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Scale properties of the seismic wavefield perspectives
for full-waveform matching

Margherita Maraschini1, Daniele Boiero2, Sebastiano Foti3, and Laura Valentina Socco2

ABSTRACT

Starting from the nondimensionalization of equations of
motion we partition the set of the velocity models in equiva-
lence classes, such that the full waveform of an element in a
given class can be calculated from the full waveform of any
other element in the same class by scaling model parameters.
We give a formal derivation of the seismic wavefield scale
properties and we prove their capability through the use of
numerical examples. Besides this, we introduce how the
scale properties can be used to save computational time
in full waveform modeling and inversion. In forward mod-
eling we can use them for the calculation of the full wave-
form of any model in the same equivalence class of a model
whose full waveform has been previously calculated. In full
waveform inversion, scale properties can be used for full
waveform matching: Given an experimental seismogram
and a synthetic one, we can choose, in the same class of
the synthetic model, another element whose waveform is
closer to the experimental one.

INTRODUCTION

Scale properties of seismic waves are relations between solutions
of different seismic models whose parameters differ for scaling fac-
tors. Partitioning the set of seismic models in equivalence classes
such that seismic parameters of two models in the same class differ
for scaling factors, the ground displacement for a given model can
be obtained from the ground displacement of any model in the same
class if the source is appropriately scaled. Consequently, the
Green’s function of a model in a class can be calculated from
the Green’s function of another model in the same class by scaling
the variables. Scale properties are based on equation nondimension-

alization: If two models have the same nondimensional equations,
the solution of the two problems is only scaled.
Scale properties (or equation nondimensionalization) are used in

several technical and scientific fields. They can be used to improve
algorithm convergence (Barral et al., 2004), to reduce the number of
parameters (Galvanetto, 1999), to build small-scale physical models
as in wind tunnel simulations (Corti et al., 2001), and in geotech-
nical centrifuge (Taylor, 1995; Zornberg et al., 1997). Besides this,
scale properties allow simulation results to be generalized (Carr and
Erneux, 2001; Amatore et al., 2007) and important nondimensional
modeling parameters (e.g., Reynolds number) to be calculated
(Boyer, 2002; Nika et al., 2005).
In geophysics, scale properties are implicitly used when a model

is described in terms of parameter contrasts rather than parameter
values. The normalization with respect to the wavelength, which is
often applied in the description of seismic wave propagation, is a
sort of scaling.
Concerning the surface wave propagation, scale properties of the

dispersion curves, described by Socco and Strobbia (2004), have
been formally demonstrated and applied in a Monte Carlo inversion
by Socco and Boiero (2008). They propose a method to exploit
scale properties: For each randomly sampled model, the dispersion
curve is calculated and shifted close to the experimental curve.
Scale factors, derived by the shift parameters, are then applied to
the original model to improve the efficiency of the Monte Carlo
inversion. A similar approach has been used by Piatti et al.
(2010) for the inversion of vertical electrical sounding and time-
domain electromagnetic data.
Here we present a formal demonstration of scale properties for

wave propagation in elastic media. We show that “similar” seismic
models (i.e., belonging to the same equivalence class) present
“similar” displacement fields and “similar” Green’s functions
(i.e., they can be described by the same dimensionless equations
for an ad hoc set of nondimensionalization factors or characteristic
units).
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To prove this statement, we perform numerical simulations scal-
ing the modeling variables and comparing the results. Through the
use of the same synthetic seismograms, we show how scale proper-
ties may be applied to improve the efficiency of modeling and
inversion.
In forward modeling, the full waveform of a specific model can

be obtained scaling the full waveform of another model of the same
class. In inversion, the scale properties can be used to reduce one or
more units of the dimension of the model parameter space consid-
ered for the inversion. They can also be applied to efficiently reduce
the misfit between the experimental and the synthetic seismogram,
improving the performance of search algorithms.

METHOD

Equivalence classes

Let us call S the set of all the ground seismic models. The set S
can be subdivided in equivalence classes Si by means of an equiva-
lence relation: Two models A and B belong to the same equivalence
class only if it is possible to find nondimensionalization factors
(called characteristic units in the following) such that nondimen-
sional equations of motion of the models (Appendix A) are
the same.
The displacement field and the Green’s function of B can be cal-

culated from the displacement field and the Green’s function of A
by scaling the variables. Consequently, for each class, the forward
operator needs to be calculated only once (Figure 1).

Wave equation nondimensionalization

The demonstration of scale properties for an elastic model is
based on the nondimensionalization of equations of motion, which
is obtained by dividing all the quantities for characteristic units
(Appendices A and B).
Let’s consider two seismic models, A and B. The models A and B

belong to the same class (i.e., they have the same equations of
motion for ad hoc sets of characteristic units) only if there exist
some constants α, β, γ such that:

V2
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�
α

β

�
2

V2
PA

�
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�
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�
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(1)

where x is the spatial coordinate, t is the time, VPA and VPB are the
P-wave velocities of models A and B, respectively, VSA and VSB are
the S-wave velocities of models A and B, respectively, ρA and ρB
are the densities of models A and B, respectively, fAðx; tÞ and

fBðx; tÞ are the body force applied to the medium for t > 0 of mod-
els A and B, respectively, fSAðx; tÞ and fSBðx; tÞ are the pressure
applied to the medium surface for t > 0 of models A and B, respec-
tively, α is the ratio between lengths, β is the ratio between times,
and γ is the ratio between densities. In the following α, β, and γ are
called scale factors.
When sources are appropriately scaled, the displacements of

model B can be calculated from displacements of model A as

uBðx; tÞ ¼ αuA

�
x
α
;
t
β

�
; (2)

and the Green’s functions Gnðx; t; ξ; τÞ of the two profiles are
related by the analytical relation (see Appendix C and equa-
tion C-4):

GnBðx; t; ξ; τÞ ¼
β

α3γ
GnA

�
x
α
;
t
β
;
ξ

α
;
τ

β

�
; (3)

where u ¼ uðx; tÞ is the displacement vector, Gn ¼ Gnðx; t; ξ; τÞ is
the displacement Green’s function generated by an impulsive
source in direction n applied in x ¼ ξ and t ¼ τ.

APPLICATIONS

Example of full-waveform modeling

We generated two synthetic seismograms through a finite
element method code (Comsol Multiphysics®) using an axial sym-
metric scheme and a Ricker wavelet source (the same in the two
models). The models (in the following A and B) are 1D linear elas-
tic isotropic, and the model parameters are summarized in Table 1.
The two models belong to the same equivalence class, and the scale
factors are: α ¼ 2, β ¼ 1.25, γ ¼ 1.11. The sensor’s spacing, ac-
cording to α, is 4 m for model A, and 8 m for model B, while
the sampling rate, according to β, is 1 ms for model A, and
1.25 ms for model B.
The seismograms of models A and B are shown in Figure 2a and

Figure 2b, respectively. The two seismograms differ for offsets and
times, which are scaled by α and β, respectively (Figure 2c). Com-
paring the displacements for each trace of the seismogram A with
the corresponding displacements of the seismogram B, we observe
that the shape is the same, while the amplitudes are scaled
(Figure 2d). In this specific case, since the sources on the surface
(fSA and fSB) are equal in amplitude, the displacements are scaled by
a factor δðα; β; γÞ that can be derived by taking into account the
source and the displacement scaling (equations 1 and 2), and it
can be calculated as:

Figure 1. Schematization of the partition of all possible models in
equivalence classes.
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δ ¼ α3γ

β2
; (4)

where α, β, and γ are the scale factors de-
fined above.
For this example, according to equation 4, δ is

equal to 5.69, and it is the ratio between the dis-
placements of A and B (Figure 2e).
The full waveform for model B could have

been directly obtained from the one computed for
model A just scaling offsets, times, and ampli-
tudes of traces according to the scale factors be-
tween the two models. With the same procedure,
synthetic seismograms can be evaluated for every
model belonging to the class of A and B.

Example of full-waveform matching

To show the perspective of the scale properties
in full waveform matching, we consider two
models A and C (Table 2) belonging to different
equivalence classes, and we show how the scale
properties can be used to efficiently improve the
full waveform matching between them. This can
be done in analogy with the approach proposed
by Socco and Boiero (2008) in surface wave in-
version of dispersion curves. In that case, they
used ratios between the barycenter coordinates
of two dispersion curves (in the frequency-
velocity domain) to retrieve scaling factors.
The idea was to identify a point, which was re-
presentative of the dispersion curves, in order to
evaluate scaling factors to be applied to subsoil
models that make the dispersion curves get closer
(without evaluating the forward problem).
With this aim, for the rastered image of each

seismogram (Figure 3a and Figure 3b), we eval-
uate the image barycenter position (identified by
black stars). The barycenter coordinates are re-
ported in Table 3 for models A and C respectively
and their ratios allow the scaling factors
(α ¼ 1.75, β ¼ 1.28) to be calculated (Table 3).
In Figure 3c, we show the rastered image of the
seismogram obtained from model C after the
scaling. The retrieved scaling factors can be ap-
plied to the S- and P-wave velocity functions
characterizing the model C (Figure 3d) to reduce
their difference with respect to the velocity func-
tions characterizing the model A (Figure 3e). The

Table 1. Characteristics of 1D seismic models A and B.

Layer hA (m) VSA (m/s) VPA (m/s) ρA (kg∕m3) hB (m) VSB (m/s) VPB (m/s) ρB (kg∕m3)

1 5 90 180 1800 10 144 288 2000

2 10 140 280 1800 20 224 448 2000

3 — 200 400 1800 — 320 640 2000

Figure 2. (a) Synthetic seismograms (normalized) model A; (b) Synthetic seismograms
(normalized) model B; (c) comparison of the displacements: trace at offset 200 m for
model A (solid gray); trace at offset 400 m for model B (solid black); (d) comparison of
displacements: trace at offset 200 m for model A (solid gray); trace at offset 400 m for
model B with time scaled by 1.25 (solid black); (d) comparison of displacements: trace
at offset 200 m for model A (solid gray); trace at offset 400 m for model B with time and
amplitude scaled by 1.25 and 5.69 respectively (black dots).
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same reduction can be observed in the full waveform matching be-
tween the two seismograms comparing the ground displacements at
104 m in offset (Figure 4a), and at 1 s in time (Figure 4b). The
displacements for model C are stretched in time and space and
scaled in amplitude (by a factor β2∕α3), to become more similar
to the displacements for model A.
The full waveform matching can be further improved by consid-

ering the scale factor γ (Figure 4a and Figure 4b). After estimating α
and β, from the ratio between the averages of the absolute amplitude

values of the displacements for A and C (Table 4) we also can
estimate δðα; β; γÞ (equation 4) and consequently evaluate the con-
tribute of γ ¼ 1.06.
From the example above, if the two models do not belong to the

same class, the application of the scale properties and the retrieved
scaling factors does not provide a perfect match of the two seismo-
grams, but allows the distance between the two models to be re-
duced. Hence, scale properties could represent a tool for full
waveform inversion.

Table 2. Characteristics of 1D seismic models A and C.

Layer hA (m) VSA (m/s) VPA (m/s) ρA (kg∕m3) hC (m) VSC (m/s) VPC (m/s) ρC (kg∕m3)

1 5 90 180 1800 9 130 300 2000

2 10 140 280 1800 23 240 460 2000

3 — 200 400 1800 — 310 620 2000

Figure 3. (a) rastered synthetic seismogram for model Awith the barycenter (black star); (b) rastered synthetic seismogram for model C with
the barycenter (black star); (c) rastered synthetic seismogram for model C after scaling; (d) S-wave (VS) and P-wave (VP) velocity function of
model A (solid gray and gray dots respectively) and C (solid black and black dots respectively); (e) S-wave (VS) and P-wave (VP) velocity
function of model A (solid gray and gray dots respectively) and C (solid black and black dots respectively) after scaling.
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DISCUSSION

Considering a seismic model as representative of an equivalence
class of models allows the seismogram relative to the considered
model to be associated to any model of that class after proper
scaling. We demonstrate this in the example reported in Figure 2,
where the seismogram of one model is obtained by the application
of proper scale factors from the seismogram of another model of the
same equivalence class. In this way, instead of considering each
model to be unique, we can consider model classes. Model space
can be thus represented in a more efficient way through model
classes, and each model class can be described by a representative
model from which all the others can be directly derived. This can be
profitably exploited in inversion, especially for global search meth-
ods (as shown by Socco and Boiero (2008) for the case of surface
wave dispersion curves) or for full-waveform inversions, which are
computationally expensive. In particular, the spatial and temporal
scaling aspects of the method make it useful to efficiently estimate
the background velocity (Figure 3d and 3e).
We consider the example presented in Figures 3 and 4, and as-

sume that the seismogram of model A is real data to be inverted. If
model C is a randomly generated model in a global search inversion,
or an initial model for a linearized inversion, instead of comparing
the synthetic seismogram relative to C with the real data (A) in a
misfit function, we can (1) compare the two seismograms and re-
trieve the model scale factors, (2) update the model C according to
this scale factors, and (3) compute the misfit between the real data
and the scaled seismogram. In this way, starting from an initial (or
random-generated) model which is quite far from the true one, we
can move closer to the true model by reducing the misfit between
the data, and without the need of computing again the forward
model. What we do is, instead of considering a generic model
of a class and comparing it to our data, we move to the model,
in the same class of the generic one, which is the closest (or at least
closer) to the true one. This means that, instead of performing a
random sampling of model space, we could perform a random sam-
pling among model classes, thus reducing the number of required
forward model calculations in a global search approach (Socco and
Boiero, 2008; Piatti et al., 2010).
Another possible application, which is not an object of this paper,

could be the comparison of different field data to retrieve the scaling
factors between different locations at a site.

CONCLUSIONS

Scale properties of seismic waves can be used to save computa-
tion time in full waveform modeling and inversion of elastic seismic
models. The nondimensionalization of equations of motion allows
the possible models to be divided into classes, such that the full
waveform of one of the elements in a class can be directly calculated
from the full waveform of another element in the same class by
applying the scale factors between the two models.
Two main applications are presented. In forward modeling, if the

full waveform is simulated for a given model, it is straightforward to
get the full waveform for any other model in the same class. In full
waveform matching, when an experimental seismogram is recorded
and a synthetic one is calculated, it can be useful to retrieve the scale
factors between experimental and synthetic data, and consequently
update the synthetic model to another in the same class which is
closer to the experimental one.

Figure 4. (a) displacements of model A (solid gray) and C (solid
black) at offset 104 m. The model C is scaled applying the scale
factors α, β and γ at different stages; (b) displacements of model A
(solid gray) and displacements of model C (solid black) at time 1 s.
The model C is scaled applying the scale factors α, β and γ at dif-
ferent stages.

Table 3. Estimation of the scaling factors between A and C.

Model A C Ratio C/A

Barycenter offset (m) 144.6 252.4 α ¼ 1.75

Barycenter time (s) 1.935 2.478 β ¼ 1.28

Average amplitude (m) j3.135j j0.904j δ ¼ 3.47
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APPENDIX A

DERIVATION OF DIMENSIONLESS EQUATIONS
FOR AN ELASTIC MODE

In this appendix, a formal derivation of dimensionless equations
of motion is provided. The derivation can be subdivided in sev-
eral steps:

• Choice of the model: Dimensional equations of motion can
be written (equations A-1).

• Definition of characteristic units: Dimensional equations of
motion are written replacing each dimensional variable with
the product of a dimensionless variable and a dimensional
characteristic unit (equations A-2).

• Equation adimensionalization: Characteristic units in the
equations are used to define dimensionless parameters and
forces (equations A-3). Each member of equations A-1
becomes dimensionless (equations A-4).

• The relation between the dimensional and dimensionless
displacements is derived (equations A-5).

The demonstration is given for an isotropic medium, but the gen-
eralization to a nonisotropic medium only increments the number of
model parameters that must be opportunely scaled.
The equations of motion for a heterogeneous half-space are (Aki

and Richards, 1980):
8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ρðxÞ ∂
2u
∂t2

¼ fðx; tÞ
þ ½ðλðxÞ þ μðxÞÞ∇∇ · uþ μðxÞΔu�; t ≥ 0; x3 > 0;

ðσnÞ ¼ ½ðμðxÞð∇uþ ∇uTÞ
þ λðxÞ∇ · uIÞð0; 0; 1ÞT � ¼ fSðx; tÞ; t ≥ 0; x3 ¼ 0;

u → 0; t ≥ 0; kxk → ∞;

u ¼ 0; t < 0;

∂u
∂t

¼ 0; t < 0;

(A-1)

where:

u ¼ uðx; tÞ is the vector of the displacement;
fðx; tÞ is the body force applied to the medium for t > 0;
fSðx; tÞ is the pressure applied to the medium surface for t > 0;
x3 is the vertical direction oriented downward;
I is the unit matrix;
T represents the transpose of a given matrix;
σn is the stress vector applied to the interface between adjacent
layers;

λ and μ are the Lamé’s constants;
ρ is the density of the medium;
∇, ∇ ·, Δ represent the gradient operator, the divergence operator,
and the Laplacian operator, respectively.

These equations can be nondimensionalized dividing all the
quantities for the nondimensionalization factors, and changing
the variables. We can write:

x ¼ L̂X; uðx; tÞ ¼ L̂UðX; TÞ; ρ ¼ R̂R;

t ¼ T̂T; v ¼ L̂

T̂
V ; (A-2)

where v is the seismic velocity, small letters represent dimensional
variables, capital letters represent dimensionless variables and
capital letters with hat represent the characteristic units. Moreover
in the following Δ̂, ∇̂, ∇̂ · represent the differential operators with
respect to the nondimensional variables.
Using characteristic units in equations A-2, we define, for a

generic model, nondimensional P-wave velocity VP, and S-wave
velocity VS, density and nondimensional volume and surface forces
as:

V2
PðXÞ ¼

T̂2

L̂2
λðL̂XÞ þ 2μðL̂XÞ

ρðL̂XÞ ¼ T̂2

L̂2
v2PðL̂XÞ;

V2
SðXÞ ¼

T̂2

L̂2
μðL̂XÞ
ρðL̂XÞ ¼

T̂2

L̂2
v2SðL̂XÞ;

RðXÞ ¼ ρðL̂XÞ
R̂

;

FðX; TÞ ¼ T̂2

L̂R̂
fðL̂X; T̂TÞ;

FSðX; TÞ ¼
T̂2

L̂2R̂
fSðL̂X; T̂TÞ. (A-3)

According to equations A-3, equations A-1 can be written as:
8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

∂2U
∂T2

¼ 1

RðXÞFðX; TÞ
þ ½ðV2

PðXÞ − V2
SðXÞÞ∇̂∇̂ · Uþ V2

SðXÞΔ̂U�; TT ≥ 0;X3 > 0;

f½V2
SðXÞRðXÞð∇̂Uþ ∇̂UT Þ

þðV2
PðXÞ − 2V2

SðXÞÞRðXÞ∇̂ · UI�ð0; 0; 1ÞTg ¼
¼ FSðX;TÞ T ≥ 0;X3 > 0;

U → 0; T ≥ 0; kXk → ∞;

U ¼ 0; T ≤ 0;

∂U
∂T

¼ 0; T ≤ 0.

(A-4)

All the quantities present in equations A-4 are dimensionless.
The solution of the system does not depend on model parameters,
but on the ratio between model parameters and their characteris-
tic units.
If UðX; TÞ is the solution of the dimensionless equations A-4, the

solution of equations A-1 is:
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uðx; tÞ ¼ L̂U
�
x

L̂
;
t

T̂

�
. (A-5)

Two models which, for an ad hoc set of model parameters, pre-
sent the same dimensionless equations A-4 (i.e., belong to the same
equivalence class) have the same dimensionless wavefield, and the
dimensional wavefield of a model can be calculated from the
dimensional wavefield of the other one through the dimensionless
wavefield.

APPENDIX B

SCALE PROPERTIES FOR TWO ELASTIC
MODELS BELONGING TO THE SAME

EQUIVALENCE CLASS

In this appendix, we show that two elastic models whose para-
meters and forces are proportional belong to the same class.
To demonstrate this we start from:

• models A and B belong to the same class, only if we can
define characteristic units (equations A-2) such that the di-
mensionless equations of the two models are the same.

• dimensionless equations A-4 for the two models coincide
only if dimensionless parameters defined in equations A-3
coincide, or with simple math, if:

v2PBðL̂BXÞ ¼
�
L̂B
L̂A

T̂A

T̂B

�
2

v2PAðL̂AXÞ ¼

¼
�
α

β

�
2

v2PAðL̂AXÞ;

v2SBðL̂BXÞ ¼
�
L̂B
L̂A

T̂A

T̂B

�
2

v2SAðL̂AXÞ ¼

¼
�
α

β

�
2

v2SAðL̂AXÞ;

ρBðL̂BXÞ ¼
R̂B

R̂A
ρAðL̂AXÞ ¼ γρAðL̂AXÞ;

fBðL̂BX; T̂TÞ ¼
T̂A

2L̂BR̂B

T̂B
2L̂AR̂A

fAðL̂AX; T̂TÞ ¼

¼ γ
α

β2
fAðL̂AX; T̂TÞ;

fSBðL̂BX; T̂TÞ ¼
T̂A

2L̂A
2R̂B

T̂B
2L̂A

2R̂A
fSAðL̂AX; T̂TÞ ¼

¼ γ

�
α

β

�
2

fSAðL̂AX; T̂TÞ; (B-1)

where α ¼ L̂B∕L̂A, β ¼ T̂B∕T̂A, γ ¼ R̂B∕R̂A.
Equations B-1 imply equations 1. Free surface conditions of non-

dimensional equations are automatically coincident if equations 1
are verified, i.e., if and only if the two models belong to the
same class.
When two models belong to the same class, the relation between

displacements of model B from displacements of model A can be
obtained from equation A-5, remembering that the dimensionless
solution U ¼ UA ¼ UB is the same for the two models:

uBðx; tÞ ¼ L̂BU
�

x

L̂B
;
t

T̂B

�
¼

¼ L̂B
L̂A

uA

�
x

L̂B
L̂A;

t

T̂B
T̂A

�
¼

¼ αuA

�
x
α
;
t
β

�
. (B-2)

APPENDIX C

SCALE PROPERTIES OF GREEN’S FUNCTIONS
FOR TWO ELASTIC MODELS BELONGING TO

THE SAME EQUIVALENCE CLASS

When two models A and B belong to the same equivalence class,
it is possible to calculate the Green’s function of model B starting
from the Green’s function of model A.
In order to calculate the relation between the Green’s functions

for the two models, let us define:

fAðx; tÞ ¼ δðx − ξÞδðt − τÞ;

fSAðx; tÞ ¼
�Z

∞

−∞
δðx − ξÞdx3

�
δðt − τÞ; (C-1)

where δðx − ξÞ is a 3D Dirac delta function, i.e., a function
defined on R3 which is 0 if x ≠ ξ and such that

∫ ∞
−∞∫

∞
−∞∫

∞
−∞δðx−ξÞdx1dx2dx3 ¼ 1. Consequently ∫ ∞

−∞δðx−ξÞdx3
is a 2D Dirac delta function, defined on R2.
From equations 1, the corresponding volume and surface forces

for model B are:

fBðx; tÞ ¼ γ
α

β2
δ

�
x − ξ

α

�
δ

�
t − τ

β

�
;

fSBðx; tÞ ¼ γ

�
α

β

�
2
�Z

∞

−∞
δ

�
x − ξ

α

�
d
x3
α

�
δ

�
t − τ

β

�
; (C-2)

which are scaled delta distribution. Their integrals are respectively:

Z
x;t
fBðx; tÞdx1dx2dx3dt ¼

¼
Z
x;t
γ
α

β2
δ

�
x − ξ

α

�
δ

�
t − τ

β

�
dx1dx2dx3dt ¼

¼ γ
α4

β

Z
x;t
δ

�
x − ξ

α

�
δ

�
t − τ

β

�
d
x1
α
d
x2
α
d
x3
α
d
t
β
¼ γ

α4

β
;

and

Z
x1;x2;t

fSBðx; tÞdx1dx2dt ¼

¼
Z
x1;x2;t

γ

�
α

β

�
2
�Z

∞

−∞
δ

�
x − ξ

α

�
d
x3
α

�
δ

�
t − τ

β

�
dx1dx2dt ¼

¼ γ
α4

β

Z
x;t
δ

�
x − ξ

α

�
δ

�
t − τ

β

�
d
x1
α
d
x2
α
d
t
β
¼ γ

α4

β
: (C-3)
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Calling GnA ¼ GnAðx; t; ξ; τÞ ¼ uAðx; tÞ the Green’s function gen-
erated by an impulsive source in direction n applied at x ¼ ξ and
t ¼ τ for model A, from equation B-2 and equations C-3, we can
write:

GnBðx; t; ξ; τÞ ¼
β

α4γ
uBðx; tÞ ¼

¼ α
β

α4γ
uA

�
x
α
;
t
β

�
¼

¼ β

α3γ
GnA

�
x
α
;
t
β
;
ξ

α
;
τ

β

�
; (C-4)

which is the relation between the Green’s functions of the two
models.
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