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Abstract 

 

Treatment of orbital floor fractures and defects is often a complex issue. Repair of these injuries 

essentially aims to restore the continuity of the orbital floor and to provide an adequate support to 

the orbital contents. Several materials and implants have been proposed over the years for orbital 

floor reconstruction, in the hope to achieve the best clinical outcomes to the patients. Autografts 

have been traditionally considered as the “gold standard” choice due to the absence of 

immunological response, but they are available in limited amount and carry the need for extra-

surgery. In order to overcome the drawbacks related to autografts, researchers’ and surgeons’ 

attention has been progressively attracted by alloplastic materials, that can be commercially 

produced and easily tailored to fit a wide range of specific clinical needs. In this review, the 

advantages and limitations of the various biomaterials proposed and tested for orbital floor repair 

are critically examined and discussed. Criteria and guidelines for optimal material/implant choice, 

as well as future research directions are also presented, in an attempt to understand whether an ideal 

biomaterial already exists today or a truly functional implant will eventually materialize in the next 

few years. 

 

Keywords: Orbital floor surgery; Biocompatibility; Autograft; Alloplastic; Tissue regeneration. 
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1. Introduction 

 

Orbital floor fractures alone or in conjunction with other facial skeletal damages are the most 

commonly encountered midfacial fractures, second only to nasal ones. According to Ng et al. [1] 

and Chang and Manolidis [2], orbital floor fractures were first described by MacKenzie in 1844 in 

Paris. More than one century later, in 1957 Smith and Regan [3] described inferior rectus muscle 

entrapment with decreased ocular motility in the setting of an orbital fracture and coined the term 

“blow-out fracture”. Since the 1960s, different surgical routes have been proposed for the effective 

management of orbital floor fractures [4-11].  

It should be taken into account that the management of orbital floor injuries is complicated not only 

by their technical difficulty per se, but also by the required extensive medical competences – 

ranging from maxillofacial to otolarygologic to ophthalmic field – and by the multitude of factors 

necessary to make a correct decision as to the proper timing of the repair.   

In addition to timing- and surgery-related issues, another key factor in the treatment of orbital 

fractures is the choice of the material used for tissue(s) reconstruction. A wide number of studies 

describing orbital fracture repair with a considerable variety of autogenous, allogenic and alloplastic 

materials is available in the literature. However, direct comparison between different materials are 

rather rare and, therefore, it is not trivial to draw definite conclusions as to which material is best 

suitable to repair these injuries. The present review addresses this issue: specifically, the advantages 

and limitations of currently adopted biomaterials and implants are critically examined, and possible 

new research direction towards a truly ideal device are described and discussed. 

The article can be divided in three parts, that are devoted to present an essential medical 

background, a comprehensive materials/implants review and some indications/remarks for material 

choice/prospective research, respectively. The first part comprises the section 2, that gives the 

reader a concise overview of the features, treatment and complications of orbital floor fractures; in 

such a context, Table 1 also provides a short glossary of the medical terms that are not explained 
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directly in the text or that may be unclear or unknown to non-specialist readers. The second part 

includes the sections 3-8, in which the different classes of biomaterials and implants used for 

treating orbital floor fractures are extensively reviewed. In the third part, constituted by the sections 

9-11, the performances of the different materials and implants in current use are critically compared 

and discussed, and a forecast about future challenges is presented.   

 

2. Orbital floor fractures: a short overview 

 

2.1. Aetiology and features 

 

Damage to the facial skeleton is usually the result of low-, medium- or high-velocity trauma, for 

instance due to a motor vehicle or traffic accident. A fracture in the orbital floor commonly causes 

the herniation of orbital fat and other orbital contents into the maxillary sinus(es), which results in 

an increase of the orbital volume (Fig. 1). Orbital floor fractures can occur as isolated injuries or in 

combination with extensive facial bony disruption. The orbital floor is most vulnerable to fracture 

because of the thinness of the roof of maxillary sinus, existence of the infraorbital canal and 

curvature of the floor. Immediately behind the orbital rim, the floor is concave, whereas further 

back it becomes convex forming the so-called posterior ledge, in which the bony structure appears 

thicker and less prone to deformation in case of fracture. 

Pure orbital floor fractures, often referred to as isolated orbital fractures, commonly result from an 

impact injury to the ocular globe and upper eyelid. In most cases, the object is large enough not to 

perforate the eyeball and small enough not to cause fracture of the orbital rim. Two possible 

mechanisms have been proposed to explain orbital floor fractures: (i) hydraulic theory (HT) and (ii) 

bone conduction theory (BCT) [12]. HT involves the direct transmission of pressure from the ocular 

globe and intraorbital contents to the periocular structures, which eventually leads to the blowing 

out of the orbital floor. In fact, most fractures occurs in the posterior medial region, which is the 
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thinnest bony orbital area. The second mechanism (BCT), which is generally less favoured, 

involves indirect transmission of pressure from the orbital rim along the bone to the floor. 

Although most pure orbital fractures affect the medial region of the infraorbital floor, any fracture 

type, size or geometry is – at least virtually – possible. 

Several clinical symptoms are associated to orbital fractures, including decreased visual acuity, 

blepharoptosis, and ipsilateral hypoestesia, dysesthesia or hyperalgesia related to the infraorbital 

nerve. Binocular vertical or oblique diplopia is caused by restricted ocular movements and occurs 

most commonly in upward gaze; it can be attributed to incarceration of the orbital 

contents/extraocular muscles, muscle contusion or damage to the nerves of extraocular muscles. 

Furthermore, patients may complain of epistaxis and eyelid swelling after nose blowing. Periorbital 

ecchymosis and oedema accompanied by pain are obvious external signs and symptoms. 

Subconjunctival haemorrhage caused by rupture of blood vessels on the conjunctiva usually 

resolves without treatment within 1-2 weeks. Enophthalmos, that is most commonly caused by 

enlarged orbital cavity after blow-out fracture, may be also discerned although it can be initially 

hidden by the swelling of surrounding tissues. It may also result from retrobulbar or peribulbar 

haemorrhage. Orbital emphysema related to the communication with maxillary sinus as well as 

orbital haemorrhage may occur; occasionally, intraorbital air may cause occlusion of central retinal 

artery and lead to severe visual loss.             

 

2.2. Treatment 

 

Timing of repair and modality of surgical intervention are critical issues that strongly affect the 

overall outcomes of orbital floor fractures treatment [13-16]. In 2002, Burnstime [17] reviewed 

about 20 years of literature on the management of orbital floor fractures and suggested a set of 

recommendations to approach and treat such injuries. Specifically, Burnstime [17] described three 

time periods for repair: immediate, within 2 weeks, and late (after a prolonged observation time).  
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Immediate surgical treatment is recommended in cases of fractures characterized by orbital soft 

tissue entrapment with nonresolving oculocardiac reflex, early enophthalmos or hypoglobus 

associated to marked facial asymmetry [18]. Early surgery is also warranted in children with 

evidence of muscle entrapment, which can lead to muscle or fat ischemia and result in severe 

permanent diplopia: several studies demonstrated that, in these potentially critical cases, earlier 

surgery time yielded better clinical outcomes [19-21].    

Surgical repair within 2 weeks is warranted in adults with symptomatic diplopia with positive force 

duction testing, evidence of muscle or perimuscular soft tissue entrapment and minimal clinical 

improvement over time under drug therapy [17]. Surgical treatment should be always considered if 

progressive infraorbital hypoesthesia should occur [22], as well as for repairing orbital defects 

greater than 50% of the orbital floor that are depressed with resultant enophthalmos [17].     

Finally, medical treatment may be preferred to immediate or early surgical correction in patients 

exhibiting weak enophthalmos (< 2 mm), lack of marked hypoglobus, absence of an entrapped 

muscle or tissue, good ocular motility, a fracture involving less than 50% of the orbital floor and 

lack of diplopia. In addition, medical therapy should be used if surgical correction is 

contraindicated, for instance in patents who are unable to tolerate anaesthesia. The patient can be 

treated with oral antibiotics due to the disruption of the integrity of the orbit in communication with 

the maxillary sinus. Controlled administration of corticosteroid drugs may also benefit the patient 

by reducing the oedema of orbit/muscle. This allows a more correct assessment of the relative 

contribution to enophthalmos and muscle/tissue entrapment due to the fracture versus that due to the 

oedema. Nose blowing should be firmly discouraged to avoid creating or worsening orbital 

emphysema; nasal decongestants can be used if not contraindicated. If poor clinical improvement is 

achieved after 2 weeks, surgical intervention should be performed; late corrections, however, may 

not produce as good results as early intervention. 

Transmaxillary, subciliary and transconjunctival approaches are the traditional surgical routes 

adopted for repairing orbital floor fractures [2-8,12,15]; the latter two options are generally 
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preferred by most surgeons as they are minimally invasive. The main advantage of 

transconjunctival route is the absence of visible external eyelid scar. These open approaches, 

however, have been reported to exhibit a non-negligible eyelid complication rate, including scleral 

show or gross ectropion [2]. In order to overcome these drawbacks, endoscopic-assisted approach 

via a transmaxillary route has been recently introduced with general consensus of surgeons, as it 

decreases the incidence of sequelae related to eyelid or periorbital incisions [9-11]. The various 

steps involved in this surgical technique are illustrated in Fig. 2 for the reader’s benefit and better 

understanding. 

Over the years, many studies have sought to identify the optimal surgical modality for the 

successful treatment of blow-out fractures of the inferior orbital wall. Each specific approach, as 

well as proper combinations of the current methods, can offer different advantages depending on 

location and shape of the fracture. An interesting clinical analysis and comparison of the various 

approaches was recently reported by Kwon et al. [23].   

 

2.3. Surgery outcomes and possible complications 

 

Although in most cases the procedure of orbital floor repair can ensue in a complete success from a 

surgical viewpoint, the patient might consider the outcome as unsatisfactory. This crucial issue 

should be carefully taken into account in order to ensure a good quality of life, in the broadest 

sense, to the patient. Surgeon and patient should be in mutual agreement about the realistic outcome 

of the repair, and the patient should be aware on the possible risks and complications related to 

orbital surgery. Each case should be considered individually to maximize the potential for 

restoration of orbital structures, cosmetic appearance and visual function [12,15,24-26]. 

The common postsurgical sequelae are ectropion or entropion, which can be minimized by 

meticulous dissection and re-suspension of soft tissues.      
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In general, partial or total loss of vision is the most dramatic complication that may occur after 

orbital floor surgery. Visual deterioration or blindness may be due to retrobulbar haematoma, a 

luckily rare complication, which may eventually result in retinal ischemia due to elevated 

intraocular pressure (IOP) or direct compression of the optic nerve.   

Other ominous consequences and side effects can resolve spontaneously or require additional 

surgical procedure. No absolute promises about an immediate resolution of any pre-surgical 

neuralgia should be made: in fact, neuralgia associated to infraorbital nerve may often persist after 

surgery, and a significant improvement of this problem may take 6 months of more.    

Transient postoperative diplopia is expected and usually resolved spontaneously within 2-3 months; 

if persistent, it may become a serious complication. If isolated to extreme positions of gaze, it may 

be negligible and almost unnoticed by the patient; otherwise, if diplopia affects functional positions 

of gaze, the use of corrective lenses can be suggested, or, as an ultimate solution, eye muscle 

surgery can be recommended to properly reposition the extraocular muscles.   

Postoperative enophthalmos is another potential complication due to the difficulty in accurately 

assessing the orbital volume intraoperatively. It often worsens over time owing to orbital fat atrophy 

and, in this case, additional surgical procedures are required. 

Complications often directly related to the implant, such as extrusion, infection or chronic 

inflammation, can also require extra-surgery to remove the foreign material.  

 

3. Materials for orbital floor reconstruction 

 

Basically, the goal of an orbital floor implant is to repair the traumatic defect, lifting the eyeball into 

its correct position and thereby avoiding enophthalmos. An ideal implant biomaterial should be (i) 

biocompatible, (ii) available in sufficient quantities, (iii) strong enough to support the orbital 

contents and the related compressive forces, (iv) easy to be shaped to fit the orbital defect and 

regional anatomy, (v) easily fixable in situ, (vi) not prone to migration, (vii) osteoinductive and 



 9 

(viii) bioresorbable with minimal foreign-body reaction. To find a proper material for orbital floor 

reconstruction is not an easy task. This has been proved by the wide number of substances of 

biological or synthetic origin that have been experimented during the last 50 years (Table 2), in the 

hope that a truly functional biomaterial will eventually materialize. Today, a myriad of implants is 

at surgeon’s disposal and available on the market for treating orbital floor fractures.   

In 1996 Neigel and Ruzicka [27] reviewed the allogenic materials used in orbital floor surgery, 

whereas two years later Chouwdry and Krause [28] gave some indications for material selection, 

focusing their attention on autografts and, specifically, on autologous bone. In 2004, Mok et al. [29] 

and Potter and Ellis [30] reviewed both biologically-derived and alloplastic materials for orbital 

floor fracture management. In 2010, Betz et al. [31] published an excellent contribution to 

maxillofacial and ophthalmic literature, in which the potential of tissue-engineered constructs for 

orbital floor regeneration was highlighted.  

The present article extensively deals with the evolution of orbital floor biomaterials and implants, 

particularly underlining the advances that have been made in such a context over the last few years, 

as well as the promise for the future. Specifically, the following sections give an extensive overview 

of the biomaterials tested for orbital floor repair both clinically (if the implant has been definitely 

approved for medical use) and experimentally; some examples of implants are collected in Fig. 3.      

 

4. Biological materials 

 

Over the years, a wide range of biological materials has been tested in the field of orbital floor 

repair. They have been derived from human or animal tissues and could be used for performing 

transplants (autografts, allografts and xenografts) or properly treated for obtaining suitable 

substances to be used as implant materials. In general, biological materials carry some problems, 

such as limited availability and morbidity at the harvest site for autologous tissues and risks of viral 



 10 

infections and disease transmission (especially in the past) for donor (living or cadaver) tissue; in 

addition, the resorption rate of such materials can vary greatly depending on their origin. 

 

4.1. Autografts 

 

The use of autografts requires an appropriate amount of patient’s autologous tissue, harvested from 

a donor site, which is properly shaped in order to match defect dimensions, thereby providing a 

rigid structural support to the surrounding tissues and structures.  

 

4.1.1. Autologous bone 

 

In principle, autografts from patient’s bone are considered by the majority of surgeons as the “gold 

standard” material for bone tissue repair [32]. In the field of orbital floor repair, preferential donor 

sites include split calvarial bone, maxillary wall, mandibular symphysis, antral bone, rib, parietal 

bone and iliac crest [33-43]. Specifically, calvarial bone seems to be the best option for orbital 

reconstruction [44,45]. The graft can be placed as-such [46], fixated by screws and/or plates [47] or 

used in conjunction with an alloplastic material, such as titanium mesh or porous polyethylene 

[48,49].  

The advantages of autologous bone are its inherent strength, rigidity and vascularisation potential 

[28]. Most of all, autografts exhibit excellent biocompatibility and tolerance after implantation: 

because autologous bone grafts are incorporated in the organism, as living tissue and elicit no 

immune reaction to self-antigens, foreign body reactions such as infection, extrusion, collageneous 

capsule formation and ocular tethering are minimized. 

After careful selection, Chowdhury and Krause [28] indicated autologous bone as the preferable 

material of choice in orbital floor reconstruction. Over the years, this conclusion was supported by 
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other comparative studies [50-53], and the unique advantages of using autologous bone have been 

further highlighted in recent research reports [41,42]. 

In 2009, Rudagi et al. [41] reconstructed orbital floor fractures in 11 patients by using autogeneous 

mandibular symphiseal bone grafts. The patients were monitored for 1.5 years postoperatively: a 

good restoration of the orbital floor was reported and extraocular movements were intact in all 

cases; there were also transient complications, such as enophthalmos and diplopia, that resolved 

spontaneously by few months after surgery. Only one patient exhibited symptoms of infection after 

9 months of follow-up; after removal of the titanium plates used for graft stabilization the infection 

significantly subsided, and therefore this complication was deemed not associated to the 

autogeneous material.  

Sakakibara et al. [42] used 1 mm-thick autogenous iliac crest grafts (Fig. 3a) for repairing orbital 

floor fractures in 101 patients. At 6-month follow-up, computed tomography (CT) scanning showed 

normal orbit morphology and ossification of the transplanted bone grafts; persistent diplopia was 

observed in 15 patients. The authors emphasized the easiness of shaping and cutting the iliac crest 

graft to fit orbit’s curvature, thanks to material softness, pliability and flexibility. 

Shetty et al. in 2009 [54] and Ram et al. in 2010 [55] underlined the particular suitability of 

autologous bone grafts for repairing large orbital floor defects.       

However, the use of autologous bone is associated with several less favourable aspects. First, it is 

not always easy to contour bone according to the desired shape and size, which may depend on 

graft’s harvest site; furthermore, the graft can break if it is bent beyond its natural capacity. In the 

case of large defects involving multiple fractures and disruption of bony buttresses, other 

biomaterials are preferred or combined to autologous bone. In such a context, Ellis and Tan [56] 

demonstrated that a better accuracy of reconstruction can be achieved by using titanium mesh rather 

than cranial bone grafts. 

One of the major drawbacks of autologous bone is its unpredictable resorption, that can vary within 

a quite wide range and depends on the graft origin [47,57-59]. It was demonstrated that, generally, 
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the resorption rate of bone of membranous embryological origin is slower than that of endochondral 

grafts [57-59]. Cancellous bone is less resistant to resorption than cortical bone due to its porous 

nature [46]. Some authors reported that it is possible to decrease graft resorption by fixating it 

rigidly to the surrounding tissues, as this can promote implant vascularisation and new bone in-

growth [47,58,59].                 

Further problems associated to the use of autologous bone grafts concerns the material harvesting 

from a donor site, including significant increase in surgery time and patient’s time under general 

anaesthesia [28]. For the most part, the donor graft is harvested without particular complications, 

but general risks include infection and haematoma at the donor site and/or injury to the healthy 

tissue, increased time of recovery and additional postoperative pain. Furthermore, extra-surgery 

creates a bony defect at the patient’s donor site and an additional scar. Certain donor sites are 

associated to possible site-specific complications [28,33,34]: for instance, bone harvesting from 

cranium may induce dural tears, subarachnoid haemorrhage and intracerebral haematoma; cases of 

haemiparesis following an intracranial bleed are also reported [33].   

 

4.1.2. Cartilage 

 

The currently used autologous cartilage grafts include ear [60] and nasal septum [61-63] cartilage. 

As already described for autologous bone, postoperative complications such as infection, extrusion 

and chronic inflammatory reactions are less prevalent than with alloplastic materials [28]. If 

compared to autologous bone, cartilage is usually easier to harvest and to shape, and it can provide 

a long-term support to the surrounding tissues without undergoing resorption even after follow-up 

of several years.  

Constantian [60] used conchal cartilage to fill orbital defects smaller than 4 cm
2
 and emphasized the 

easiness of graft tailoring, as the natural curvature of concha nicely fitted that of orbital floor. In the 

work by Lai et al. [61], 13 patients who presented with orbital blow-out fractures underwent 
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reconstruction with nasoseptal cartilage: there were no recipient or donor site complications except 

for one patient with persistent manifest enophthalmos requiring a second operation. Kraus et al. [62] 

used septal cartilage grafts for 20 orbital floor reconstructions and reported uncomplicated 

harvesting, minimal donor site morbidity and postoperative surgery-related complications 

(enophthalmos, lower lid oedema) in 2 patients (graft material was not associated to these adverse 

outcomes). Successful use of nasoseptal cartilage for the repair of orbital floor in children was also 

reported [63].   

As highlighted by Bayat et al. [64] in a recent work, cartilage actually has a great potential as 

grafting material since it is an easily accessible, abundant, autogenous source able to provide 

adequate support to the orbital floor and minimal donor site morbidity. Therefore, it is a bit 

surprising that it is an underutilized material for reconstruction of orbital blow-out fractures. 

 

4.1.3. Occasionally used autologous materials 

 

Tensor fascia lata [65] and periosteum transplants [66] have been occasionally tested in orbital floor 

surgery. The use of these grafts led to good clinical outcomes, with complication rates comparable 

to those of bone and cartilage autografts. The major drawbacks of these two grafts seem to be their 

limited ability to hold orbital contents in place, which makes them suitable to repair only small 

orbital defects (< 1 cm
2
), and difficult harvesting.  

 

4.2. Allografts 

 

A partial solution to the patient’s drawbacks associated with autografts is the use of allografts (often 

called homografts), i.e. the transplant of hard/soft tissue(s) from another living patient or from 

cadavers [27,32,37]. Specifically, the advantages over autologous grafts include lack of donor site 

morbidity, decreased surgery time, opportunity of pre-forming and customizing the implant before 
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surgery, and – at least virtually – unlimited availability of grafting material with particular reference 

to banked bone.  

However, especially in the past, allografts were associated to the risk of disease transmission from 

donor to patient (for instance, cases of hepatitis C [67] and HIV [68] transmission have been 

reported) and their use often involved the need for immunosuppressant drugs administration. 

Currently, at least in Europe, a wide legislation exists and the donors/graft sources are carefully 

checked before the allograft is released for clinical use [69-71].  

It is worth mentioning that, however, the use of allografts may be limited by ethical and religious 

issues. 

Lyophilized dura mater (often called “lyodura”) [72-74] and banked demineralised bone [27,75] are 

the most commonly employed allografts, but the use of allogenic cartilage [73,76] is also 

documented. Complications associated with the use of lyodura (e.g. enophthalmos, infection, 

extrusion) were generally found comparable to those related to autologous bone. For such a reason, 

this material has been considered for many years the “allogenic standard” for the reconstruction of 

the orbital floor, until cases of Creutzfeldt-Jakob disease transmission were reported in cadaveric 

dura mater transplantation [77,78]; since then, autologous or alloplastic materials have been 

preferred in clinical practice. 

The use of demineralised bone implants was alternatively advocated and castigated over the last two 

decades. Neigel and Ruzicka [27] reviewed the use of this material in the context of orbital floor 

repair and concluded that it induces osteoconduction, resembling the behaviour of autologous bone 

graft, and induces the differentiation of mesenchymal cells into chondroblasts. However, recent 

studies showed that demineralised bone graft exhibits poor mechanical properties to ensure 

adequate support to the surrounding host tissues: Sallam et al. used demineralised human bone 

sheets (thickness within 100-300 μm) in 12 patients and found that this form of material is 

unsuitable when enophthalmos exists and the graft might be too weak to support orbital contents 

[75]. 
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A factor that often discourages the use of allografts is their high resorption rate, which is 

statistically higher than that observed with autologous implants [28].  

 

4.3. Xenografts and animal-derived materials 

 

Occasionally, transplant materials from donor animals have been also used. In the last 1980s 

Webster [79] proposed the use of lyophilized porcine dermis and found this material suitable for 

orbital floor repair. More recently, Morax et al. [80] implanted bovine heterologous bone in a series 

of 20 patients and found it suitable in the repair of orbital fractures: the material demonstrated to be 

safe and no evidence of biological incompatibility, inflammation or infection was detected in all 

cases. 

In other fields of the broad world of bone reconstruction, however, the use of xenografts was 

sometimes associated to worrisome complications, such as disease transmission, severe 

immunogenic response and unpredictable resorption rates, usually higher than that of autologous 

bone. All these factors have discouraged the use of animal grafts in recent years, also considering 

that a wide range of other materials and implant options are available to surgeons. 

If only a small linear fracture (< 5 mm) is found by surgeon after orbital exploration, a thin sheet of 

gelatin (commonly called “gelfilm”) can be placed over the defect site to prevent scarring of orbital 

tissue into the fracture line [81-84]. Gelatin is prepared by partial hydrolysis of collagen from 

animal tissues such as skin and bones; specifically, pigskin gelatin has been used for many decades 

in general surgery and is commercially available to surgeons in form of sheets of various width 

(generally from 1 to few mm
2
) and thickness (generally within 0.5-1 mm). In the field of orbital 

floor repair, gelatin has been associated to relatively rare clinical complications [83]. Collagenous 

mesh was also successfully used to repair orbital floor fracture in children without postoperative 

complications [85].   
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In the context of xenografts, it is interesting to mention a recent study by Costa et al. [86], who 

tested bovine sclera as a barrier material avoiding fat and eye muscle herniation to maxillary sinus 

from surgically-induced orbital floor fractures in an animal model (18 rabbits). The standard bony 

defect, made in the left infra-orbitary border of each animal, was filled either with bovine sclera (9 

rabbits) or silicone sheet (control group of 9 rabbits). Animal with bovine sclera showed severe 

inflammatory reaction at 30 days, moderated reaction at 45 days and absence of inflammation at 60 

days, whereas the group receiving silicon implants exhibited mild inflammatory reaction at 30 days 

and no inflammation at 45 and 60 days. Bovine sclera was considered by the authors biocompatible 

(inflammatory reaction disappeared in 60 days) and suitable for orbital floor repair, as it was not 

reabsorbed, ensured an adequate “barrier effect” and allowed partial bony regeneration. 

 

5. Bioceramics 

 

5.1. Hydroxyapatite and other calcium phosphates 

 

Hydroxyapatite (HA), due to its chemical and crystallographic similarity to bone mineral, is an 

excellent material for bone defects repair [87]. Since the early 1990s, HA and carbonated apatite 

cements are commercially available as mouldable bone substitutes in the broad field of craniofacial 

reconstruction [88-91]. Mathur et al. [92] reported an interesting overview on the use of HA 

cements in the context of craniofacial surgery, including orbital floor repair. 

HA was also tested in form of porous blocks (scaffolds) [93-95]; custom-made HA implants can be 

fabricated by computer-aided design and computer-aided machinery (CAD-CAM) from data 

obtained through CT, which provided a high anatomic accuracy. Orbital HA implants are generally 

considered safe and an excellent alternative to autologous grafts and synthetic materials [96], but 

problems of brittleness can occur. 
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In an extensive study on 405 patients reported by Nam et al. in 2006 [97], the clinical outcomes 

associated to the use of coral-derived HA (Biocoral
®
) (191 cases) and porous polyethylene (214 

cases) implants were compared in detail. Postoperative enophthalmos was statistically more 

frequent in HA-treated patients in comparison to patients treated with porous polyethylene; no other 

significant differences in postoperative outcomes between the both groups were highlighted. 

HA was also used for manufacturing commercially marketed HA/polyethylene composite implants 

(see the sect. 8).   

Recently, porous biphasic β-tricalcium phosphate (β-TCP)/HA plates (weight ratio β-TCP/HA = 77 

: 23) were implanted in cats as orbital implants [98]. These scaffolds were highly biocompatible and 

did not elicit any kind of adverse postoperative complications; furthermore, their porous network 

(mean pores size ~198 μm) allowed fibrovascular tissue in-growth inside the implant, thereby 

increasing its stability in situ.    

 

5.2. Bioactive glasses 

 

As first demonstrated by Hench and co-workers in the early 1970s [99], bioactive glasses exhibit 

the unique property to bond to bone stimulating new bone growth. They are excellent materials for 

bone substitution and have been extensively investigated over the years in form of dense implants, 

powders or porous scaffolds by several researchers worldwide [100-104]. To the best of the 

author’s knowledge, only one research group affiliated to Turku University Hospital (Finland) has 

investigated the potential of bioactive glasses in the context of orbital fracture repair [105-107].  

In 2000, Kinnunen et al. [105] compared the use of bioactive glass implant with conventional 

cartilage grafts for the repair of orbital floor defects after trauma in 28 patients operated from 1991 

to 1995. None of 14 patients treated with bioactive glass showed any evidence of implant-related 

postoperative complications; in addition, their clinical outcomes (1 case of infraorbital nerve 
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paraesthesia and 1 case of entropion) were better than those the cartilage group (3 cases of diplopia, 

2 case of infraorbital nerve paraesthesia and 1 case of enophthalmos).  

One year later, Aitasalo et al. [106] reported a retrospective study of 36 patients operated from 1995 

to 1999: the bioactive glass implants did not cause a foreign body reaction in the bone or soft tissue 

and no infection, haemorrhage and implant resorption/displacement/extrusion were seen after 1-

year follow-up; one implant needed to be removed due to persistent diplopia after 3 months of 

implantation. CT investigations qualitatively demonstrated new bone growth around the implanted 

material.  

In 2008, the same research group reported the results obtained after implanting bioactive glass 

plates in 49 patients operated from 1998 to 2001 [107]. Glass plates were brittle, rigid and cannot be 

moulded, shaped, or fixed with screws by the surgeon. Therefore, the main challenge in using such 

implants in orbital reconstruction was selecting the proper plate size and shape compatible with the 

bone defect (Fig. 3b). To address this issue, a specific stainless steel prototype template was used to 

guide selection of the correct glass plate which, once implanted into the orbit, fitted to the 

surrounding orbit bone defect margins and anatomy. With this method, the glass plate covered the 

entire orbit bone defect, thereby ensuring proper positioning of the plate in the orbit. After 

postoperative follow-up of 2 years, no signs of implant-related infection, extrusion or displacement 

were assessed; furthermore, the implants did not cause any foreign body reaction and only a minor 

resorption was found on the margins of the glass plates; new bone formation on glass surface was 

also observed. 

From the data reported in this recent study, bioactive glass plate actually appears to be a promising 

and reliable implant for orbital floor reconstruction: it is slowly biodegradable, bioactive and 

biocompatible; in addition, if the implant is carefully selected, it  allows the achievement of 

excellent functional and aesthetic results.   

 

6. Metals 
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6.1. Titanium 

 

Since many decades, titanium has been successfully and extensively used in orthopaedics and 

dentistry for manufacturing bone screws, joint endoprostheses and dental implants [108,109], as 

well as in the field of craniofacial reconstruction and orbital floor repair [54,110-118]. Titanium is 

highly biocompatible and thanks to its physico-mechanical properties is an ideal candidate for the 

reconstruction of bone defects requiring substitutes with high rigidity and strength. An attractive 

feature of titanium is its ability to be incorporated in the surrounding tissues and to osteointegrate 

[112]. Titanium mesh seems to be particularly suitable for repairing large orbital fractures 

[54,113,116]. In an extensive case report on 55 patients Gear et al. [113] used a titanium mesh to 

repair orbital defects larger than 2 cm and reported the achievement of good functional results 

together with a minimal risk of infection after 44 months of follow-up. 

Titanium safety was particularly emphasized in some studies that reported no or minimal 

postoperative infections in patients treated with titanium implants [56,110,113]. 

In 2003, Ellis and Tan [56] presented an interesting study to evaluate the adequacy of internal 

orbital reconstruction in pure blowout fractures using either cranial bone grafts or titanium mesh 

implants in 58 patients. For this purpose, preoperative and postoperative CT analysis was performed 

in all patients. Although there was a great individual variability and both materials could be 

successfully used, the authors observed that the orbits reconstructed with titanium mesh showed 

better overall reconstructions than those reconstructed with bone grafts. 

Although the majority of reports showed that the use of titanium in orbital surgery can lead to 

highly satisfactory results, the occurrence of serious postoperative clinical complications was 

occasionally reported. Schubert et al. [112] implanted large segments of titanium mesh in 8 patients 

to reconstruct orbital and midface defects with direct communication between the mesh and nasal-

oral-pharyngeal area and paranasal sinuses: biopsy examination at 3 months revealed incorporation 
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of the titanium with fibrous soft tissue covered by mucosal type epithelium and an acute 

inflammation that evolved into a mild, chronic state after 31 months. 

It has been also underlined that titanium, even if incorporated in the surrounding tissue, is a non-

absorbable material and, therefore, it cannot be replaced by new soft or bone tissue and will remain 

in situ indefinitely, causing possible late side effects (infection, implant corrosion, toxicity due to 

metal ion release [108,109,119]).  

Another non-negligible disadvantage of titanium implants, especially for custom-made devices, is 

the high cost [114,115]. However, Kozakiewicz et al. [117] demonstrated that it is possible to make 

relatively inexpensive anatomical models of patient’s orbit on the basis of CT data and rapid 

prototyping techniques; such models are suitable templates to shape the titanium mesh and to aid 

the correct implant placement during surgery (Fig. 3c). Furthermore, Lieger et al. [118] recently 

developed a financially viable CAD/CAM technique for manufacturing titanium implants to be 

used in orbit reconstruction surgery, obtaining excellent clinical outcomes.  

 

6.2. Cobalt alloys 

 

Cobalt-based alloys have been used for decades in orthopaedic surgery and dentistry due to their 

high resistance to corrosion. The most commonly used cobalt alloy is Vitallium
®
, with typical 

weight composition of 60.6% Co, 31.5 Cr, 6.0 Mo, 1.9% residuum (Si, Mn, C) [120].  

To the best of the author’s knowledge, only one case report about the use of this alloys for orbit 

repair is available in the literature. In 1991, Sargent and Fulks [121] reconstructed 66 internal 

orbital defects of 54 patients with Vitallium
®
 meshes: there were no postoperative orbital infections 

and none of the implants required removal. The authors found the material to be well-tolerated by 

tissues, suitable for treating large orbital defects and recommended its use in the clinical practice. 

As shown by Sullivan et al. [122], Vitallium
®
 meshes produces significant artifacts on both CT and 

MRI scanning, which makes it very difficult to detect orbital pathologies. This drawback and the 
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increasing availability of other effective materials are perhaps the reason why cobalt alloys have not 

been further investigated for obital surgery applications.     

 

7. Polymers 

 

7.1. Permanent implants  

 

7.1.1. Silicone 

 

Silicone has been extensively proposed for almost 50 years as a suitable material for various 

surgical applications due to its attractive properties including biological/chemical inertness, 

flexibility, ease of handling and low cost. In retinal detachment surgery, for instance, silicone 

elements for scleral buckling are the unique scleral implants approved for clinical use and available 

on the market worldwide [123].  

In 1963, silicone was introduced by Lipshutz and Ardizone [124] in the management of orbital floor 

fractures. Since then, the use of silicone sheets (commercially named Silastic
®
, and hence 

commonly referred to as “silastic” foils) for orbital floor surgery was alternatively advocated and 

castigated and this controversy still lingers on [125].   

In 2010, Prowse et al. [126] conducted a detailed retrospective review of 81 patients who had 

orbital floor reconstruction from 1995 to 2007 and compared the performance of silicone implants 

(58 patients) with that of non-silicone ones (autografts, titanium mesh, resorbable plates) materials 

(23 patients). Statistically significant advantages were found in the silicone group if compared to 

the other one, especially in the number of patients with palpable implants (24% vs. 63%), without 

any postoperative complaints (67% vs. 32%), or requiring subsequent surgery for complications 

related to their implants (5% vs. 23%). Therefore, the authors concluded – in good agreement with 

the majority of surgeons – that the appropriate use of silicone implants for orbital floor 
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reconstruction can lead to good results, with low complication rates including an acceptably low 

rate of infection and extrusion, as well as high patient satisfaction. The good in vivo behaviour of 

silicone was commonly attributed to its excellent biochemical inertness and to the fact that a smooth 

collageneous capsule forms around the material, decreasing the chance of later infection and 

migration of the implant. 

However, over the years some reports described an unacceptable incidence rate of various implant-

related complications including infraorbital cysts formation, infection, extrusion and implant 

displacement [127-130]. The occurrence of all these problems was described in a detailed study by 

Laxenaire et al. [131] who monitored a group of 137 patients receiving silicone implants; 19 cases 

required implant removal. In this study, the authors considered the formation of a fibrous capsule 

around the implanted material as a risk factors for the development of cysts, fistulas and infections 

in the implant surroundings. This was also partially attributed to the fact that silicone does not bond 

either to soft tissues or bone [132].  

As reported by Morrison et al. [133], the majority of silicone-related complications generally occurs 

in the early postoperative period and the chance of complication decreases with longer 

asymptomatic period. Long-term complications were also occasionally reported: Brown and Banks 

[134] documented the late extrusion of a silicone implant through facial skin in 3 patients after 10, 

16 and 17 years of implantation, respetively, and Miyasaka et al. [135] recently presented a case of 

one patient suffering from chronic infection, persistent pain and diplopia, and therefore requiring 

implant removal after 28 years of implantation.      

 

7.1.2. Polyethylene 

 

Porous ultra-high density polyethylene (PE), marketed under the commercial name of Medpor
®

 

(Porex Surgical, USA), has been successfully used for almost 20 years in the surgical management 

of orbital defects worldwide. Sheets of various size and thickness (typically within 0.4-1.5 mm) are 
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commercially available, and they can be easily adapted by surgeons to fit the needs of each case 

(Fig. 3d). The presence of pores promotes tissue in-growth and implant vascularisation and reduces 

foreign-body reactions and capsule formation.  

In 1993, Romano et al. [136] first reported the use of porous PE sheets for repairing facial fractures 

in 140 patients: the material could be easily cut and contoured according to specific surgical needs, 

allowed soft tissue in-growth and did not elicit adverse reaction, except for the case of one patient 

who required implant removal due to infection. 

Dougherty and Wellisz [132] compared the tissue reactions induced by porous PE plates and 

silicone sheets in an animal model (New Zealand rabbits): silicone was encapsulated in fibrous 

tissue, whereas PE exhibited soft and vascular tissue in-growth after 1 week of implantation. 

Fibrovascular tissue in-growth in porous PE sheets implanted in human patients was recently 

investigated in detail by Patel et al. [137], who reported an excellent integration of the synthetic 

implant with the host tissues. 

Recently, Lupi et al. [138] used porous PE sheets for orbital floor reconstruction in both 

posttraumatic (27 cases) and postoncologic (5 cases) patients. There were no cases of implant 

migration, extrusion or enophthalmos; only diplopia persisted in 2 patients after 6 months of follow-

up. The implant was considered safe and represented a stable platform
 
for orbital soft tissues 

growth; in addition, with respect to other alloplastic materials, porous PE was deemed to be more 

suitable in the case of large defects requiring an extensive support. 

In a comparative study, Wang et al. [116] considered porous PE, together with titanium mesh, the 

ideal material to be used for orbital floor repair. Perforated PE sheets were found particularly 

suitable for repairing large defects of the orbital floor [55,116]. 

Even if the clinical outcomes after implantation of porous PE implants were generally good, some 

authors reported a non-negligible complication rate associated to the use of such material [139,140]; 

Fialkov et al. [129] specifically registered a higher infection rate associated to porous PE with 

respect to other alloplastic implants.        
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7.1.3. Polytetrafluoroethylene 

 

Polytetrafluoroethylene (PTFE), being biologically and chemically inert, non-antigenic, sterilizable 

via autoclave and easily mouldable to conform to various solid shapes, is an ideal implant 

biomaterial. At present, expanded PTFE (ePTFE) is primarily used in abdominal and vascular 

surgery, but it was also proposed in the context of ophthalmic surgery to repair posttraumatic orbital 

floor defects. In 1990, Breton et al. [141] successfully used ePTFE (Gore-Tex
®
) in 30 cases of 

orbital fractures in presence of limited loss of bone (defect size < 1.5 cm). In 1994, Hanson et al. 

[142] implanted 1-mm thick Gore-Tex
®
 sheets in sheep and found the material very suitable for 

orbital floor repair: specifically, ePTFE provided stability to surgically-created enophthalmos and 

caused essentially no foreign body reaction. More recently, Elmazar et al. [96] implanted ePTFE 

grafts reinforced with fluorinated ethylene propylene (FEP-ePTFE) in cats; specifically, the efficacy 

and biocompatibility of ePTFE and FEP-ePTFE were compared to those of HA and autogeneous 

bone graft for reconstructing the orbital floor. ePTFE and FEP-ePTFE were malleable enough to be 

contoured during defect repair and strong enough to support the orbital contents; minimal 

inflammatory response was reported, and as healing progressed a growth of host tissue into the 

material was noted, which augmented the stability of the implant avoiding the risk of extrusion.          

 

7.1.4. Nylon 

 

To the best of the author’s knowledge, the use of nylon in orbital floor surgery is relatively recent. 

In 2007, Majmundar and Hamilton [143] reported preliminary clinical experiences involving the 

repair of limited orbital floor fracture by using smooth nylon sheets (SupraFOIL
®

, medical grade 

nylon 6). One year later, Nunery et al. [144] reported the excellent clinical outcomes obtained after 

implanting a single 0.4-mm thick nylon foil (Supramid
®
, medical grade nylon 6) in 102 human 
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patients: in 101 orbits, normal globe position and full extraocular motility without diplopia was 

accomplished; one orbit had persistent enophthalmos, thereby requiring a second procedure. In 

2008, Park et al. [145] reported a retrospective study of 181 patients having undergone repair of 

orbital fractures by using nylon sheets (SupraFOIL
®

) from 1995 to 2003. The authors found the 

smooth nylon foil implant to be safe and effective in orbital fracture repair. The low rate of 

complications – 1 patient had an acute postoperative orbital haemorrhage and 2 patients had late 

orbital infections –  was also deemed to be related to implant fixation: a titanium screw secured just 

posterior to the orbital rim could decrease long-term complications by providing more stability with 

respect to implants left without fixation. 

Nylon sheets seem to be a promising alternative to other alloplastic materials (e.g. silastic foils), at 

least in uncomplicated orbital floor fractures.  

 

7.1.5. Hydrogels 

 

In the context of polymeric biomaterials, it is interesting to mention the valuable study reported by 

Betz et al. in 2009 [146]. The authors proposed a tissue engineering approach for orbital bone repair 

based upon a cyclic acetal biomaterial formed from 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1,3-

dioxane-2-ethanol diacrylate (EHD) and poly(ethylene glycol) diacrylate (PEGDA), that can be 

eventually fabricated into an EH-PEG hydrogel by radical polymerization. EH-PEG hydrogels were 

implanted into 8-mm rabbit orbital floor defects; experimental groups included unloaded EH-PEG 

hydrogels and EH-PEG hydrogels containing 0.25 μg and 2.5 μg BMP-2/implant. Unloaded 

hydrogel was initially bordered by a fibrin clot (7 days) and then by fibrous encapsulation (28 

days); BMP-2 loaded EH-PEG hydrogels, independent of concentration, were surrounded by 

fibroblasts at both time points. Histological analysis also demonstrated that significant bone growth 

was present at the 2.5 μg BMP-2/implant group at 28 days.  
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In the author’s opinion, this work is very important both in the context of orbital floor repair and in 

the broader field of bone tissue engineering, as it demonstrates that the EH-PEG construct is a 

viable option for use and delivery of BMP-2 in vivo. The great potential of this tissue engineering 

approach was also highlighted in a valuable recent review [31]. However, it cannot be ignored that 

the amount of BMP needed for humans, compared to rabbits or rodents, is significantly higher, 

which makes the use of BMPs very expensive.    

 

7.2. Absorbable implants 

 

Absorbable polymers have been widely used for more than 30 years in many fields of surgical 

practice, and in the 1990s absorbable plate-screw systems have been commercially introduced as an 

efficient device for fixation of fractures in the cranio-maxillofacial region [147], as well as in the 

field of orbital surgery [148]. 

Absorbable synthetic polymers exhibit interesting features, as they offer more controllable and 

predictable absorption kinetics than those of biological grafts and can be easily tailored to obtain an 

implant of desired size and shape [149]. Comprehensive reviews dealing with the properties, 

biodegradability and surgical applications of resorbable polymers are available to interested readers 

[150-152]. 

 

7.2.1. Poly(lactic acid)  

 

The first clinical use of poly(lactic acid) (PLA) in the management of orbital floor fractures was 

reported in 1972 by Cutright and Hunsuck [153], who demonstrated its suitability as an alternative 

to biological materials.  

In 1990, Rozema et al. [154] tested 0.4-mm thick concave poly(L-lactide) (PLLA) implants (Fig. 

3e) in goats having an artificial defects in the bony floor of both orbits. After 19 weeks of 
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implantation, new bone formation was observed, and after 78 postoperative weeks the new bone 

had fully covered the PLLA plate on the antral and orbital side; no inflammation and/or extrusion 

were reported. At 5 years of follow-up, no complications related to the PLLA orbital floor implant 

were observed. 

More recently, De Roche et al. evaluated in a couple of studies the suitability of poly(L/DL lactide) 

(P(L/DL)LA) for the reconstruction of orbital defects in sheep [155,156]. In their first report in 

1998, they compared polydioxanone and P(L/DL)LA membranes for the reconstruction of large 

orbital wall defects in a long-term experiment over 1 year, and found that P(L/DL)LA implants 

alone exhibited the best performance as compared with combinations involving autogenous bone 

grafts and titanium miniplate fixation [155]. In 2001, the same research group reconstructed large 

bilateral orbital wall defects in sheep by using (i) P(L/DL)LA microporous 0.5 mm-thick 

membranes without further support on one side, and (ii) 0.25 mm-thick microporous membrane 

supported by solid polylactide buttresses and stabilized by polylactide dowels on the opposite side 

[156]. After 12 months, a symmetrical reconstruction of the normal anatomy of the orbits was found 

in CT and X-ray examinations; in contrast, histological investigations revealed massive foreign 

body reactions around degrading buttress implants and dowels especially. 

These results [156] are partially consistent with those obtained by Bergsma et al. [157], who 

observed a very mild tissue reaction around the implants and limited mass loss of the material after 

5 years of implantation, but is consistent with the findings of another study in which PLLA plates 

and screws were used for treating zygomatic fractures in human patients [158]. 

Cordewener et al. [159] evaluated the long-term clinical results of PLLA implants in orbital floor 

defects by using MRI. After 78 months of implantation, none of the patients exhibited clinical 

complications (diplopia, restriction of ocular motility) or bone/soft tissue abnormalities at the 

operation site, and therefore the authors recommended the use of PLLA as a safe and successful 

implant material for repairing orbital floor defects in humans. 
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Bergsma et al. [160] observed tissue swelling as a long-term complication following PLLA 

implantation for orbital floor repair, and suggested that residual PLLA particles (i.e. the remnants of 

non-degraded material) could be not fully biocompatible. 

In 2001, Balogh et al. [161] reported a study on 18 patients with fractured orbits treated with PLA 

implants. No postoperative complications were observed at 24 to 43 months of follow-up, except 

for a transient eyelid inflammation that resolved spontaneously. The authors also underlined that the 

material could be easily remodelled once heated, thereby allowing a precise adaptation of the 

implant to the orbital structures. 

Very recently, Lieger et al. [162] implanted triangle form P(L/DL)LA plates in 46 patients to 

restore orbital floor or wall defects. None of the patients showed clinical foreign-body reactions. 

There was no evidence of infection in all patients; diplopia was seen in 6 patients 3 months 

postoperatively but normalized in 5 patients at 6 months; mild enophthalmos was seen in 2 

patients postoperatively at 1 year. No sagging of the reconstructed area was found on CT 

evaluation. 

 

7.2.2. Poly(glycolic acid) 

 

In 1994, Hatton et al. [163] performed in vitro tests on PGA membranes in order to evaluate their 

suitability as a materials for orbital floor repair. After 2 weeks of culture, osteoblasts penetrated the 

PGA membrane and deposited calcified collagenous bone-like tissue within the material as it 

underwent progressive resorption. One year later, PGA membranes constituted by woven polymeric 

fibres were successfully implanted in 12 human patients by McVicar et al. [164]. PGA was found 

highly suitable for orbital floor repair as it did not induce long-term infection or migration, which is 

sometimes associated to non-absorbable alloplastic implants. 

However, as PGA is known to loose its structural integrity by ~2 months of implantation and to be 

resorbed almost totally (> 90%) by ~9 months [165], the researchers’ attention was progressively 
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drawn by materials having slower kinetics of degradation, such as PLA/PGA composites, that are 

able to ensure adequate structural and mechanical support postoperatively at the implant site.     

 

7.2.3. PLA/PGA implants 

 

In the two last decades, several studies widely demonstrated the suitability of PLA/PGA implants 

for craniofacial reconstruction surgery [148,149,166], as well as for orbital floor repair (Fig. 3f). 

Since the mid 1990s, resorbable PLA/PGA plate-screw systems began to be marketed worldwide 

and are currently available for clinical use. 

In 2001, Hollier et al. [167] used a resorbable PLLA/PGA mesh plate (Lactosorb
®

) in 12 patients 

with large orbital defects (> 1 cm
2
). The authors found some unsatisfactory results and concluded 

that resorbable meshes are acceptable implants for orbital floor repair only in selected patients, 

suggesting to treat large floor defects by non-absorbable alloplastic materials and to avoid the 

placement of the mesh over the infraorbital rim for preventing possible local inflammatory reaction. 

One year later, 5 patients with orbital defects were treated using the same materials via a transantral 

endoscopic approach and no graft-related complications were reported.  

In 2007, Tuncer et al. [168] reported a retrospective study about the use of Biosorb
®
 PDX plates 

(Bionx Implants, Finland), with weight ratio PGA/PLLA = 4, for the reconstruction of orbital floor 

in 17 patients: in all cases, no evidence of postoperative infection or diplopia was seen. One patient 

required reoperation due to implant displacement, but no other problems were reported after 15-

month follow-up. The resorbable mesh system was able to maintain the orbital contents against 

herniation forces during the initial phase of healing and was bioabsorbed through natural processes 

after its support was no longer needed. 

Although PLA/PGA composite resorbable meshes have many advantages, postoperative 

inflammation may occur, as already observed for PLA implants [156,158,160]. Uygur et al. [169] 

recently highlighted that a considerable complication related to such implants is local inflammatory 
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reaction along the infraorbital rim, and patient’s ocular motility may be restricted because of the 

formation of fibrotic bands passing through the holes of the resorbable mesh. These implants are 

generally considered an excellent option in children, who still have a developing skeleton [170]. 

 

7.2.4. Polydioxanone 

 

Polydioxanone (PDO) is commonly adopted in the clinical practice as material for resorbable 

sutures that disappear ~6 months postoperatively, but its use as an orbital implant is also 

documented. There is a controversy about its use in orbital floor surgery: some authors associated 

PDO to unacceptable clinical outcomes [171-173], but in other reports PDO performance was found 

comparable to that of other alloplastic materials [84,174]. For this reason, at present PDO is rarely 

used as-such, but rather in combination with polyglactine 910 (Ethisorb
®

) (see the sect. 7.2.5.).  

Merten and Luhr [171] evaluated PDO sheets for repair of experimentally-created orbital defects in 

pigs. The implants were completely absorbed after 29 weeks, replaced by fibrous tissue and coated 

by mucosa on the sinus side. Hydrolytic breakdown products of PDO implant elicited irritation in 

the surrounding tissue evoking a secondary foreign-body reaction.   

Kontio et al. [172] treated orbital fractures in 16 patients using PDO implants and reported an 

increasing rate of enophthalmos as follow-up increased, reaching 37.5% after 36 weeks of 

implantation. In addition, 4 cases of fibrotic sinuses occurred and 1 patient required the removal of 

implant fragments after 16 weeks due to inflammation.  

Baumann et al. [173] reconstructed 31 orbits by using PDO sheets and reported unsatisfactory 

results, as 7 patients developed enophthalmos, postoperative diplopia persisted in 10 patients after 6 

months of implantation and 2 patients required implant removal due to haematoma and extrusion. 

In a comparative study reported by Jank et al. [174], orbital defects were corrected by using 

different implant materials, including PDO (81 patients), lyophilized dura mater (120 patients) and 

Ethisorb
®
 (Johnson & Johnson, USA) (136 patients) (see also the sect 7.2.5.). As regards the long-
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term complications, no statistical significant differences among the three groups were observed; the 

clinical outcomes were good, no revision surgery were required and a low enophthalmos rate (~1 

%) was reported also for PDO implants, apparently in contrast to the data reported by Kontio et al. 

[172] and Baumann et al. [173].  

More recently, Becker et al. [84] considered PDO foils very suitable to repair small orbital fractures 

(< 2 mm), whereas the use of non-absorbable materials was suggested for large defects.     

 

7.2.5. Polyglactine 910/PDO implants 

 

Polyglactin 910/PDO (PG910/PDO) flexible membranes are marketed worldwide under the 

commercial name of Ethisorb
®
 (Johnson & Johnson, USA) for several years; PG910 (commercial 

name: Vicryl
®
) is a PLA/PGA copolymer with weight ratio PLA/PGA = 1 : 9 and it is commonly 

used as a material for making surgical sutures. 

In 1999, Piotrowsky and Mayer-Zuchi [175] first reported a retrospective study on the treatment of 

orbital lesions in 85 patients operated from 1988 to 1996 by using PG910/PDO patches. Orbital 

reconstruction was considered very good in 71 patients even in severely injured cases; therefore, the 

material was considered appropriate for orbital surgery and appeared as a valuable alternative to 

autologous bone especially for the treatment of large defects, thanks to the easiness of 

contourability. 

In 2003, Jank et al. [174] reported an interesting comparative study with the aim to investigate 

whether PG910/PDO membranes showed better long-term results with regard to diplopia, bulbous 

motility and exophthalmos/enophthalmos compared to the use of lyophilized dura mater patches 

and PDO sheets. The use of PG910/PDO patches led to very good clinical outcomes and resulted in 

a significantly lower incidence of exophthalmos 3 months after surgery compared to PDO; 

however, after 24 months of implantation no statistical difference among the three groups was 
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observed (2% exophthalmos, 1% enophthalmos, 4% reduction of bulbous motility and 3% diplopia 

were found in all three groups). 

In 2005, Buchel et al. [176] reviewed the charts of 87 patients who underwent orbital floor fracture 

reconstruction by Ethisorb
®

 membrane (Fig. 3g); 3 patients had permanent implant-related 

postoperative complications (diplopia, enophthalmos) that in 2 cases required revision surgery. The 

authors concluded that the PG910/PDO patch was very effective in the repair of small-to-mid 

orbital floor defects (up to 4 cm
2
).     

 

8. Composites 

 

HA-reinforced high-density composite (HAPEX
TM

) has been marketed and successfully adopted for 

several years as a bone replacement material in the context of orbital floor repair [177,178] and 

middle ear prostheses [179]. Zhang et al. [180] recently suggested the use of HA/PE composite 

material as a skull implant for the repair of cranial defects. The combination of stiff, osteoinductive 

but brittle HA with low-modulus, tough and bioinert PE produces a biomedical composite 

exhibiting attractive properties for bone substitution. A detailed overview of the clinical use of 

HA/PE composites for bone reconstructive surgery was recently reported by Tanner [181]. 

In the mid 2000s, a titanium/PE composite implant (Medpor
®
 Titan

TM
, developed by Porex 

Surgical, USA) was developed to overcome specific drawbacks of bare titanium meshes and 

implanted with good clinical outcomes [182,183]. When cut, traditional titanium mesh may exhibit 

many sharp points and edges that can make its insertion quite difficult. A thin coating of high-

density PE placed on both sides of a titanium mesh (Fig. 3h) minimizes sharp edges even when the 

implant is cut. The titanium mesh is radio-opaque, making the implant visible on radiographs or CT 

scans. Furthermore, this new device allows the surgeon to bend and contour a thin implant material 

to the desired shape while providing the strength usually associated with a much thicker traditional 
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Medpor
®
 implant. An analogous device (SynPOR

®
) was also recently developed by Synthes, 

another medical implant company.  

In the last decade, other innovative composites were experimentally proposed for orbital floor 

reconstruction, but, to the best of the author’s knowledge, none of them has been definitely 

approved for clinical use. 

In 2010, Asamura et al. [184] proposed the use of a periosteum/polymer complex produced by 

joining periosteum to a HA/PLLA/poly(caprolactone) (PCL) sheet; in this pilot study, autologous 

iliac crest bone was also implanted in a control group of patients. The anatomical position and 

movement of the eyeball were normal postoperatively in both groups; therefore, the authors deemed 

the periosteum-polymer composite as a promising alternative to autologous bone, overcoming the 

problems of limited autograft availability and possible morbidity at the donor site. 

Asamura and co-workers again in 2010 [185] used gelatin hydrogel as a carrier for slow release of 

BMP-2 in dogs: specifically, they coupled a BMP-2-loaded gelatin sheet with a biodegradable PLA-

based foil and grafted this composite into bone defect sites of a canine orbital floor fracture model. 

Bone structural analysis, carried out by using radiography, histologic examination and CT, showed 

highly enhanced new bone formation and defect healing at 5 weeks in comparison to the implanted 

biodegradable PLA-based foil directly saturated with the same amount of BMP-2 (absence of the 

gelatin carrier for BMP-2). This study shows the great potential carried by controlled release of 

BMPs in an attempt at improving bone healing and surgical outcomes.  

Patel et al. [186] incorporated HA nanoparticles (20-70 nm) within cyclic acetal hydrogels to create 

nanocomposites that were used to repair surgically-created orbital floor defects in an animal model 

(rabbits). Preliminary histomorphometric results indicated that the nanocomposite material elicited 

a positive in vivo response in terms of bone growth; however, complete restoration of orbital floor 

defects were not achieved after 28 days of implantation. 

A particular mention should be dedicated to the work of Rohner et al. [187], who tested bone-

marrow-coated PCL scaffolds for the reconstruction of orbital defects in pigs. Before implantation, 
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fibrous PCL scaffolds fabricated by rapid prototyping (porosity ~65 %vol.) were soaked for 30 min 

in heparinised bone marrow, which was freshly harvested from the iliac crest of the same animal. 

Histomorphometric results after 3 months of implantation showed that the bone marrow-coated 

implants induced a significantly higher bone in-growth in comparison with non-coated PCL 

scaffolds.  

 

9. Overview of comparative studies – does an ideal biomaterial exist? 

 

No generally-recognized consensus exists on the best choice of biomaterials/implants for orbital 

floor reconstruction, but several options are at surgeon’s disposal and available on the market 

(Table 2). The choice of an optimal material for orbital skeleton repair is influenced by many 

factors including the specific characteristics of the injury, cost, patient’s clinical history and 

experience/opinion of the surgeon.    

It is worth underlining once more that a careful history and physical examination of the patient is 

vital for the diagnosis of orbital floor fractures and, accordingly, for the choice of a suitable implant 

material, if required. Axial and coronal CT scans should be obtained in order to discern the extent 

of the orbital cavity injuries, as well as any other facial fractures that might be present. The two 

most important characteristics of the fracture to be determined are the size/shape of the damage and 

whether or not any orbital contents have prolapsed through the fracture into the maxillary sinus. 

Exhaustive knowledge of all these factors is essential to guide surgeons towards the best choice for 

each patient. 

A valuable resource to help surgeons in selecting the optimal material(s) is provided by useful 

comparative studies reported in the literature.  

To the best of the author’s knowledge, the first extensive comparative study on the performance of 

different biomaterials for orbital floor repair was reported in 1998 by Chowdhury and Krause [28], 

who concluded that when a blowout fracture with a clinically significant orbital
 
floor defect occurs, 
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autologous material is preferable
 
for the orbital floor graft. On the basis of his own clinical 

experience, also in 1998 Kellman [50] suggested that autologous grafts should be generally 

preferred to alloplastic materials, as he encountered minimal postoperative inflammation and no 

extrusion of autologous
 
bone. However, Kellman [50] also underlined that bone grafts can undergo 

resorption, thereby resulting
 
in delayed changes in globe position that may require later

 
revision 

surgery. 

Mathog [51] also agreed with Chowdhury and Krause [28], but he underlined that comparison 

among the performance of different materials is often difficult, as the majority of reports available 

in the literature does
 
not address uniformly the indications for surgery, the surgical techniques and 

the follow-up period of observation. 

More recently, Wang et al. [116] implanted shaped autologous bone, titanium mesh and porous PE 

(Medpor
®
) under the periosteum of the orbital floor in 5, 10 and 6 patients, respectively. Accurate 

CT scanning was performed to investigate surgical outcomes. All the patients had good results, 

including significant improvement in appearance and function after surgery, without exhibiting 

severe permanent complications. The authors suggested that porous PE and titanium mesh can be 

preferred to autologous bone as they need no extra-surgery for harvesting the material; specifically, 

titanium meshes are particularly suitable for treating fractures with large defects that were not easy 

to fix without obvious enophthalmos, and porous PE is recommended when there is a need for 

restoring the orbital volume. 

Ellis and Tan [56] and Al-Sukhun and Lindqvist [53] compared autologous bone with 

biodegradable mesh and titanium, and suggested to avoid using bone graft due to long operative 

duration and postoperative graft resorption seen on CT scanning.  

In 2003 Elmazar et al. [96] compared the efficacy of ePTFE to that of HA and autologous bone in 

an animal model (short-hair cats). ePTFE were more easily shapable and countourable than HA or 

bone, allowed tissue in-growth thereby becoming biologically fixed to the surrounding bony and 

soft tissues, did not elicit infections and evoked minimal foreign body/inflammatory reaction. 
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In 2006 Nam et al. [97] reported the clinical outcomes of 405 patients who received HA implants 

(191 cases) or porous PE (214 cases). Postoperative enophthalmos was statistically more frequent in 

HA-treated patients in comparison to the patients treated with porous PE; no other significant 

differences in postoperative outcomes between the both groups were highlighted. 

Shetty et al. [54] treated 10 patients suffering from orbital blow-out fractures with different 

materials and concluded that calvarial graft, titanium mesh and porous PE appear to have equal 

potential to offer stable and safe reconstruction of the fractured orbital floor. 

In a randomized controlled clinical study on 24 patients with orbital floor defects of approximately 

1 cm
2
, Becker et al. [84] recently evaluated the use of a collagen membrane compared with a PDO 

foil. Intraoperative complications occurred neither in the collagen membrane group nor in the PDO 

group; furthermore, no complications such as infections were observed perioperatively and 

postoperatively. After 6 months, CT investigations revealed a complete reposition of orbital tissue 

and even bone regeneration in both groups. Diplopia and infraorbital nerve hypoesthesia were 

completely reversed after half a year. The authors concluded that relatively small defects (< 1 cm
2
) 

of the orbital floor can be successfully restored with a PDO foil or a collagen membrane, whereas 

larger defects require implants with higher and more prolonged stability (e.g. titanium meshes). 

Very recently, Tabrizi et al. [183] evaluated orbital floor reconstruction in 101 patients by using 

autogenous bone and different alloplastic materials (Medpor
®
, Medpor

®
 Titan

TM
, titanium mesh and 

resorbable plates). The authors concluded that autologous bone graft elicited minimal postoperative 

infection and was an excellent choice for treating major orbital defects; titanium mesh, Medpor
® 

and Medpor
® 

Titan
TM

 provided excellent structural support and could be successfully used in large 

orbital floor defects; resorbable plates were good alternative materials in pediatric patients. 

In a recent study, Ram et al. [55] compared the efficacy of iliac crest grafts (10 patients) and 

Medpor
®
 implants (10 patients). The clinical outcomes were highly satisfactory and almost equal in 

both groups, and the authors stated that porous PE is a valuable option in patients where harvesting 

of graft is not feasible. 
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From the results and suggestions reported in the literature, we can conclude that, at present, an ideal 

biomaterial does not exist, but the choice of orbital wall implants has to be carefully individualized. 

Size and shape of the fracture, presence of adequate surrounding stable bone and need for orbital 

rim reconstruction are all factors that play a crucial role in the decision-making process. 

From a general viewpoint, it is worth underlining that today the commonly recognized “gold 

standard” in reconstructive bone surgery consists in the use of autografts, which involves harvesting 

the patient’s own tissue from a donor site and transplanting it to the damaged region. Autologous 

bone causes no immunological problems, but can be collected only in limited amount, and its 

harvesting can induce death of healthy tissue at the donor site; in addition, problems related to 

second site morbidity, mismatching in mechanical properties with respect to host bone, and 

tendency towards resorption may occur. Synthetic biomaterials are a good alternative and allow to 

overcome these limitations, but at present none of them can be ultimately considered as the ideal 

option.   

 

10. Summary and indications for material choice 

 

Orbital fractures due to trauma usually ensue in damages to the floor and the medial wall, the 

thinnest bone in the body. In some cases, surgical treatment is not mandatory and drug therapy can 

be recommended, as previously discussed in the sect. 2.2. Clinical indications for fracture repair are 

the patients’ symptoms and generally include severe diplopia, entrapment of extraocular muscles, 

large fractures (> 50% of the wall) and enophthalmos greater than 2 mm [2,8,12,17]. If surgical 

correction is indicated, the surgeon must decide which material to use to repair the defect. As 

described in detail in the previous sections, the choices at the surgeon’s disposal vary from 

autologous bone grafts to synthetic implants such as silastic sheets, porous PE and titanium meshes. 

Each solution accomplishes the twofold goal of covering the bone defect and preventing the 

prolapse of orbital tissues into the sinus(es). The major issues that mainly weigh in the surgeon’s 



 38 

decision on what material to use include the damage extension, the evaluation of extrusion and 

infection rate associated to the different materials, the difficulty of harvesting material (especially 

for autografts) and the possible risk of foreign body reaction. As the orbital floor is a very 

complicated structure from an anatomical viewpoint, it is obvious that, unless the material is 

custom-made by rapid prototyping, it must be easily shapable during operation for optimal results.   

Autologous bone is generally recognized by the majority of surgeons as the preferred material for 

grafting. The drawbacks of using autografts include extra-surgery due to graft harvesting and 

morbidity at the donor site; the advantage is that, by using  the patient’s own tissue, the chances of 

rejection are negligible [28,32].  

Synthetic polymeric implants available on the market have shown to be highly biocompatible and to 

have, generally, small extrusion rates. At present, the most commonly used polymeric implants are 

silastic sheets and porous PE. 

Advantages of silastic sheets are that a smooth collageneous capsule forms around the material, 

decreasing the chance of later infection and migration of the implant [126,132]. Furthermore, 

because of its smooth surface, the orbital tissues will not become incorporated into the sheet, 

thereby decreasing the chance of diplopia associated to fibrovascular tissue in-growth and allowing 

an easy implant removal in the case of reoperation.  

From another viewpoint, however, fibrovascular in-growth – this is the case of porous PE – can be 

considered an added value, since it ensures the mechanical stability of the implant and decreases the 

chance of material extrusion [132,137]. Nonetheless, the difference in extrusion rates between 

silastic sheets and porous PE seems to be clinically insignificant. Pliability is similar, ease of 

shaping, conforming and placement are comparable and both of them are commercially available in 

different thicknesses. The use of porous PE can be particularly recommended for treating large 

defects, since manufacturing companies make products of various shapes and size to conform to the 

natural orbit dimensions [55,116,138]; for instance, Porex Surgical has developed ½ orbit, ¾ orbit 



 39 

and whole orbit implants to fit the needs depending on the size of the defect, that may be secondary 

to trauma or also due to orbital tumour resection. 

HA is, at least virtually, a good alternative to polymeric implants due to its crystallographic and 

compositional similarity to natural bone; however, intra- and postoperative problems – including 

difficult shapability – related to material brittleness may occur [96]. 

Titanium mesh can be also used, but it must be fixed to the surrounding and stable bone with 

screws. Titanium implants are very suitable for treating large fractures or fractures also involving 

the orbital rim where more reconstruction is needed [54,113,116]. Two issues should be carefully 

taken into account if titanium is used. The first is that the surgeon, after cutting the mesh to conform 

it to the shape and size of the defect, must burr down or smooth the resulting sharp edges to avoid 

abrasion. The second issue is that the titanium mesh will allow a considerable tissue in-growth 

through its holes; in order to prevent the tissue from “sticking down” to the surface, the implant can 

be properly covered with another material, such as porous PE sheet, silastic sheet, banked dura 

mater or pericranium.  

A new device has recently become available to allows the surgeon to avoid the above-mentioned 

hassle with the use of titanium implants. This kind of implant (commercially referred to as Medpor
®

 

Titan
TM

 or SynPOR
®

) is a titanium sheet covered on both sides by a thin sheet of porous PE 

[182,183]. The new design provides a smooth surface on both sides of the implant; after cutting, the 

sharp edges of the cut titanium are “hidden” by the PE layer, thereby eliminating the need for 

burring down the edges. This implant can be recommended for the repair of large orbital floor 

fractures involving the inferior orbital rim.  

In summary, autografts, e.g. split calvarial, rib or iliac crest bone grafts, are currently considered the 

“gold standard” option by surgeons and, accordingly, are the preferred choice. Autologous bone is 

also particularly suitable when the patient has an extremely large defect [28]. 

If the use of autografts is not possible, among the synthetic biomaterials silastic sheets and porous 

PE (Medpor
®
) can be considered a good options for fractures that involve neither the orbital rim nor 
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the entire wall of the orbit. Porous PE is also suitable to repair mid to large complex or multiple 

orbital defects. For very large reconstructions (typically > 4 cm
2
), bare titanium mesh, PE-coated 

titanium (Medpor
®
 Titan

TM 
or SynPOR

®
), or a combination between titanium and nonabrasive 

material, are recommended. Absorbable plates or sheets (e.g. Lactosorb
®
, Ethisorb

®
) are generally 

preferred in patients with developing skeleton (children) [170]. If only a small linear fracture (< 5 

mm) is found after orbital exploration, a thin sheet of gelatin can be placed over the defect site to 

prevent scarring of orbital tissue into the fracture line [81-84]. 

However, it is evident that the criteria for choosing the optimal implant material are rather empirical 

and, therefore, there is a real need for multicentric, randomized controlled trials using a large 

sample size to derive definite guidelines and classifications regarding the most appropriate materials 

for orbital fractures repair. The development in the next few years of a standard protocol to guide 

the maxillofacial and ophthalmic surgeons in the decision-making process would be very desirable, 

in order to minimize the possible intra-, peri- and postoperative complications and further improve 

the patient’s life quality.  

 

11. Concluding remarks and promises for the future 

 

The data from existing literature demonstrate that orbital floor reconstruction is often a complex 

issue and, at present, none of the biomaterials used in clinical practice can be really considered as 

the ideal one. In the next few years, the development of new biomaterials and implants exhibiting 

superior performance with respect to the existing commercial solutions would be highly desirable. 

These new products should be easy to be sterilized and used by surgeons; specifically, the easiness 

of contouring/tailoring and implantation are crucial issues, since the biomaterial is usually shaped 

by surgeon during operation, for instance by simple cutting, in order to meet the specific needs of 

any patient. An ideal material for orbital floor repair should ensure adequate mechanical support to 

the surrounding tissues and be also resorbable, i.e. able to safely dissolve once it has performed its 
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function, thereby leaving the body to remodel the tissue to its natural form. Eventually, an optimal 

biomaterial should be bioactive, i.e. able to promote native tissue regeneration by stimulating cells 

activity without altering cells physiological metabolism or releasing toxic products in the organism.  

It is worth underlining that maybe the most critical limitation of the commercially available 

biomaterials for orbital floor repair is the lack of bioactivity. In such a context, three types of novel 

biomaterials might have a promising potential to overcome this drawback and be viewed as 

interesting promises for the future: (i) surface-treated titanium, (ii) photoactive polymers and (iii) 

bioactive glasses. 

Bone-bonding ability of surface-treated titanium was extensively studied over the last decade by 

several research groups [188-191]. A first approach, involving alkali-treatment of titanium, was 

developed by Kokubo and co-workers [188,189]: when titanium is soaked in NaOH, a hydrated 

titanium oxide gel layer containing alkali ions is formed on its surface; this gel can be dehydrated 

and densified to form an amorphous alkali titanate layer by heat treatment below 600 °C. After 

soaking in simulated body fluid (SBF), the alkali ions are released from the amorphous alkali 

titanate layer and hydronium ions enter the surface layer, thereby resulting in the formation of a 

titanium oxide hydrogel layer. The released Na
+
 ions increase the pH of the SBF and its degree of 

supersaturation with respect to apatite, and therefore the titanium oxide hydrogel eventually induces 

HA nucleation on titanium surface. Another approach to induce HA formation on the surface of 

titanium alloys was recently developed by Ferraris et al. [191], who reported a thermo-chemical 

treatment including a first acid etching in hydrofluoric acid and a subsequent controlled oxidation in 

hydrogen peroxide. As extensively demonstrated since the early 1970s [99], the formation of a HA 

layer is essential to impart bone-bonding ability to the implant. Therefore, the use of surface-treated 

titanium for orbital floor reconstruction could be a valuable resource to improve the surgical 

outcomes; however, these implants are permanent and will remain in situ indefinitely.   

Very recently, Chiono et al. [192] demonstrated that the use of photoactive biocompatible conjugate 

polymer, such as chitosan-g-fluorescein (CHFL), are able to stimulate HA deposition upon visible 
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light irradiation. The authors suggested that the use of these polymers in the clinical practice may 

lead to new therapeutic options in the field of bone and dental repair, exploiting the photoexcitation 

mechanism as a tool for biomineralization; indeed, this challenging research topic will be worthy of 

extensive experimental work in the next few years.  

As the third promise for the future, bioactive glasses are maybe the most reliable option, as they 

have been commercialized worldwide for 25 years [102] and already used experimentally for orbital 

floor repair [105-107]. From manufacturing viewpoint they are very versatile, as they can be 

synthesized in form of powders, granules or porous scaffolds of various size and shape matching 

those of the tissue portion that they are aimed at substituting [103]. Custom-made glass-derived 

scaffolds for orbital floor repair could be fabricated by using rapid prototyping techniques [193-

195]. CT- and MRI-derived files can be used as input data for CAD/CAM manufacturing systems in 

order to produce scaffolds matching exactly the dimensional features of bone defects; in this way, 

surgery time would be shortened as intraoperative implant shaping by surgeon would be no longer 

necessary. Glass-derived products can be easily sterilized, for instance by β- or γ-irradiation, 

without undergoing degradation. Bioactive glasses have also been proven to promote osteogenesis 

at the implant site, as they can induce stem cells differentiation into osteoblasts and their ionic 

dissolution products have a direct effect in stimulating bone cells genes towards a path of 

regeneration and self-repair [104]. If glasses are processed in form of mesoporous materials, they 

can also easily incorporate specific molecules, for instance anti-inflammatory drugs, to be released 

in situ postoperatively to elicit an appropriate therapeutic effect [196-198]. In this context, a 

valuable resource towards the development of an ideal biomaterial for orbital floor repair can come 

from bioactive glass/polymer composites: the mechanical properties, degradation rate and 

bioactivity of the final material can be tailored by choosing different glass/polymer combinations 

and by acting on the interactions between organic and inorganic phases [199]. For instance, 

glass/polymer interactions at the macro-scale can be achieved by simple blending, but more 

intimate interactions at the nanoscale can be obtained only by using more complex processing 
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methods, such as sol-gel techniques [200]. The use of polymeric hydrogels for manufacturing 

composite materials can also have a great potential in imparting drug-release ability to the final 

implant [146]. Very comprehensive reviews dealing with bioactive glass, glass-ceramic and 

glass/polymer composite scaffolds for bone repair have been recently published and are available to 

interested readers [201-203].   

The three above-mentioned “promises for the future” owe their attractive features primarily to 

material properties. In addition, it is worth mentioning a fourth option that was already pointed out 

in a recent work by Betz et al. [31], who recommended the use of tissue-engineered polymeric 

constructs, such as BMP-loaded hydrogels, in the field of orbital floor and general maxillofacial 

reconstruction thanks to their unique regenerative potential. In fact, BMPs can promote bone 

regeneration, thereby accelerating orbital injury healing, and furthermore the BMP-accelerated bone 

in-growth inside the implant can contribute to overcome the problems related to polymeric matrix 

integrity over time; this latter advantage is particularly useful if the polymer should be absorbable. 

The prospects of manufacturing and making commercially available this tissue-engineered product 

is challenging and could constitute an outstanding advance towards a truly ideal biomaterial; 

however, some problems and limitations associated to the release of biologically active growth 

factors, such as BMPs, cannot be ignored. As extensively discussed by Haidar et al. [204,205] in a 

couple of recent reviews on this topic, the clinical efficacy of BMPs strongly depend on the carrier 

system used to ensure a sustained, multistep and prolonged delivery of adequate protein 

concentrations to the desired site of tissue repair or restoration; the foremost limitations include the 

rapid diffusion of osteogenic protein away from the site of application and the loss of its bioactivity, 

resulting in suboptimal local induction and thus incompleteness or failure of bone regeneration. 

Hence, the design of a safe and effective delivery system that immobilizes growth factors, controls 

their release at therapeutic levels over proper periods of time for bone induction, has release kinetics 

calibrated to local requirements and, ultimately, degrades without eliciting unexpected side effects 

still remain a challenge. However, promising results have been very recently reported by Betz et al. 
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[146] and Asamura et al. [185] in animal models of orbital floor defects. Eventually, a non-

negligible drawback associated to biologically active growth factors is their high cost, which could 

further prevent their use in the common clinical practice.      

With respect to currently available commercial products for orbital floor surgery (Table 3), the 

previously described four types of innovative biomaterials/implants are expected to carry significant 

added values in terms of biocompatibility, bioactivity and bone regeneration ability, together with 

the potential of acting as matrices for drug therapy in situ. In the next few years, an ever increasing 

synergy among materials scientists, chemists, physicists, biologists, surgeons and researchers of 

medical implant industries would be desirable in an attempt to select and market more suitable and 

cost-effective biomaterials for orbital floor surgery, in order to further improve the patient’s life 

quality.      
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Tables 

 

Table 1 

Medical glossary (terms listed alphabetically). 

Term Explanation 

Blepharoptosis  Drooping of the upper eyelid. 

Bone morphogenetic protein  

(BMPs) 

Group of growth factors, also known as cytokines, able to induce and regulate the formation of bone and 

cartilage. Dysregulation in BMP signalling may involve a multitude of diseases and pathological processes, 

including cancer. 

Conjunctiva Clear mucous membrane constituted by stratified columnar epithelium that covers the sclera and lines the 

inside of the eyelids. It contributes to eye lubrication by producing mucus and tears, although in a smaller 

amount with respect to lachrymal glands. In addition, it prevents the entrance of pathogen agents and foreign 

body into the eye. 

Diplopia Commonly referred to as “double vision”, it can occur when patient’s eyes are not correctly aligned while 

aiming at an object and, therefore, two non-matching images are simultaneously sent to the viewer’s brain. It 

is often the first manifestation of many systemic disorders, especially concerning muscular or neurologic 

processes. An accurate and clear description of the symptoms – e.g. constant or intermittent; variable or 



 65 

unchanging; at near or at far; monocular or binocular; horizontal, vertical or oblique – is critical to 

appropriate diagnosis and management. 

Dysesthesia Unpleasant, abnormal sensation produced by normal stimuli, with particular reference to touch; this altered 

sensation may be considered as a kind of pain. 

Ectropion Turning out of the eyelid (usually the lower eyelid), so that its inner surface is exposed. 

Entropion Folding inwards of the eyelid (usually the lower eyelid), so that the eyelashes constantly rub against the 

cornea. 

Enophthalmos Recession of the eyeball within the orbit. It may be a congenital anomaly or be acquired as a result of trauma, 

such as blow-out fracture of the orbit. It is also referred to as endopthalmos. 

Epistaxis Hemorrhage from the nose. It is commonly referred to as nosebleed.  

Exophthalmos Also referred to as proptosis, it results in a bulging of the eye anteriorly out of the orbit. It can be either 

bilateral or unilateral, and is usually due to orbital tumor, trauma or swelling of surrounding tissue(s) 

resulting from trauma. Trauma to the orbit can cause bleeding behind the eye, a condition called retrobulbar 

hemorrhage; the resulting increased pressure pushes the eye out of the socket, thereby leading to 

exopthalmos. 

Extraocular muscles Group of 6 muscles, attaching to the sclera, that control the movements of the eye. 

Hyperalgesia Abnormally increased sensitivity to pain; it is usually due to damage to nociceptors or peripheral nerve.  
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Hypoesthesia Abnormally reduced sensitivity to sensory stimuli, particularly to touch.   

Hypoglobus  Downward displacement of the ocular globe; its causes and symptoms are quite similar to those observed for 

enophthlamos. 

Infraorbital nerve Name of the maxillary nerve after entering the infraorbital canal. It innervates the lower eyelid, the upper lip 

and part of the nasal vestibule. 

Intraocular pressure (IOP) Measure of the fluid pressure inside the eye (mean value in normal population ~15.5 mmHg). IOP above 21 

mmHg indicates ocular hypertension, that may eventually develop into glaucoma and involve damage to the 

optic nerve. 

Maxillary sinus Located in the body of the maxilla, it is the largest of paranasal sinuses and characterized by pyramidal shape. 

This sinus, often termed maxillary antrum, has three recesses: an alveolar recess (inferior region, bounded by 

the alveolar process of the maxilla, a zygomatic recess (lateral region) bounded by the zygomatic bone, and 

an infraorbital recess (superior region) bounded by the inferior orbital surface of the maxilla (orbital floor).  

Retina Light-sensitive tissue of the eye. It lines the inner surface of the ocular globe and can be viewed as a highly-

specialized multilayered neural structure. The neurons that are directly sensitive to light are the photoreceptor 

cells, i.e. rods, that function mainly in dim light and provide black-and-white vision, and cones, that support 

daytime vision and the perception of colours. 

Sclera Opaque, fibrous, protective, outer layer of the eye. Primarily constituted by collagen, it maintains the shape 
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of the globe, offers resistance to internal and external forces and provides an attachment for the extraocular 

muscle insertions. The thickness of the sclera varies from 1 mm at the posterior pole to 0.3 mm just behind 

the rectus muscle insertions. It is commonly referred to as the “white of the eye”. 
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Table 2 

Overview of the biomaterials/implants used for orbital floor repair. 

Class Material Type 
a
 Recipient 

b
 Remarks and some examples of commercial products References 

Autografts Bone A H Resorption rate depending on bone type (cancellous, 

cortical) and origin (harvesting site) 

[28,33-59] 

Cartilage P H Easy and non-traumatic harvesting [60-64] 

Fascia lata A H  [65] 

Periosteum A H  [66] 

Allografts Lyophilized dura mater A H Possible problems related to its use, with particular 

reference to the transmission of Creutzfeldt-Jakob 

disease 

[72-74] 

Demineralised bone A H Allogenic bone banks are available to surgeons [27,75] 

Cartilage P H  [73,76] 

Xenografts and 

animal-derived 

substances 

Bovine bone A H  [80] 

Gelatin A H Commercial products: Gelfilm
®
 (thin sheets) [81-85] 

Bovine sclera P AM Experimented in an animal model (rabbits) only [86] 

Bioceramics Hydroxyapatite (HA) P H Commercial product: Biocoral
®
 (coral-derived HA); [88-98] 
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HA-containing cements. 

Bioactive glasses A H Slowly resorbable. In principle, the behaviour of 

bioactive glasses can be tailored acting on their 

composition (amount of the different oxides) and, 

accordingly, the glass dissolution rate can be properly 

modulated. 

[105-107] 

Metals Titanium P H Commercial product: MatrixORBITAL
®

 [54,110-118] 

Cobalt alloys P H Commercial alloy name: Vitallium
®
 [121] 

Polymers Silicone P H Commercial products: Silastic
®
 sheets [124-135] 

Polyethylene (PE) P H Commercial implant: Medpor
®
 (porous PE) [55,116,129,132

,136-140] 

Polytetrafluoroethylene 

(PTFE) 

P H Expanded PTFE (Gore-Tex
®
) is clinically used [96,141,142] 

Nylon P H Commercial product: SupraFOIL
®

 sheets [143-145] 

BMP-loaded hydrogel P AM Experimented in an animal model (rabbits) only [31,146] 

Poly(lactic acid) (PLA) A H Very slow resorption rate. Commercial product: 

Biosorb
®
 FX (P(L/DL)LA copolymer)  

[153-162] 
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Poly(glycolic acid) (PGA) A H  [163-165] 

PLA/PGA A H Commercial products: Lactosorb
®
, Biosorb

®
 PDX [167-170] 

Polydioxanone (PDO) A H Commercial product: Vicryl
®

 [84,171-174] 

Polyglactine 910/PDO A H Commercial product: Ethisorb
®

 [174-176] 

Composites HA/PE  P H Commercial product: HAPEX
TM

 [177,178,181] 

Titanium/PE  P H Commercial products: Medpor
®
 Titan

TM
; SynPOR

®
 [182,183] 

Periosteum joined to a 

HA/PLLA/PCL sheet 

A H  [184] 

BMP-loaded gelatin 

hydrogel/PLA-based polymer 

sheet 

A AM Experimented in an animal model (dogs) only [185] 

HA nanoparticles/cyclic 

acetal hydrogels 

P AM Experimented in an animal model (rabbits) only  [186] 

Bone-marrow-coated PCL 

scaffold 

A AM Experimented in an animal model (pigs) only [187] 

a
 P = permanent; A = absorbable. 

b
 H = human patients; AM = animal model only 
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Figure  

 

Fig. 1. Tomographical image (coronal plane) showing patient’s right orbital floor fracture, vertical 

elongation of right orbit and, accordingly, reduction in size of right maxillary (1, orbital cavities; 2, 

maxillary sinuses; 3, fracture area). 
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Fig. 2. Endoscopic transantral approach for orbital floor fracture repair: (a) upper gingivobuccal 

incision; (b) maxilla exposure for osseous cuts; (c) removal of bone window taking care to preserve 

the medial and lateral buttresses and the infraorbital nerve (the bone window may be discarded, 

replaced in situ at the end of operation or used as an autograft, according to material quality and 

surgeon’s preferences); (d) orbital exploration performed through the endoscope (herniated orbital 

contents are visible); (e) reduction of herniated orbital contents within the orbit from the transantral 

route; (f) fracture stabilization with a proper implant (biologically-derived or alloplastic material). 

(Images adapted from Ducic and Verret [11] with permission.) 
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Fig. 3. Some examples of biomaterials/implants used for orbital floor repair: (a) iliac crest autograft 

(adapted from Sakakibara et al. [42] with permission); (b) bioactive glass plates with their 

corresponding “kidney-shaped” and “drop-shaped” stainless steel templates (adapted from Peltola et 

al. [107] with permission); (c) titanium mesh on a solid orbital model (adapted from Kozakiewick et 

al. [117] with permission); (d) porous polyethylene sheet (Medpor
®
) (courtesy from Porex Surgical, 

USA); (e) poly(L-lactide) implant (adapted from Rozema et al. [154] with permission); (f) poly(L-

lactic) acid/polyglycolic acid composite implant (Lactosorb
®
 panel) (adapted from Enislidis et al. 

[148]); (g) polyglactin 910/polydioxanone patch (Ethisorb
®
) (adapted from Buchel et al. [176]); (h) 

upper and lower side of titanium/polyethylene composite implant (Medpor
®
 Titan

TM
) (courtesy 

from Porex Surgical, USA). 

 

 

 


