
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Partitioned cache architectures for reduced NBTI-induced aging / Calimera, Andrea; M., Loghi; Macii, Enrico; Poncino,
Massimo. - (2011), pp. 1-6. (Intervento presentato al convegno DATE 2011 nel 2011).

Original

Partitioned cache architectures for reduced NBTI-induced aging

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2471385 since: 2020-11-07T18:02:26Z

IEEE

Partitioned Cache Architectures for
Reduced NBTI-Induced Aging

†Andrea Calimera, ‡Mirko Loghi, †Enrico Macii, †Massimo Poncino
†Politecnico di Torino, 10129, Torino, ITALY
‡Universitå di Udine, 33100, Udine, ITALY

Abstract—Conventional power management knobs such as volt-
age scaling or power gating have been shown to have a beneficial
effect on the aging phenomena caused Negative Bias Temperature
Instability (NBTI). Such a benefit can be especially exploited
in SRAM memories, which are particularly sensitive to NBTI
effects: given their symmetric structure, they cannot in fact take
advantage of value-dependent recovery.
We propose an architectural solutions that is based on the idea of
partitioning a memory into multiple banks of identical size. While
this organization has been widely used for reducing both dynamic
and static power, its exploitation for aging benefits requires
proper management of the existing idleness of the various banks.
This can be achieved by means of a sort of time-varying
addressing scheme in which addresses are mapped to different
banks over time in such a way that the idleness is uniformly
distributed over all the banks.
Experimental analysis shows that it is possible to simultaneously
reducing leakage power and aging in caches, with minimal
overhead and without modifying the internal structure of the
SRAM arrays.

I. INTRODUCTION

Power and reliability have traditionally been considered as
conflicting metrics, since most design solutions for improving
reliability (redundant circuits, strong signals, large devices)
are intrinsically power inefficient. The recent emergence of
reliability issues in the form of aging (i.e., temporal drift of
performance) of devices has opened a new perspective of this
dichotomy.
The most critical source of device aging in sub-65nm tech-
nologies is Negative Bias Temperature Instability (NBTI) [1],
which affect pMOS devices under negative bias (i.e., Vgs < 0,
i.e., when a “0” is applied on the gate input of a pMOS). The
physical effect is actually a temporal drift of the threshold
voltage, which translates into a delay increase over time. Such
an increase is partially mitigated by the application of a logic
“1” to the pMOS gate: under this condition, the device will
partially recover the delay [1].
Recent works have shown that the two traditional power
management knobs may help alleviating the aging. Voltage
scaling has a beneficial effect because supplying a device with
a smaller Vdd translates into a smaller Vgs, and therefore in a
smaller magnitude of negative bias [2].
Power gating, when implemented through a footer transistor,
is an even more powerful lever: when a logic block is dis-
connected from the ground network the floating nodes inside
the block are in fact pulled to a logic “1”, thus completely
nullifying the aging effects [3].
This link between power management and aging establish
thus a novel type of power/reliability tradeoff: the latter are
not conflicting metrics anymore; rather, the tradeoff that now
emerges is due to the fact that the application of such power
management comes at the price of some performance penalty.
For voltage scaling, because device delay is inversely propor-
tional to supply voltage; for power gating, because the on-

resistance of the sleep transistor causes a voltage drop across
it, which reduces the effective voltage swing, causing in turn a
performance penalty of the gated block in the active state. As
a result, the mitigation of the temporal drift in performance
provided by these power management knobs must be weighted
against the time-zero delay penalty they introduce.

Some solutions for managing this tradeoff have been proposed
in the literature for logic circuits [4], [2], [3] as well as for
memory structures [5], [6], [7].

In this work, we focus on SRAM memories, and specifically
on caches, by proposing a purely architectural approach based
on a multi-bank, partitioned cache implementation, and which
achieves maximum aging reduction at no penalty in power
consumption. More precisely, we build upon the work of [7],
in which an innovative time-varying cache indexing scheme
called dynamic indexing was proposed. By modifying the
cache indexing function over time, it is possible to achieve
ideal (i.e., uniform) distribution of accesses to the cache lines.
This implies that every cache line can be put into a low-power
state (through voltage scaling or power gating) for the same
amount of time so that all cache lines will become unreliable
at the same time.

This technique achieves optimal results with minimal over-
head; however, it is suitable for situations where the mod-
ification of the internal structure of a cache is allowed; in
many cases, however, this is not feasible. SRAM memories
are normally very highly-optimized designs, and in custom
design flows memories are obtained from a memory compiler
that generates standard memory structures.

In this work we propose an implementation of dynamic
indexing suitable for standard caches, which is based on the
idea of partitioning a memory into multiple banks in order to
maximize the potential for power management [8], [9], [10].
Unlike these works, however, in which the banks have non-
uniform sizes and are calculated by profiling of the application
code, in our approach all sub-blocks have the same size (a
power of two) in order to simplify the hardware complexity of
“remapping” one sub-block onto another. Another difference
is that our scheme inherits from dynamic indexing the property
of being general-purpose: the same architecture is applicable
to any workload and does not require any customization or
profiling.

Results show that a time-varying reindexing allows to sig-
nificantly improve the lifetime of power-managed caches:
our scheme provides average aging improvements between
22% (for the worst configuration) and 2x (for the best one)
with respect to a monolithic cache, compared to a mere 9%
improvement obtained with a conventional power-managed
cache architecture.

II. BACKGROUND AND RELATED WORK

A. Background
For an in-depth analysis of NBTI effects and models we refer
the reader to classical tutorial papers on NBTI (e.g., [1]). We
summarize here the basic issues involved in NBTI-induced
aging in SRAM cells and arrays.
Due to the symmetric structure of a cell, a SRAM cell ages
in fact whatever the value it stores; therefore the effect of the
dependency on logic values is immaterial in a memory cell.
The best-case degradation occurs when both PMOS exhibit
the same amount of degradation, that is when the cells stores
a 0 and a 1 with equal probability [11].
Another important aspect is that the aging of the two inverters
in the bitcell does not truly affects the delay of the cell. Rather,
it impacts its stability. A conventionally accepted metric for
the aging of a SRAM cell is the Static Noise Margin (SNM),
defined as the minimum DC noise voltage necessary to change
the state of an SRAM cell; when the SNM of a cell falls
below a threshold that allows safe storage of data it cannot be
safely read or written. This threshold strongly depends on the
technology and the specific design of the memory cell (e.g.,
transistor W/L ratios).

B. Related Work
Techniques for the reduction of NBTI effects follow two main
approaches: (i) compensating solutions, where the circuit is
designed with a tighter delay constraint so that the aging will
still be within the original timing constraint after some time;
(ii) mitigating solutions, which act directly on the variables
that affect NBTI aging: Vth and/or Vdd, gate sizes, and signal
probabilities [4], [12].
A distinct class of solution that combines power (static,
in particular) and aging reduction interacts with the power
states of the circuit under analysis. These schemes exploit the
availability of a “sleep” signal that indicates when the circuit
is entering the standby state. The low-power state can be
exploited either by using a sort of “gated” version of standard
library cells thus allowing to minimize the number of logic 0’s
in the circuit [13], or by using special vectors to be applied
during standby [14].
Concerning the mitigation of NBTI effects in SRAMs, most
approaches attempt at structurally or functionally maximazing
the conditions under which the degradation in a memory
cell does not occur or it is minimal. One first approach was
proposed in [11]: since a 50% probability of storing a value
provides minimum aging, they provide hardware and software
schemes to periodically invert the entire content of a memory
so as to guarantee a perfectly balanced probability. A similar
idea was proposed by [15], yet at a word granularity and with
a much shorter inversion frequency (thousands of cycles). A
flip signal determines whether values are to be read or written
in inverted form; each memory word has a flip bit which is
copied from the flip signal upon access.
The method of [16] proposes a new memory cell structure
consisting of a set of NAND gates arranged in such a way
that minimum degradation ratio for all PMOS transistors in
the cell can be obtained.
Another solution called recovery boosting [18] allows both
pMOS devices in the memory cell to be put into the recovery
mode by raising the ground voltage and bitlines to the nominal
voltage through modification of each memory cell.
A different class of solutions is based on the exploitation of
the above mentioned benefit provided by low-power states.

In [17], the authors assess the aging benefits provided by
the application of power gating to a memory cell, observing
that it has a much higher impact than controlling the value
probability. Benefits at the architectural level on entire memory
blocks of power management solutions (both based on DVS
and power-gating) were evaluated in [5], [6].
The work of [7] proposes a dynamic indexing scheme in which
the cache indexing function is modified over time in order
to achieve an uniform distribution of idleness over the cache
lines; in this way all the leakage savings opportunities can
also be used for aging reduction. This work yields optimal
results (i.e., all cache lines have identical lifetime), but adopts
the architectural template of many popular cache leakage
optimization solutions (e.g., [19], [20]), in which a cache line
is the unit of power management. This choice implies the re-
quirement that the internal cache structure should be modified,
which is not always feasible, e.g. in the case standard design
flows using memory blocks obtaned by memory compilers.

III. AGING-AWARE CACHE PARTITIONING

The architecture we propose in this paper can be viewed
as a coarse-grain implementation of the scheme of [7]. The
choice of granularity is dictated by the possibility of using
standard memory blocks generated automatically by memory
compilers. In practice, we implement a multi-banked cache as
done in [8]–[10]; unlike these approaches, however, which use
blocks of variable size, we use banks with uniform sizes. This
choice has three advantages: first, all decoding operations are
much simpler in hardware; second, it allows us to implement
a general-purpose, application-independent architecture (all
the above mentioned architectures are application-specific and
require profiling of the application). Third, no degradation of
miss rate is experienced. Since idleness is distributed over the
various sub-blocks, all blocks will fail approximately at the
same time and the cache will work as the non-partitioned one
until the failing time is reached.
On the other hand, restricting the sizes of the blocks to
pre-determined sizes can exploit only partially the existing
idleness; therefore, both power and aging reductions will be
lower than those achievable with non-uniform partitions.

A. Coarse-Grain Dynamic Indexing
1) Preliminaries: Let us assume a direct-mapped cache with
L = 2n lines (l0, . . . , lL−1); n is the number of the index
bits of the cache address. We partition the cache into M
blocks B0, . . . , BM−1, where M = 2p is a power of two
for obvious practical reasons. Each block will contain exactly
2n−p lines. M will be in general a small number (≤ 16 in our
experiments) because an arbitrarily fine partitioning will ex-
cessively increase the wiring overhead. Further discussion on
the partitioning overhead will be discussed in the experimental
section.
We assume each block can be turned into a low-power state in
which dynamic and/or leakage power is reduced. In our work,
such a low-power state is implemented by reducing the supply
voltage as described in [10]: as a matter of fact, this is the
only viable choice for standard memory blocks provided by
memory compilers; implementing power-gating on a standard
block would require accessing the internals of the memory
[10]. Furthermore, using voltage scaling allows to preserve the
contents of the memory block in the standby state; although
a non state-preserving option would be feasible in caches
(lost values could be retrieved in farther levels of the memory
hierarchy), the results of [7] have shown that a voltage-scaled

n
n-p

M=2p

address

select
p

(MSB)

n-p

1-hot

encoder

(a)

(b)

M=2p

0

2n-p-1

0

2n-p-1

0

2n-p-1

n-pn

D

B0

B1

BM-1

...
...

Vdd Vdd, low

Selector

M Vss

Vss

Vss

Control

2p

Fig. 1. M -Block Uniformly Partitioned Cache (a) and Structure of Decoder
D (b).

implementation has better power/delay characteristics due to
lower state transition overhead.
Figure 1-(a) shows a conceptual block diagram of a M -block
partitioned cache; solid lines represent address lines, dashed
ones are “activation” signals, and dotted lines denote power
supply signals. Turning off a block is done by asserting its ac-
tivation signal select, which in our architecture corresponds
to the selection of the Vdd,low supply voltage.
The block labeled D (Figure 1-(b)) implements these two
operations: remapping the address on the proper block and
asserting the select activation signals for the M blocks.
Address signals to each block are simply derived by routing
the n − p LSBs of the address to each sub-block. Activation
signals are obtained by taking the p MSBs and transforming
them into a 1-hot code (block 1-hot encoder) onto 2p bits
(e.g., Bank 0 corresponds to the M -bit encoding 00 . . . 1, Bank
M − 1 corresponds to 100 . . . 0). Block Control implements
the block de-activation mechanism. As done in similar im-
plementation, the decision is based on its access frequency:
if a block is not accessed for some number of cycles it is
turned into a low-power state. This threshold, known as the
breakeven time in the power management terminology, is non-
zero because turning on and off a block has some non-zero
overhead. The value of the breakeven time depends essentially
on (i) the size of the block to be turned off, and (ii) the
ratio between the energy spent in the off and in the on state.
Therefore, the decision implemented by Block Control is: turn
a block into a low-power state. if it is not accessed for a
number of cycles greater than the breakeven time.
In order to realize this, Block Control contains M counters
which are incremented upon a non-access (a 0 on the 1-hot
encoded signal), and reset upon an access (a 1 on the 1-hot
signal). When a counter saturates, its terminal count signal (1
if the counter saturates) is used as the output selection signal.
The width of the counter obviously depends on the value of
the breakeven time: in our case is in the order of a few tens
of cycles (it clearly depends on M). Therefore, 5- or 6-bit

counter suffice. Finally, Block Selector drives the correct value
of supply voltage (Vdd or Vdd,low) to each block according to
the encoding on the select signals.
Notice that the performance overhead of this encoder is
negligible; the longest combinational input/output delay in the
1-hot encoder goes through a single logic gate corresponding
to the binary encoding of the corresponding minterm.
2) Motivation: The architecture of Figure 1 will save dynamic
and leakage power because, thanks to the locality of accesses,
it is quite common that one or more blocks are idle for a
significant amount of time and can then be turned into a low-
power state. We define a compact metric to measure the energy
saving potential, i.e., the useful idleness of a block. This is
defined as the percentage of idle intervals of a block that are
longer than its breakeven time. Let (I0, . . . IM−1) be these
values. The various Ij , j = 0, . . . ,M − 1 will have in general
quite different values. For power saving purposes, this is not so
relevant since the total power saving is related to the average
idleness. For aging, however, it is the worst-case idleness that
matters; thus, if one block has very little idleness, it will fail
before the others. Table I shows, for a M = 4 partition the
worst-case idleness of each block, for the benchmarks used
in our simulations. Column Average is the average idleness
over the four banks, and is a measure of the achievable power
saving.

I0 I1 I2 I3 Average
adpcm.dec 2.46% 99.98% 99.98% 3.75% 51.54%
cjpeg 22.64% 53.24% 59.37% 9.51% 36.19%
CRC32 18.54% 2.19% 44.38% 2.88% 16.99%
dijkstra 12.06% 18.55% 50.65% 56.28% 34.38%
djpeg 67.66% 29.23% 27.89% 24.97% 37.44%
fft_1 49.35% 48.34% 61.32% 9.12% 42.03%
fft_2 54.78% 51.82% 58.03% 6.96% 42.90%
gsmd 6.92% 90.81% 92.82% 0.40% 47.74%
gsme 49.17% 72.88% 89.34% 0.37% 52.94%
ispell 66.36% 55.63% 44.82% 21.04% 46.96%
lame 58.78% 32.94% 38.62% 13.74% 36.02%
mad 37.25% 48.74% 34.00% 28.10% 37.02%
rijndael_i 82.35% 31.72% 22.61% 3.71% 35.10%
rijndael_o 20.59% 19.45% 91.78% 3.63% 33.86%
say 88.53% 85.51% 26.59% 12.42% 53.26%
search 66.57% 23.43% 48.00% 57.78% 48.95%
sha 4.91% 98.62% 94.09% 3.13% 50.19%
tiff2bw 33.88% 17.43% 67.38% 70.49% 47.29%
Average 41.71%

TABLE I
DISTRIBUTION OF IDLENESS IN A 4-BANK CACHE.

We notice that in many cases the differences in the Ii’s are
quite significant; as an example, in benchmark adpcm.dec
Banks 0 and 3 have very low idleness (< 4%), whereas Banks
1 and 2 can be virtually put to sleep all the time (99.98%).
The two banks with very low idleness basically nullify the
chance of exploiting idleness for aging reduction. Conversely,
the average idleness is sizeable (more than 51%), allowing
significant power savings (about 42% on average over all
the benchmarks). Similar consideration apply to most of the
benchmarks.
A possible solution to this problem could be that of im-
plementing some form of graceful, stepwise management of
the aging of the cache. For instance, we could progressively
disable cache sub-blocks that become progressively unusable.
However, such an architecture has several drawbacks. First, as
cache blocks are progressively disabled, the application will
use a progressively smaller cache, with consequences on the
overall performance of the program. Moreover, such a scheme
relies on the availability of some sort of aging “detector”,

which can warn (and disable) the architecture that a given
block cannot be used reliably.
For these reasons, we use another approach which tries to
uniformly distributing the idleness over the blocks.
3) Implementation: One way of uniformly distributing idle-
ness could be that of changing the mapping of the addresses
to the various blocks as time progresses. Let us first describe
the conceptual operations of this time-varying indexing.
Consider address i (cache index value), and suppose that (at
time 0) this address maps to the k-th line in Block j; In order to
distributed the accesses, after some time the mapping function
will change and the same address i will map to the the k-th
line of another block. Which block is used depends on the
chosen indexing policy.
Figure 2 shows the modifications required to the decoder D
of Figure 1-(b); they consist of the addition of an extra block
before the one-hot encoder; block f() implements the dynamic
indexing, that is, it modifies the index value whenever the
signal update is triggered.

n
n-p

M=2p

address

select
p

(MSB)

n-p

1-hot

encoder
Control

2p

update

f()

Fig. 2. Generic Dynamic Indexing Architecture.

Two are the issues to be addressed for a precise definition of
the implementation of this architecture: the choice of functions
f(), and the issue of the updating mechanism.
Choice of Indexing: The problem of spreading a value uni-
formly over a range shares many similarities with other
engineering and computer science problems such as uniform
hashing, cryptographic codes, or scrambling in coding the-
ory. Although the problem is not new and many solutions
are available, in our context we must privilege simplicity
of implementation since every cache access undergoes this
transformation and it affects the cache access time.
We borrow some of the schemes proposed in [7], where re-
indexing was done on the entire set of cache index bits. Here,
as shown in Figure 2, the re-indexing only involves the p
MSBs of the address. We experimented with two schemes:

• Probing, which mimic the linear probing used in open
addressing in hash tables (Figure 3-(a));

• Scrambling, which mimic the de-correlation operation
used to minimize conflict misses in caches [21] (Figure
3-(b)).

The Probing scheme implements the re-mapping of lines of
Bank i to Bank i+1 (modulo M). At time 0, address i maps to
the (i mod 2n−p−1)-th line of Bank (i/2n−p−1). Therefore,
upon receiving the first update, address i will map to the same
(i mod 2n−p− 1)-th line, this time in Bank (i/2n−p− 1+1)
After R updates intervals address i will be mapped to (i
mod 2n−p − 1)-th line of Bank (i/(2n−p − 1+R) mod M).
Example 1: Assume N = 256 lines partitioned into M = 4
banks. Each block has N/M = 64 lines. Consider address
i = 70. At time 0 this will correspond to line 70 mod 63 = 7
of Bank 70/7 = 1. Upon first update, line 70 will map to line
7 of Bank 70/7 + 1 = 2; upon second update, line 70 will
map to line 7 of Bank 3; upon third update, line 70 will map
to line 7 of Bank 0.

In hardware, Probing can simply be implemented by summing
the p-bit bank address and a value incremented by the update
signal. Modulo M operations are automatically achieved by
restricting all signals to p bits. (Figure 3-(a)).

+
cnt

update

p

p

p

⊕
LFSR

update

p

p

p

(a) (b)

Fig. 3. Probing (a) and Scrambling Architectures (b).

The Scrambling scheme is even simpler to describe. When
the update signal is triggered, these scheme maps bank
address i to a randomly chosen bank (0, . . . ,M −1). Uniform
distribution properties of the random generator guarantees
that a quasi-uniform distribution of idleness is obtained. In
hardware (Figure 3-(a)), this can be implemented by bitwise
XOR-ing the p-bit bank address with a randomly generated
number (e.g., by means of a LFSR).
Concerning the effectiveness of these schemes in uniformly
distributing the idleness, in [7] it was proven that a Probing
scheme with an increment of 1 (as proposed in this work)
provides perfectly uniform distribution of values, provided that
a number of updates greater than or equal to the number
of slots is executed. Since M is in our case quite small,
uniformity will be achieved very quickly.
Concerning Scrambling, it can asymptotically approach the
quality of Probing. The speed of this convergence depends on
the number of repeated values in the RNG (the LFSR in our
work) [7].
Updating the Indexing: It is obvious that every time the
indexing is updated through the update signal, the entire
cache content becomes unusable and a cache flush is required.
While this appears as a potentially critical issue, in practice it
is not so.
Updates can in fact be activated with a very low frequency
(e.g., once a day or even less frequently) given the typical time
horizons of aging (i.e., years). Furthermore cache flushes occur
regularly in cache (e.g., on a context switch); we can thus
simply associate the update event to any cache flush occurring
in the system. This results in a true zero energy overhead, but
for the small amount of energy dissipated by f .

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
The proposed methodology has been implemented and tested
on a set of traces extracted from the simulation of the
MediaBench suite [22] with in-house cache simulator. The
latter has been augmented with aging and power/energy mod-
els derived from an industrial 45nm design kit provided by
STMicroelectronics.
As described in Section II, a commonly accepted metric for
SRAMs aging is given by the degradation of SNM vs. time.
We define the lifetime of a memory cell as the time after which
the SNM has decreased by more than 20%. However, since
such SNM data are not integrated into standard design flows,
we implemented a dedicated SPICE-based characterization

framework which predicts, under user-defined PVT operating
conditions, the aging profile of a 6T-SRAM cell. Such a
framework uses physical characteristics of the cell (netlist, size
of the transistors, process parameters) as well as functional
information (the probability, p0, to store a ‘0’ logic, and the
idleness, Psleep, of the cell) and performs the evaluation in
two phases: the pre-stress and the post-stress simulation.
In the first phase, the aging of the pMOS transistors is
computed on the base of HSPICE built-in aging models,
fitted to the technology parameters provided by silicon vendor.
The aging information sampled during pre-stress simulation
are then translated into device parameter degradation (i.e.,
threshold voltage degradation ∆Vth) and annotated into the
SRAM cell netlist as DC-controlled voltage sources on the
gate terminal of each pMOS transistor [23].
After the netlist has been annotated, the post-stress simula-
tion yields the values of SNM. Specifically we refer to the
read SNM, (i.e., when the cell operates with access nMOS
transistors on), which represents the worst case condition for
aging [23]. By comparing the pre-stress and post-stress SNMs,
the aging curves are profiled and the lifetime of the cell
calculated. The collected data are stored in a lookup table,
which is used by the cache simulator to estimate the aging of
the cache banks, and thus, of the entire cache.

B. Simulation Results
1) Impact of Cache Parameters: Table II shows energy and
aging results for a power-managed cache split in M = 4
blocks. We first report the energy saving, with respect to a non-
partitioned cache, and the lifetime (in years) for 8kB, 16kB and
32kB caches (with 16-byte lines) without re-indexing (LT0)
and when re-indexing is applied (LT). In the used technology,
the lifetime of a standard memory cell is 2.93 years.

8kB 16kB 32kB
Esav LT0 LT Esav LT0 LT Esav LT0 LT

[%] [yrs] [yrs] [%] [yrs] [yrs] [%] [yrs] [yrs]
adpcm.dec 30.6 2.98 4.82 43.8 3.04 3.76 55.7 3.04 4.03
cjpeg 31.5 3.18 4.07 44.0 3.17 4.32 55.6 3.11 4.75
CRC32 33.3 2.98 3.40 45.0 2.93 3.88 56.1 2.93 4.00
dijkstra 31.2 3.26 3.99 44.4 3.31 4.31 55.5 3.29 3.99
djpeg 32.2 3.61 4.12 44.2 3.36 4.02 55.2 3.52 4.35
fft_1 32.2 3.17 4.30 44.2 2.96 4.46 55.6 3.24 4.44
fft_2 32.2 3.11 4.34 44.2 2.97 4.42 55.6 3.18 4.40
gsmd 31.3 2.94 4.59 44.2 3.08 3.81 55.2 3.03 5.10
gsme 31.5 2.94 4.90 43.9 2.94 4.50 55.1 3.03 4.37
ispell 33.6 3.50 4.55 45.2 3.40 4.74 55.9 3.42 4.75
lame 32.1 3.31 4.06 44.4 3.55 4.12 55.7 3.33 4.49
mad 32.1 3.73 4.10 43.7 3.74 4.76 55.0 3.72 4.59
rijndael_i 32.9 3.02 4.02 44.4 3.11 4.10 55.0 3.26 4.90
rijndael_o 33.1 3.01 3.96 44.4 3.13 4.16 55.2 2.96 5.23
say 31.9 3.27 4.92 43.9 3.06 5.09 55.4 3.38 4.43
search 33.4 3.57 4.67 45.3 3.58 4.27 56.1 3.07 4.24
sha 31.1 3.00 4.74 43.6 3.03 4.48 55.0 3.02 6.09
tiff2bw 33.4 3.41 4.57 44.7 3.13 4.31 55.6 3.09 4.98
Average 32.2 3.22 4.34 44.3 3.19 4.31 55.5 3.20 4.62

TABLE II
ENERGY SAVINGS AND LIFETIME WHEN VARYING CACHE SIZE (LINE

SIZE IS 16 BYTES).

The energy savings (that are independent of the re-indexing
strategy) show how the available idleness provides chances
of putting the cache blocks in low-power state. Increasing
the cache size causes higher energy savings, since for the
technology we adopted, larger memory blocks have a higher
ration of static over dynamic energy consumption. In addition,
running a given application (i.e., a fixed number of accesses)
on a larger cache implies a distribution of the accesses over a

large space. Therefore, larger blocks gain more benefit from
power management (ranging from 32.2% for the 8KB cache
to 55.5% for the 32KB cache).
The idleness, and therefore the time spent in the low-power
state, conversely, is not directly impacted by the cache size,
since it depends on the idleness distribution over the cache
lines, that is strongly application dependent. Hence, the life-
time extension, when enlarging the cache, does not show a
clear trend. Considering the average on all the benchmarks,
however, such unpredictability tends to disappear, showing that
the cache size has a limited impact on the lifetime of a power
managed cache.
To assess the benefit of the re-indexing scheme, we can notice
that just applying the power management yields a small benefit
on the lifetime; if we consider for instance the case of the 8KB
cache, the extension is from 2.93 years (lifetime of monolithic
cache) to 3.22 years, on average (a modest 9% of lifetime
extension). The impact of the re-indexing is evident from
Column LT : balancing the idleness among blocks provides
a further 38% of lifetime extension with respect to regular
power managed caches, on average. This corresponds to an
average 48% lifetime extension for the 8KB cache, 47.1 for
the 16KB cache, and 57.6% for the 32KB cache. In some cases
such a benefit is much larger, as for sha where we obtain a
2x lifetime extension.
Another set of results concerns the effects of cache line size.
Table III shows the results; columns have the same meaning
as in Table II.

LS=16B LS=32B
Esav LT Esav LT

[%] [yrs] [%] [yrs]
adpcm.dec 43.8 3.76 31.0 3.61
cjpeg 44.0 4.32 31.20 4.26
CRC32 45.0 3.88 33.5 3.82
dijkstra 44.4 4.31 31.0 4.17
djpeg 44.2 4.02 31.7 3.95
fft_1 44.2 4.46 31.9 4.38
fft_2 44.2 4.42 31.9 4.35
gsmd 44.2 3.81 31.6 3.71
gsme 43.9 4.50 31.7 4.46
ispell 45.2 4.74 33.3 4.66
lame 44.4 4.12 32.1 4.07
mad 43.7 4.76 31.2 4.66
rijndael_i 44.4 4.10 31.6 3.99
rijndael_o 44.4 4.16 31.6 4.03
say 43.9 5.09 31.4 5.05
search 45.3 4.27 33.1 4.17
sha 43.6 4.48 31.20 4.47
tiff2bw 44.8 4.31 33.0 4.32
Average 44.3 4.31 31.9 4.23

TABLE III
ENERGY SAVINGS AND LIFETIME WHEN VARYING LINE SIZE (CACHE

SIZE IS 16 KB).

For lifetime the same considerations about the dependency on
cache size do hold: enlarging the line size has a negligible
impact on idleness: for a 4-block, 16kB cache, the average
idleness over the four blocks is 41% and 40% for 16 bytes
and 32 bytes line size, respectively, resulting in lifetimes of
4.31 and 4.23 years (as reported in the table).
The energy saving, conversely, gets smaller as line size in-
creases because it implies larger tag arrays. Tag arrays have
fewer bits than the data array, and have a larger reactivation
penalty. Therefore, as tag bits increase, the energy share of tags
becomes more relevant, and turning a cache block in the low-
power state must be compensated by more long idle intervals.
Hence, the same average idleness provides a smaller energy
benefit.

2) Impact of Re-indexing Policy: The Probing and Scram-
bling schemes described in Section III-A3 have comparable
efficiency. The Probing scheme is in fact optimal by con-
struction [7], while the results of Scrambling depend on the
quality of the random number generator (RNG), specifically
the number of repeated values.
Consider a RNG that generates N numbers in the range
[0, . . . ,M −1]. Ideally, each of the M possible values repeats
itself N/M times (notice that in our context, N ≫ M). The
quality of the RNG is related to the ratio between the actual
rate of repetition and the ideal value N/M , which we call the
error of the RNG.
For a uniformly distributed generator, it can be shown that the
error in reshaping is inversely proportional to

√
N . Since N

is very large during the lifetime span of the cache, the sub-
optimality of the Scrambling scheme is indeed negligible.
The net result is that, in spite of the different theoretical
properties, Probing and Scrambling provide de facto identical
results. The choice between them is only driven by considera-
tions about their implementation on the available technology.
3) Impact of Number of Banks: From the architectural point
of view, the most important dimension in the exploration is
the analysis of the granularity of the partitioning.

2 blocks 4 blocks 8 blocks
Size Idleness LT Idleness LT Idleness LT

[%] [yrs] [%] [yrs] [%] [yrs]
8kB 15 3.34 42 4.34 58 5.30

16kB 15 3.35 41 4.31 64 5.69
32kB 25 3.68 47 4.62 68 5.98

TABLE IV
AVERAGE IDLENESS AND LIFETIME WHEN VARYING CACHE SIZE AND

NUMBER OF BLOCKS.

Table IV show the results for the case of M = 2, 4, and 8
blocks and for the cache sizes of 8KB, 16KB, and 32KB.
For each entry, both the percentage of idleness (average over
the M blocks) and lifetime (LT) are reported. As intuitively
we expect, increasing M results in a higher idleness and, as
a consequence, in longer lifetime. Specifically, for M = 8
the lifetime of the cache is increased by about 2x, while
partitioning the cache in only 2 block, yields no more than
a 26% of lifetime extension, for the best case condition.
Clearly, it is not possible to arbitrarily decrease the granularity
of the partitioning: increasing the number of blocks implies
more overhead, in particular wiring. The address and data bus,
as well as the control signals must be routed to all the blocks.
This also translates into area overhead. Previous works on
memory partitioning ([8], [10]) indicated that partitioning into
more than 4/5 blocks consumes all the energy saved thanks to
partitioning. In our case, however, placing blocks of identical
sizes in the floorplan is easier than placing non-uniform (and
often very different) shapes. Therefore, we consider feasible
the partitioning into up to M = 16 blocks.
Energy figures reported in the table accounts also for this
overhead, characterized from the data reported in [10].

V. CONCLUSIONS

Partitioned caches, which have proven an effective and low-
overhead solution for reducing dynamic and static power, can
also be leverage for reducing the aging caused by NBTI.
Due to the different nature of the two metrics, however, (power
is cumulative, aging is a worst-case quantity), an appropriate
solution for uniformly distributing cache accesses is need to
exploit the resulting idleness.

Our architecture, which does not require the internal modifica-
tion of caches, provides average aging improvements between
22% (for the worst configuration) and 2x (for the best one)
with respect to a monolithic cache.

REFERENCES

[1] M.A.Alam, “Reliability- and process-variation aware design of inte-
grated circuits,” Microelectronics Reliability, Vol. 48, No. 8, August
2008, pp. 1114–1122.

[2] L. Zhang, R. P. Dick, “Scheduled Voltage Scaling for Increasing Lifetime
in the Presence of NBTI,” ASPDAC’09, pp. 492–497, Jan. 2009.

[3] A. Calimera, E. Macii, M. Poncino, ”NBTI-Aware Power Gating for
Concurrent Leakage and Aging Optimization”, ISLPED ’09: Interna-
tional Symposium on Low power Electronics and Design, pp. 127–132,
August 2009.

[4] R. Vattikonda, et.al. “Modeling and minimization of PMOS NBTI effect
for robust nanometer design,” DAC-44, pp. 1047–1052, 2006.

[5] A. Ricketts, J. Singh., K. Ramakrishnan, N. Vijaykrishnan, D. K.
Pradhan. “Investigating the Impact of NBTI on Different Power Saving
Cache Strategies,” DATE’10: Design, Automation and Test in Europe,
pp. 592–597, March 2010.

[6] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Aging Effects of Leakage
Optimizations for Caches,” GLSVLSI’10: IEEE Great Lakes Symposium
on VLSI, pp. 95–98, May 2010.

[7] A. Calimera, M. Loghi, E. Macii, M. Poncino, “Dynamic Indexing:
Concurrent Leakage and Aging Optimization for Caches”, ISLPED ’10:
International Symposium on Low power Electronics and Design, pp.
343–348, August 2010.

[8] L. Benini, L. Macchiarulo, A. Macii, E. Macii, M. Poncino, “Layout-
Driven Memory Synthesis for Embedded Systems-on-Chip,” IEEE
Transactions on VLSI Systems, Vol. 10, No. 2, pp. 96–105, April 2002.

[9] O. Ozturk, M. Kandemir, “Nonuniform Banking for Reducing Mem-
ory Energy Consumption,” DATE’05: Design, Automation and Test in
Europe, pp. 814–819, Mar. 2005.

[10] M. Loghi, O. Golubeva, E. Macii, M. Poncino, “Architectural Leakage
Power Minimization of Scratchpad Memories by Application-Driven
Subbanking,” IEEE Transactions on Computers, Vol. 59, No. 7, pp. 891–
904, July 2010.

[11] S.V. Kumar, K.H. Kim, S.S Sapatnekar, “Impact of NBTI on SRAM
read stability and design for reliability,” ISQED’06, March 2006, pp.
213–218.

[12] S. V. Kumar, et al., “NBTI-Aware Synthesis of Digital Circuits,” DAC-
45, pp. 370–375, June 2007.

[13] Y. Wang et al., “Gate replacement techniques for simultaneous leakage
and aging optimization,” DATE’09: Design Automation and Test in
Europe, pp. 328–333, March 2009.

[14] Y. Wang et al., “On the efficacy of input Vector Control to mitigate
NBTI effects and leakage power,” ISQED’09: International Symposium
on Quality of Electronic Design, pp. 19–26, March 2009.

[15] Y. Kunitake, T. Sato, H. Yasuura, “A case study of Short Term
Cell-Flipping technique for mitigating NBTI degradation on cache,”
ISQED’10: International Symposium on Quality Electronic Design, pp.
660–666, March 2010.

[16] J. Abella, X. Vera, O. Unsal and A. González, “NBTI-Resilient Memory
Cells with NAND Gates for Highly-Ported Structures”, Workshop on
Dependable and Secure Nanocomputing, June 2007.

[17] A. Calimera, E. Macii, M. Poncino, “Analysis of NBTI-induced SNM
degradation in power-gated SRAM cells,” ISCAS’10: International Sym-
posium on Circuits and Systems, pp. 785–788, May 2010.

[18] T. Siddiqua, S. Gurumurthi, “Recovery Boosting: A Technique to
Enhance NBTI Recovery in SRAM Arrays,” ISVLSI’10: IEEE Annual
Symposium on VLSI, July 2010.

[19] M. Powell, et al. “Gated-Vdd: A Circuit Technique to Reduce Leakage
in Deep-Submicron Cache Memories,” ISLPED’00: International Sym-
posium on Low power Electronics and Design, July 2000, pp. 90–95.

[20] K. Flautner, N. Kim, S. Martin, D. Blaauw, T. Mudge, “Drowsy caches:
Simple techniques for reducing leakage power,” ISCA’02: International
Symposium on Computer Architecture, May 2002, pp. 148–157.

[21] A. Gonzalez, et al., “Eliminating cache conflict misses through XOR-
based placement functions,” International Conference on Supercomput-
ing, pages 76–83, July 1997.

[22] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite”, IEEE 4th Annual Workshop on Workload
Characterization, pp. 3–14, Dec. 2001.

[23] K.Kang, H. Kufluoglu, K. Roy, M.A. Alam, “Impact of Negative-
Bias Temperature Instability in Nanoscale SRAM Array: Modeling and
Analysis,” IEEE Transactions on CAD, Vol. 26, No. 10, pp. 1770–1781,
Oct. 2008.

