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A Distributed Technique for Localization of Agent
Formations From Relative Range Measurements

Giuseppe C. Calafiore, Luca Carlone, and Mingzhu Wei

Abstract—Autonomous agents deployed or moving on land for
the purpose of carrying out coordinated tasks need to have good
knowledge of their absolute or relative position. For large forma-
tions, it is often impractical to equip each agent with an absolute
sensor such as GPS, whereas relative range sensors measuring
interagent distances are cheap and commonly available. In this set-
ting, this paper considers the problem of autonomous distributed
estimation of the position of each agent in a networked formation
using noisy measurements of interagent distances. The underlying
geometrical problem has been studied quite extensively in various
fields, ranging from molecular biology to robotics, and it is known
to lead to a hard nonconvex optimization problem. Centralized
algorithms do exist that work reasonably well in finding local or
global minimizers for this problem (e.g., semidefinite program-
ming relaxations). Here, we explore a fully decentralized approach
for localization from range measurements, and we propose a
computational scheme based on a distributed gradient algorithm
with Barzilai–Borwein stepsizes. The advantage of this distributed
approach is that each agent may autonomously compute its po-
sition estimate, exchanging information only with its neighbors,
without need of communicating with a central station and without
needing complete knowledge of the network structure.

Index Terms—Consensus, distributed algorithms, network
localization, range measurements.

I. INTRODUCTION

D ISTRIBUTED and networked systems (e.g., portable
phones, smart dust, environmental sensors, mobile robots)

are bound to become increasingly intertwined with human life
and play an important role in many technological fields due
to their capability of acquiring information over wide areas
in a decentralized and autonomous way. Advances in wire-
less communication further increased the potentiality of multi-
agent networks in applications such as mobile robotics, target
tracking, environmental monitoring, and surveillance. Most of
the mentioned applications require that each node has precise
knowledge of its geometric position since actions and obser-
vations are often location dependent. For example, monitoring
and surveillance become meaningless if it is not possible to
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associate to the observation in the corresponding geographic
information; formation control requires knowledge of agent
positions; location-aware routing benefits from the position
information for optimizing the flow of information through the
network, etc. Although the agents’ positions can be obtained
through direct measures (e.g., GPS), in many cases, this so-
lution is not feasible due to technological constraints, such as
cost and power consumption. As a consequence, research effort
has been recently oriented toward designing indirect methods
for reconstructing the absolute node positions from relative
and partial measurements. The problem of determining node
positions is generically known as network localization: the ab-
solute node positions (with respect to a local or global reference
frame) need be estimated from partial relative measurements
between nodes, that is, each node may measure the relative
position from a set of neighbor nodes, and the global absolute
positions of all nodes need be deduced from this information.

Localization problems for planar networks can be classified
depending on the type of available relative measurements. A
recent survey on both technological and algorithmic aspects
can be found in [18]. If relative coordinates between nodes
are measured (or, equivalently, relative angles and distances are
measured), network localization can be formulated as a linear
estimation problem and efficiently solved using a least-square
approach (see, e.g., [1], [2], and the references therein). The
case in which angle-only measurements are available to the
nodes was pioneered by Stanfield [32] and further generalized
in [8]. The latter is often referred to as bearing localization
and can be attacked via maximum likelihood estimation, as
described in [18]. The most common setup is probably the one
in which each node can measure only distances from a subset
of other nodes in the formation. This case, which we will name
range localization, has been treated in various settings (see,
for instance, [7] and [28]). Range localization naturally leads
to a strongly NP-hard nonlinear and nonconvex optimization
problem (see [27]) in which convergence to a global solution
cannot in general be guaranteed. Convex relaxation methods
based on semidefinite programming (SDP) have recently been
proposed; in the noiseless case, these approaches provably con-
verge to the global solution (see, e.g., [4]). However, the speed
of the SDP approach is not satisfactory for practical applica-
tions with medium/high number of nodes, and in presence of
measurement noise, the estimate of SDP-based solutions can be
inaccurate (i.e., far from a global optimum). This motivates the
use of steepest-descent-based local optimization techniques to
improve the accuracy of an SDP-based solution. The distributed
gradient algorithm described in this paper can also be applied
in such refinement phase (see Section V-C).
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The actual reconstruction of a unique network configuration
from range measurements is possible only under particular
hypotheses on the topology of the networked formation (graph
rigidity, see [7]). Moreover, localization in an absolute refer-
ence frame requires that a subset of the nodes (anchor nodes
or beacons) already knows its exact location in the external
reference frame. Otherwise, localization is possible only up to
an arbitrary roto-translation. This latter setup is referred to as
anchor-free localization (see, e.g., [23]).

If all relative measurements are gathered to some “central
elaboration unit” that performs estimation over the whole net-
work, the corresponding localization technique is said to be
centralized. This is the approach that one implicitly assumes
when writing and solving an optimization problem: all the
data that are relevant for problem description are available
to the problem solver. However, such an assumption may be
unrealistic in situations where data and information are actually
stored locally at the agents, and where the computations can
also be executed locally at the individual agents’ level. Ap-
proaching such problems in a centralized way would require
that each agent sends its information to the central elaboration
unit, who solves the (usually large-scale) problem and transmits
back the results to each agent. This may of course be highly
undesirable due to the intensive communication load among
the central units and agents. Moreover, since all the compu-
tation is performed by a single unit, for large networks, the
computational effort can be just too intensive. In addition, the
system is fragile, since failure in the central elaboration unit
or in communication would compromise the functioning of the
whole network. According to these considerations, distributed
approaches are desirable for solving network localization. In a
distributed setup, each node communicates only with its neigh-
bors and performs local computations to obtain an estimate
of its own position. As a consequence, the communication
burden is equally spread over the network, and the computa-
tion is decentralized and entrusted to each agent, improving
both efficiency and robustness of the estimation process. First
attempts to reduce the computational effort of localization by
breaking the problem into smaller subproblems trace back to
[11], in which a divide-and-conquer algorithm is proposed.
Similar considerations are drawn in [19], where clustering is
applied to the network to properly reconstruct network con-
figuration. Recent approaches to the problem include [14] and
[35]. The former faces the problem in the anchor-free setting,
whereas the latter makes use of barycentric coordinates for
localizing the nodes, under the hypothesis that nonanchor nodes
lie in the convex hull of anchors. The distributed approach
described in [14] guarantees global convergence under the
additional hypothesis that each node can increase his radius of
communication until it gets contained in the convex hull of its
neighbors. Reference [15] adds further convergence analysis on
previous work of the authors, although the use of barycentric
coordinates still requires assumptions on network topology. In
[13], the authors extend their previous work by discussing a
general framework for distributed sensing and control. Dis-
tributed solutions are also investigated in [30], where the au-
thors propose distributed greedy optimization algorithms and
a second-order cone programming-based approach. Networks

with mobile agents are also considered in the recent literature,
including [16] and [29].

In this paper, we consider the problem of distributed net-
work localization with range-only measurements and develop a
distributed gradient algorithm that uses Barzilai–Borwein (BB)
stepsizes, where the stepsizes are computed in the network in a
decentralized way through consensus iterations. The idealized
version of this algorithm has two time scales: per each outer
gradient iteration, a (ideally infinite) series of inner communi-
cation iterations is performed among nodes to reach consensus
on the stepsize parameter. In practice, consensus is reached at
a geometric rate; hence, a finite and limited number of inner
iterations suffice to compute the stepsize. Once the network
topology is known, the required number of inner iterations can
actually be fixed a priory for the given desired accuracy level.
This technique is completely decentralized, and it appears to be
scalable for large networks. Moreover, it presents advantages
over state-of-the-art techniques in terms of computational and
communication requirements. As it is common to all gradient-
based methods (either centralized or distributed), convergence
of the algorithm can only be guaranteed for initial conditions
that are close enough to the actual solution. For this reason, the
proposed approach appears to be well suited as a refinement
technique for centralized methods (such as SDP relaxations)
or in dynamic situations where the node location is iteratively
obtained as a small perturbation of a previously known location.

The rest of this paper is organized as follows. The problem
setup is presented in Section II. A centralized version of the
gradient scheme is reviewed in Section III. The main con-
tribution of this paper is contained in Section IV, where the
distributed range localization method is presented. Numerical
experiments are reported in Section V, and conclusions are
drawn in Section VI.

Notation: In denotes the n× n identity matrix, 1n denotes a
(column) vector of all ones of dimension n, 0n denotes a vector
of all zeros of dimension n, and ei ∈ R

n denotes a vector with
all zero entries, except for the ith position, which is equal to
one. We denote with �x� the largest integer smaller than or
equal to x. Subscripts with dimensions may be omitted when
they can easily be inferred from context. For a matrix X , Xij

denotes the element of X in row i and column j, and X� de-
notes the transpose of X . X > 0 (respectively X ≥ 0) denotes
a positive (respectively nonnegative) matrix, that is, a matrix
with all positive (respectively nonnegative) entries. ‖X‖ de-
notes the spectral (maximum singular value) norm of X , or the
standard Euclidean norm, in case of vectors. For a square matrix
X ∈ R

n,n, we denote with σ(X) = {λ1(X), . . . , λn(X)} the
set of eigenvalues, or spectrum, of X , and with ρ(X) the
spectral radius: ρ(X)

.
= maxi=1,...,n |λi(X)|, where λi(X),

i = 1, . . . , n, are the eigenvalues of X ordered with decreasing
modulus, i.e., ρ(X) = |λ1(X)| ≥ |λ2(X)| ≥ · · · ≥ |λn(X)|.

II. PROBLEM FORMULATION

Let V = {v1, . . . , vn} be a set of n nodes (representing sen-
sors, agents, robots, vehicles, etc.), and let P = {p1, . . . , pn}
denote a corresponding set of positions on the Cartesian plane,
where pi = [xi yi]

� ∈ R
2 are the coordinates of the ith node.
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We will call P a configuration of nodes. Suppose that some
pairs of nodes, say, nodes (i, j), have the possibility of measur-
ing the relative distance between them, i.e.,

d2ij = ‖pi − pj‖2 + εij

where εij represents the residual error between the true
(squared) distance and its measure d2ij . We denote with E the
set of unordered node pairs (i, j) such that a distance measure-
ment exists between i and j. Our objective is to determine a
node configuration {p1, . . . , pn} that minimizes a least-squares
goodness of fit criterion

f(p) =
1

2

∑
(i,j)∈E

(
‖pi − pj‖2 − d2ij

)2
. (1)

When the global minimum of f is zero, we say that exact
matching is achieved, that is, a configuration {p1, . . . , pn} is
found that exactly matches the given distance measurements

‖pi − pj‖2 = d2ij , ∀(i, j) ∈ E .

Otherwise, no geometric node configuration can exactly match
the given range data, and we say that approximate matching is
achieved by the optimal configuration.

Actual recovery of the absolute geometric node positions
from distance measurements is only possible if the node config-
uration is generically globally rigid (ggr) [7]. In this case, the
objective function in (1) has a unique global minimum if the
positions of at least three nodes is known and fixed in advance
(anchor nodes, or beacons), or it has several equivalent global
minima corresponding to congruence transformations (roto-
translations) of the configuration if no anchors are specified. If
the configuration is not ggr, instead, there exist many different
geometric configurations (also called flexes) that match exactly
or approximately the distance data and that correspond to the
equivalent global minima of the cost f .

In this paper, we focus on a distributed numerical technique
to compute a local or global minimum of f in the neighborhood
of some given initial position estimate. In our approach, we
treat under the same framework both anchor-based and anchor-
free localization problems. In particular, when anchor nodes
are specified at fixed positions, we just set the respective
node position variables to the given values and eliminate these
variables from the optimization.

In the next section, we review a centralized gradient-based
approach for locally solving the localization problem (1). Then,
Section IV contains the main contribution of this paper, provid-
ing a distributed version of the localization algorithm.

III. CENTRALIZED GRADIENT-BASED ALGORITHM

Let p
.
= [p�1 p�2 · · · p�n ]

�, where p�i = [xi yi] denotes the
vector of node positions. The minimization objective (1) is
rewritten as

f(p) =
1

2

∑
(i,j)∈E

g2ij(p), gij(p)
.
= ‖pi − pj‖2 − d2ij (2)

and we let p(0) denote the vector of initial position estimates.
This vector of initial guess can be available either as the result
of a preliminary optimization phase (e.g., via SDP relaxation)
or as the output of our position estimation algorithm itself at a
previous time period (this may be the case, for instance, in the
context of iterative dynamic tracking of a moving formation).

We next describe a centralized iterative method to determine
a local minimum of the cost function starting from p(0). We
remark that in centralized methods, the whole vector p must be
stored and updated by some “central computing unit” that also
has full knowledge of all the distance measurements.

A. Gradient-Based Method

The most basic iterative method for finding a local minimizer
of f(p) is the so called gradient algorithm. Let p(τ) be the con-
figuration computed by the algorithm at iteration τ , being p(0)

the given initial configuration: at each iteration, the solution is
updated according to the rule

p(τ+1) = p(τ) − ατ∇f
(
p(τ)

)
(3)

where ατ is the step length, which may be computed at each
iteration via exact or approximate line search, and where

∇f(p) =
∑

(i,j)∈E
gij(p)∇gij(p) (4)

where gradient ∇gij is a column vector of n blocks, with each
block composed of two entries, thus 2n entries in total, and with
the only nonzero terms corresponding to the blocks in positions
i and j, i.e.,

∇gij(p) = 2
[
0�
2 · · ·0�

2 (pi − pj)
� 0�

2 · · ·

0�
2 (pj − pi)

� 0�
2 · · ·0�

2

]�
.

The gradient method is guaranteed to converge to a local min-
imizer whenever {p : f(p) ≤ f(p(0))} is bounded and the step
lengths satisfy the Wolfe conditions (see, e.g., [20]). Although
the rate of convergence of the gradient method can be poor,
we are interested in this method here since it requires first-
order only information (no Hessian has to be computed), and
it can suitably be adapted to a distributed implementation, as
discussed in Section IV-B.

a) BB Scheme: A critical part of the gradient algorithm is
the computation of suitable stepsizes ατ . Exact line search pre-
scribes to compute the stepsize by solving the unidimensional
optimization problem

min
α

f
(
p(τ) − α∇f

(
p(τ)

))
.

Determining the optimal α can, however, be costly in terms of
evaluations of objective and gradient. Moreover, an approach
based on exact or approximate line search is not suitable for the
decentralized implementation that we are seeking.

Barzilai and Borwein [3] proposed an alternative simple and
effective technique for the selection of stepsize, which requires
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few storage and inexpensive computations. The BB approach
prescribes to compute the stepsize according to the formula

ατ =

∥∥p(τ) − p(τ−1)
∥∥2

(p(τ) − p(τ−1))�
(
∇f(p(τ)

)
−∇f

(
p(τ−1))

) (5)

hence, no line searches or matrix computations are required
to determine ατ . The gradient algorithm with BB stepsizes
is particularly well suited for large scale problems, and it is
guaranteed to converge to the global optimum in the convex
quadratic case (see [9] and [24]). For the nonconvex situation,
as it is the case for any algorithm, global convergence cannot
in general be guaranteed. As we will show in Section IV-B, the
use of BB stepsizes permits a fully distributed implementation
of the gradient method.

IV. DISTRIBUTED LOCALIZATION METHOD

We will use graph formalism to describe the distributed
structure of the localization problem and of the corresponding
algorithm. The next section introduces some useful concepts
and definitions related to graphs.

A. Graph Preliminaries

A graph G(V, E) is induced by the set of nodes V =
{v1, . . . , vn} representing graph vertices and by pairs of nodes
(vi, vj) such that a relative distance measurement exists be-
tween vi and vj , representing graph edges in the edge set E .
Throughout this paper, we will assume that whenever a distance
measurement exists between two nodes, then these two nodes
can communicate bidirectionally. Therefore, graph G describes
both the measurement as well as the communication structure
of the node formation. For each i ∈ V , the set of neighbors Ni

of node i is defined as the set of nodes with which node i can ex-
change information, that is, Ni = {j ∈ V, j 
= i : (i, j) ∈ E}.

We recall that graph G is said to be connected if a path
(i.e., a sequence of edges) exists between any pair of nodes
of G (see standard references on graph theory, such as [6]
and [10]). There is a natural way of associating a nonnegative
matrix A to a graph G by considering matrices whose (i, j)
entry is positive whenever an edge exists between nodes (i, j)
in the corresponding graph, and it is zero otherwise. Let us
thus introduce the following set of nonnegative matrices with
positive diagonal entries:

M .
= {A ∈ R

n,n : A ≥ 0, Aii > 0, i = 1, . . . , n}.

We have the following definition.
Definition 1: For A ∈ M, we say that the matrix/graph pair

(A,G(V, E)) is compatible if Aij > 0 ⇔ (i, j) ∈ E . �
The notion of connectedness of a graph is related to the

notion of primitiveness of a matrix compatible with that graph.
A square matrix A ≥ 0 is said to be primitive if there exist an
integer m ≥ 1 such that Am > 0. The least integer m such that
Am > 0 is called the index of primitivity of A. If A is primitive,
then ρ(A) is an algebraically simple eigenvalue of A, and the
eigenspace associated with this eigenvalue has dimension one.

The following theorem can readily be established (using, for
instance, [12]).

Theorem 1: Let A ∈ M such that (A,G(V, E)) is a compat-
ible pair. Then, A is primitive if and only if G is connected.

Consider a subset of M composed of matrices in which the
sum over each row is equal to 1 (such matrices are usually
called (row) stochastic), i.e.,Ms

.
= {A ∈ M : A1 = 1}. For

A ∈ Ms, we have that 1 is an eigenvalue of A. Observe that
the spectral radius of a matrix is no larger than any norm of the
matrix (see [12]); hence, by taking the �∞-induced norm, we
have that for A ∈ Ms, it holds that

ρ(A) ≤ ‖A‖∞ = max
i=1,...,n

n∑
j=1

|aij | = 1.

Since 1 is an eigenvalue of A, it therefore must be ρ(A) = 1.
It also follows that if A ∈ Ms is primitive, then A has a
unique (i.e., an algebraically simple) eigenvalue at 1; hence,
all the other eigenvalues have modulus strictly smaller than
1, and the fixed-point subspace I(A)

.
= {x ∈ R

n : Ax = x}
is one dimensional. Now, consider the subset of Ms formed
by symmetric matricesMss

.
= {A ∈ Ms : A = A�} (a matrix

A ∈ Mss is symmetric, nonnegative with strictly positive diag-
onal elements and doubly stochastic, that is, A1 = 1, 1�A =
1�). For A ∈ Mss, let λ1, . . . , λn be the (real) eigenvalues
ordered with nonincreasing modulus; then, we clearly have that
ρ(A) = λ1(A) ≡ ‖A‖ = 1, and A can be written in diagonally
factored form as

A =
1

n
11� + Z, Z = V DV �, D = diag(λ2, . . . , λn)

(6)
where V ∈ R

n,n−1 is such that

V �V = In−1, V V � = In − 1

n
11�, 1�V = 0. (7)

The following key lemma relates the convergence rate of itera-
tions zk+1 = Azk to the second-largest modulus eigenvalue of
matrix A. This result is quite standard in consensus literature
(see, e.g., [21] in Section II-D), but we restate and prove it here
in our specific context for the purpose of clarity.

Lemma 1: Let A ∈ Mss such that (A,G(V, E)) is a compat-
ible pair. If G is connected, then for any z ∈ R

n and any integer
k ≥ 0, it holds that

‖Akz − 1ζ‖ ≤ |λ2(A)|k · ‖z‖, |λ2(A)| < 1

where ζ is the average of the entries in vector z, i.e.,

ζ =
1

n

n∑
i=1

zi.

Proof: Since A ∈ Mss implies A ∈ M, by Theorem 1,
we have that G connected implies that A is primitive; hence,
λ1(A) = 1, and all the other eigenvalues λ2, . . . , λn have mod-
ulus strictly smaller than 1. Then, since A is symmetric, we
can factorize it according to (6), and using (7), it can easily
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be verified that Ak = (1/n)11� + V DkV �. Now, note that
(1/n)11�z = 1ζ, hence
∥∥∥∥Akz − 1

n
11�z

∥∥∥∥ = ‖Akz − 1ζ‖ = ‖V DkV �z‖

≤ ‖V DkV �‖ · ‖z‖ ≤ ‖Dk‖ · ‖z‖ = |λ2|k · ‖z‖

which concludes the proof. �

B. Distributed Gradient Algorithm With BB Stepsizes

We here describe a distributed implementation of the update
step (3) with BB stepsizes. The approach is divided into two
phases: in phase 1, the nodes perform a distributed consensus
algorithm to converge to the value (5) of the stepsize ατ ; and
in phase 2, each node locally updates its position according to
the gradient step (3). The algorithm thus works on two time
scales: an outer iteration scale involving the gradient updates,
and an inner iteration scale involving the consensus fusion
among nodes. This inner phase requires, ideally, an infinite
number of consensus iterations for nodes to converge to the
true value of the stepsize parameter. However, convergence
occurs at geometric rate; hence, a reasonable finite number of
iterations suffices in practice for the nodes to approximately
agree on the stepsize value. This issue is further discussed
in Remark 1. Numerical experiments, using also very coarse
stepsize computation (i.e., very few consensus iterations per
outer step) support the idea that the algorithm is quite resilient
to the choice of stepsize parameter.

1) Distributed Computation of Stepsize: Suppose that each
node i knows its own estimated position at the current iteration
τ and at the previous one τ − 1, along with the local block
of gradient ∇if(p) [see (13)] at the same iterations, with the
convention that p(−1) = 0, ∇if(p

(−1)) = 0. At “time” τ(0),
each node i, i = 1, . . . , n, initializes two scalar values

ρi (τ(0)) =
∥∥∥p(τ)i − p

(τ−1)
i

∥∥∥
2

(8)

ψi (τ(0)) =
(
p
(τ)
i − p

(τ−1)
i

)�

×
(
∇if

(
p(τ)

)
−∇if

(
p(τ−1)

))
(9)

and then starts a series of consensus iterations, exchanging data
with its neighbors

ρi (τ(t+ 1)) =Wiiρi (τ(t))

+
∑
j∈Ni

Wijρj (τ(t)) (10)

ψi (τ(t+ 1)) =Wiiψi (τ(t))

+
∑
j∈Ni

Wijψj(τ(t)), t = 0, 1, . . . (11)

where W ∈ Mss is a symmetric doubly stochastic matrix com-
patible with graph G. The following proposition holds.

Proposition 1: If graph G is connected, then

lim
t→∞

ρi (τ(t))

ψi (τ(t))
= ατ , for all i = 1, . . . , n.

Proof: First, notice that the numerator of ατ in (5) is given
by

∑n
i=1 ρi(τ(0)), where ρi(τ(0)) is defined in (8), and that the

denominator of ατ is given by
∑n

i=1 ψi(τ(0)), where ψi(τ(0))
is defined in (9). We next show that iterations (10) and (11)
converge at geometric rate to the average of the ρi(τ(0)) values
and to the average of the ψi(τ(0)) values, respectively; hence,
the ratio ρi(τ(t))/ψi(τ(t)) converges to ατ , as claimed. To
prove this fact, notice that iteration (10) can be written in com-
pact vector form as follows: ρ (τ(t+ 1)) = Wρ (τ(t)) where
ρ(τ) = [ρ1(τ) · · · ρn(τ)]

�. Given the initial vector ρ(τ(0)),
the preceding recursion generates at generic iteration t =
1, 2, . . . the vector ρ (τ(t)) = W tρ (τ(0)) . Similarly, (11) gen-
erates at iteration t the vector ψ (τ(t)) = W tψ (τ(0)) .Since
W ∈ Mss is compatible with connected graph G, by Lemma
1, we have that

∥∥∥∥∥∥
ρ (τ(t))− 1

n

n∑
j=1

ρj (τ(0))1

∥∥∥∥∥∥
≤ γt ‖ρ (τ(0))‖

where γ < 1 is the modulus of the second largest modulus
eigenvalue of W . Recalling the vector norm inequality ‖x‖∞ ≤
‖x‖, we also have that

∥∥∥∥∥∥
ρ (τ(t))− 1

n

n∑
j=1

ρj (τ(0))1

∥∥∥∥∥∥
∞

≤ γt ‖ρ (τ(0))‖

that is
∣∣∣∣∣∣
ρi (τ(t))−

1

n

n∑
j=1

ρj (τ(0))

∣∣∣∣∣∣
≤γt ‖ρ (τ(0))‖ , ∀i=1, . . . , n

and similarly, we obtain that
∣∣∣∣∣∣
ψi (τ(t))−

1

n

n∑
j=1

ψj (τ(0))

∣∣∣∣∣∣
≤γt ‖ψ (τ(0))‖ , ∀i=1, . . . , n

which shows that, as t tends to infinity, ρi(τ(t)), ψi(τ(t))
converge at geometric rate to the averages of the entries in
vectors ρ(τ(0)),ψ(τ(0)), respectively. From this, it follows that:

lim
t→∞

ρi(τ(t))

ψi (τ(t))
=

∑n
j=1 ρj (τ(0))∑n
j=1 ψj (τ(0))

= ατ

thus, proving the claim. �
Remark 1: From Proposition 1, it follows that, at inner

iteration t, each node can locally construct the ratio

αi (τ(t))
.
=

ρi (τ(t))

ψi (τ(t))
(12)

and use it as an approximation of the stepsize ατ . The numera-
tor and denominator of αi(τ(t)) geometrically converge to the
average of the entries in vectors ρ(τ(0)), ψ(τ(0)), respectively,
and the convergence rate is dictated by γ, the modulus of the
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second largest modulus eigenvalue of matrix W . We next show
that, for t larger than some finite t̄, also the convergence of
αi(τ(t)) to ατ is at least geometric and still dictated by γ. It
follows that whenever the network topology is known and γ
can be computed a priori, then fixing a maximum number T
of inner iterations induces a predictable error in the estimation
of the stepsize parameter. This error can be made as small
as desired by a suitable choice of (finite) T . Indeed, inspect-
ing the proof of Proposition 1 and recalling Lemma 1, we
see that ρi(τ(t)) = ρ̄+ e�i V DtV �ρ(τ(0)), ψi(τ(t)) = ψ̄ +
e�i V DtV �ψ(τ(0)), where ei is the ith unit vector, and we de-
fined ρ̄ = (1/n)

∑n
j=1 ρj(τ(0)), ψ̄ = (1/n)

∑n
j=1 ψj(τ(0)).

Recalling that ατ = ρ̄/ψ̄, we next construct the relative con-
vergence error. Let η > 0 be a small constant, and let t̄ be
the smallest integer larger than (log η − log ‖ψ(τ(0))‖)/ log γ.
Then

εi(t) =
|αi(τ(t))− ατ |

|ατ |

=

∣∣e�i V DtV � (
α−1
τ ρ (τ(0))− ψ (τ(0))

)∣∣∣∣ψ̄ + e�i V DtV �ψ (τ(0))
∣∣

≤
‖ei‖ · ‖V DtV �‖ ·

∥∥α−1
τ ρ (τ(0))− ψ (τ(0))

∥∥
|ψ̄| − ‖ei‖ · |V DtV �‖ · ‖ψ (τ(0))‖

≤
γt

∥∥α−1
τ ρ (τ(0))− ψ (τ(0))

∥∥
|ψ̄| − γt ‖ψ (τ(0))‖ ≤const.γt, for t≥ t̄

where const. = ‖α−1
τ ρ(τ(0))− ψ(τ(0))‖/|ψ̄| − η, which

shows that the modulus of relative error decreases at least at
geometric rate. A practical implementation of the algorithm
works by fixing a priori a sufficiently large T and running
iterations (10) and (11) up to t ≤ T . An analysis on the effect
of the choice of T on the algorithm performance is presented
via numerical simulations in Section V-B.

a) Choice of weights: Note that, to being able to up-
date its estimate, node i needs to know its current neighbors’
weights Wij . These coefficients may be imposed a priori on
the nodes (but this would require a centralized a priori knowl-
edge of the network topology) or, more practically, negotiated
autonomously online by the nodes. A standard and effective
rule for building the weights autonomously is the so-called
Metropolis rule (see [33] and [34]), which prescribes weights
as follows:

Wij =




1
max(|Ni|,|Nj |), if (i, j) ∈ E , i 
= j

1−
∑

j∈Ni\i
Wij , if i = j

0, otherwise

where |Ni| denotes the cardinality of Ni. This choice of weights
is indeed well suited for distributed implementation since each
node only needs to know the number of its neighbors and
exchange information with them. With these weights, iterations
(10) and (11) are based on local-only information, which means
that each node can execute the update without need of knowing
the global structure of the network or even the number n of
nodes composing the network.

2) Distributed Gradient Update: Let ∇if(p) denote the ith
1 × 2 block in the gradient ∇f(p) in (4). Given the specific
structure of ∇gij(p), which is nonzero only for the blocks
in position i and j that are equal to (pi − pj) and (pj − pi),
respectively, it is immediate to verify that

∇if(p) =
∑
j∈Ni

(pi − pj)gij(p) (13)

where Ni
.
= {j : (i, j) ∈ E} is the set of neighbors of node i in

graph G. Observe next from (2) that gij(p) is actually a function
of pi − pj only, which represents the current mismatch between
‖pi − pj‖2 and d2ij . It follows that the portion of gradient
∇if(p) can be computed individually by node i by simply
querying the neighbors for their current estimated positions.

Assuming that the stepsize ατ is known at each node, each
node would be able to locally update its estimated position
according to the distributed gradient rule

p
(τ+1)
i = p

(τ)
i −ατ∇if

(
p(τ)

)

= p
(τ)
i −ατ

∑
j∈Ni

(pi−pj)
�gij(p), i=1, . . . , n. (14)

In practice, the value of ατ is known only approximately at each
node as a result of the finite number T of consensus iterations.
Summarizing, the practical distributed localization algorithm
works as follows.

Algorithm 1 (Distributed localization algorithm):

0. (Initialization) Fix T (maximum number of consensus
iterations), τwup (maximum number of warm-up iterations),
τmax (maximum number of gradient updates), and ηabstol
(absolute update tolerance). Let τ = 0 and set the position
estimates pτi , for i = 1, . . . , n to be the given initial guess for
optimization. Mark all nodes as “active”.

1. (Warm-up)
(1.a) Fix ατ = α̃ (a small number, say α̃ = 10−6, equal for

all nodes);
(1.b) Update all node position estimates according to (14), and

let τ = τ + 1;
(1.c) If τ < τwup, then goto (1.a), else goto 2.

2. (Consensus iterations)
(2.a) Let t = 0, and initialize ρi(τ(t)) and ψi(τ(t)) as in

(8), (9);
(2.b) Update ρi, ψi according to (10), (11); let t = t+ 1;
(2.c) If t < T , then goto (2.a), else goto 3.

3. (Gradient update) At each active node:
(3.a) Compute αi(τ(t)) according to (12);
(3.b) Update position estimate according to (14);
(3.c) If ‖p(τ)i − p

(τ−1)
i ‖ ≤ ηabstol, then mark node i as

“inactive”;
4. (Stopping criterion) Let τ = τ + 1. If τ ≥ τmax, or all

nodes are inactive, then exit; otherwise goto 2.
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It is worth noticing that the warm-up is only useful to have
reasonable values for the correction in the first update (τ = 0):
since p(−1), ∇if(p

(−1)) are chosen to be zero by convention
(see Section IV-B-1), the first iteration can produce arbitrary
values of the stepsize and can lead the local estimate outside of
the region of attraction of the global minimum of the objective
function. In practice, numerical tests suggest that it often suf-
fices to fix τwup = 1 to have good convergence properties for
the algorithm (see Section V-B).

V. NUMERICAL EXPERIMENTS

We now present some numerical tests on decentralized
network localization with the proposed distributed gradient
method. In the first experiment (Section V-A), we verify the
correctness of our theoretical analysis on a small formation,
showing the convergence of the stepsizes, computed locally at
each node, to a common value, which is actually the centralized
stepsize ατ . In the second experiment (Section V-B), we inves-
tigate the performance of the distributed gradient method on a
large networked system, showing the advantages of integrating
a distributed averaging technique in the localization process;
moreover, we analyze the scalability of the proposed approach.
Finally, in Section V-C, we apply the technique to a realistic
setup in which nodes in a sensor network use (eventually with-
out any synchronization) the distributed gradient method for
refining an inaccurate position guess, obtained through a pre-
liminary semidefinite optimization-based localization method.

A. Example 1

Let us consider a first setup that exemplifies the case of
a team of autonomous vehicles or mobile robots moving in
formation where few agents are equipped with GPS, whereas
others use dead reckoning for position estimation. Using dead
reckoning progressively decreases the localization accuracy;
hence, the agents may periodically stop and use the relative
range measurements to improve their position estimate. Dis-
tance measurements are typically obtained through acoustic
beacons [22], radio frequency devices [36], or other “time of
flight” sensors.

For a numerical example, we considered the case of n = 10
agents located on terrain according to the configuration shown
in Fig. 1(b). This actual configuration should be estimated
autonomously by the agents using as prior knowledge the ideal
position configuration shown in Fig. 1(a), which is assumed as
the initial position guess by the agents. Three anchor nodes are
selected at the external vertices of the formation.

To measure the localization effectiveness, we define the local
positioning error φi(τ) at node i as the Euclidean distance
between the estimated position p

(τ)
i at iteration τ and the true

position pi of the node. The global positioning error Φ(τ) is
further defined as the mean value of the local positioning errors
of all the nodes in the network

Φ(τ) =
1

n

n∑
i=1

∥∥∥pi − p
(τ)
i

∥∥∥ .

Fig. 1. Triangle formation: (a) initial position guess and (b) actual node
configuration (n = 10).

At each update iteration, the position estimate of the ith node
is corrected according to the recursion (14), initialized with
initial position estimate p(0)i corresponding to the configuration
in Fig. 1(a). Before each update, at iteration τ , each node starts
inner consensus iterations τ(t), t = 0, 1, . . . , T , to compute the
BB stepsize ατ in a decentralized fashion.

Fig. 2(a) shows, at some given iteration τ , how local stepsizes

αi (τ(t)) =
ρi (τ(t))

ψi (τ(t))

computed according to the scheme presented in Section IV-B-1
converge to the desired value ατ equal for all nodes.

It is possible to notice that, after a small and fixed number
of consensus iterations, the nodes agree on a common value
for the stepsizes (see Algorithm 1). Further tests on the influ-
ence of T on the performances of the algorithm are reported
in Section V-B. Fig. 2(b) reports the local positioning error
for each nonanchor node using T = 20. As expected, in a
noiseless setup, the estimated positions converge to the true
location in a reasonable number of τ iterations. In practice, each
node becomes inactive after a threshold condition is met (see
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Fig. 2. (a) Local stepsizes αi(τ(t)) of the agents compared with the central-
ized stepsizes ατ at some given iteration τ . (b) Local positioning errors for the
nonanchor nodes in the formation versus update iterations count τ ; the number
of consensus iterations is T = 20.

Algorithm 1); hence, the approach can be used with no need
of synchronization among nodes: each node interrogates the
neighbors T times for each update, and it may stop to correct
its position estimate autonomously, with no need of global
information (further details can be found in Section V-C).

B. Example 2

For the second experiment, we consider a graph with n nodes
disposed in lattice configuration on the unit square [0, 1] ×
[0, 1]. Four anchor nodes are selected on the vertices of the
unit square. The actual network configuration to be estimated
is taken as the regular lattice configuration [Fig. 3(a)], whereas
the initial position guess is generated by randomly perturbing
the position of each node [see Fig. 3(b)]. Diagonal edges are
added to the lattice structure for guaranteeing rigidity of the

Fig. 3. Lattice configuration: (a) actual node configuration and (b) initial
position guess (n = 100).

underlying graph, hence enabling the nodes to retrieve the
correct configuration.

To evaluate the advantages of the proposed method, we
compare it with other gradient-based techniques for network
localization. The first compared technique simply employs a
fixed stepsize for gradient update: each node communicates
with the neighbors to compute the local gradient, and the update
(3) is performed using a stepsize ατ = ᾱ, ᾱ > 0. The second
technique can be seen as a limit condition of the proposed
approach, in which the agents may perform no consensus at all
(T = 0), and each node computes its own stepsize according to
the local information

ατ,i =

∥∥∥p(τ)i − p
(τ−1)
i

∥∥∥
2

(
p
(τ)
i − p

(τ−1)
i

)� (
∇if

(
p
(τ)
i

)
−∇if

(
p
(τ−1)
i

)) .

(15)
Fig. 4 shows the global positioning error as a function of update
iterations τ , comparing the proposed approach (with T = 20)
with the two gradient techniques, for a network of n = 100
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Fig. 4. (a) Global positioning error versus iterations τ for the limit case
without consensus (solid line), for the proposed distributed gradient method
with T = 20 (dashed line), and for the gradient method with fixed stepsizes
ατ = 0.1 (dotted line).

Fig. 5. Percentage of convergent experiments for the case with no consensus
(solid line), for the proposed distributed gradient method with T = 20 (dashed
line), and for the gradient method with fixed stepsizes ατ = 0.1 (dotted line).

nodes. It can be seen how the use of distributed averaging im-
proves the convergence rate of the gradient method (results are
averaged over 50 Monte Carlo runs). The use of local stepsizes,
instead, causes the presence of spikes in the localization error
since there is no agreement on the correction to be applied at
a single node, whereas the use of fixed stepsizes corresponds
to long tails in the localization errors and poor convergence
rates. The three compared techniques are local since they
require a suitable initial guess for attaining the global minimum
of the nonlinear objective function. In Fig. 5, we report the
percentage of convergent experiments for the three techniques,
with different initial guesses. The initial guess of each node
is drawn from a normal distribution with mean corresponding
to the actual node position and covariance equal to P = σ2

II2;
hence, for increasing values of σI (x-axis in the figure), the
quality of the initial guess worsens. The figure highlights how
the use of the proposed technique presents further advantages
in terms of convergence properties with respect to the other
compared gradient-based approaches.

We now want to evaluate the total number of update iter-
ations, say, τend, required for network localization using the
aforementioned techniques. The total number of iterations is

TABLE I
COMPUTATIONAL EFFORT AND COMMUNICATION BURDEN FOR THE

LIMIT CASE WITHOUT CONSENSUS, FOR THE PROPOSED DISTRIBUTED

GRADIENT METHOD WITH T = 20, FOR GRADIENT METHOD WITH

FIXED STEPSIZES, AND FOR GRADIENT METHOD WITH SPECIFIED STEP

LENGTHS. RESULTS ARE AVERAGED OVER 50 MONTE CARLO RUNS.
(∗) ITERATIONS ARE STOPPED BECAUSE THE MAXIMUM NUMBER

OF ALLOWED UPDATES (τmax) IS REACHED

connected to the amount of computation and communication
burden required to the nodes; hence, it is crucial in low-cost
low-power applications. We consider the value ηabstol = 10−10

as threshold for a node to stop the update iterations, and τmax =
105 (see Algorithm 1). In Table I, we report the values of
τend when using the proposed technique, a gradient method
with local BB stepsizes (15), and a gradient method with fixed
stepsizes (ατ = 0.1 and ατ = 0.01). We further include in the
analysis a gradient method with specified step length, i.e., with
a stepsize ατ = k/‖∇if(p

(τ))‖, k > 0. This last strategy can
be employed with a constant k = k̄ or with a diminishing
sequence of step lengths, like k = k̄/τ or k = k̄/

√
τ (with

k̄ > 0) (see [31]). Obviously, due to the stopping criterion
for the update iterations, the number of updates performed
using specified step lengths can be known a priori; when
using k = k̄/

√
τ , for instance, the iterations will stop when

τ ≥ (k̄/ηabstol)
2.

In Table I, we also report the communication burden for the
compared techniques.

The proposed approach requires each node to communicate
T times with the neighbors for each update (each communica-
tion allows a generic node i to broadcast the local information
to the neighbors). On the other hand, the compared gradient
methods (local stepsizes, fixed stepsizes, specified step lengths)
require nodes to communicate with their neighbors only one
time for each update to compute the local gradient ∇if(p

(τ)).
It is possible to observe that, despite the communication load
due to consensus, the proposed approach is still advantageous
over the compared techniques.

In the previous experiments, we considered T = 20 consen-
sus iterations for each update. Now, we discuss such choice,
reporting some results on how the total number of update iter-
ations varies in function of the number of consensus iterations
T . In Fig. 6, we show the value of τend for different values of
T and for different network sizes. It is worth noticing that, also
for small values of T , the introduction of the consensus phase
contributes to remarkably reduce the total amount of updates,
and there is no need to consider a large number of consensus
iterations (convergence is exponential, see Remark 1).

As a conclusion of this section, we discuss the scalability
of the proposed approach. Scalability issues are particularly
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Fig. 6. Number of update iterations τend required for network localization
using different values of T . Results are provided for lattice configurations with
n = 25, 49, 100, 225 nodes.

Fig. 7. Total number of update iterations τend for increasing network sizes.

relevant when dealing with sensor networks in which a large
number of nodes have to perform localization with limited
bandwidth and reduced computational resources. Moreover,
this issue is relevant when considering swarms of interacting
robots, as discussed, for instance, in [25]. For evaluating the
scalability of the approach, we tested the distributed gradient al-
gorithm for different network sizes. Fig. 7 shows the total num-
ber of iterations τend for networks with n nodes and T = 20.

C. Example 3

In this section, we evaluate the use of the proposed technique
as a refinement phase after SDP is used for computing a rough
estimate of node positions. It is well known that the SDP
relaxation can be inaccurate in the presence of measurements
noise (see [4] and [5]); hence, we use the output of SDP as
initial guess for a distributed gradient-based refinement. The
idea of a local refinement of a global solution is not new (see
[17] and [26]), although our approach has the advantages of
being fully distributed and effective in terms of communication
and computational requirements.

To work on more realistic networks, we now consider ran-
dom geometric graphs, i.e., graphs in which nodes are deployed
at random in the unit square, and an edge exists between
a pair of nodes if and only if their geometrical distance is

TABLE II
GLOBAL LOCALIZATION ERROR WHEN USING SDP AND SDP WITH

DISTRIBUTED GRADIENT REFINEMENT (SDP-DG); THE TABLE SHOWS

RESULTS FOR DIFFERENT VALUES OF THE NOISE FACTOR νd
AND FOR DIFFERENT NUMBER OF ANCHOR NODES na

smaller than a sensing radius R. It has been proved in [7] that
if R > 2

√
2
√
log(n)/n, the graphs produced by the previous

technique are ggr with high probability.
We consider the configuration generated as previously de-

scribed as the “true” configuration (which is of course unknown
in practice), and then, we use the distance measurements from
this configuration as the data for the numerical tests; distance
measurements are affected by noise in the form

d̄ij =
∣∣dij + εdij

∣∣ ∀ (i, j) ∈ E (16)

where dij is the true distance among nodes i and j, d̄ij is the
corresponding measured quantity, and εdij is a zero mean white
noise with standard deviation σd

ij . According to [5], we choose
σd
ij = νddij , where the constant νd, which is often referred to

as noise factor, defines how measurement accuracy decreases
with the actual distance. The sensing radius is R = 0.3, and
na anchor nodes are randomly selected among the nodes. The
parameters used for the distributed gradient method are T = 20,
ηabstol = 10−15, and τmax = 105.

In Table II, we report the global localization error for differ-
ent νd considering the network in Fig. 8. It is possible to see that
the introduction of distributed gradient refinement improves the
localization accuracy, leading to an error reduction of 15 ÷
50%. In particular, the distributed gradient method can dras-
tically improve the localization performance in case few anchor
nodes are present in the formation or when the anchors lie in the
interior on the formation: in such situation, the SDP localization
is known to be inaccurate, and the local refinement is essential
for practical use (see Fig. 8 for a meaningful example).

It is worth noticing that the proposed distributed technique
assumes that some sort of synchronization among the nodes in
the network exists, i.e., there is a global clock, say, tg , such
that for tg = 0 all the nodes start the warm-up phase, and at
tg = kT , k = 1, 2, . . . , they all update local estimates, iterating
consensus at each discrete time in the interval [(k − 1)T, kT ],
k = 1, 2, . . . Although such underlying assumption is common
to several distributed techniques (see [2], for instance), we now
want to evaluate what happens when relaxing this hypothesis.
For this purpose, we consider a setup in which each node may
start iterations at a different time tgi and alternates consensus
and update phases based on a local clock tli; after the warm-up,
each node will interrogate neighbors T times (during which,
possibly, some neighbors may change their estimates) and then
apply a local gradient update, according to (14). Before intro-
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Fig. 8. (a) Estimated versus actual configuration for SDP localization (circles
denote actual node positions, whereas crosses correspond to SDP estimates).
(b) Estimated versus actual configuration for SDP localization with distributed
gradient refinement (circles denote actual node positions, whereas stars corre-
spond to estimates after refinement). The reported estimates are obtained in the
same Monte Carlo run with νd = 0.05, T = 20, and ηabstol = 10−15.

ducing our numerical tests, we define the maximum clock skew
∆tmax = maxi,j |tgi − tgj |. Obviously, the case of ∆tmax = 0
corresponds to a perfect synchronization among the nodes. On
the other hand, for increasing values of the maximum clock
skew, the delays between the nodes in the network can be
relevant.

For numerical tests, we studied the behavior of the distributed
gradient method considering different maximum skew times
as follows: given ∆tmax, the starting time tgi of the ith node
is randomly sampled in the interval [0;∆tmax], and the local
clock is initialized accordingly [when the local clock starts the
node becomes active). Before starting consensus iterations, a
node verifies that also the neighbors are active; otherwise, it
remains in the warm-up phase (such procedure assures that the
results of the consensus are meaningful, since inactive nodes
cannot properly define the quantities (8) and (9)]. In the re-
ported tests, each node uses the value T = 20 for the consensus
iterations and autonomously stops when the correction of the
local estimates drops below ηabstol = 10−15.

TABLE III
GLOBAL LOCALIZATION ERROR Φ FOR SDP AND SDP WITH DISTRIBUTED

GRADIENT REFINEMENT (SDP-DG); THE TABLE ALSO REPORTS THE

AVERAGE NUMBER OF UPDATES τend PERFORMED BY THE NODES IN THE

NETWORK. THE RESULTS ARE AVERAGED OVER 30 MONTE CARLO RUNS,
CONSIDERING THREE ANCHOR NODES AND NOISE FACTOR νd = 0.05

Table III reports the global localization error and the average
number of updates for the distributed gradient method. It is
possible to see that there is no remarkable degradation in
performance, hence confirming that the algorithm is suitable
for decentralized asynchronous operation.

VI. CONCLUSION

In this paper, we presented a distributed gradient method
for solving the network localization problem from relative
distance measurements. First, the localization problem is for-
mulated as minimization of a nonlinear cost, and the formu-
lation of a centralized gradient method is recalled, focusing
the attention on the use of BB stepsizes. Then, a distributed
scheme is proposed for allowing each node to autonomously
correct its position estimate by communicating only with its
neighbors. The decentralized technique iterates two phases:
1) a consensus phase and an 2) update phase. In the consensus
phase, each node iteratively consults and exchanges informa-
tion with its neighbors to converge approximately to some
parameter value (the stepsize ατ in the gradient method) that
must be common and available to all nodes for an update step
to be possible. In the update phase, this common parameter
is used to actually update the current position estimate. The
distributed gradient method is proved to converge to the same
solution of its centralized counterpart, while providing the ben-
efits of a fully decentralized scheme that can be implemented
autonomously by the networked agents. Moreover, extensive
numerical experiments highlighted the advantages of using
the proposed technique in terms of convergence properties,
computational cost, and communication burden for the nodes in
the network. The algorithm is also suitable for the case in which
no synchronization exists among the nodes, and it is shown to
be scalable in the network size since it requires inexpensive
computation and low memory storage.
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