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Abstract. We show that nontrivial homoclinic trajectories of a family of dis-

crete, nonautonomous, asymptotically hyperbolic systems parametrized by a
circle bifurcate from a stationary solution if the asymptotic stable bundles

Es(+∞) and Es(−∞) of the linearization at the stationary branch are twisted

in different ways.
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Robert Skiba

Faculty of Mathematics and Computer Science
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1. Introduction

In this paper we will investigate the birth of homoclinic trajectories of discrete
nonautonomous dynamical systems from the point of view of topological bifurcation
theory. This means that instead of proving the existence of a homoclinic trajectory
for a single dynamical system we will consider a one parameter family of discrete
nonautonomous dynamical systems on RN having x ≡ 0 as a stationary trajectory
and show that, under appropriate conditions, the dynamical systems with parameter
values close to a given point, must have trajectories homoclinic to 0. Values of the
parameter for which this occurs are called bifurcation points.

Bifurcation theory for various types of bounded solutions of discrete nonauton-
omous dynamical systems have been studied in [10, 21] and more recently in [18, 19].
However our approach is different. We will not look for homoclinics bifurcating at
a value of the parameter given apriori but instead we will discuss the appearance of
homoclinic solutions forced by the asymptotic behavior of the family of linearized
equations at 0.

When the family is asymptotically hyperbolic, the asymptotic stable and unsta-
ble subspaces of the linearized equations form vector bundles over the parameter
space which might be nontrivial when the parameter space carries some nontrivial
topology. We will show that homoclinic trajectories bifurcate from a stationary

1991 Mathematics Subject Classification. Primary: 39A28; 34C23, 58E07; Secondary: 37G20

47A53.
Key words and phrases. Discrete dynamical systems, Homoclinics, Bifurcation, Index bundle,

Fredholm maps.
The first author is supported by MIUR-PRIN 2009-Metodi variazionali e topologici nei fenomeni

nonlineari. The second author is supported in part by Polish scientific grant N N201 395137.
1



2 JACOBO PEJSACHOWICZ AND ROBERT SKIBA

solution if the asymptotic stable bundles Es(+∞) and Es(−∞) of the linearization
along the stationary branch are ”twisted” in different ways.

Our results require methods going beyond the classical Lyapunov-Schmidt re-
duction and spectral analysis at a potential bifurcation point. While similar results
can be proved for general parameter spaces using more sophisticated technology
from algebraic topology, here we will concentrate to on the simplest topologically
nontrivial parameter space, the circle. This is equivalent to considering families of
dynamical systems parametrized by an interval [a, b] with the assumption that the
systems at a and b are the same.

Roughly speaking, we will first translate the problem of bifurcation of homo-
clinic trajectories into a problem of bifurcation from a trivial branch of zeroes for a
parametrized family of C1-Fredholm maps. Then we will consider the index bundle
of the family of linearizations at points of the trivial branch given by the stationary
solutions of the equation. The index bundle of a family of Fredholm operators is a
refinement of the ordinary index of a Fredholm operator which takes into account
the topology of the parameter space. A special ”homotopy variance” property
of the topological degree for C1-Fredholm maps, constructed in [17] relates the
nonorientability of the index bundle to bifurcation of zeroes. On the other hand,
an elementary index theorem, Theorem 4.1, allows us to compute the index bundle
in terms of the asymptotic stable bundles of the linearized problem, relating in this
way the appearance of homoclinics to the asymptotic behavior of coefficients of the
linearized equations. The precise result is stated in Theorem 2.3 of Section 2. An
analogous approach applied to nonautonomous differential equations can be found
in [14, 15].

The paper is organized as follows. In the next section we introduce the problem
and state our main result. In Section 3 we recall the concept of the index bundle
and discuss its orientability. In the fourth section, we compute the index bun-
dle of the family of operators associated to a family of asymptotically hyperbolic
nonautonomous dynamical systems. In Section 5, we discuss the parity of a path of
Fredholm operators of index 0, and we recall the construction in [17] of a topological
degree theory for C1-Fredholm maps of index 0 extending to proper Fredholm maps
the well known Leray-Schauder degree. In Section 6, using the computation of the
index bundle and the homotopy property of the topological degree constructed in
[17] we prove Theorem 2.3. In the seventh section, we illustrate Theorem 2.3 with
a non-trivial example. Section 8 is devoted to comments and possible extensions
of our results. The appendix collects the proofs of various properties of the index
bundle used in the article.

2. The main result

A nonautonomous discrete dynamical system on RN is defined by a doubly in-
finite sequence of maps f = {fn : RN → RN | n ∈ Z}. A trajectory of the system
f : Z× RN → RN is a sequence x = (xn) such that

(1) xn+1 = fn(xn).

In the terminology of [18] (1) is a nonautonomous difference equation whose
solutions are trajectories of the corresponding dynamical system.

In what follows we will always assume that the fn are C1 and that fn(0) = 0.
Under this assumption the system has a stationary trajectory x = 0, where 0 is a
sequence of zeroes. A trajectory x = (xn) of f is called homoclinic to 0, or simply
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a homoclinic trajectory, if lim
n→±∞

xn = 0. Under our assumptions the system f has

always a trivial homoclinic trajectory. Namely, the stationary trajectory 0. We will
look for nontrivial homoclinic trajectories.

A natural function space for the study of homoclinic trajectories is the Banach
space

c(RN ) := {x : Z→ RN | lim
|n|→∞

xn = 0}

equipped with the norm ‖x‖ := supk∈Z |xn|. Any homoclinic trajectory of f is
naturally an element of this space. Moreover, each dynamical system f induces a
nonlinear Nemytskii (substitution) operator

(2) F : c(RN )→ c(RN )

defined by F (x) = (fn(xn)). Under some natural assumptions (see below) F be-
comes C1-map such that F (0) = 0. In this way nontrivial homoclinic trajectories
become the nontrivial solutions of the equation Sx− F (x) = 0, where

S : c(RN )→ c(RN )

is the shift operator S(x) = (xn+1).
The linearization of the system f at the stationary solution 0 is the nonau-

tonomous linear dynamical system a : Z × RN → RN defined by the sequence of
matrices (an) ∈ RN×N , with an = Dfn(0). The corresponding linear difference
equation is

(3) xn+1 = anxn,

If fn = f, for all n ∈ Z, the system is called autonomous. We will deal only with
discrete nonautonomous dynamical systems whose linearization at 0 is asymptotic
for n→ ±∞ to an autonomous linear dynamical system associated to a hyperbolic
matrix. We will call systems with this property asymptotically hyperbolic.

Let us recall that an invertible matrix a is called hyperbolic if a has no eigenvalues
of norm one, i.e., σ(a) ∩ {|z| = 1} = ∅. The spectrum σ(a) of an hyperbolic matrix
a consists of two disjoint closed subsets σ(a) ∩ {|z| < 1} and σ(a) ∩ {|z| > 1},
so RN has the a-invariant spectral decomposition RN = Es(a) ⊕ Eu(a), where
Es(a) (respectively Eu(a)) is the real part of sum of the generalized eigenspaces
corresponding to the part of the spectrum of a inside the unit disk (respectively
outside of the unit disk). It is easy to see that ζ ∈ Es(a) if and only if lim

n→∞
anζ = 0.

The unstable subspace Eu(a) has a similar characterization, i.e., ζ ∈ Eu(a) if and
only if lim

n→∞
a−nζ = 0.

When the linearized system is asymptotically hyperbolic, the map G = S − F
becomes a Fredholm map (at least in a neighborhood of 0) which will allow us to
apply the results of general bifurcation theory for Fredholm maps to our problem
by relating the corresponding bifurcation invariants to the asymptotic behavior of
the linearization at ±∞.

Let us describe precisely our setting and assumptions.
A continuous family of C1-dynamical systems parametrized by the unit circle S1

is a sequence of maps

(4) f = {fn : S1 × RN → RN | n ∈ Z}
such that fn is differentiable with respect to the second variable and, for all n ∈

Z, 0 ≤ j ≤ 1, the map (λ, x) 7→ ∂jfn
∂xj

(λ, x) is continuous.
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To put it shortly, a continuous family of C1-dynamical systems is a continuous
map

f : Z× S1 × RN → RN ,
differentiable in the third variable and such that all the partials depend continuously
on (λ, x). We will use fλ to denote the dynamical system corresponding to the
parameter value λ.

Remark 2.1. Alternatively one can think of f as a double infinite sequence of maps
fn : [a, b]× RN → RN , such that fn(a, x) = fn(b, x) for all n ∈ Z.

Pairs (λ,x) which solve the parameter-dependent difference equation:

(5) xn+1 = fn(λ, xn), for all n ∈ Z,
will be called homoclinic solutions. Equivalently, (λ,x) is a homoclinic solution of
(5) if x = (xn) is a homoclinic trajectory of the dynamical system fλ.

Homoclinic solutions of (5) of the form (λ,0) are called trivial and the set S1×{0}
is called the trivial or stationary branch. We are interested in nontrivial homoclinic
solutions.

We will assume that the family f : Z × S1 × RN → RN of dynamical systems
satisfies the following conditions:

(A0) For all λ ∈ S1 and n ∈ Z, fn(λ, 0) = 0.
(A1) For any M > 0 and ε > 0 there exists a δ > 0 such for all (λ, x), (µ, y) ∈

S1 × B̄(0,M) (1) with d
(
(λ, x), (µ, y)

)
< δ and all j, 0 ≤ j ≤ 1,

sup
n∈Z

∥∥∥∥∥∂jfn∂xj
(λ, x)− ∂jfn

∂xj
(µ, y)

∥∥∥∥∥ < ε.

Here d is the product distance in the metric space S1 × RN .
(A2) For all bounded Ω ⊂ S1 × RN one has

sup
(n,λ,x)∈Z×Ω

∥∥∥∥∥∂fn∂x (λ, x)

∥∥∥∥∥ <∞.
(A3) Let an(λ) :=

∂fn
∂x

(λ, 0). As n→ ±∞ the family of matrices an(λ) converges

uniformly to a family of hyperbolic matrices a(λ,±∞). Moreover, for some,
and hence for all λ ∈ S1, a(λ,+∞) and a(λ,−∞) have the same number of
eigenvalues (counting algebraic multiplicities) inside of the unit disk.

(A4) There exists λ0 ∈ S1 such that

(6) xn+1 = an(λ0)xn,

admits only the trivial solution (xn ≡ 0)n∈Z.

By (A3) the map λ → a(λ,±∞) is a continuous family of hyperbolic matrices.
Since there are no eigenvalues of a(λ,±∞) on the unit circle, the projectors to the
spectral subspaces corresponding to the spectrum inside and outside the unit disk
depend continuously on the parameter λ (see [12]). It is well known that the images
of a continuous family of projectors form a vector bundle over the parameter space
[13]. Therefore, the vector spaces Es(λ,±∞) and Eu(λ,±∞) whose elements are
the generalized real eigenvectors of a(λ,±∞) corresponding to the eigenvalues with

1Given a normed space E, B̄(x, r) and B(x, r), where x ∈ E and r > 0, denote the closed and

open ball around x of radius r in E, respectively.
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absolute value smaller (respectively greater) than 1 are fibers of a pair of vector
bundles Es(±∞) and Eu(±∞) over S1 which decompose the trivial bundle Θ(RN )
with fiber RN into a direct sum:

(7) Es(±∞)⊕ Eu(±∞) = Θ(RN ).

In what follows Es(±∞) and Eu(±∞) will be called stable and unstable asymp-
totic bundles at ±∞.

Our main theorem relates the appearance of homoclinic solutions to the topology
of the asymptotic stable bundles Es(±∞). Due to relation (7) the consideration of
the unstable bundles would give the same result.

In what follows, for notational reasons, it will be convenient for us to work with
the multiplicative group Z2 = {1,−1} instead of the standard additive Z2 = {0, 1}.

A vector bundle over S1 is orientable if and only if it is trivial, i.e., isomorphic
to a product S1×Rk. Moreover, whether a given vector bundle E over S1 is trivial
or is not is determined by a topological invariant w1(E) ∈ Z2.

In order to define w1(E) let us identify S1 with the quotient of an interval
I = [a, b] by its boundary ∂I = {a, b}. If p : [a, b]→ S1 = I/∂I is the projection, the
pullback bundle p∗E = E′ is the vector bundle over I with fibers E′t = Ep(t). Since
I is contractible to a point, E′ is trivial and the choice of an isomorphism between
E′ and the product bundle provides E′ with a frame, i.e., a basis {e1(t), ..., ek(t)}
of E′t continuously depending on t. Since E′a = Ep(a) = Ep(b) = E′b, {ei(a) | 1 ≤
i ≤ k} and {ei(b) | 1 ≤ i ≤ k} are two bases of the same vector space. We define
w1(E) ∈ Z2 by

(8) w1(E) := sign detC,

where C is the matrix expressing the basis {ei(b) | 1 ≤ i ≤ k} in terms of the basis
{ei(a) | 1 ≤ i ≤ k}.

It is easy to see that w1(E) is independent from the choice of the frame. We claim
that w1(E) = 1 if an only if E is trivial. The if part is an immediate consequence
of the definition of w1(E). On the other hand, if w1(E) =, thendetC > 0 and there
exists a path C(t) with C(a) = C and C(b) = Id . Now, fi(t) = C(t)ei(t) is a frame
such that fi(a) = fi(b) and hence Φ(t, x1, . . . , xk) = (t,

∑
xifi(t)) is an isomorphism

between the product bundle S1 × Rk and E. Thus E is trivial.

Remark 2.2. Under the isomorphism H1(S1;Z2) ∼= Z2, w1(E) can be identified
with the first Stiefel-Whitney class of E.

Our main result is:

Theorem 2.3. If the system (5) verifies (A0)–(A4) and if

(9) w1(Es(+∞)) 6= w1(Es(−∞)),

then for all ε small enough there is a homoclinic solution (λ,x) of (5) with ‖x‖ = ε.

The proof will be presented in Section 6.

A point λ∗ ∈ S1 is a bifurcation point for homoclinic solutions of (5) from the sta-
tionary branch (λ,0) if in every neighborhood of (λ∗,0) there is a point a nontrivial
homoclinic solution (λ,x) of xn+1 = fn(λ, xn).

By Theorem 2.3 we can find a sequence of nontrivial homoclinic solutions (λn,xn)
of (5) such that ‖xn‖ → 0. Since S1 is compact λn possesses a subsequence con-
verging to some λ∗ ∈ S1. Hence we obtain:
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Corollary 2.4. Under the assumptions of Theorem 2.3 there exists at least one
bifurcation point λ∗ ∈ S1 of nontrivial homoclinic solutions from the branch of
stationary solutions. In other words there exists a λ∗ ∈ S1 and a sequence (λk,xk)
such that λk → λ∗ and xk 6= 0 is a nontrivial homoclinic trajectory of f .

Let us observe that if f : Z×S1×RN → RN verifies the assumptions of Theorem
2.3 and f̃ : Z× S1 × RN → RN is defined by f̃ = f + h, where

h = (hn) : Z× S1 × RN → RN ,
verifies (A0)–(A2) and moreover

(A3′)
∂hn
∂x

(λ, 0)→ 0 as n→ ±∞ uniformly on λ,

(A4′) sup
n∈Z

∥∥∥∥∥∂hn∂x (λ0, 0)

∥∥∥∥∥ is small enough,

then also f̃ verifies Assumptions (A0)–(A4). Indeed, (A3′) for h implies (A3) for f̃.
On the other hand, it is shown in the proof of Theorem 2.3 that (A3) and (A4)
together imply that the operator Lλ0 : c(RN )→ c(RN ) defined by

Lλ0
x = (xn+1 − an(λ0)xn)

is invertible. Now, that f̃ verifies (A4) follows from (A4′) and the fact that the set
of all invertible operators is open.

Summing up we have:

Corollary 2.5. If f verifies the assumptions of Theorem 2.3 then any perturbation
f̃ = f + h as above must have nontrivial homoclinic solutions bifurcating from the
stationary branch at some point of the parameter space.

3. The index bundle

Let us recall that a bounded operator T ∈ L(X,Y ) (2) is Fredholm if it has finite
dimensional kernel and cokernel. The index of a Fredholm operator is by definition
indT := dim KerT − dim CokerT. The Fredholm operators will be denoted by
Φ(X,Y ) and those of index 0 by Φ0(X,Y ).

The index bundle generalizes to the case of families of Fredholm operators the
concept of index of a single Fredholm operator. If a family Lλ of Fredholm operators
depends continuously on a parameter λ belonging to some topological space Λ and
if the kernels KerLλ and cokernels CokerLλ form two vector bundles KerL and
CokerL over Λ, then, roughly speaking, the index bundle is KerL−CokerL where
one has to give a meaning to the difference by working in an appropriate group
generalizing Z. We will first define such a group and then will see how to handle
the case where the kernels do not form a vector bundle.

If Λ is a compact topological space, the Grothendieck group KO(Λ) is the group
completion of the abelian semigroup Vect(Λ) of all isomorphisms classes of real
vector bundles over Λ. In other words, KO(Λ) is the quotient of the semigroup
Vect(Λ) ×Vect(Λ) by the diagonal sub-semigroup. The elements of KO(Λ) are
called virtual bundles. Each virtual bundle can be written as a difference [E]− [F ]
where E,F are vector bundles over Λ and [E] denotes the equivalence class of (E, 0).
Moreover, one can show that [E]− [F ] = 0 in KO(Λ) if and only if the two vector

2By L(X,Y ) we will denote the space of bounded linear operators between two Banach spaces

X and Y.
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bundles become isomorphic after the addition of a trivial vector bundle to both
sides. Taking complex vector bundles instead of the real ones leads to the complex
Grothendieck group denoted by K(Λ). In what follows the trivial bundle with fiber
Λ × V will be denoted by Θ(V ). The trivial bundle, Θ(RN ), will be simplified to
ΘN .

Let X, Y be real Banach spaces and let L : Λ→ Φ(X,Y ) be a continuous family
of Fredholm operators. As before Lλ ∈ Φ(X,Y ) will denote the value of L at the
point λ ∈ Λ. Since CokerLλ is finite dimensional, using compactness of Λ, one can
find a finite dimensional subspace V of Y such that

(10) ImLλ + V = Y for all λ ∈ Λ.

Because of the transversality condition (10) the family of finite dimensional sub-
spaces Eλ = L−1

λ (V ) defines a vector bundle over Λ with total space

E =
⋃
λ∈Λ

{λ} × Eλ.

Indeed, the kernels of a family of surjective Fredholm operators form a finite di-
mensional vector bundle [13]. Denoting with π the canonical projection of Y onto
Y/V, from (10) it follows that the operators πLλ are surjective with KerπLλ = Eλ,
which shows that E ∈ V ect(Λ).

We define the index bundle IndL by:

(11) IndL = [E]− [Θ(V )] ∈ KO(Λ).

Notice that the index bundle of a family of Fredholm operators of index 0 belongs

to the reduced Grothendieck group K̃O(Λ) which, by definition, is the kernel of the
rank homomorphism rk : KO(Λ)→ Z given by

rk([E]− [F ]) = dimEλ − dimFλ.

We will mainly, but not always, work with families of Fredholm operators of index
0. If Λ = pt consists of just one point, then the rank homomorphism rk is an
isomorphism and the index bundle coincides with the ordinary numerical index
indL = dim KerL − dim CokerL of a Fredholm operator L. The index bundle
enjoys the same nice properties of the ordinary index. Namely, homotopy invariance,
additivity with respect to directs sums, logarithmic property under composition
of operators. Clearly it vanishes if L is a family of isomorphisms. We will use
these properties in the sequel. The precise statements and proofs can be found in
Appendix A (Proposition 9.1).

It can be shown that any element η ∈ K̃O(Λ) can be written as [E] − [ΘN ].

Moreover, [E]− [ΘN ] = [E′]− [ΘM ] in K̃O(Λ) if and only if there exist two trivial
bundles Θ and Θ′ such that E⊕Θ is isomorphic to E′⊕Θ′, (see [11, Theorem 3.8]).

The obstruction w1(E) to the triviality of vector bundle E over S1 defined in

Section 2 induces a well defined homomorphism w1 : K̃O(S1)→ Z2 by putting

(12) w1([E]− [F ]) = w1(E)w1(F ).

Indeed, taking Λ = S1 we observe that w1(E) remains unmodified under addition
of a trivial vector bundle which, on the basis of the above discussion, proves that
(12) is well defined.

Proposition 3.1. The homomorphism w1 : K̃O(S1)→ Z2 is an isomorphism.
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Proof. This follows again from the above discussion and the fact that w1(E) = 1
implies that E is a trivial vector bundle over S1. �

4. The index bundle of the family of operators associated to linear
asymptotically hyperbolic systems

In this section we will deal only with linear asymptotically hyperbolic systems
a : Z × S1 → GL(N), where GL(N) is the set of all invertible matrices in RN×N .
This means:

(a) As n→ ±∞ the sequence a(λ) = (an(λ)) converges uniformly with respect
to λ ∈ S1 to a family of matrices a(λ,±∞).

(b) a(λ,±∞) ∈ GL(N) is hyperbolic for all λ ∈ S1.

Given a family a of asymptotically hyperbolic systems parametrized by S1 let us
consider the family of linear operators

L = {Lλ : c(RN )→ c(RN );λ ∈ S1}

defined by Lλ = S −Aλ, where S is the shift operator and

Aλ : c(RN )→ c(RN )

is defined by Aλx := (an(λ)xn).
Since the sequence (an(λ)) converges uniformly, it is bounded, from which follows

immediately that Aλ and Lλ are well defined bounded operators. Moreover it is
easy to see that the map A : S1 → L(c(RN ), c(RN )) defined by A(λ) := Aλ is
continuous with respect to the norm topology of L(c(RN ), c(RN )). Hence the same
holds for the family L.

Clearly, x = (xn) ∈ c(RN ) verifies a linear difference equation xn+1 = an(λ)xn
if and only if Lλx = 0.

By the discussion in the previous section the families a(λ,±∞) ∈ GL(N) define
two vector bundles Es(±∞) over S1. The next theorem relates the index bundle of
the family L to Es(±∞).

Theorem 4.1. Let a : S1×Z→ GL(N) be a continuous map verifying (a) and (b).
Then the family L : S1 → L(c(RN ), c(RN )) verifies:

(i) Lλ is a Fredholm operator for all λ ∈ S1.
(ii) IndL = [Es(+∞)]− [Es(−∞)] ∈ KO(S1).

Remark 4.2. In the proof of Theorem 4.1 we will also compute the index of Lλ in
terms of dimensions of the stable spaces at ±∞. This is far from being new, and
similar computations using exponential dichotomies can be found in many places,
e.g., [5, 22]. Here we are not interested in the index but rather in the index bundle
and our theorem can be considered an extension to the case of families of the
computations quoted above.

Proof. Let ā : S1 × Z→ GL(N) be defined by

(13) ā(λ, n) = (an(λ)) =

{
a(λ,+∞) if n ≥ 0,

a(λ,−∞) if n < 0.

Put X := c(RN ). Fix λ ∈ S1 and denote by Āλ ∈ L(X,X) the operator associ-
ated to āλ. We claim that the operator Kλ = Aλ − Āλ is a compact operator. To
this end, we will show that Kλ is the limit (in the norm topology of L(X,X)) of
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a sequence of operators K̃m
λ with finite dimensional range. We observe that Kλ is

defined by Kλx = (kn(λ)xn), where kn(λ) = an(λ)− ān(λ) and define

(14) K̃m
λ x =

{
kn(λ)xn if |n| ≤ m,
0 if |n| > m.

Clearly Im K̃m
λ is finite dimensional. We are to prove that

(15) sup
‖x‖=1

‖(Kλ − K̃m
λ )x‖ −−−−→

m→∞
0,

for x ∈ X. Observe that

‖(Kλ − K̃m
λ )x‖ = sup

|n|>m
‖kn(λ)xn‖ ≥ sup

|n|>m+1

‖kn(λ)xn‖ = ‖(Kλ − K̃m+1
λ )x‖,

(16)

for all m ∈ N. Since

lim
|n|→∞

kn(λ) = 0,

we infer that for all ε > 0 there exists n0 > 0 such that for all |n| > n0 and ‖x‖ = 1
one has

‖kn(λ)xn‖ < ε.

Consequently, for all ε > 0 there exists n0 > 0 such that

(17) sup
‖x‖=1

‖(Kλ − K̃n0

λ )x‖ ≤ ε.

Now taking into account (16) and (17), we deduce that for all ε > 0 there exists
n0 > 0 such that for all m ≥ n0 one has

(18) sup
‖x‖=1

||(Kλ − K̃m
λ )x|| ≤ ε,

which proves (15) and the compactness of the operator Kλ.
Let L̄λ = S − Āλ. Then Lλ − L̄λ = Kλ and hence the family L differs from the

family L̄ by a family of compact operators. Therefore Lλ is Fredholm if and only if
L̄ is Fredholm and moreover the homotopy invariance of the index bundle applied
to the homotopy H(λ, t) = L̄λ + tKλ shows that Ind L̄ = IndL. Hence in order to
prove the theorem we can assume without loss of generality that a has already the
special form of (13), which we will do from now on. Let

c+
k = {x ∈ c(RN ) | xi = 0 for i < k},

c−k = {x ∈ c(RN ) | xi = 0 for i > k}.

Both c±k are closed subspaces of c(RN ). The space c+
k can be isometrically identified

with

ck(RN ) := {x : [k,∞) ∩ Z→ RN | lim
n→∞

xn = 0}

and similarly for c−k .

Put X+ = Y + = c+
0 and X− = c−0 , Y

− = c−−1. Let us consider four linear

operators I : Y −⊕Y + → X, J : X → X−⊕X+, L+
λ : X+ → Y + and L−λ : X− → Y −
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defined respectively by

I(x,y) = x + y,

J(x)(n) =


(x0, x0) if n = 0,

(xn, 0) if n < 0,

(0, xn) if n > 0,

(L+
λ x)(n) =

{
xn+1 − a(λ,+∞)xn for n ≥ 0,

0 for n < 0,

(L−λ x)(n) =

{
0 for n > −1,

xn+1 − a(λ,−∞)xn for n ≤ −1.

We decompose Lλ : X → X via the following commutative diagram:

(19)

X− ⊕X+ Y − ⊕ Y +

X X.

-
L−
λ⊕L

+
λ

?

I

6
J

-
Lλ

The commutativity of diagram (19) is easy to check.
Indeed, one has

I(L−λ ⊕ L
+
λ )Jx(n) = L−λ Jx(n) + L+

λ Jx(n) =

{
(L+

λ x)(n) if n ≥ 0,

(L−λ x)(n) if n < 0,

which is the same as

(20) (Lλx)(n) =

{
xn+1 − a(λ,+∞)xn if n ≥ 0,

xn+1 − a(λ,−∞)xn if n < 0.

Next, we will show that L±λ : X± → Y ± are Fredholm and we will compute the
index bundles of L±.

For L+
λ this is the content of the following Lemma:

Lemma 4.3. ([2, Lemma 2.1]) Let a ∈ GL(N) be an hyperbolic matrix. Then the
operator S −A : c+

0 → c+
0 , defined by

((S −A)x)(n) =

{
xn+1 − axn if n ≥ 0,

0 if n < 0,

is surjective with

ker(S −A) = {x ∈ c+
0 | xn+1 = anx0 for all n ≥ 0 and x0 ∈ Es(a)}.

This lemma was proved in [2, Lemma 2.1] by constructing an explicit right inverse
to the operator S −A : c+

0 → c+
0 . �

By Lemma 4.3

(21) KerL+
λ = {x ∈ X+ | xn = a(λ,+∞)nx0 and x0 ∈ Es(λ,+∞)}.

Hence the transformation x 7→ x0 defines an isomorphism between KerL+ and
Es(λ,+∞), which is finite dimensional. Being CokerLλ = 0, L+

λ is Fredholm with

indL+
λ = dimEs(λ,+∞). Clearly the index bundle IndL+ = [Es(+∞)].
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We will reduce the calculation of IndL− to Lemma 4.3 as follows:
Put Y − := c−−1 and X− := c−0 and consider the family of isomorphisms

B = {Bλ : Y − → Y −} defined by

(Bλx)(n) =

{
0 for n > −1,

−a−1(λ,−∞)xn for n ≤ −1.

We compose L−λ : X− → Y − on the right with the isomorphism Bλ : Y − → Y −

followed by the negative shift S−1 viewed as an operator from Y − to X−. Since
both operators are isomorphisms the composition does not affect the Fredholm
property. On the other hand considering S−1 as a constant family of isomorphisms,
by logarithmic property of the index bundle, IndS−1BL− = IndL−. Hence the
index bundle of L− coincides with the index bundle of the family D = S−1BL−.
Observe now that, if x ∈ Y −, then

(BλL
−
λ )x)(n) =

{
0 for n > −1,

xn − a−1(λ,−∞)xn+1 for n ≤ −1.

But since S−1x = (xn−1), one obtains

(Dλx)(n) =

{
0 for n > 0,

xn−1 − a−1(λ,−∞)xn for n ≤ 0.

Thus Dλ : X− → X− is the same type of operator as L+
λ but with n going from

0 to −∞. By Lemma 4.3, each Dλ is surjective. Moreover,

(22) KerDλ = KerL−λ = {x ∈ X− | xn = a(λ,−∞)nx0 and x0 ∈ Eu(λ,−∞))}

is isomorphic to Eu(λ,−∞).
Summing up, we have obtained that Ind L+ = [Es(+∞)] and IndL− = [Eu(−∞)].

In particular we have

(23) indL+
λ = dimEs(λ,+∞) and indL−λ = dimEu(λ,−∞).

With this at hand we can compute the index bundle of L completing the proof
of the theorem. Let us notice firstly that I and J are Fredholm operators. Indeed,
I : Y − ⊕ Y + → X is clearly an isomorphism, and the map J : X → X− ⊕ X+ is
a monomorphism whose image is given by Im J = {(a,b) ∈ X− ⊕X+ | a0 = b0}.
Putting P : X− ⊕ X+ → RN by P (a,b) := a0 − b0, for a ∈ X− and b ∈ X+,
one obtains that Im J = KerP. But since P is an epimorphism, we deduce that
Coker J = X−⊕X+/KerP ' RN and therefore J is Fredholm of index −N . From
the commutativity of diagram (19) and (23) it follows that Lλ = I(L−λ ⊕ L

+
λ )J is

Fredholm and

(24)
ind(Lλ) = ind(I) + ind(L−λ ⊕ L

+
λ ) + ind(J) =

dimEs(λ,+∞) + dimEu(λ,−∞)−N =
dimEs(λ,+∞)− dimEs(λ,−∞).

As for (ii), considering I and J as constant families of Fredholm operators,
Ind I = 0, Ind J = −[Θ(RN )]. Using the logarithmic and direct sum properties of
the index bundle together with (7), we obtain

IndL = [Eu(−∞)] + [Es(+∞)]− [Θ(RN )] = [Es(+∞)]− [Es(−∞)],

which proves (ii). �
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Remark 4.4. Notice that from (21), (22) and (20) it follows that in the case of
systems of the special form (13) elements of KerLλ are sequences (xn) ∈ X such
that x0 ∈ Es(λ,+∞) ∩ Eu(λ,−∞) and

xn = a(λ,+∞)nx0, for n ≥ 0 and xn = a(λ,−∞)nx0, for n ≤ 0.

5. Parity and topological degree of C1-Fredholm maps

In order to deal with the nonlinear aspects of the problem we will use an exten-
sion of the well known Leray-Schauder degree to proper Fredholm maps of index
0 introduced in [17] under the name of base point degree. This construction uses a
homotopy invariant of paths of Fredholm operators of index 0 called parity which is
closely related to the index bundle. We will briefly review the concept of parity and
the construction of the base point degree. We are specially interested in the partic-
ular form of the homotopy property of the base point degree since it represents the
main argument in our proof of Theorem 2.3.

From now on we will consider only Fredholm operators of index 0.
Given a continuous map L : [a, b] → Φ0(X,Y ), a regular parametrix (or regular-

izator) for the path L is a path of isomorphisms P : [a, b] → Iso(Y,X) such that
LtPt = Id Y −Kt and PtLt = IdX −K ′t, where Kt,K

′
t are operators of finite rank.

Every path in Φ0(X,Y ) possesses at least one parametrix. Below we describe a
construction related to the index bundle (see [9] for details):

Given L : [a, b] → Φ0(X,Y ), arguing as in the construction of the index bundle
(see Section 3), we take a finite dimensional subspace V of Y and consider the vector
bundle

(25) E =
⋃

t∈[a,b]

{t} × L−1
t (V ).

It is easy to see that dimEt = dimV , where Et := L−1
t (V ). Since E is a trivial

bundle there is a vector bundle isomorphism T : E → Θ(V ) = [a, b]×V. Let Qt be a
family of projectors of X with Im Qt = Et, let Q′ be a projector with Ker Q′ = V
and let At = Q′Lt + TtQt. It is easy to see that At is an isomorphism for any
t ∈ [a, b]. Its inverse Pt := A−1

t is a regular parametrix for L because, as it is easy
to see, LtPt = Id Y −Kt with Im Kt ⊂ V and PtLt = IdX −K ′t with Im K ′t ⊂ Et.

Let now L : [a, b]→ Φ0(X,Y ) be a path such that both La and Lb are invertible
operators. Let P be a parametrix for L. Then LtPt = Id Y − Kt is invertible for
t = a and t = b, and so are its restrictions Ct : V → V to any finite dimensional
subspace V containing the images of Kt.

The parity of the path L is the element σ(L) ∈ Z2 = {1,−1} defined by

σ(L) = sign detC(a) sign detC(b).

It is easy to see that this definition is independent of the choices involved and
that the parity is invariant under homotopies of paths with invertible end points.
Moreover it has the following multiplicative property: if {Ik, 1 ≤ k ≤ m} is a
partition of I = [a, b] then

(26) σ(L) =

m∏
k=1

σ(L|Ik).

It can be shown that σ(L) = 1 if and only if L can be deformed to a family of
invertible operators by a homotopy which keeps the end points invertible (see [9]).
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If the path L is closed, i.e., La = Lb, then, via the identification S1 ' [a, b]/{a, b}
we can consider the path L as a map L : S1 → Φ0(X,Y ) and relate the parity of a

closed path with the obstruction to triviality w1 : K̃O(S1)→ Z2.

Lemma 5.1. Under the above assumptions,

(27) σ(L) = w1(IndL).

Proof. Since, by Proposition 3.1, w1 is an isomorphism of K̃O(S1) with Z2 it is
enough to check that σ(L) = 1 if and only if IndL = 0. Let us recall that two
bundles are stably equivalent if they become isomorphic after addition of trivial
bundles on both sides. It is well known [11] that stable equivalence classes form a

group isomorphic to the reduced Grothendieck group K̃O(Λ).
Since the index bundle of a family of Fredholm operators of index 0 belongs to

K̃O(Λ), it follows that IndL can be identified with the stable equivalence class of
the vector bundle E =

⋃
λ∈Λ {λ} × L

−1
λ (V ) arising in the construction (10).

If IndL = 0 ∈ K̃O(S1), then, for some k ≥ 0, E ⊕ Θ(Rk) is isomorphic to the
trivial bundle Θ(V ⊕ Rk), where V is as in (10). Taking in the definition of the
index bundle in (11) a larger subspace V ′ such that V ′/V ∼= Rk we can assume
that E itself is trivial. If we use such a V ′ in the construction of a parametrix for
L : [a, b]→ Φ0(X,Y ) as described above, then we get σ(L) = 1.

On the other hand, if σ(L) = 1, then one can modify any parametrix of L on
[a, b] to a parametrix P with Pa = Pb, which defines P on S1. Then for any t ∈ S1

we have PtLt = Id Y −Kt with Kt compact and therefore

H(t, s) = P−1
t (Id Y − sKt)

is a homotopy in Φ0(X,Y ) between L and a family of isomorphisms, which implies
that IndL = 0 by Proposition 9.1. �

Now let us sketch the construction of the base point degree in [17].
Let O ⊂ X be an open simply connected set and let f : O → Y be a C1-Fredholm

map of index 0 that is proper on closed bounded subsets of the domain (recall that
a C1-map f : O → Y is Fredholm of index 0 if the Fréchet derivative Df(x) of
f at x is a Fredholm operator of index 0, for all x ∈ O). Using the parity we
can assign to each regular point (3) of the map f an orientation ε(x) = ±1 with
similar properties to the sign of the Jacobian determinant in finite dimensions.
For this we choose a fixed regular point b of f, called base point, and then the
corresponding orientation εb(x) at any regular point x is uniquely defined by the
requirement εb(x) = σ(Df ◦ γ), where γ is any path in O joining b to x. Since O
is simply connected, the independence from the choice of the path follows from the
homotopy invariance of the parity.

Let Ω be an open bounded set whose closure is contained in O such that 0 is a
regular value of the restriction of f to Ω and such that 0 6∈ f(∂Ω). Then the base
point degree of f in Ω is defined by

(28) degb(f,Ω, 0) =
∑

x∈f−1(0)

εb(x).

In the above definition we use the convention that a sum over the empty set is 0.
It is proved in [17] that this assignment extends to an integral-valued degree

theory for C1-Fredholm maps defined on simply connected sets that are proper on

3 p is a regular point of f if Df(p) is an isomorphism.
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closed bounded subsets of its domain. The base point degree is invariant under
homotopies only up to sign and, as a matter of fact, since the identity map of
a (separable) Hilbert space can be connected to an isomorphism of the form the
identity map plus a compact map whose Leray-Schauder degree is −1, no degree
theory for general Fredholm maps extending the Leray-Schauder degree can be
homotopy invariant.

The main reason for introducing the base point degree is that the change in sign
along a homotopy can be determined using the parity.

An admissible homotopy in our setting is a continuous family of C1-Fredholm
maps h : [0, 1] × O → Y parametrized by [0, 1] which is proper on closed bounded
subsets of [0, 1]×O. As usual, continuous family of C1-maps means that h is continu-
ous, differentiable in the second variable with the derivative continuously depending
on (t, x).

Our proof of the main result will be based on the following homotopy variation
property of the base point degree (see [16, Lemma 2.3.1]):

Lemma 5.2. Let h : [0, 1] × O → Y be an admissible homotopy, and let Ω be an
open bounded subset of X such that 0 6∈ h([0, 1]× ∂Ω). If bi ∈ O is a base point for
hi =: h(i,−); i = 0, 1, then

(29) degb0(h0,Ω, 0) = σ(M)degb1(h1,Ω, 0),

where M : [0, 1]→ Φ0(X,Y ) is the path L ◦ γ, where L(t, x) = Dht(x) and γ is any
path joining (0, b0) to (1, b1) in [0, 1]×O.

6. Proof of Theorem 2.3

Let f : Z× S1 ×RN → RN be a continuous family of nonautonomous dynamical
systems verifying (A0)–(A2). Take X := c(RN ) and let F : S1×X → X be defined
by

(30) F (λ,x) = (fn(λ, xn)), for x ∈ X and λ ∈ S1.

Firstly we observe that F : S1 × X → X is well defined. Indeed, given x ∈ X,
taking into account Assumption (A2), we deduce that

Cλ := sup
(n,s)∈Z×[0,1]

∥∥∥∥∥∂fn∂x (λ, sxn)

∥∥∥∥∥ <∞,
for all λ ∈ S1. Hence using the mean value estimate we get

‖fn(λ, xn)‖ = ‖fn(λ, xn)− fn(λ, 0)‖ ≤ sup
s∈[0,1]

∥∥∥∥∥∂fn∂x (λ, sxn)

∥∥∥∥∥ · ‖xn‖ ≤ Cλ‖xn‖.
Thus fn(λ, xn)→ 0 as n→ ±∞, which proves that the map F : S1×X → X is well
defined. Furthermore, the same argument allows us to define the family of linear
bounded operators T : S1 ×X → L(X,X) by

(31) T (λ,x)y :=

(
∂fn(λ, xn)

∂x
yn

)
,

for x = (xn),y = (yn) ∈ X and λ ∈ S1.

Lemma 6.1.
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i) If f verifies (A1) and (A2), then the map F : S1 ×X → X defined by (30)
is a continuous family of C1-maps parametrized by S1. Moreover DFλ(x) =
T (λ,x).

ii) If also (A3) holds, then there exists a closed neighborhood D = B̄(0, δ) of 0
in X such that the restriction of F to S1×D is a proper continuous family
of C1-Fredholm maps of index 0. Namely, F : S1 × D → X is continuous
and proper. Moreover, for any λ ∈ S1, the map F : S1 ×D → X is differ-
entiable in the second variable and DFλ(x) is a Fredholm operator of index
0 continuously depending on (λ,x).

Proof. The proof of i) follows the lines of [20, Lemma 2.3]. We sketch it below
for convenience of the reader, since our setting is slightly more general than the

one in [20]. Notice that (A1) tells that the sequence, for j = 0, 1, ∂jfn
∂xj is uni-

formly equicontinuous, while (A2) means that the restriction of the same sequence
to bounded subsets of the domain is equibounded.

The continuity of F and the map T defined above follows easily from the equicon-
tinuity assumption (A1).

For fixed x ∈ X and λ ∈ S1 we will show that DFλ(x) = T (λ,x). To this end,
let

(32) R(x,h;λ) := ‖F (λ,x + h)− F (λ,x)− T (λ,x)h‖,

where h ∈ c(RN ) and λ ∈ S1. We are to show that R(x,h;λ)
‖h‖ → 0 as ‖h‖ → 0. Let

cn(h;λ) := sup
s∈[0,1]

∥∥∥∥∥∂fn(λ, xn + shn)

∂x
− ∂fn(λ, xn)

∂x

∥∥∥∥∥,
for n ∈ Z. Then Assumptions (A2) and (A1) imply that

(33) cn(h;λ) <∞ and sup
n∈Z

cn(h;λ)→ 0 as ‖h‖ → 0.

Then ∥∥∥∥∥fn(λ, xn + hn)− fn(λ, xn)− ∂fn(λ, xn)

∂x
hn

∥∥∥∥∥ =∥∥∥∥∥
∫ 1

0

∂fn(λ, xn + shn)

∂x
hnds−

∂fn(λ, xn)

∂x
hn

∥∥∥∥∥ ≤∫ 1

0

∥∥∥∥∥∂fn(λ, xn + shn)

∂x
− ∂fn(λ, xn)

∂x

∥∥∥∥∥ds · ‖hn‖ ≤∫ 1

0

sup
n∈Z

cn(h;λ)ds · ‖hn‖ = ‖hn‖ · sup
n∈Z

cn(h;λ) ≤ ‖h‖ · sup
n∈Z

cn(h;λ).

Hence

(34) 0 ≤ R(x,h;λ) ≤ ‖h‖ sup
n∈Z

cn(h;λ),

which implies that R(x,h;λ)
‖h‖ → 0 as ‖h‖ → 0. This completes the proof of i) since

we already know that T is continuous.
Let us prove ii). By the previous considerations the map G(λ,x) = Sx−F (λ,x)

is a continuous family of C1-maps. Since an(λ) = ∂fn
∂x (λ, 0), it follows from (31)
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that DGλ(0) is the operator Lλ : X → X defined by

(35) Lλx = (xn+1 − an(λ)xn).

Being a asymptotically hyperbolic, by Theorem 4.1, the operator Lλ is Fredholm
with index given by (24). Thus indLλ = 0, since by (A3) the stable subspaces at
±∞ have the same dimension.

Since Φ0(X,X) is an open subset of L(X,X), by continuity of DGλ(x) and
compactness of S1, there exists a δ > 0 such that the restriction of G to S1×B(0, δ)
is a continuous family of C1-Fredholm maps of index 0. Using compactness of S1

again, we can find an eventually smaller δ such that for all λ ∈ S1 the restriction
of G to S1 × B̄(0, δ) becomes proper, because continuous families of C1-Fredholm
maps are locally proper ([7, Lemma 3.5]). �

Now we can finalize the proof of Theorem 2.3 using the homotopy variance prop-
erty of base point degree. By (A4), Lλ0

is injective, and hence it follows from the
Fredholm alternative that Lλ0

must be invertible. The inverse function theorem
implies that for δ > 0 small enough 0 is the only solution of Gλ0

(x) = 0 in B(0, δ).
Moreover we can take δ so small that G : S1× B̄(0, δ)→ X verifies ii) of the above
Lemma. To simplify notation we suppose that λ0 = 1 ∈ S1.

Assume that for ε < δ there are no homoclinic solutions (λ,x) of (5) with ‖x‖ = ε,
then Gλ(x) 6= 0 on ∂B(0, ε). Consider the homotopy H : [0, 1] × B̄(0, ε) → X
defined by H(t,x) = G(exp(2πit),x). Then H is an admissible homotopy with
H0 = G1 = H1. Furthermore, we can take b = 0 as the base point for both H0 and
H1. Since 0 6∈ H

(
[0, 1]× ∂B(0, ε)

)
by Lemma 5.2, with γ(t) = (t, 0),

deg0(H1, B(0, ε),0) = σ(M)deg0(H0, B(0, ε),0),

where M(t) = Lexp(2πit). By definition of the degree for a regular value (28) we
have

(36) deg0(Hj , B(0, ε),0) = deg0(G1, B(0, ε),0) = 1, j = 0, 1.

Thus σ(M) = 1. But σ(M) coincides with the parity of the closed path L. Hence,
by Lemma 5.1, Theorem 4.1 and (12)

1 = σ(L) = w1(Ind L) = w1(Es(+∞))w1(Es(−∞)),

which contradicts our assumption. �

7. An example

In this section we are going to illustrate the content of Theorem 2.3 comparing
our result with the standard theory.

For λ = exp(iθ), 0 ≤ θ ≤ 2π, we put

a(λ) = a(exp iθ) :=

(
1/2 + (3/2) sin2 θ/2 −(3/4) sin θ
−(3/4) sin θ 1/2 + (3/2) cos2 θ/2

)
and consider the linear nonautonomous system a = (an(λ)) : Z × S1 → GL(N)
defined by

(37) an(λ) =

{
a(λ) if n ≥ 0,

a(1) if n < 0.

Notice that system a has the special ”jump” form (13), used in the proof of
Theorem 4.1.
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Since independently of λ ∈ S1 the matrix a(λ) has two eigenvalues 1/2 and 2,
the system a is asymptotically hyperbolic.

We will apply our results to nonlinear perturbations of a. We compute the as-
ymptotic stable bundles of a at ±∞ :

Es(+∞) = {(λ, u) ∈ S1 × R2 | u = t(cos(θ/2), sin(θ/2)), λ = exp(iθ), t ∈ R},
Es(−∞) = {(λ, u) ∈ S1 × R2 | u = (t, 0), t ∈ R}.

Thus Es(−∞) is a trivial bundle and hence w1(Es(−∞)) = 1. In order to compute
w1(Es(+∞)) we notice that vθ = (cos(θ/2), sin(θ/2)) is a basis for Esθ(+∞) which
is the fiber of the pullback E′ of Es(+∞) by the map p : [0, 2π] → S1 defined by
p(θ) = exp(iθ).

Since v0 = (1, 0) and v2π = (−1, 0), the determinant of the matrix C arising in
(8) is −1. Hence w1(Es(+∞)) = −1 6= w1(Es(−∞)). Notice that Es(+∞) is an
infinite Moebius band while Es(−∞) is an infinite cylinder.

If h is any nonlinear perturbation of a verifying (A0)–(A2) and (A3′), (A4′) then
by Corollary 2.5 the family f = a + h must have nontrivial homoclinic solutions
bifurcating from the stationary branch at some λ∗ ∈ S1.

On the other hand, let us consider the family L of operators Lλ defined by

Lλ(x)(n) =

{
xn+1 − a(λ)xn if n ≥ 0,

xn+1 − a(1)xn if n < 0.

By Remark 4.4 KerLλ is isomorphic to Es(λ,+∞) ∩ Eu(λ,−∞).
But Eu(−∞) = {(λ, u) ∈ S1 × R2 | u = (0, t), t ∈ R} and hence a nontrivial

intersection arises only for θ = π, i.e., λ = −1. Thus KerLλ 6= 0 only if λ = −1.

Now, if h verifies, in a neighborhood of λ = −1, that ‖hn(λ,x)‖
‖x‖ → 0 uniformly

in (n, λ), we can use the classical approach based on Lyapunov-Schmidt reduction
in order to obtain the existence of a branch of homoclinics bifurcating from the
stationary branch at this point.

Indeed, if the above condition holds true, the family H : S1 × c(RN ) → c(RN ),
induced on function spaces, verifies H(λ,x) = o(‖x‖) as x→ 0. Being KerL−1 one
dimensional, we can check the hypothesis of the Crandal-Rabinowitz Bifurcation
Theorem in order to find at λ = −1 a bifurcating branch of homoclinics [8].

Instead, by using Corollary 2.5, we lost any information about the position of the
bifurcation point, but we proved the appearance of nontrivial homoclinic trajectories
for a rather general class of perturbations.

To some extent, the use in bifurcation theory of elliptic invariants ”at large” in
place of the Lyapunov-Schmidt method parallels the use of the topological degree
instead of the multiplicity of an isolated solution in continuation problems. This
observation is formulated more precisely in [16]. Let us point out however, that
the relation between the birth of homoclinics and the topology of asymptotic stable
bundles is interesting by itself and goes beyond the formal aspects of the abstract
theory.

8. Comments

It should be noted that our results can be proved under weaker assumptions.
Mainly, it suffices to assume that the nonautonomous difference system admits an
exponential dichotomy [5, 18, 20]. This becomes useful in dealing with difference
equations in Banach spaces. On the other hand our method can be easily adapted
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in order to study bifurcation of homoclinics on manifolds. Following [2], to each
finite dimensional manifold M and discrete dynamical system f on M having x ∈M
as a stationary trajectory we can associate the Banach manifold cx(M) which is a
natural place for the study of trajectories of the dynamical system f homoclinic to
x.

There are two interesting problems which were not considered here. Namely,
global bifurcation, which studies the existence of connected branches of solutions
and their behavior, and the existence of large homoclinic trajectories using bifur-
cation from infinity. These will be treated in a forthcoming paper of the present
authors.

9. Appendix: Properties of the index bundle

Proposition 9.1. The element IndL ∈ KO(Λ) defined by (11) is independent from
the choice of V. Moreover the index bundle IndL verifies:

(i) Functoriality: If L : Λ → Φ(X,Y ) is a family of Fredholm operators and
α : Σ→ Λ is a continuous map between compact spaces, then

IndL ◦ α = α∗(IndL),

where α∗ : KO(Λ)→ KO(Σ) is the homomorphism induced by α.
(ii) Homotopy invariance: Let H : [0, 1] × Λ → Φ(X,Y ) be a homotopy, then

IndH0 = IndH1. In particular, Ind (L + K) = IndL, if K is a family of
compact operators.

(iii) Additivity: Ind
(
L⊕M

)
= IndL+ IndM.

(iv) Logarithmic property: Ind
(
LM

)
= IndL+ IndM.

(v) Normalization: If L is homotopic to a family in GL(X,Y ), then IndL = 0.
Moreover, the converse holds if Y is a Kuiper space.

We will first show that the index bundle is well defined: If V1 and V2 are two
subspaces verifying the transversality condition (10) and E,F are the correspond-
ing vector bundles, we can suppose without loss of generality that V1 ⊂ V2 and
hence that E is a subbundle of F. The restriction of the family L to F induces an
isomorphism of F/E with the trivial bundle with fiber V2/V1. Since exact sequences
of vector bundles split, it follows that F is isomorphic to a direct sum of E with a
trivial bundle and hence E−Θ(V1) and F −Θ(V2) define the same class in KO(Λ).
This shows that IndL is well defined.

Clearly IndL = 0 if L is homotopic to a family of invertible operators. Taking
the same subspace V in the definition of the index bundle for both L and L ◦ α,
property (i) follows plainly from the definition of α∗(E). Now, (ii) follows from (i)
applied to the top and bottom inclusions of Λ in [0, 1] × Λ. The proof of (iii) is
straightforward. In order to prove (iv) we observe that in the construction of the
index bundle one can replace the finite dimensional subspace V of Y with a finite
dimensional subbundle of Λ×Y transverse to L. Now, if Θ(V ) is transverse to LM,
then Θ(V ) is transverse to L and E = L−1Θ(V ) is transverse to M . Then, denoting
by F = M−1E, in KO(Λ) we have

Ind
(
LM

)
= [F ]− [Θ(V )] = ([F ]− [E]) + ([E]− [Θ(V )]) = IndL+ IndM.

The proof of (v) can be found in [9, Theorem 1.6.3].
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