering the same imposed deformationψ0 = 0.7 andλ = 50s. Experimental data obtained by
Forgacs et al. [10] are marked with black stars.

rangement of the actin cytoskeleton. The introduction of more relaxation times would certainly
lead to a better understanding of the mechanics and a better fit of experimental data. Indeed in the
experiments in [10] it is evident the existence of at least two relaxation times in the cellular matter
(one of the order of few seconds and the other of the order of tens of seconds).
Furthermore, more realistic 2D and 3D simulations of aggregates deformation have to be per-
formed, in order to obtain a more precise calculation of the height/width ratio, which is of relevant
importance for comparing computational data to experimental ones.

At the same time, from the experimental point of view, an important issue is the transposition of
biological tests performed on nonphysiological substrates to three-dimensional settings involving
complex fibre networks, reproducing the extra-cellular matrix. It is well known that cells are able
to remodel their environment extensively, but the interactions between cells and the ECM while
under stress remains to be characterized.

Therefore a mathematical model aiming at capturing spheroid nature of porous materials, com-
posed of cells, extracellular materials and liquid, has to be investigated yet, in order to attain a
detailed description of soft biological tissue mechanics and understand its implication in some
pathologies.

Appendix

Proposition 1. When the aggregate is compressed according to the followingimposed deformation
and stress histories:
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Figure 10:Height/width ratio chart for a cubic multicellular aggregate, for different value ofλ(s). The parameterµ
is fixed, in order to obtain the right asymptotic value (see Figure 9), whereasη changes. The best fit with experimental
data (black stars) is obtained forλ = 66 s .

a) Any given compressive deformation,ψ(t) with ψ̇(t) ≤ 0

b) Any sequence of givenψ(t) with ψ̇(t) ≤ 0 for t ∈ [t2i, t2i+1] followed by a stress release for
t ∈ [t2i+1, t2(i+1)] with i = 0, ..., n

c) Any compressive load,Pappl(t) > 0

Then

Ψp(t) ≥ ψ(t) ∀t > 0 .

Proof.

Case a)
We first prove the proposition in the case of a given deformationψ(t) < 1 with ψ̇(t) ≤ 0 applied
to the cellular aggregate fort ∈ [0, t1], wheret1 is the time when the upper plate is possibly lifted
up. The same proof holds fort1 → ∞.

Considering thatΨp(0) = 1, if the imposed deformationψ(t) is so small that the yield condition
(3.14) is not satisfied, from (3.13) the quantity in the square parenthesis is always negative and
Ψp(t) = 1 > ψ(t).

On the other hand, if the imposed deformation is not so small and the yield condition is over-
come, then we can rewrite equation (3.13) regulating the evolution of the internal reorganization,
as

Ψ̇p = −
1

3λ

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(Ψp − ψ)Ψp . (5.1)
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Figure 11:Height/width ratio chart for a cubic multicellular aggregate, for different value of initial deformationψ0.
To obtain the right fit with experimental data (black stars) [10],µ is computed according to equation (5.12).

It is trivial to check that starting fromΨp(0) = 1, Ψp(t) is always positive. For the thesis, we then
definew(t) = Ψp(t) − ψ(t) and consider the positive part,w+, given by

w+(t) = max{w(t), 0} =

{

w(t) w(t) > 0
0 w(t) ≤ 0

and the negative partw− defined as

w− = max{−w(t), 0} =

{

−w(t) w(t) < 0
0 w(t) ≥ 0

Therefore the functionw can be expressed in terms ofw+ andw−, asw = w+ − w−.
Thenw evolves according to

ẇ = −
1

3λ

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(w)Ψp − ψ̇ . (5.2)

starting fromw(0) > 0, since at the initial timeΨp(0) = 1 ≥ ψ(0).
We multiply each side of (5.2) byw− and integrate from0 to an arbitrary timẽt ∈ (0, t1] to get
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∫ t̃

0

ẇw−dt = −
1

3λ

∫ t̃

0

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(w)w−Ψpdt−

∫ t̃

0

ψ̇w−dt =

=
1

3λ

∫ t̃

0

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

w−Ψpdt+

∫ t̃

0

−ψ̇w−dt ≥ 0 , (5.3)

being both integrands non negative∀t̃ ∈ (0, t1]. Hence

0 ≤

∫ t̃

0

ẇw−dt = −

∫ t̃

0

ẇ−w−dt = −
1

2
w2

−
(t̃) ≤ 0 ,

where we used the conditionw(0) ≥ 0, i.ew−(0) = 0.
Therefore

w2
−
(t̃) = 0 =⇒ w(t̃) ≥ 0 =⇒ Ψp(t̃) ≥ ψ(t̃) ∀t̃ ∈ (0, t1] .

Case b)
If at any time,t = t1, the upper plate is lifted up, then, the equations regulating the evolution of
the system, fromt = t1 on, are (3.10) and (3.13), that can be rewritten as

Ψ̇p = −
1

3λ

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(Ψp − ψ)Ψp (5.4)

ψ̇ =
µφc

3ν(1 − φc)

Ψ3
p − ψ3

Ψ2
p

. (5.5)

We apply the same method presented before, computing for an arbitrary time t̃ ∈ (t1, t2],
wheret2 is the time when the compression is possibly restored (obviously the same proof holds for
t2 → ∞)

∫ t̃

t1

ẇw−dt = −
µφc

3η

∫ t̃

t1

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(w)w−Ψpdt+

−
µφc

3ν(1 − φc)

∫ t̃

t1

Ψ2
p + ψΨp + ψ2

Ψ2
p

ww−dt . (5.6)

We observe that also in this case,w−(t1) = 0, beingw(t1) = Ψp(t1) − ψ(t1) ≥ 0 (as demon-

strated before) and then
∫ t̃

t1
ẇw−dt = −

1

2
w2

−
. On the other hand, both terms on the left hand side

are always greater or equal to zero, being sgn(w)w− = −w− ≤ 0 andww− = −w2
−
≤ 0.
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Then also in this case, we can conclude that

w(t̃) = w+(t̃) ≥ 0 =⇒ Ψp(t̃) ≥ ψ(t̃) ∀t̃ ∈ (t1, t2] .

Then it is possible to reiterate the process, together with the one in casea) to demonstrate the
thesis.

Case c)
In the case of the application of a compressive load,Pappl(t) > 0, along the negativez-axis

Ψ̇p = −
1

3λ

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(Ψp − ψ)Ψp (5.7)

ψ̇ = −
Pappl

3ν(1 − φc)
ψ +

µφc

3ν(1 − φc)

Ψ3
p − ψ3

Ψ2
p

. (5.8)

Using the same definition forw(t) we have that

∫ t̃

0

ẇw−dt = −
µφc

3η

∫ t̃

0

[

|Ψ3
p − ψ3|

ψΨ2
p

−
2τ

µφc

]

+

sgn(w)w−Ψpdt+

−
µφc

3ν(1 − φc)

∫ t̃

0

Ψ2
p + ψΨp + ψ2

Ψ2
p

ww−dt+

+

∫ t̃

0

Pappl

3ν(1 − φc)
ψw−dt (5.9)

The last integral in equation (5.9) is obviously non negative and therefore also in this case
Ψp(t) ≥ ψ(t).

Proposition 2. In creep tests

a) if Pappl ≤ 2τ , thenΨp(t) = 1 andψ(t) ≥ ψc :
1

ψc
− ψ2

c =
Pappl

µφc
are solutions of equations

(4.1) and (4.2), with initial conditionsΨp(0) = 1 andψ(0) = 1.

b) if Pappl > 2τ , then equations (4.1) and (4.2) admit only the trivial equilibrium.

Proof.

Case a)
If Pappl(t) ≤ 2τ , ∀t, from equations (4.1)-(4.2), beingΨp(0) = 1 andψ(0) = 1 the right hand
side of (4.1) is initially null, that meanṡΨp(0) = 0, whereas from (4.2)̇ψ(0) < 0.
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Ψp = 1 andψ ≥ ψc makes[ ]+ of (4.1) equal to0. Indeed, being
1

ψ
− ψ2 a decreasing function

of ψ,

1

ψ
− ψ2 −

2τ

µφc
≤

1

ψ
− ψ2 −

Pappl

µφc
≤

1

ψc
− ψ2

c −
Pappl

µφc
= 0 , (5.10)

which holds for allt ≥ 0.
From (4.2) it is then clear thatψ = ψc andΨp = 1 makesψ̇ = 0 and thatψ > ψc and

Ψp = 1 makesψ̇ < 0. We will then show thatψ(t) ≥ ψc ∀t > 0, using the same argument as in
Proposition 1. We definew = ψ − ψc and hence

∫ t̃

0

ẇw−dt =
µφc

3ν(1 − φc)

∫ t̃

0

(

1 − ψ3

ψ
−
Pappl

µφc

)

ψw−dt ≥ 0 , (5.11)

where we used the fact that whenw− 6= 0, ψ < ψc and the parenthesis in the integral is positive.
Therefore

0 ≤

∫ t̃

0

ẇw−dt = −
1

2
w2

−
(t̃) ≤ 0 ,

where we used the conditionw(0) ≥ 0, i.ew−(0) = 0.
For the arbitrariness of̃t, this means thatψ(t) ≥ ψc ∀t > 0.

Case b)
The equilibrium for equation (4.1) is reached either ifΨp(t) = 0 or if the expression in square
brackets is negative (i.e. the region above the red line in Figure 2 on the right).

If Pappl(t) > 2τ , this second condition corresponding to
Ψ3

p − ψ3

ψΨ2
p

≤
2τ

µφc

, would make the

right hand side of (4.2) always strictly negative.
Therefore the only possible equilibrium for (4.1)-(4.2) isΨp,∞ = 0 , ψ∞ = 0

Proposition 3. During the cyclic deformation test at constant deformation, ψ0, such that the yield
condition (3.14) holds,Ψp is non increasing, tending to the asymptotic valueΨp,∞ satisfying

Ψ3
p,∞ − ψ3

0

ψ0Ψ2
p,∞

=
2τ

µφc

(5.12)

Asymptotically,ψ(t) ∈ [ψ0,Ψp,∞).

Proof. During each compression phase at constant deformation above the yield condition, equation

(4.1) states thatΨp is non increasing and thatΨ̇p = 0 when
Ψp,∞ − ψ3

0

ψ0Ψ2
p,∞

=
2τ

µφc

, that corresponds,

recalling equation (3.9), toPappl = 2τ .
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Considering the system (4.1) and (4.2), with the limit conditionΨp(t1) = Ψp,∞ andψ(t1) = ψ0,
we have thatΨ̇p(t1) = 0 whereasψ̇(t1) > 0. Actually, beingψ(t) ≤ Ψp ∀t ≥ t1 (Proposition
1), ψ̇(t) > 0 and thenψ increases until the limit value ofψ = Ψp is reached, which corresponds
to the equilibrium of (4.2). From the physical point of view this means that the aggregate expands

when the compressive force is removed. At the same time, asψ(t) increases, the ratio
Ψp − ψ3

ψΨ2
p

decreases, so that square brackets in (4.1) is still equal tozero and thereforėΨp(t) = 0 ∀t ≥ t1,
thenΨp(t) = Ψp,∞.

Therefore at the equilibriumψ∞ = Ψp,∞ :
Ψp,∞ − ψ3

0

ψ0Ψ2
p,∞

=
2τ

µφc
.
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