POLITECNICO DI TORINO
Repository ISTITUZIONALE

Branch-and-price and beam search algorithms for the Generalized Bin Packing Problem

Original
Branch-and-price and beam search algorithms for the Generalized Bin Packing Problem / Baldi, MAURO MARIA;
Crainic, Teodor; Perboli, Guido; Tadei, Roberto. - STAMPA. - (2012), pp. 1-18.

Availability:
This version is available at: 11583/2482580 since:

Publisher:

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Bureaux de Montréal : Bureaux de Québec :

Université de Montréal Université Laval

C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642
Montréal (Québec) Québec (Québec)

Canada H3C 3J7 Canada G1V 0A6

Téléphone : 514 343-7575 Téléphone : 418 656-2073
Télécopie : 514 343-7121 Télécopie :418 656-2624

www.cirrelt.ca

Branch-and-Price and Beam Search
Algorithms for the Generalized Bin
Packing Problem

Mauro Maria Baldi
Teodor Gabriel Crainic
Guido Perboli

Roberto Tadei

January 2012

CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms
for the Generalized Bin Packing Problem

Mauro Maria Baldi', Teodor Gabriel Crainic®>®", Guido Perboli*?, Roberto Tadei!

! Department of Control and Computer Engineering, Politecnicd di Torino, Corso Duca degli
Abruzzi, 24 - 1-10129 Torino, Italy

2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT)

® Department of Management and Technology, Université du Québec a Montréal, P.O. Box 8888,
Station Centre-Ville, Montréal, Canada H3C 3P8

Abstract. In the Generalized Bin Packing Problem a set of items characterized by volume
and profit and a set of bins of different types characterized by volume and cost are given.
The goal consists in selecting those items and bins which optimize an objective function
which combines the cost of the used bins and the profit of the selected items. We propose
two methods to tackle the problem: a branch-and-price as an exact method and a beam
search as a heuristics, derived from the branch-and-price. Our branch-and-price method is
characterized by a two level branching strategy. At the first level the branching consists in
selecting a particular item to be loaded into a given bin. At the second level the branching
is performed on the number of available bins for each bin type or on couples of items
which must or must not be loaded together. Exploiting the branch-and-price skeleton, we
then perform a variegated beam search heuristics, characterized by different beam sizes.
We finally present extensive computational results which show a high accuracy of the
exact method and a very good efficiency of the proposed heuristics.

Keywords. Generalized Bin Packing Problem (GBPP), column generation, branch-and-
price, beam search.

Acknowledgements. This project has been partially supported by the Ministero
dell'lstruzione, Universita e Ricerca (MIUR) (Italian Ministry of University and Research),
under the 2009 PRIN Project “Methods and Algorithms for the Logistics Optimization", and
the Natural Sciences and Engineering Council of Canada (NSERC) through its Discovery
Grants program.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne refletent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: TeodorGabriel.Crainic@cirrelt.ca

Dépbt Iégal — Bibliothéque et Archives nationales du Québec
Bibliothéque et Archives Canada, 2012

© Copyright Baldi, Crainic, Perboli, Tadei and CIRRELT, 2012

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

1 Introduction

The Generalized Bin Packing Problem (GBPP) is a novel packing problem recently in-
troduced by Baldi et al (2011). It consists in a set of bins characterized by volume and
cost and a set of items characterized by volume and profit. Moreover the items are split
into two families: the compulsory and the non-compulsory items. Whilst the compulsory
items must always be loaded, the non-compulsory items might not be loaded into the
bins. The goal of the GBPP is to select appropriate bins and items in order to minimize
the total net cost given by the difference between the costs of the selected bins and the
profits of the selected non-compulsory items.

The GBPP brings innovation in the fields of packing, transportation and logistics.
As shown in Baldi et al (2011), the GBPP is able to solve many packing problems such
and the Bin Packing Problem (BPP), the Variable Size Bin Packing Problem (VSBPP),
the Variable Cost and Size Bin Packing Problem (VCSBPP), the Knapsack Problem and
the Multiple Knapsack Problem with and without identical capacities. This provides the
great advantage that the same technique solving the GBPP might be used to solve even
other different packing problems.

From the point of view of transportation and logistics, the GBPP models problems
arising in cross-continental transportation. In fact, freight flows require intermediate
transshipment locations, such as ports, where freight is consolidated and loaded on ships.

Aim of this paper is to give an exact method, the branch-and-price, for solving the
GBPP. Our method is characterized by a two-layer branching strategy — first on the bins
and then on the items — instead of a simple item to bin assignment as previously done
in the packing literature (Martello and Toth, 1990; Monaci, 2002). This exact technique
lets us reach a mean gap of 0.03% and close most of the instances in the GBPP literature.

Exploiting the branch-and-price skeleton, we then propose a beam search heuristics,
which visits just a portion of the branch-and-price tree. Extensive computational tests
obtained by varying the beam search parameters let us find results comparable to the
branch-and-price within a limited computing time.

This paper is organized as follows. In Section 2 we provide a literature review on the
problem. Then in Section 3 we define in details the problem and provide a set covering
formulation which is the one adopted by the branch-and-price and the beam search
algorithms. Section 4 recalls both lower and upper bounds which will be used when
executing the two algorithms. In Section 5 we thoroughly discuss the branch-and-price
algorithm and in Section 6 the beam search heuristics, which are both extensively tested
in Section 7. Finally, Section 8 is devoted to the conclusion and future perspectives.

CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

2 Literature Review

The GBPP is a novel packing problem recently introduced by Baldi et al (2011). In
their paper, the authors presented the problem providing both an assignment and a set
covering formulations. Exploiting these formulations the authors computed both lower
and upper bounds to the problem.

The GBPP is a generalization of the well known Variable Cost and Size Bin Packing
Problem (VCSBPP) (Crainic et al, 2011), which is a variant of the classical Bin Packing
Problem (BPP) (Martello and Toth, 1990).

Due to the recent introduction of the GBPP, its literature is quite limited. Thus, in
the following, we recall the literature related to the most similar problem, the VCSBPP.

In the past decades both exact and approximated methods has been proposed to
tackle the VCSBPP. It has been introduced by Friesen and Langston (1986) who pro-
posed three approximated algorithms. Other approximated methods have been proposed
by Murgolo (1987), Chu and La (2001) and Kang and Park (2003). More recent ap-
proximated algorithms have been proposed by Haouari and Serairi (2009), Crainic et al
(2011), and Hemmelmayr et al (2012).

The VCSBPP can also be seen as a special case of the Multiple Length Cutting
Stock Problem(MLCSP), where the item demand is equal to one and different types of
stocks (which are equivalent to the bins) are involved. Exact methods for the MLCSP
have been proposed by Belov and Scheithauer (2002) and Monaci (2002). Alves and
Valério de Carvalho (2007) first proposed an improved column generation technique try-
ing to solve the VCSBPP to optimality. One year later the same authors introduced
a branch-and-cut-and-price algorithm for the MLCSP (Alves and Valério de Carvalho,
2008). Correia et al (2008) presented discretized formulations which aimed to solve the
VCSBPP to optimality with new valid inequalities. Recently Bettinelli et al (2010) intro-
duced a branch-and-price algorithm for the resolution of a variant of the VCSBPP with
the addition of filling constraints. These constraints imply that, due to stability reasons
within the bins, each bin must be filled at least at a minimum security level. To the best
of our knowledge the latest work dealing with exact methods for solving the VOSBPP is
due to Haouari and Serairi (2011), in which the authors proposed lower bounds and an
exact branch-and-bound algorithm.

2 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

3 Problem Definition and Formulation

The GBPP consists in a set of bins and a set of items. The bins are classified in bin
types. We suppose all sets to be finite. All the bins which belong to the same type have
the same volume (or capacity) and cost. Moreover, constraints on the bin availability for
each bin type and for all bins must be satisfied.

Each item is characterized by a volume and a profit. The set of items is split into
two subsets: the subset of compulsory items and the subset of non-compulsory items.
The subset of compulsory items includes all those items which are mandatory to load.
Vice versa the subset of non-compulsory items includes those items which might not be
loaded. When items are loaded into bins, capacity constraints must be satisfied. This
means that the total volume of the items loaded into a bin must not exceed the capacity
of the bin itself. The goal of the GBPP is to select appropriate items and bins in order to
minimize the total net cost, given by the difference between the costs of the selected bins
and the profits of the selected non-compulsory items. We just consider non-compulsory
items because, as compulsory items must always be loaded, their profits behave like a
constant in the objective function.

A first possible model for the GBPP is an assignment formulation which relies on
the assignment formulation used by Martello and Toth (1990) for the BPP. As shown
in Baldi et al (2011), the assignment formulation for the GBPP is not used in practice,
but it can be exploited to get a first lower bound to the GBPP, named LBy, reported in
Section 4.

A second possible formulation for the GBPP is a set covering formulation based on
the concept of pattern. Given a bin of a certain type, a (feasible) pattern is a combination
of items such that they can all be loaded into the bin. If, for instance, a combination of
items is such that their total volume is greater than the capacity of the bin where they
are going to be placed, then the corresponding pattern is not feasible and it is not taken
into account in the formulation. This means that the problem feasibility, in terms of
capacity constraints, is implicitly guaranteed by the pattern definition.

Let us consider:

e 7 the set of bins and m its cardinality
e 7 the set of items and n its cardinality

e 7€ C T the subset of compulsory items and ZN® C T the subset of non-compulsory
items, such that ZCUZN® =Z and Z° NZINC =

e 7 the set of bin types

CIRRELT-2012-01 3

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

e W, and C; the volume and the cost of each bin of type t € T, respectively

e [; the minimum number of bins of type t € T which must be used

e ; the maximum number of bins of type ¢ € T which must be used

e U the maximum number of bins which must be used in total

e w; and p; the volume and the profit of item ¢ € Z, respectively

e [C; = {k} the set of all feasible patterns k for bin type t € T

o K = U7 K: the set of all feasible patterns that can be generated for all bin types

e A; a vector of indicator functions ai, k € K;, t € T, i € Z, such that a} = 1 if
item 7 is accommodated into pattern k of bin type t € T, 0 otherwise

o ¢, =Cp— Y . cqne aip; the net cost of pattern k € K;, computed as the difference
between the cost of the associated bin and the total profit of the non-compulsory
items accommodated into the pattern.

In the set covering formulation for the GBPP we introduce a binary variable A\ for
each pattern k € K;. This variable is equal to 1 if pattern k£ € K; is used, 0 otherwise.
The set covering formulation of the GBPP is as follows (the dual variables associated to
the constraints, which will be used later, are also indicated):

Minimize Dot Dokek, ChMk
Subject to > ,cr > opex, @A =1 i € Z° (dual variable y; free)

(
Soter Power, G <1 1€ N (dual variable v; < 0)
Do, MU teT (dual variable a; < 0)
()

(

w N

Dokei, e > Ly t€T dual variable 3, > 0
Dot 2ker, e S U dual variable € < 0)
)\k & {O, 1} kel

S Ot

AN N N N N /N /N
EN =~
N e e e N N N

Due to the definition of the pattern cost ¢, the objective function (1) consists in
minimizing the difference between the total cost of the used bins and the total profit of
the loaded non-compulsory items. Constraints (2) state that all the compulsory items
must be loaded into some bin, whilst constraints (3) affirm that non-compulsory items
may or may not be loaded. Constraints (4) and (5) state respectively that at most U,
and at least L; bins of type ¢ € T must be employed. Constraint (6) expresses that at
most U bins can be used in total. Finally, (7) are the integrality constraints. We name
SC the set covering formulation (1)-(7) and R-SC' its continuous relaxation.

4 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

A peculiarity of the SC and the R-SC is that the number of all feasible patterns K is
exponential. A common technique used to cope with this aspect is the column generation
(Desaulniers et al, 2005). In particular, Baldi et al (2011) present a lower bound to the
SC' computed from the R-SC via the column generation, named LB, as reminded in
Section 4.

4 Bounds

In this section we briefly introduce lower and upper bounds that will be employed in our
proposed method to solve the GBPP (see Baldi et al (2011) for details).

The first lower bound, LBy, comes from the assignment model aggregating together
some constraints. L B; can then be computed as follows:

Minimize Y Ciyr— Y pit; (8)

teT i€INC

Subject to Z w; + Z w;x; < Z Wiy, (9)
i€Z® ieINC teT
L <y < Uy teT (10)
Zyt <U (11)
teT
wert, teT (12)
x; € {0,1}, 1€l (13)

where g, is an integer variable which counts the number of used bins of type ¢, z; is a
binary variable which is equal to 1 if item ¢ is loaded into some bin, 0 otherwise.

The second lower bound, LBs, is computed performing a column generation technique
to the relaxed model R-SC'. The column generation is an iterative procedure which begins
with a few patterns and then, at each step, tries to add a new pattern to those already
considered. The new pattern, if it exists, has the peculiarity to have the minimum
negative reduced cost among all the possible patterns. Otherwise there is no profitable
pattern and the procedure ends. In our problem we select such a pattern for each bin
type t € T. This means that we can select at most | 7| patterns at each step. To select
these patterns, we need to solve a subproblem (called oracle), one for each bin type ¢t € T.
To do so we consider the reduced cost r; of a given pattern k& € K, for a bin of type

CIRRELT-2012-01 5)

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

teT:
T
rk = cx— [pvapBe Ag

= Cy— Z ai p; — [;LT v o g7 e} Ayg
i€INC

= C;— Z aipi—ZaZMi— Z GZVi—at—ﬁt—E
i€INC i€ZC i€INC

= Ot_Za;g(pi‘{’yi)_zazﬂi_at_ﬂt_e (14)
i€INC i€Z€

Let us introduce a variable x; which is equal to 1 if item ¢ € Z belongs to the given
pattern k, 0 otherwise. Since the A, entries are not known yet, we may express them in
terms of the variables x;. Taking the minimum of (14), after some manipulations, we get
the following knapsack problem as oracle:

Maximize { Z (pi + ;) ; + Z L [El} (15)

i€INC i€ZC
Subject to: Zwixi < W, teT (16)
€T
z; € {0, 1} el (17)

As shown in (Baldi et al, 2011), neither LB; nor LBy dominates each other. Thus, a
third lower bound, named L Bg, is trivially computed as the maximum between LB; and
LBy, ie. LBy =max{LB;, LBy}.

We now introduce two upper bounds that are used in the branch-and-price and beam
search algorithms. The first upper bound is the well known Best Fit Decreasing (BFD)
constructive heuristics. Another available constructive heuristics is the First Fit Decreas-
ing (FFD). Nevertheless, as shown in Baldi et al (2011), the BFD is, on average, better
than the FFD. Therefore we just consider the BFD. Our adapted BFD constructive
heuristics works as follows. Let SBL be a list of sorted bins and SIL a list of sorted items,
sorted according to a given criterion. Let S be a list, initially empty, which contains, at
the end of the heuristics, all those bins which will be selected by the BFD itself. For
each item i € SIL, we try to load it into the best bin among those already selected (i.e.
those belonging to the list §). With best bin we mean that bin offering the minimum
free space after item ¢ has been loaded into. If item ¢ could not be loaded into any bin
of the list S, then we try to load it in the next bin b in the list SBL. If bin b has enough
space to load item ¢ and item ¢ is compulsory then we select bin b (i.e. we add it to
the list §) and we load item 7 into b. If bin b has enough space to load item i but item

6 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

7 is non-compulsory, then not necessarily item ¢ will be loaded into b. If, indeed, its
profit plus those of the remaining items in SIL is less than the cost of bin b, then it is
better to discard item ¢. If a bin b has not enough space to load item ¢ we proceed along
SBL as far as we meet the first bin able to load item i. Note that, since compulsory
items must be loaded, infeasibility may raise if the remaining bins in SBL are not able
to accommodate a compulsory item. The authors avoid infeasibility by introducing one
dummy bin s characterized by a very high cost Cs > max;cr C; and by a volume Wi
equal to the total volume of all the compulsory items. The high cost C discourages the
usage of the dummy bin s in ordinary cases, and it is only used when infeasibility would
arise. Since the items and the bins have multiple attributes, many sorting criteria for
the two lists SIL and SBL are available. Computational experience has shown that, on
average, the best sorting criterion is as follows:

Bins: sort the bins in SBL by non-decreasing order of their ratio cost over volume
C;/W;, j € J and non-increasing values of their volumes;

Items: sort first the compulsory items in non-increasing values of their volumes and
then the non-compulsory items in non-increasing order of their ratio profit over
volume p; /w;, i € ZN and non-increasing values of their volumes.

In the following we assume that this sorting criterion is used when talking about the
BFD.

A very tight upper bound would consist in solving the set covering model where all
patterns are produced by the column generation. Since this can be time consuming, we
give to the solver a time limit of 20 seconds. We name this upper bound Zgc.

5 Branch-and-price

The branch-and-price is an exact method which aims to find an optimal solution by
exploiting a tree structure where an easier subproblem is solved at each node. It is a
development of the branch-and-bound method with the addition of performing a column
generation procedure (also called pricing) at each node to try to improve the lower bound
of the subproblem associated to that node. In the following we name LB(j) and UB(j)
respectively the lower and the upper bound associated to the subproblem of node j and
UB the global upper bound of the problem. Note that LB(0) = LBj since, at the root
node of the search tree (node 0), the best lower bound is LBj3;. We developed our branch-
and-price algorithm for the GBPP extending the ideas of Bettinelli et al (2010), who
proposed a branch-and-price technique for the VCSBPP with filling constraints.

CIRRELT-2012-01 7

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

5.1 Bounds at the root node

At the root node we compute the lower bounds LB, LBy, LB3, and the upper bounds
BFD and Zg¢ as described in Section 4.

5.2 Branching

We adapt to the GBPP the branching strategy of Bettinelli et al (2010). At each branch-
ing node we perform a binary branching through two criteria which consider the patterns
created by the column generation at that node. The first criterion involves the number
of bins for each bin type ¢ € 7. If it cannot be adopted (see below) then we move to
the second criterion, which works on the items. In Monaci (2002) the author proposes
another kind of branching based on the assignment of critical items into bins, but this
approach is not very effective.

5.2.1 Branching on the number of bins

Given the patterns created by the column generation when solving the R-SC model, we
compute z; = Zke’ct A and we consider the bin type t* such that z;- has its fractional
part the closest to 0.5. Then in the first child node we impose the additional constraint
to use at least L+ = [z bins of type ¢*, whilst in the second child node we impose the
additional constraint to use at most Uy = |2+ | bins of type t*. If t* does not exist we
consider the second criterion, which branches on the items.

5.2.2 Branching on the items

Given the patterns created by the column generation when solving the R-SC' model, we

compute fi; = D 7 > ek, ai —inai —1 Mk and we select the items i* and j* such that f;- ;-
Fap= k=

is the closest to 0.5. The additional branching constraints are then

Tin = Ty (18)
in the first child node and

8 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

in the second child node. Let us note that constraints (18) and (19) are not explicitly
added to each node. As we show in Section 5.3, they are implicitly managed within the
oracle in the pricing step.

Let us observe that (18) means that items ¢* and j* must be loaded together in the
same bin, otherwise they are not loaded at all. Vice versa (19) states that items ¢* and
j* cannot appear together in the same bin. Note that, whilst for managing constraints
(19) additional code is required, constraints (18) can be implicitly satisfied substituting
the involved items by a macro item, say [, which volume wy; is the total volume of the
items, profit p; is the total profit of the non-compulsory items, and which dual variable
7 is the total of the dual variables of the items. This macro item becomes compulsory
if at least one of its items is compulsory.

5.3 Pricing

Pricing at a given node, say 7j, is performed by applying a column generation technique.
The goal is to tighten the lower bound of node j, LB(j), because if LB(j) > UB then
node j can be closed. As seen in Section 4 the subproblem, our oracle, is a Knapsack
Problem. However, as we have seen in Section 5.2, each non-root node has additional
constraints which modify the nature of the oracle and make it harder to solve. That
is why, to try to save time, we solve in sequence three oracles arranged in a particular
manner. Only if an oracle fails then we move to the next oracle. The reason why we chose
to use three oracles rather than just one is that they are placed in increasing order of
computing time. Indeed, only the third oracle would be enough for the pricing step but
it is also the most time consuming one. Therefore we put before it two simpler oracles
which aim to limit the third oracle usage. The idea of the first two oracles is that they do
not take all the item constraints into account but, if we are lucky enough, their solution
satisfies them and we can skip the third oracle. In particular, the three oracles are:

e Heuristic oracle
e Knapsack Problem without constraints (19)

e Knapsack Problem with constraints (19).

We remind that constraints (18) are implicitly managed in the three oracles through
the introduction of macro items (see Section 5.2.2), therefore only constraints (19) may
appear when solving the oracles. The first subproblem, the heuristic oracle, is a greedy
procedure which produces a pattern by first sorting items by non-increasing values of 7t
and then by trying to insert the sorted items into a bin of the current type t € T. Note
that this oracle may fail due to two reasons: a) the loaded items may violate one of the

CIRRELT-2012-01 9

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

additional constraints (19) (this means that the new pattern is infeasible) or b) since
this procedure is an approximate one, not necessarily a resulting positive reduced cost
(corresponding to the created pattern) means that also all the remaining patterns have
positive reduced costs. In other words, due to the heuristic nature of the first oracle, the
actual reduced cost is not necessarily the minimum one, as would happen for an exact
oracle. Therefore even when the first oracle yields a feasible pattern with a positive
reduced cost, the oracle could fail and in that case we move to oracle two.

The second oracle consists in solving a Knapsack Problem on the items. without
constraints (19). Since this is an exact oracle, it fails only if constraints (19) are violated.
Hence, if the solution satisfies these constraints we are done. Otherwise two things may
happen: a) the solution is not feasible but its reduced cost is positive, b) even the second
oracle fails if at least one of constraints (19) is violated. In the first case, since this is
an exact subproblem, it means that also the remaining patterns have positive reduced
costs, even if the created pattern is infeasible. Therefore we quit. In the second case, we
undergo oracle three.

The third oracle consists in solving a Knapsack Problem with constraints (19). By
construction, it never fails. Nevertheless, the presence of constraints (19) makes it time
consuming. That is why we leave this oracle at the end, after the first two oracles, looking
for a feasible pattern before using it. Computational experience confirms that the third
oracle is actually rarely used.

To speed-up the whole pricing procedure we exploit the fact that the lower bound of a
child node cannot be less than the lower bound of its father node. In other words, let j—1
be the father node of node j (different from the root node), then LB(j) > LB(j — 1).
This means to add to the Master problem (1) - (7), concerning node j, the following
constraint:

>3 ol > LB(j - 1). (20)

teT kel

Note that the introduction of (20) in the Master Problem modifies the oracle (15) - (17).
Let 8 > 0 be the dual variable associated to constraint (20) then, following the same
procedure presented in Section 4, the new column-generation subproblem becomes:

Maximize { Z (1= 0)p; + v4] = + Z i %}

i€INC i€ZC

Subject to: Zwixi < W, teT
ieT

2, €{0,1} i€z

10 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

5.4 Rounding

This technique tries to tighten the lower bound yielded by the pricing procedure. Let
LBy(j) be the lower bound produced by the column generation at node j, then a new
lower bound can be found solving the following problem:

min LB(j) = Z Ciyy — Z Di; (21)

teT i€INC

s.t. ZCtyt — Z pix; > [LBy(j)] (22)
teT i€INC
Z w; + Z w;x; < Z Wiy (23)
€€ i€INC teT
Li<y<U NteT (24)
Zyt <U (25)
teT

where L; and U; are the bounds on the number of bins which have been previously
calculated in the branching step. Finally, we try to tighten the global upper bound by
solving a BFD heuristics with exactly y; bins for each bin type ¢ € T and considering
the disjoint additional constraints on the items. The main idea of the rounding problem
(21) - (26) is to try to increase the lower bound LBs(j) yielded by the pricing step. This
is expressed by constraint (22). Vice versa constraint (23) comes from aggregating some
constraints of the assignment model, as done in the model (8) - (13). The details can be
found in Baldi et al (2011).

6 Beam search

Beam search is a particular heuristics that relies on a branch-and-bound or branch-and-
price tree (Della Croce et al, 2004). The approximated behavior is due to the fact that just
a part of the search tree will be explored. This means that, at a given level of the tree, only
~ nodes are visited. The parameter is the size of the beam. The « nodes are selected
according to a particular criterion. In our tests we have considered a beam size up to 4
and selected those nodes showing the best absolute gaps, computed as |LB(j) — UB(j)].
While the branch-and-price is an exact method, the beam search is an approximated
method. Nevertheless, promising results can be obtained within a computing time much
lower than the branch-and-price. Since the philosophy we adopted when developing the
beam search was to save time, we decided to skip the Zgc computation and the rounding
problem at each node.

CIRRELT-2012-01 11

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

7 Computational results

In this section we present the computational results of our branch-and-price and beam
search methods. The algorithms were coded in C++ and the models implemented with
CPLEX 12.1 (ILOG Inc., 2009). Zgc was computed within a limited computing time
of 20 seconds, when needed. We ran our branch-and-price algorithm with a time limit
of one hour and our beam search with a time limit of three minutes. Experiments were
conducted on a Pentium IV 3.0 GHz workstation with 4 GB of RAM. The instances are
the same used by Baldi et al (2011) and are briefly here described:

e Class 0: This first set is made up by 300 instances; those created by Monaci for the
VSBPP (Monaci, 2002). Since these instances were created for solving the VSBPP,
all items are obviously compulsory. We show here the details of Monaci’s instances,
where ten instances were randomly generated for each combination of number of
items, item volume, and bin types defined as follows:

— Number of items: 25, 50, 100, 200, and 500

— Item volume:

I1: [1, 100]
12: [20, 100]
13: [50, 100]

— Number of bin types:

A: three types of bin, with volumes 100, 120, and 150, respectively, and costs
equal to the volumes

B: five types of bin, with volumes 60, 80, 100, 120, and 150, respectively, and
costs equal to the volumes.

For each bin type t € T, Ly = 0 and Uy is equal to the number of bins equal to
[Viot/Vi], where Vi, is the total volume of the items. No values for U are given
and all the items are compulsory.

e (Class 1: same instances of Class 0 where all the items are non compulsory and their
profits are generated according to the following distribution: p; € [U(0.5,3)w;],
where U stands for the uniform distribution.

e (Class 2: same instances of Class 0 where all the items are non compulsory and the
item profits are generated according to the following distribution: p; € [U(0.5,4)w;],
where U stands for the uniform distribution.

e Class 3: a 500-item class with 60 instances with a percentage of 0%, 25%, 50%,
75%, and 100% of compulsory items.

12 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

In Table 1 we report the branch-and-price results for classes 0, 1, and 2. In particular
column 1 shows the class; column 2 the number of bin types; column 3 the number of
items, column 4 the percentage gap at the root node, column 5 the residual percentage
gap at the end of the branch-and-price; column 6 the number of visited nodes on average,
column 7 the number of instances solved to optimality over 900; column 8 the number
of instances solved to optimality where the solution found at the root node is also an
optimal solution; column 9 the average computing time. Please note that the gap at
the root node is computed as the difference between the best lower and upper bound at

UB(0)—LB(0)
T(O) ‘ . Note that,

since LB(0) can be negative, we compute the gaps with absolute values. To compute the
residual gap at the end of the branch-and-price we define the best lower bound at the
end of the branch-and-price LBpg as follows:

the root node over the best lower bound at the root node; i.e. ’

UB if the best solution found so far is optimal
LBg =
LB(0) otherwise.
. . UB—LB .
Then the residual gap is computed as ‘TBB , where UB is the upper bound

corresponding to the best solution found by the branch-and-price.

The results of Table 1 are quite satisfactory: not only we reduce the gap from 0.13%
to 0.03%, but we also solve to optimality 702 instances over 900. The most difficult
instances to solve are those with 500 items, and in particular those with 3 bin types.
This is justified by the fact that the more the number of items increases, the more the
instance is difficult to solve. Moreover, with 3 bin types the choice on the available bins is
quite reduced. This makes the problem harder due to the presence of equivalent patterns
which increases both the number of variables involved in any column generation iteration
and the fragmentation of these variables in the optimal solution of the pricing procedure.

In Table 2 the branch-and-price results for Class 3 are presented. We decided to
separate Class 3 results from the other classes because these instances are characterized by
the percentage of compulsory items, while the number of items is always 500. Therefore
there is not a direct matching with the columns of Table 1. In Table 2 the columns have
the following meaning: column 1 shows the percentage of compulsory items; column
2 the percentage gap at the root node; column 3 the residual percentage gap after the
branch-and-price; column 4 the number of visited nodes on average; column 5 the number
of instances solved to optimality over 60; column 6 the number of instances solved to
optimality where the solution found at the root node is also an optimal solution; column
7 the average computing time.

The gap at the root node and the residual gap at the end of the branch-and-price
are computed as for Table 1. In this case, we solved to optimality 19 instances over 60,

CIRRELT-2012-01 13

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

i.e. 31% of Class 3 instances. Although the absolute difference of the gap reduction is
approximately the same in the two tables (around 0.1%), the residual gap is not as good
as the one of Table 1. This is justified by two issues. First one, the gap at the root node
is already high. This is justified by the fact that, for large size instances, 20 seconds of
time limit are not enough to compute to optimality Zgc. This implies a higher bound
at the root node. The second issue concerns the fact that, as in Class 3 instances both
compulsory and non-compulsory items are present, two different sets of constraints are
necessary: (2) for compulsory items and (3) for non-compulsory items. This splitting of
items with their relative constraints makes the problem harder to solve and justifies the
gap growth for Class 3 instances.

In Table 3 we report our beam search results. In particular, the columns have the
following meaning: column 1 shows the class number; column 2 the beam size; column
3 the residual percentage gap after applying the beam search; column 4 the number of
instances solved to optimality over 960; column 5 the number of solutions better than
those found by the branch-and-price and finally column 6 the average computing time.
In this table we report all the classes together because we aim to show the overall gap
depending on the beam size rather than on the instance attributes. The residual gap
is computed in a similar way as for the branch-and-price. Indeed, due to the previous
branch-and-price calculation, now we known the optima of many instances and we can
refer to them when computing the final gap. In particular, given an instance, let UB be

the best upper bound found by the beam search. Then the residual gap can be computed

UB—-LBp
LBg

If the branch-and-price could not find an optimal solution, the beam search might find
a better solution. However this is quite rare, as it can be seen in column 5 of Table 3.
The results show very promising gaps for classes 0, 1, and 2, but not so good for Class 3.
This time the high gaps are also justified by the fact that, at the root node, to save time,
we do not compute the Zgc upper bound which would have improved the accuracy of
the method. Of course, increasing the beam size improves the final gap, to the detriment
of the computing time. The relative accuracy of the beam search is highly compensated
by the small computing time, which is less than 3 minutes, when the branch-and-price
requires up to 45 minutes. Therefore we can conclude that the proposed beam search is
a good compromise between accuracy and computational effort.

‘, where L Bpg values are those computed when performing the branch-and-price.

8 Conclusion

In this paper we introduced two different methods for solving the GBPP. The first one
is an exact algorithm based on a branch-and-price scheme. From the branch-and-price
we then derived a beam search heuristics. We finally presented extensive computational
results and showed that most of the GBPP open instances in the literature can be closed.

14 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

CLASS | TYPES | ITEMS | % GAP(0) | % GAP | NODES | OPT | % ROOT | TIME
25 0.27 0.00 5.00 30 22 0.05
20 0.21 0.00 26.33 30 19 0.51

3 100 0.24 0.02 1190.93 28 13 80.62

200 0.18 0.07 4107.80 19 9 1057.24

0 200 0.25 0.20 901.67 13 7 2165.01
25 0.14 0.00 9.93 30 25 0.09
20 0.10 0.00 13.07 30 22 0.31

) 100 0.13 0.01 776.53 29 11 146.84

200 0.09 0.05 2970.27 22 13 680.71

200 0.06 0.03 1008.80 16 9 1908.28

0.17 0.04 1101.03 | 247 150 603.97
25 0.32 0.00 13.80 30 20 0.20

20 0.16 0.00 188.67 30 13 22.41

3 100 0.13 0.04 3297.87 19 6 963.22

200 0.09 0.03 3607.33 21) 1115.82

1 500 0.21 0.21 1099.80 10) 2560.55
25 0.20 0.00 100.07 30 23 9.16

50 0.06 0.00 429.73 30 24 45.65

5 100 0.05 0.01 1939.00 24 12 625.94

200 0.03 0.01 4322.93 18 6 1199.36

200 0.03 0.03 933.47 14 9 2053.72

0.13 0.03 1593.27 | 226 123 859.60
25 0.15 0.00 13.20 30 22 0.30

20 0.19 0.01 797.27 28 17 222.94

3 100 0.07 0.01 2246.07 22 9 744.96

200 0.07 0.04 4593.00 19 7 1209.31

2 200 0.21 0.19 1030.80 11 6 2404.29
25 0.07 0.00 23.07 30 26 1.81

20 0.06 0.01 726.67 28 19 106.84

) 100 0.03 0.01 1974.00 23 13 861.03

200 0.02 0.01 3462.60 22 6 1084.04

500 0.02 0.02 836.53 16 11 1959.58

0.09 0.03 1570.32 | 229 136 859.51

OVERALL 0.13 0.03 1421.54 | 702 409 774.36

CIRRELT-2012-01

Table 1: Branch-and-price results for Classes 0, 1, and 2

15

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

PERC. % GAP(0) | % GAP | NODES | OPT | % ROOT | TIME

0 0.11 0.10 1291.33 3 1 2820.44

25 0.32 0.31 1109.00 4 3 2472.01

20 2.11 1.86 1058.50 4 1 252591

75 0.47 0.41 1080.17 4 0 2749.93

100 0.21 0.15 1234.33 4 1 2626.93
OVERALL 0.65 0.57 1154.67 19 6 2639.04

Table 2: Branch-and-price results for Class 3

CLASS BEAM | % GAP | OPT | IMPROVING | TIME
1 0.33 130 2 23.35

0 2 0.29 150 3 28.59
3 0.28 159 3 31.12

4 0.26 170 3 33.94

0.29 176 4 29.25

1 1.25 99 3 39.29

1 2 1.16 109 3 54.10
3 1.10 114 2 99.71

4 0.98 124 2 64.58

1.12 128 3 54.42

1 0.93 103 4 42.43

2 2 0.84 113 3 53.64
3 0.79 119 2 60.22

4 0.74 123 2 65.89

0.83 129 4 55.54

1 4.97 7 1 145.74

3 2 4.72 9 0 155.54
3 4.70 11 1 157.95

4 4.68 11 1 158.63
4.77 11 2 154.47

OVERALL 1.75 444 13 73.42

Table 3: Beam search results

16 CIRRELT-2012-01

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

Future research will be devoted to the introduction of specific cuts for the GBPP
and derive from them a branch-and-cut-and-price algorithm. This is challenging because
the conditions for deriving cuts for the VOSBPP and accelerating the column generation
available in the literature (Alves and Valério de Carvalho, 2007, 2008) do not hold for
the GBPP.

Acknowledgments

This project has been partially supported by the Ministero dell’Istruzione, Universita
e Ricerca (MIUR) (Italian Ministry of University and Research), under the 2009 PRIN
Project “Methods and Algorithms for the Logistics Optimization”, and the Natural Sci-
ences and Engineering Council of Canada (NSERC) through its Discovery Grants pro-
gram.

References

Alves C, Valério de Carvalho JM (2007) Accelerating column generation for variable sized
bin-packing problems. European Journal of Operational Research 183:1333-1352

Alves C, Valério de Carvalho JM (2008) A stabilized branch-and-price-and-cut algo-
rithm for the multiple length cutting stock problem. Computers & Operations Research
35:1315-1328

Baldi MM, Crainic TG, Perboli G, Tadei R (2011) The generalized bin packing problem.
Tech. rep., CIRRELT, CIRRELT-2011-39

Belov G, Scheithauer G (2002) A cutting plane algorithm for the one-dimensional cutting
stock problem with multiple stock lengths. European Journal of Operational Research
141:274-294

Bettinelli A, Ceselli A, Righini G (2010) A branch-and-price algorithm for the variable
size bin packing problem with minimum filling constraint. Annals of Operations Re-
search 179:221-241

Chu C, La R (2001) Variable-sized bin packing: Tight absolute worst-case performance
ratios for four approximation algorithms. STAM Journal on Computing 30:2069-2083

Correia I, Gouveia L, Saldanha-da-Gama F (2008) Solving the variable size bin packing
problem with discretized formulations. Computers & Operations Research 35:2103—
2113

CIRRELT-2012-01 17

Branch-and-Price and Beam Search Algorithms for the Generalized Bin Packing Problem

Crainic TG, Perboli G, Rei W, Tadei R (2011) Efficient lower bounds and heuristics for
the variable cost and size bin packing problem. Computers & Operations Research
38:1474-1482

Della Croce F, Ghirardi M, Tadei R (2004) Recovering beam search: Enhancing the
beam search approach for combinatorial optimization problems. Journal of Heuristics
10:1381-1231

Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column generation. GERAD 25th
Anniversary Series, Springer, ISBN 978-0-387-25485-2

Friesen DK, Langston MA (1986) Variable sized bin packing. STAM Journal on Comput-
ing 15:222-230

Haouari M, Serairi M (2009) Heuristics for the variable sized bin-packing problem. Com-
puters & Operations Research 36:2877-2884

Haouari M, Serairi M (2011) Relaxations and exact solution of the variable sized bin
packing problem. Computational Optimization and Applications 48:345-368

Hemmelmayr V, Schmid V, Blum C (2012) Variable neighbourhood search for the variable
sized bin packing problem. Computers & Operations Research 39:1097-1108

ILOG Inc (2009) IBM ILOG CPLEX v12.1 User’s Manual (2009)

Kang J, Park S (2003) Algorithms for the variable sized bin packing problem. European
Journal of Operational Research 147:365-372

Martello S, Toth P (1990) Knapsack Problems - Algorithms and computer implementa-
tions. John Wiley & Sons, Chichester, UK

Monaci M (2002) Algorithms for packing and scheduling problems. PhD thesis, Universita
di Bologna, Bologna, Italy

Murgolo FD (1987) An efficient approximation scheme for variable-sized bin packing.
SIAM - Journal on Computing 16:149-161

18 CIRRELT-2012-01

	CIRRELT-2012-01pp
	CIRRELT-2012-01-abstract
	CIRRELT-2012-01

