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Abstract—While performance and power continue to be im-
portant metrics for embedded systems, as CMOS technologies
continue to shrink, new metrics such as variability and reliability
have emerged as limiting factors in the design of modern
embedded systems. In particular, the reliability impact ofpMOS
negative bias temperature instability (NBTI) has become a serious
concern. Recent works have shown how conventional leakage
optimization techniques can help mitigate NBTI-induced aging
effects on cache memories. In this paper we focus specifically
on scratchpad memory (SPM) and present novel software ap-
proaches as a means of alleviating the NBTI-induced aging
effects. In particular, we demonstrate how intelligent software
directed data allocation strategies can extend the lifetime of
partitioned SPMs by means of distributing the idleness across
the memory sub-banks.

I. I NTRODUCTION AND BACKGROUND

Memory subsystems have long been known to be a critical
component in the overall performance for embedded plat-
forms. However, more recently, these memory systems have
also been demonstrated to be the major contributor to the total
power budget. The problem of power dissipation in memories
is exacerbated in ultra-deep sub-micron CMOS technologies,
where static power due to leakage currents (and sub-threshold
current in particular) is coupled with high dynamic power
dissipation [1].

The leakage power is extremely critical for memories,
where the high density of integration translates into high
power density. The latter is the main source of heat generated
across the substrate, which, if not quickly removed through
packaging and/or cooling architectures, may induce drastic
increases in temperature. Working at high on-chip tempera-
tures affects both performance (MOS transistors and global
wires get slower at high temperatures [2], [3]) and static
power consumption (leakage current increases exponentially
with temperature [1]). For these reasons, several leakage-
aware memories solutions, ranging from software and sys-
tem level hierarchy optimization to architecture and circuit
level structures, have been proposed over the past few years
(e.g., [4], [5]).

While performance and power continue to be important
metrics for embedded systems, as CMOS technologies con-
tinue to shrink down below 65nm, new metrics such as
variability and reliability have emerged as limiting factors in

the design of modern embedded systems. This is especially
true when considering memory architectures; access to/from
memory is involved in every executed instruction (e.g., data
and instruction fetch), and once the memory system becomes
unreliable, the reliability is compromised for the system as a
whole.

Although process variation is the most evident source of
variability, and thus, unreliability [6], [7], time-dependent
deviations in the operating characteristics of nanoscale MOS
devices [8] have recently been shown to be one of the more
critical issues in determining the lifetime of CMOS circuits. In
particular, the reliability impact of pMOS negative bias tem-
perature instability (NBTI) has become a serious concern [9].

In CMOS logic, NBTI effects occur on pMOS transistors
when they are negatively biased (i.e., a 0-logic is applied to
the gate of the pMOS, resulting inVgs = VDD), and manifest
themselves as an increase in the threshold voltageVth over
time [9]. Such aVth variation has a direct impact on the long-
term stability of traditional 6T-SRAM cells, whose static noise
margin (SNM) degrades over time, thus altering the capability
of a cell to reliably store a correct logic value [10]–[12].
Experimental data report variation ofVth of about 10-15% per
year, which translates into more than a 10% SNM degradation
(after 3 years) depending on the target technology and the
operating conditions [11].

The push to embedreliable andlow-power memories archi-
tectures into modern systems-on-chip is driving the EDA com-
munity to develop new design techniques and circuit solutions
that can address these critical issues. Very recent works [13],
[14] have shown how conventional leakage optimization tech-
niques [4], [5] can offer a valuable solution to mitigate
NBTI-induced aging effects on memories while still obtaining
reductions in power dissipation. More specifically, they have
quantified the beneficial effects of popular power management
schemes such aspower-gating and dynamic voltage scaling
(DVS) on aging. Power gating, when implemented using sleep
transistors, has the effect of completely nullifying the aging
effects [15]. Similarly, but with a smaller impact, voltage
scaling improves NBTI-induced aging because a reducedVDD

corresponds to a smaller bias voltage. As reported in [13],
reduction in SNM as a function ofVdd is roughly linear; the
degradation of SNM under a “drowsy” voltageVdd,drowsy is



about 60% of the degradation at the nominalVdd.
Although the majority of these works focus on cache

memories, there exist other types of SRAM memory structures
whose efficiency also impacts the total power-performance
tradeoff, as well as on the lifetime of the embedded systems.
Among them, scratch-pad memory (SPM) is the most signifi-
cant example. SPMs are widely used in embedded systems for
image and video processing applications that make heavy use
of multi-dimensional arrays of signals and nested loops. For
these classes of applications, the flexibility of caches in terms
of workload adaptability is often not needed; instead, perfor-
mance predictability, power consumption, and implementation
costs play a much more critical role.

Even though caches and SPMs perform the same function
(namely, temporarily holding small chunks of data for high-
speed, frequent retrievals), their implementation and manage-
ment is completely different. The main differentiating factor
is that, while caches guarantee full transparency at the cost
of more hardware resources and non-deterministic latency,
SPMs, which do not need any caching logic, are faster, more
predictable and less power consuming. Note that for SPMs,
it is the designer that decides the mapping of addresses to
locations into the SPM, not the hardware.

This new degree of freedom in the design space opens a
completely unexplored area in the field of concurrent power-
aging memory optimization. Namely, it allows for the use of
innovative software approaches as a means of alleviating the
NBTI-induced aging effects. In contrast to previous works that
focus on pure circuit/architectural cache solutions (e.g., [14],
[16]), in this paper we investigate new software controlled
NBTI-aware data managing solutions for low-power SPMs.

Building off of previous findings that SRAM cells in a
low-leakage state (i.e., idle state) are less affected by NBTI
stress [13], we demonstrate how intelligent data allocation
strategies can extend the lifetime of partitioned SPMs by
means of distributing the idleness across the memory sub-
banks. The basic reasoning behind this approach is that, while
from a leakage viewpoint it is the total number of idle blocks
that matters, for aging, it is thedistribution of idleness across
the memory banks that can help maximize the lifetime of the
entire SPM, and thus the system as a whole.

To support our claims we developed a dedicated library
of C-functions that implement NBTI-aware data allocation
through a dedicatedmalloc, calledSPM malloc. This function
is aware of the current aging of each memory bank and maps
the heap of each task such that all the banks age at the same
rate. More specifically, the data are allocated such that all
the banks can spend the same amount of time in the idle
state (low-VDD state). Dedicated lookup tables containing pre-
characterized NBTI-induced SNM degradation of a standard
6T-SRAM cell mapped into an industrial 45nm technology
are used to estimate the aging of the SPM’s sub-banks. We
demonstrate through a motivational example the effectiveness
of our approach and show that overall idle times across all
banks of the SPM can be more evenly distributed, thereby
preventing some banks from aging faster than others and

increasing the reliability of the memory system overall.

II. A RCHITECTURAL OVERVIEW

Our target architecture is shown in Figure 1. The baseline
configuration consists of an ARM7 CPU, coupled with a L1
cache and a block of scratch-pad memory. A Direct-Memory
Access engine (DMA) is also present, and it is in charge of
accelerating the data movements between the on-chip and off-
chip memories. This type of architecture has many applications
(e.g., smartphones, cameras, game consoles etc.), and it is
widely adopted in the embedded domain. Next, we describe
the proposed hardware and software extensions.

Fig. 1. Architectural overview.

A. Hardware Extensions

Similarly to [17], we propose a multi-banked type of
scratch-pad memory, with independently powered banks. This
kind of structure has been studied also in caches (e.g., [18]),
mainly for power concerns.

Fig. 2. Scratchpad memory configuration.

As shown in Figure 2, a special control unit sets the power
state (i.e.,active, or drowsy) for each bank. We deliberately
didn’t consider a shutdown state, since that configuration
would complicate the design of the scratch-pad memory. The
insertion of extra sleep transistors in the memory cells, in
fact, would not only impact on the complexity but also on
the performance of such critical component.

The control unit is memory mapped, and can be pro-
grammed with regular write operations. In order to simplifythe
programming process, we implemented some interfacing func-
tions (described in Section II-C). We estimate that reactivating
a bank from theDrowsy state incurs a realistic performance



TABLE I
FUNCTIONS VISIBLE TO THE PROGRAMMER.

Name Description Example of Utilization

void* SPM malloc(int size, Allocates data in SPM. int *A=
unsigned int** requestor); Two input parameters: (int*)SPM malloc(sizeof(int),&A)

1) Size
2) Reference to the pointer of the object that must be
allocated

int SPM free(void *point); Frees memory in the SPM SPM free(A);
void SPM initialize blocks(); Initialize metadata. Must be called at boot time.

TABLE II
FUNCTIONS NOT VISIBLE TO THE PROGRAMMER(I .E., INTERNAL TO THE LIBRARY).

Name Description Example of Utilization

void* SPM malloc bank(int size, Input parameters:. int *A=(int*)SPM malloc bank(sizeof(int),0)
int bank); 1) size

2) which bank in SPM
int SPM obj table move( Input parameters: int *A=(int*)SPM malloc(sizeof(int),&A);

unsigned int *obj, unsigned int *dst, 1) object address int *B=(int*)SPM malloc(sizeof(int),&B);
int USE DMA=0); 2) destination address SPM obj table move(A,B);

3) optional: DMA flag
float get aging(float psleep, Input parameters: float SNM=get aging(psleep,time)

float time) 1) sleep time/total time
2) total time
Output: SNM degradation

int SPM banks manager(); Main function that should rearrange the data inside the
blocks to minimize the overall SNM of the SPM.

SPM banks manager();

SPM SET BANK STATE(int ID, int state) Changes the power state{ON,DROWSY} of the bank
ID by writing on the SPM control unit

SPM SET BANK STATE(0,
SPM BANK STATE DROWSY)

SPM RETURN BANK STATE(int ID)

penalty of0.2µs. This overhead is in line with that of other
commercial embedded processors (e.g., [19], [20]).

B. Extension to Memory Allocation

Our sturdy is based on the assumption that a relevant portion
of embedded systems do not havea priori knowledge of
the running tasks (e.g., downloading new applications on a
smartphone). It may also be that the memory required by
a task is unpredictable at compile time (e.g., I/O triggered
memory allocation). For such systems, static (i.e., compile-
time) memory allocation strategies can not be applied. Several
dynamic approaches have been proposed in the past, but none
of them were dealing with software exposed multi-banked
SPM architectures.

From the programmer point of view, we propose a sim-
ple extension to the regularmalloc(), as described in Ta-
ble I. We replace the call tomalloc() with the new function
SPM malloc(). The SPM malloc() method accepts a new
parameter: the address of the ‘requestor’ (i.e., the pointer to the
object to allocate). The address of the requestor is fundamental
in case we want to move the data from one bank to another.
In that case, in fact, also the pointers to the objects allocated
(i.e., requestors) in the source bank should be updated with
new values.

Updating the requestors is done automatically by several
library functions that are hidden to the programmer. Table II
reports these main library functions. Note that extra metadata
was required to manipulate the banks and hence he object
stored in the banks. For this reason, we create two new

tables, namelyspm obj table and spm bank info, containing
the actual state of each bank and object, as shown in Table III.

TABLE III
EXTRA METADATA .

Name Description

SPM OBJ TABLE T Table of objects allocated in
the scratchpad.

spm obj table[SPM MAX OBJ];
SPM BANK INFO T Table of registers for each

bank.
spm bank info[SCRATCH BANKS];

Next, we will describe the most important library function:
SPM block manager().

C. The SPM block manager() Procedure

The key feature of this method is to move automatically the
data from one partition to another whenever the aging indices
of two banks differ for a quantity bigger than a given threshold.
Figure 3 shows the call precedence graph for managing such
a function. At the moment the function is called from within
the SPM malloc() method (i.e., every time an object must
be allocate), but this is not a requirement. The OS could
potentially invoke that functions after regular intervalsof time
(e.g., once every hour).

The algorithm starts with all the banks of the scratchpad
memory turned off. At the beginning of the algorithm, one
bank must be turned on for the first time. After we turn on
the first bank, the algorithm estimates the maximum difference



Fig. 3. Calling precedence graph.

Fig. 4. Decision flow for data allocation in SPM banks.

in aging between all the turned on and turned off banks. This is
done by calculating the value ofpsleep for all banks (0 < i <

number of banks) where

psleepi =
total idle timei

total time of operation
, (1)

and total idle timei is the sum of all the time intervals that
bank i has been turned off until now, or

total idle timei = Σ(idle intervalsi). (2)

We expect that the smaller thepsleep value for a bank, the
greater its aging, based on the fact that a bank that is turnedoff
for a smaller percentage of overall operation will be exposed
to more aging effects.

The algorithm then computes the difference between the
psleep value of the off bank with the maximumpsleep value
(i.e., the least aging) to thepsleep value of the on bank
with the minimum psleep value (i.e., the greatest aging).
Mathematically, this can be expressed as:

psleepmax = max (psleepj) j ∈ OFF banks (3)

psleepmin = min (psleepk) k ∈ ON banks (4)

∆psleep = psleepmax − psleepmin (5)

If ∆psleep is greater than a given threshold, then these
two banks with min/maxpsleep values must switch data and
status. That is, the selected turned off bank will be turned on
and will accommodate the data written in the selected turned
on bank and this turned on bank will now be turned off.
If the difference between spleep values is negative, then no
modification will be made on the data that are allocated in
the banks, or the status of the banks. Figure 4 illustrates the
decision flow of the algorithm.

At the end of the algorithm we expect that thepsleep values
will be more evenly distributed among the banks and that the
worst psleep value (i.e., the smallest one) will have increased,
indicating a smaller worst case bank aging than before.

III. PRELIMINARY RESULTS

Due to time limitations we will not be able to give extensive
results here. Instead, we will have to rely on a motivational
example that shows how we can influence the shift in static
noise margin with our software managed NBTI-aware memory
allocation policy.

As explained in SectionII-B, we are targeting systems
which do not have a compile-time knowledge of the running
tasks. To mimic this system behavior, we implemented a
microbenchmark that executes a parameterizable number of
tasks, each of them instantiating a certain amount of objects.
The tasks are chosen from a set of basic matrix manipulation
functions (ie. multiplication, addition and lu decomposition).
Each simulation accepts for input the following parameters:

1) percentage of SPM utilization (20, 40, 60, 80)
2) SNM threshold that triggers the bank change

We investigated three different bank management policies:
vanilla:

The SPM contains a single bank always turned ON.
power-aware:

The banks can be set in the Drowsy state to save
power. This policy is unaware of any aging effect.

NBTI-aware:
The aging status of the banks is monitored by the
SPM bank manager() function. The banks are set
in Drowsy or Active state according to the SNM
degradation.

For each simulation, we collect the worst of the SNM
degradations values, since the the worst bank (i.e., the one
with highest aging) defines the aging of the entire SPM.

Figure 5,shows the SNM degradation after three years for
different percentages of SPM utilizations. As expected, wesee
that the proposed NBTI-aware policy reduces significantly the
SNM degradation. Note that, from an aging prospective, the
power-aware and the vanilla policies are equivalent, sincein
the minimum value for the idleness (which is proportional
to the aging) is in both case 0. The proposed NBTI-aware
technique, instead, tries com equalize the different aging
indexes by triggering changes in the power states of the banks.

Figure 6 shows the minimumpsleep value, i.e., the percent
of idle time for the bank that has been active for the most time.
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Fig. 5. SNM vs. percentage of SPM utilization
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Fig. 6. psleep min. vs. percentage of SPM utilization.

As expected, as we increase the percentage of utilization of
the SPM, the benefits of our proposed solution diminish. The
chances of finding free space to allocate and move data from
another bank (which will be also set in the Drowsy state) to
another are in fact reduced.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we have introduced a new method for man-
aging memory allocation in scratchpad sub-banks such that
the effect of NBTI aging are reduced. Since the SPM is
managed by software in terms of address mapping, it is
appropriate that we present a method for NBTI aware data
allocation that is also managed by software. Through simple
extension to the regularmalloc() we show through a simple
motivational example that the idle times for each bank in
the SPM is more evenly distributed, compared to a NBTI-
oblivious memory allocation scheme. This even distribution
prevents some banks from aging faster than others, thereby
increasing the reliability of the memory system overall. For
future work, we plan to experiment with a broader range of
benchmarks and determine how utilization, number of banks,
and differentpsleep thresholds can affect the overall aging in
terms of static noise margin of the SPM.
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