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PRIMES BETWEEN CONSECUTIVE SQUARES AND
THE LINDELÖF HYPOTHESIS

DANILO BAZZANELLA

Abstract. At present it is not known an unconditional proof that
between two consecutive squares there is always a prime number.
In a previous paper the author proved that, under the assumption
of the Lindelöf hypothesis, each of the intervals [n2, (n + 1)2] ⊂
[1, N ], with at most O(Nε) exceptions, contains the expected num-
ber of primes, for every constant ε > 0. In this paper we improve
the result by weakening the hypothesis in two different ways.

This is the authors’ post-print version of an article published on
Period. Math. Hungar. 66, n. 1 (2013), 111–117,

DOI:10.1007/s10998-013-1457-y.1

1. Introduction

A well known conjecture about the distribution of primes asserts that
for every positive integer n, the interval [n2, (n+ 1)2] contains at least

one prime. The proof of this conjecture is quite out of reach at
present, even under the assumption of the Riemann Hypothesis.

Anyway it is not difficult to prove unconditionally that the conjecture
holds for almost all positive integers n. More precisely, we can prove

immediately that almost all intervals of the type [n2, (n+ 1)2] contain
the expected number of primes.

In a previous paper the author proved that, under the assumption of
the Lindelöf hypothesis, each of the intervals [n2, (n+ 1)2] ⊂ [1, N ],
with at most O(N ε) exceptions, contains the expected number of

primes, for every constant ε > 0, see Theorem 2.1 of D. Bazzanella [3].
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2 D. BAZZANELLA

In this paper we prove the same result assuming in turn two different
heuristic hypotheses. It must be stressed that both hypotheses are

implied by the Lindelöf hypothesis.
The first new hypothesis is a weakened version of the hypothesis

stated in D. Bazzanella [2].

Hypothesis 1. There exist a constant X0 and a function ∆(y, T ) such
that, for every 5/12 < β < 1/2 and ε > 0, we have∫ 2X

X

|ψ(y + y/T )− ψ(y)− y/T + ∆(y, T )|2kdy � X2k+εT 1−2k

and
∆(y, T )� y/(T log y)

for at least one integer k ≥ 1, uniformly for X ≥ X0, X
5/12 ≤ T ≤ Xβ

and X ≤ y ≤ 2X.

To state the second new hypothesis we need to use the counting
functions N(σ, T ) and N (k)(σ, T ). The former is defined as the
number of zeros ρ = β + iγ of the Riemann zeta function which
satisfy σ ≤ β ≤ 1 and |γ| ≤ T , while N (k)(σ, T ) is defined as the
number of ordered sets of zeros ρj = βj + iγj (1 ≤ j ≤ 2k), each

counted by N(σ, T ), for which |γ1 + · · ·+ γk − γk+1 − · · · − γ2k| ≤ 1.
We start to observe that D. Bazzanella and A. Perelli [4] made the

heuristic assumption that there exists a constant T0 such that

(1) N (2)(σ, T )� N(σ, T )4

T
T ε

for every T ≥ T0 and arbitrarily small ε > 0, which is close to being
the best possible, in view of the trivial estimate

N (2)(σ, T )� N(σ, T )4

T
.

The above may be generalized and weakened to

N (k)(σ, T )� N(σ, T )2k

T
T ε (1/2 ≤ σ ≤ σ) ,

with suitable σ < 1 and arbitrarily small ε > 0. We now observe that
the Lindelöf hypothesis implies that for every η > 0 we have

N(σ, T )� T 2(1−σ)+η (1/2 ≤ σ ≤ 1),

see A. E. Ingham [8], and then we are led to claim the following.

Hypothesis 2. For every 0 ≤ η < 1/6 there exists an integer k ≥ 2
such that

N (k)(σ, T )� T 4k(1−σ)−1+η (1/2 ≤ σ ≤ 5/6 + η) .
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We note that Hypothesis 1 and 2 are weaker than the Lindelöf
hypothesis, see G. Yu [11, Lemma B] and D. R. Heath-Brown [7,

Lemma 1] respectively.
We are now able to state our main theorems.

Theorem 1. Let ε > 0 be arbitrarily small and assume Hypothesis 2.
Then each of the intervals [n2, (n + 1)2] ⊂ [1, N ], with at most O(N ε)
exceptions, contains the expected number of primes.

Theorem 2. Let ε > 0 be arbitrarily small and assume Hypothesis 3.
Then each of the intervals [n2, (n + 1)2] ⊂ [1, N ], with at most O(N ε)
exceptions, contains the expected number of primes.

Note that despite Hypotheses 1 and 2 are implied by the Lindelöf
hypothesis, see G. Yu [11, Lemma B] and D. R. Heath-Brown [7,

Lemma 1] respectively, we obtain the same expected distribution of
primes between consecutive squares and consequently two theorems

are stronger than Theorem 2.1 of [3].

2. Definitions and fundamental lemma

We will always assume that n, x and N are sufficiently large as
prescribed by the various statements, and ε > 0 is arbitrarily small

and not necessarily the same at each occurrence. The constants
implied by the “O” and “�” symbols may depend on k. As in [4] we

define a set related to the asymptotic formula

(2) ψ(x+ h(x))− ψ(x) ∼ h(x) (x→∞)

as

Eδ(N, h) = {N ≤ x ≤ 2N : |ψ(x+ h(x))− ψ(x)− h(x)| ≥ δh(x)},

where h(x) is an increasing function such that xε ≤ h(x) ≤ x for some
ε > 0. It is clear that (2) holds if and only if for every δ > 0 there

exists N0(δ) such that Eδ(N, h) = ∅ for every N ≥ N0(δ). Hence for
small δ > 0, N tending to ∞ and with a function h(x) which is
suitably small with respect to x, the set Eδ(N, h) contains the

exceptions, if any, to the expected asymptotic formula for the number
of primes in short intervals.

Moreover we define a set related to the asymptotic formula

(3) ψ((n+ 1)2)− ψ(n2) ∼ 2n (n→∞)

as

Aδ(N) = {
√
N ≤ n ≤

√
2N : |ψ((n+1)2)−ψ(n2)−(2n+1)| ≥ δ(2n+1)},
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that contains the exceptions, if any, to the expected asymptotic
formula for the number of primes in intervals of the type

[n2, (n+ 1)2] ⊂ [N, 2N ]. The main tool of the proofs is the following
lemma.

Lemma. For h(x) = 2
√
x+ 1 and every δ > 0 we have

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1.

The fundamental lemma is due to the author, see [3, Lemma 2].

3. Proof of the theorems

Let h(x) = 2
√
x+ 1 and let y ∈ Eδ(N, h). Then we get

(4) |ψ(y + h(y))− ψ(y)− h(y)| �
√
N.

We divide the interval [N, 2N ] into O(ln2N) subintervals
Ji = [ai, ai+1], with

(5) ai = N +
iN

log2N

and define

Ei
δ(N, h) = Eδ(N, h) ∩ Ji.

We let

(6) Ti =
√
ai/2.

Hypothesis 1 implies that there exist an integer k ≥ 1, a constant X0

and a function ∆(y, T ) such that, for every i, we have

(7)

∫ 2N

N

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2kdy � N2k+εT 1−2k
i

and

(8) ∆(y, Ti)� y/(Ti log y),

uniformly for N ≥ X0 and N ≤ y ≤ 2N . From the Brun–Titchmarsh
theorem, see H. L. Montgomery and R. C. Vaughan [10], we can

deduce that for every i we have

ψ(y+h(y))−ψ(y)−h(y) = ψ(y+y/Ti)−ψ(y)−y/Ti+∆(y, Ti)+O

( √
N

logN

)
,

for every y ∈ Ji. The above bound and (4) imply that

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)| �
√
N,
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for every y ∈ Ei
δ(N, h). Thus we obtain

|Eδ(N, h)| � N−k
∑
i

∫
|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2k dy

Eiδ(N,h)

� N−k
∑
i

∫ 2N

N

|ψ(y + y/Ti)− ψ(y)− y/Ti + ∆(y, Ti)|2k dy.

By (7) we conclude that

(9) |Eδ(N, h)| � N−k
∑
i

N2k+εT 1−2k
i � N1/2+ε.

By the lemma and (9), we can conclude that

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1� N ε,

for every δ > 0, and this complete the proof of Theorem 1.
To prove Theorem 2 we use the classical explicit formula, see

H. Davenport [5, Chapter 17], to write

(10) ψ(y+y/Ti)−ψ(y)−y/Ti = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

(
N log2N

Ri

)
,

uniformly for N ≤ y ≤ 2N , where δi = log(1 + T−1i ), 10 ≤ Ri ≤ N
and ρ = β + iγ runs over the non-trivial zeros of ζ(s). If we choose

Ri = Ti log3N and recall (5) and (6) then we have
√
N log3N � Ri �

√
N log3N

and

ψ(y + y/Ti)− ψ(y)− y/Ti = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

( √
N

logN

)
for every i and y ∈ Ji. As before we observe that for every y ∈ Ji we

have

ψ(y + h(y))− ψ(y)− h(y) = ψ(y + y/Ti)− ψ(y)− y/Ti +O

( √
N

logN

)
and then

ψ(y + h(y))− ψ(y)− h(y) = −
∑
|γ|≤Ri

yρ
eδiρ − 1

ρ
+O

( √
N

logN

)
,
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for every i and y ∈ Ji. This implies that

(11) |Eδ(N, h)|Nk �
∑
i

∫ 2N

N

∣∣∣∣∣∣
∑
|γ|≤Ri

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dx.

To estimate the 2k-power integral we divide the interval [0, 1] into
O(lnN) subintervals Ij of the form

Ij =

[
j

logN
,
j + 1

logN

]
.

By Hölder inequality we obtain∣∣∣∣∣∣
∑
|γ|≤Ri

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

=

∣∣∣∣∣∣∣∣
∑
j

∑
|γ|≤Ri
β∈Ij

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣∣∣
2k

� (lnN)2k−1
∑
j

∣∣∣∣∣∣∣∣
∑
|γ|≤Ri
β∈Ij

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣∣∣
2k

.

Following the method of D. R. Heath-Brown, we write

(lnN)1−2k
∫ 2N

N

∣∣∣∣∣∣
∑
|γ|≤Ri

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dx�

∑
j

∑
β1,...,β2k∈Ij

|γ1|≤Ri,...,|γ2k|≤Ri

(2N)ρ1+···+ρk+ρk+1+···+ρ2k+1 −Nρ1+ρ2+···+ρk+ρk+1+···+ρ2k+1

ρ1 . . . ρ2k (ρ1 + · · ·+ ρk + ρk+1 + · · ·+ ρ2k + 1)

×(eδiρ1 − 1) · · · (eδiρk − 1)(eδiρk+1 − 1) . . . (eδiρ2k − 1)

�
∑
j

1

T 2k
i

N1+2kj/ logN
∑

β1,...,β2k≥j/ logN
|γ1|≤Ri,...,|γ2k|≤Ri

1

|ρ1 + · · ·+ ρk + ρk+1 + · · ·+ ρ2k + 1|
.

This implies

(12)

∫ 2N

N

∣∣∣∣∣∣
∑
|γ|≤Ri

xρ
eδiρ − 1

ρ

∣∣∣∣∣∣
2k

dx� 1

T 2k
i

max
σ

N2kσ+1+εMk(σ,Ri),



PRIMES BETWEEN CONSECUTIVE SQUARES 7

where

Mk(σ,Ri) =
∑

β1,...,β2k≥σ

|γ1|≤Ri,...,|γ2k|≤Ri

1

1 + |γ1 + · · ·+ γk − γk+1 − · · · − γ2k|

and

(13) Mk(σ,Ri)� N (k)(σ,Ri) logN,

see [9, p. 336]. From (11), (12) and (13) we have

(14) |Eδ(N, h)| � N1−2k+ε
∑
i

max
σ

N2kσN (k)(σ,Ri).

By Hypothesis 2 and (14) we get

|Eδ(N, h)| � N1−2k+ε
∑
i

max
σ

N2kσR
4k(1−σ)−1
i � N1/2+ε.

Again by the lemma we can conclude that

|Aδ(N)| �δ

|Eδ/2(N, h)|√
N

+ 1� N ε,

for every δ > 0, and this completes the proof of Theorem 2.
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